xref: /freebsd/sys/dev/netmap/netmap_generic.c (revision 08c4a937a6685f05667996228898521fc453f8f3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2013-2016 Vincenzo Maffione
5  * Copyright (C) 2013-2016 Luigi Rizzo
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *   1. Redistributions of source code must retain the above copyright
12  *      notice, this list of conditions and the following disclaimer.
13  *   2. Redistributions in binary form must reproduce the above copyright
14  *      notice, this list of conditions and the following disclaimer in the
15  *      documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * This module implements netmap support on top of standard,
32  * unmodified device drivers.
33  *
34  * A NIOCREGIF request is handled here if the device does not
35  * have native support. TX and RX rings are emulated as follows:
36  *
37  * NIOCREGIF
38  *	We preallocate a block of TX mbufs (roughly as many as
39  *	tx descriptors; the number is not critical) to speed up
40  *	operation during transmissions. The refcount on most of
41  *	these buffers is artificially bumped up so we can recycle
42  *	them more easily. Also, the destructor is intercepted
43  *	so we use it as an interrupt notification to wake up
44  *	processes blocked on a poll().
45  *
46  *	For each receive ring we allocate one "struct mbq"
47  *	(an mbuf tailq plus a spinlock). We intercept packets
48  *	(through if_input)
49  *	on the receive path and put them in the mbq from which
50  *	netmap receive routines can grab them.
51  *
52  * TX:
53  *	in the generic_txsync() routine, netmap buffers are copied
54  *	(or linked, in a future) to the preallocated mbufs
55  *	and pushed to the transmit queue. Some of these mbufs
56  *	(those with NS_REPORT, or otherwise every half ring)
57  *	have the refcount=1, others have refcount=2.
58  *	When the destructor is invoked, we take that as
59  *	a notification that all mbufs up to that one in
60  *	the specific ring have been completed, and generate
61  *	the equivalent of a transmit interrupt.
62  *
63  * RX:
64  *
65  */
66 
67 #ifdef __FreeBSD__
68 
69 #include <sys/cdefs.h> /* prerequisite */
70 __FBSDID("$FreeBSD$");
71 
72 #include <sys/types.h>
73 #include <sys/errno.h>
74 #include <sys/malloc.h>
75 #include <sys/lock.h>   /* PROT_EXEC */
76 #include <sys/rwlock.h>
77 #include <sys/socket.h> /* sockaddrs */
78 #include <sys/selinfo.h>
79 #include <net/if.h>
80 #include <net/if_types.h>
81 #include <net/if_var.h>
82 #include <machine/bus.h>        /* bus_dmamap_* in netmap_kern.h */
83 
84 #include <net/netmap.h>
85 #include <dev/netmap/netmap_kern.h>
86 #include <dev/netmap/netmap_mem2.h>
87 
88 #define MBUF_RXQ(m)	((m)->m_pkthdr.flowid)
89 #define smp_mb()
90 
91 #elif defined _WIN32
92 
93 #include "win_glue.h"
94 
95 #define MBUF_TXQ(m) 	0//((m)->m_pkthdr.flowid)
96 #define MBUF_RXQ(m)	    0//((m)->m_pkthdr.flowid)
97 #define smp_mb()		//XXX: to be correctly defined
98 
99 #else /* linux */
100 
101 #include "bsd_glue.h"
102 
103 #include <linux/ethtool.h>      /* struct ethtool_ops, get_ringparam */
104 #include <linux/hrtimer.h>
105 
106 static inline struct mbuf *
107 nm_os_get_mbuf(struct ifnet *ifp, int len)
108 {
109 	return alloc_skb(ifp->needed_headroom + len +
110 			 ifp->needed_tailroom, GFP_ATOMIC);
111 }
112 
113 #endif /* linux */
114 
115 
116 /* Common headers. */
117 #include <net/netmap.h>
118 #include <dev/netmap/netmap_kern.h>
119 #include <dev/netmap/netmap_mem2.h>
120 
121 
122 #define for_each_kring_n(_i, _k, _karr, _n) \
123 	for ((_k)=*(_karr), (_i) = 0; (_i) < (_n); (_i)++, (_k) = (_karr)[(_i)])
124 
125 #define for_each_tx_kring(_i, _k, _na) \
126 		for_each_kring_n(_i, _k, (_na)->tx_rings, (_na)->num_tx_rings)
127 #define for_each_tx_kring_h(_i, _k, _na) \
128 		for_each_kring_n(_i, _k, (_na)->tx_rings, (_na)->num_tx_rings + 1)
129 
130 #define for_each_rx_kring(_i, _k, _na) \
131 		for_each_kring_n(_i, _k, (_na)->rx_rings, (_na)->num_rx_rings)
132 #define for_each_rx_kring_h(_i, _k, _na) \
133 		for_each_kring_n(_i, _k, (_na)->rx_rings, (_na)->num_rx_rings + 1)
134 
135 
136 /* ======================== PERFORMANCE STATISTICS =========================== */
137 
138 #ifdef RATE_GENERIC
139 #define IFRATE(x) x
140 struct rate_stats {
141 	unsigned long txpkt;
142 	unsigned long txsync;
143 	unsigned long txirq;
144 	unsigned long txrepl;
145 	unsigned long txdrop;
146 	unsigned long rxpkt;
147 	unsigned long rxirq;
148 	unsigned long rxsync;
149 };
150 
151 struct rate_context {
152 	unsigned refcount;
153 	struct timer_list timer;
154 	struct rate_stats new;
155 	struct rate_stats old;
156 };
157 
158 #define RATE_PRINTK(_NAME_) \
159 	printk( #_NAME_ " = %lu Hz\n", (cur._NAME_ - ctx->old._NAME_)/RATE_PERIOD);
160 #define RATE_PERIOD  2
161 static void rate_callback(unsigned long arg)
162 {
163 	struct rate_context * ctx = (struct rate_context *)arg;
164 	struct rate_stats cur = ctx->new;
165 	int r;
166 
167 	RATE_PRINTK(txpkt);
168 	RATE_PRINTK(txsync);
169 	RATE_PRINTK(txirq);
170 	RATE_PRINTK(txrepl);
171 	RATE_PRINTK(txdrop);
172 	RATE_PRINTK(rxpkt);
173 	RATE_PRINTK(rxsync);
174 	RATE_PRINTK(rxirq);
175 	printk("\n");
176 
177 	ctx->old = cur;
178 	r = mod_timer(&ctx->timer, jiffies +
179 			msecs_to_jiffies(RATE_PERIOD * 1000));
180 	if (unlikely(r))
181 		nm_prerr("mod_timer() failed");
182 }
183 
184 static struct rate_context rate_ctx;
185 
186 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi)
187 {
188 	if (txp) rate_ctx.new.txpkt++;
189 	if (txs) rate_ctx.new.txsync++;
190 	if (txi) rate_ctx.new.txirq++;
191 	if (rxp) rate_ctx.new.rxpkt++;
192 	if (rxs) rate_ctx.new.rxsync++;
193 	if (rxi) rate_ctx.new.rxirq++;
194 }
195 
196 #else /* !RATE */
197 #define IFRATE(x)
198 #endif /* !RATE */
199 
200 
201 /* ========== GENERIC (EMULATED) NETMAP ADAPTER SUPPORT ============= */
202 
203 /*
204  * Wrapper used by the generic adapter layer to notify
205  * the poller threads. Differently from netmap_rx_irq(), we check
206  * only NAF_NETMAP_ON instead of NAF_NATIVE_ON to enable the irq.
207  */
208 void
209 netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done)
210 {
211 	if (unlikely(!nm_netmap_on(na)))
212 		return;
213 
214 	netmap_common_irq(na, q, work_done);
215 #ifdef RATE_GENERIC
216 	if (work_done)
217 		rate_ctx.new.rxirq++;
218 	else
219 		rate_ctx.new.txirq++;
220 #endif  /* RATE_GENERIC */
221 }
222 
223 static int
224 generic_netmap_unregister(struct netmap_adapter *na)
225 {
226 	struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
227 	struct netmap_kring *kring = NULL;
228 	int i, r;
229 
230 	if (na->active_fds == 0) {
231 		na->na_flags &= ~NAF_NETMAP_ON;
232 
233 		/* Stop intercepting packets on the RX path. */
234 		nm_os_catch_rx(gna, 0);
235 
236 		/* Release packet steering control. */
237 		nm_os_catch_tx(gna, 0);
238 	}
239 
240 	for_each_rx_kring_h(r, kring, na) {
241 		if (nm_kring_pending_off(kring)) {
242 			nm_prinf("Emulated adapter: ring '%s' deactivated", kring->name);
243 			kring->nr_mode = NKR_NETMAP_OFF;
244 		}
245 	}
246 	for_each_tx_kring_h(r, kring, na) {
247 		if (nm_kring_pending_off(kring)) {
248 			kring->nr_mode = NKR_NETMAP_OFF;
249 			nm_prinf("Emulated adapter: ring '%s' deactivated", kring->name);
250 		}
251 	}
252 
253 	for_each_rx_kring(r, kring, na) {
254 		/* Free the mbufs still pending in the RX queues,
255 		 * that did not end up into the corresponding netmap
256 		 * RX rings. */
257 		mbq_safe_purge(&kring->rx_queue);
258 		nm_os_mitigation_cleanup(&gna->mit[r]);
259 	}
260 
261 	/* Decrement reference counter for the mbufs in the
262 	 * TX pools. These mbufs can be still pending in drivers,
263 	 * (e.g. this happens with virtio-net driver, which
264 	 * does lazy reclaiming of transmitted mbufs). */
265 	for_each_tx_kring(r, kring, na) {
266 		/* We must remove the destructor on the TX event,
267 		 * because the destructor invokes netmap code, and
268 		 * the netmap module may disappear before the
269 		 * TX event is consumed. */
270 		mtx_lock_spin(&kring->tx_event_lock);
271 		if (kring->tx_event) {
272 			SET_MBUF_DESTRUCTOR(kring->tx_event, NULL);
273 		}
274 		kring->tx_event = NULL;
275 		mtx_unlock_spin(&kring->tx_event_lock);
276 	}
277 
278 	if (na->active_fds == 0) {
279 		nm_os_free(gna->mit);
280 
281 		for_each_rx_kring(r, kring, na) {
282 			mbq_safe_fini(&kring->rx_queue);
283 		}
284 
285 		for_each_tx_kring(r, kring, na) {
286 			mtx_destroy(&kring->tx_event_lock);
287 			if (kring->tx_pool == NULL) {
288 				continue;
289 			}
290 
291 			for (i=0; i<na->num_tx_desc; i++) {
292 				if (kring->tx_pool[i]) {
293 					m_freem(kring->tx_pool[i]);
294 				}
295 			}
296 			nm_os_free(kring->tx_pool);
297 			kring->tx_pool = NULL;
298 		}
299 
300 #ifdef RATE_GENERIC
301 		if (--rate_ctx.refcount == 0) {
302 			nm_prinf("del_timer()");
303 			del_timer(&rate_ctx.timer);
304 		}
305 #endif
306 		nm_prinf("Emulated adapter for %s deactivated", na->name);
307 	}
308 
309 	return 0;
310 }
311 
312 /* Enable/disable netmap mode for a generic network interface. */
313 static int
314 generic_netmap_register(struct netmap_adapter *na, int enable)
315 {
316 	struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
317 	struct netmap_kring *kring = NULL;
318 	int error;
319 	int i, r;
320 
321 	if (!na) {
322 		return EINVAL;
323 	}
324 
325 	if (!enable) {
326 		/* This is actually an unregif. */
327 		return generic_netmap_unregister(na);
328 	}
329 
330 	if (na->active_fds == 0) {
331 		nm_prinf("Emulated adapter for %s activated", na->name);
332 		/* Do all memory allocations when (na->active_fds == 0), to
333 		 * simplify error management. */
334 
335 		/* Allocate memory for mitigation support on all the rx queues. */
336 		gna->mit = nm_os_malloc(na->num_rx_rings * sizeof(struct nm_generic_mit));
337 		if (!gna->mit) {
338 			nm_prerr("mitigation allocation failed");
339 			error = ENOMEM;
340 			goto out;
341 		}
342 
343 		for_each_rx_kring(r, kring, na) {
344 			/* Init mitigation support. */
345 			nm_os_mitigation_init(&gna->mit[r], r, na);
346 
347 			/* Initialize the rx queue, as generic_rx_handler() can
348 			 * be called as soon as nm_os_catch_rx() returns.
349 			 */
350 			mbq_safe_init(&kring->rx_queue);
351 		}
352 
353 		/*
354 		 * Prepare mbuf pools (parallel to the tx rings), for packet
355 		 * transmission. Don't preallocate the mbufs here, it's simpler
356 		 * to leave this task to txsync.
357 		 */
358 		for_each_tx_kring(r, kring, na) {
359 			kring->tx_pool = NULL;
360 		}
361 		for_each_tx_kring(r, kring, na) {
362 			kring->tx_pool =
363 				nm_os_malloc(na->num_tx_desc * sizeof(struct mbuf *));
364 			if (!kring->tx_pool) {
365 				nm_prerr("tx_pool allocation failed");
366 				error = ENOMEM;
367 				goto free_tx_pools;
368 			}
369 			mtx_init(&kring->tx_event_lock, "tx_event_lock",
370 				 NULL, MTX_SPIN);
371 		}
372 	}
373 
374 	for_each_rx_kring_h(r, kring, na) {
375 		if (nm_kring_pending_on(kring)) {
376 			nm_prinf("Emulated adapter: ring '%s' activated", kring->name);
377 			kring->nr_mode = NKR_NETMAP_ON;
378 		}
379 
380 	}
381 	for_each_tx_kring_h(r, kring, na) {
382 		if (nm_kring_pending_on(kring)) {
383 			nm_prinf("Emulated adapter: ring '%s' activated", kring->name);
384 			kring->nr_mode = NKR_NETMAP_ON;
385 		}
386 	}
387 
388 	for_each_tx_kring(r, kring, na) {
389 		/* Initialize tx_pool and tx_event. */
390 		for (i=0; i<na->num_tx_desc; i++) {
391 			kring->tx_pool[i] = NULL;
392 		}
393 
394 		kring->tx_event = NULL;
395 	}
396 
397 	if (na->active_fds == 0) {
398 		/* Prepare to intercept incoming traffic. */
399 		error = nm_os_catch_rx(gna, 1);
400 		if (error) {
401 			nm_prerr("nm_os_catch_rx(1) failed (%d)", error);
402 			goto free_tx_pools;
403 		}
404 
405 		/* Let netmap control the packet steering. */
406 		error = nm_os_catch_tx(gna, 1);
407 		if (error) {
408 			nm_prerr("nm_os_catch_tx(1) failed (%d)", error);
409 			goto catch_rx;
410 		}
411 
412 		na->na_flags |= NAF_NETMAP_ON;
413 
414 #ifdef RATE_GENERIC
415 		if (rate_ctx.refcount == 0) {
416 			nm_prinf("setup_timer()");
417 			memset(&rate_ctx, 0, sizeof(rate_ctx));
418 			setup_timer(&rate_ctx.timer, &rate_callback, (unsigned long)&rate_ctx);
419 			if (mod_timer(&rate_ctx.timer, jiffies + msecs_to_jiffies(1500))) {
420 				nm_prerr("Error: mod_timer()");
421 			}
422 		}
423 		rate_ctx.refcount++;
424 #endif /* RATE */
425 	}
426 
427 	return 0;
428 
429 	/* Here (na->active_fds == 0) holds. */
430 catch_rx:
431 	nm_os_catch_rx(gna, 0);
432 free_tx_pools:
433 	for_each_tx_kring(r, kring, na) {
434 		mtx_destroy(&kring->tx_event_lock);
435 		if (kring->tx_pool == NULL) {
436 			continue;
437 		}
438 		nm_os_free(kring->tx_pool);
439 		kring->tx_pool = NULL;
440 	}
441 	for_each_rx_kring(r, kring, na) {
442 		mbq_safe_fini(&kring->rx_queue);
443 	}
444 	nm_os_free(gna->mit);
445 out:
446 
447 	return error;
448 }
449 
450 /*
451  * Callback invoked when the device driver frees an mbuf used
452  * by netmap to transmit a packet. This usually happens when
453  * the NIC notifies the driver that transmission is completed.
454  */
455 static void
456 generic_mbuf_destructor(struct mbuf *m)
457 {
458 	struct netmap_adapter *na = NA(GEN_TX_MBUF_IFP(m));
459 	struct netmap_kring *kring;
460 	unsigned int r = MBUF_TXQ(m);
461 	unsigned int r_orig = r;
462 
463 	if (unlikely(!nm_netmap_on(na) || r >= na->num_tx_rings)) {
464 		nm_prerr("Error: no netmap adapter on device %p",
465 		  GEN_TX_MBUF_IFP(m));
466 		return;
467 	}
468 
469 	/*
470 	 * First, clear the event mbuf.
471 	 * In principle, the event 'm' should match the one stored
472 	 * on ring 'r'. However we check it explicitely to stay
473 	 * safe against lower layers (qdisc, driver, etc.) changing
474 	 * MBUF_TXQ(m) under our feet. If the match is not found
475 	 * on 'r', we try to see if it belongs to some other ring.
476 	 */
477 	for (;;) {
478 		bool match = false;
479 
480 		kring = na->tx_rings[r];
481 		mtx_lock_spin(&kring->tx_event_lock);
482 		if (kring->tx_event == m) {
483 			kring->tx_event = NULL;
484 			match = true;
485 		}
486 		mtx_unlock_spin(&kring->tx_event_lock);
487 
488 		if (match) {
489 			if (r != r_orig) {
490 				nm_prlim(1, "event %p migrated: ring %u --> %u",
491 				      m, r_orig, r);
492 			}
493 			break;
494 		}
495 
496 		if (++r == na->num_tx_rings) r = 0;
497 
498 		if (r == r_orig) {
499 			nm_prlim(1, "Cannot match event %p", m);
500 			return;
501 		}
502 	}
503 
504 	/* Second, wake up clients. They will reclaim the event through
505 	 * txsync. */
506 	netmap_generic_irq(na, r, NULL);
507 #ifdef __FreeBSD__
508 #if __FreeBSD_version <= 1200050
509 	void_mbuf_dtor(m, NULL, NULL);
510 #else  /* __FreeBSD_version >= 1200051 */
511 	void_mbuf_dtor(m);
512 #endif /* __FreeBSD_version >= 1200051 */
513 #endif
514 }
515 
516 /* Record completed transmissions and update hwtail.
517  *
518  * The oldest tx buffer not yet completed is at nr_hwtail + 1,
519  * nr_hwcur is the first unsent buffer.
520  */
521 static u_int
522 generic_netmap_tx_clean(struct netmap_kring *kring, int txqdisc)
523 {
524 	u_int const lim = kring->nkr_num_slots - 1;
525 	u_int nm_i = nm_next(kring->nr_hwtail, lim);
526 	u_int hwcur = kring->nr_hwcur;
527 	u_int n = 0;
528 	struct mbuf **tx_pool = kring->tx_pool;
529 
530 	nm_prdis("hwcur = %d, hwtail = %d", kring->nr_hwcur, kring->nr_hwtail);
531 
532 	while (nm_i != hwcur) { /* buffers not completed */
533 		struct mbuf *m = tx_pool[nm_i];
534 
535 		if (txqdisc) {
536 			if (m == NULL) {
537 				/* Nothing to do, this is going
538 				 * to be replenished. */
539 				nm_prlim(3, "Is this happening?");
540 
541 			} else if (MBUF_QUEUED(m)) {
542 				break; /* Not dequeued yet. */
543 
544 			} else if (MBUF_REFCNT(m) != 1) {
545 				/* This mbuf has been dequeued but is still busy
546 				 * (refcount is 2).
547 				 * Leave it to the driver and replenish. */
548 				m_freem(m);
549 				tx_pool[nm_i] = NULL;
550 			}
551 
552 		} else {
553 			if (unlikely(m == NULL)) {
554 				int event_consumed;
555 
556 				/* This slot was used to place an event. */
557 				mtx_lock_spin(&kring->tx_event_lock);
558 				event_consumed = (kring->tx_event == NULL);
559 				mtx_unlock_spin(&kring->tx_event_lock);
560 				if (!event_consumed) {
561 					/* The event has not been consumed yet,
562 					 * still busy in the driver. */
563 					break;
564 				}
565 				/* The event has been consumed, we can go
566 				 * ahead. */
567 
568 			} else if (MBUF_REFCNT(m) != 1) {
569 				/* This mbuf is still busy: its refcnt is 2. */
570 				break;
571 			}
572 		}
573 
574 		n++;
575 		nm_i = nm_next(nm_i, lim);
576 	}
577 	kring->nr_hwtail = nm_prev(nm_i, lim);
578 	nm_prdis("tx completed [%d] -> hwtail %d", n, kring->nr_hwtail);
579 
580 	return n;
581 }
582 
583 /* Compute a slot index in the middle between inf and sup. */
584 static inline u_int
585 ring_middle(u_int inf, u_int sup, u_int lim)
586 {
587 	u_int n = lim + 1;
588 	u_int e;
589 
590 	if (sup >= inf) {
591 		e = (sup + inf) / 2;
592 	} else { /* wrap around */
593 		e = (sup + n + inf) / 2;
594 		if (e >= n) {
595 			e -= n;
596 		}
597 	}
598 
599 	if (unlikely(e >= n)) {
600 		nm_prerr("This cannot happen");
601 		e = 0;
602 	}
603 
604 	return e;
605 }
606 
607 static void
608 generic_set_tx_event(struct netmap_kring *kring, u_int hwcur)
609 {
610 	u_int lim = kring->nkr_num_slots - 1;
611 	struct mbuf *m;
612 	u_int e;
613 	u_int ntc = nm_next(kring->nr_hwtail, lim); /* next to clean */
614 
615 	if (ntc == hwcur) {
616 		return; /* all buffers are free */
617 	}
618 
619 	/*
620 	 * We have pending packets in the driver between hwtail+1
621 	 * and hwcur, and we have to chose one of these slot to
622 	 * generate a notification.
623 	 * There is a race but this is only called within txsync which
624 	 * does a double check.
625 	 */
626 #if 0
627 	/* Choose a slot in the middle, so that we don't risk ending
628 	 * up in a situation where the client continuously wake up,
629 	 * fills one or a few TX slots and go to sleep again. */
630 	e = ring_middle(ntc, hwcur, lim);
631 #else
632 	/* Choose the first pending slot, to be safe against driver
633 	 * reordering mbuf transmissions. */
634 	e = ntc;
635 #endif
636 
637 	m = kring->tx_pool[e];
638 	if (m == NULL) {
639 		/* An event is already in place. */
640 		return;
641 	}
642 
643 	mtx_lock_spin(&kring->tx_event_lock);
644 	if (kring->tx_event) {
645 		/* An event is already in place. */
646 		mtx_unlock_spin(&kring->tx_event_lock);
647 		return;
648 	}
649 
650 	SET_MBUF_DESTRUCTOR(m, generic_mbuf_destructor);
651 	kring->tx_event = m;
652 	mtx_unlock_spin(&kring->tx_event_lock);
653 
654 	kring->tx_pool[e] = NULL;
655 
656 	nm_prdis("Request Event at %d mbuf %p refcnt %d", e, m, m ? MBUF_REFCNT(m) : -2 );
657 
658 	/* Decrement the refcount. This will free it if we lose the race
659 	 * with the driver. */
660 	m_freem(m);
661 	smp_mb();
662 }
663 
664 
665 /*
666  * generic_netmap_txsync() transforms netmap buffers into mbufs
667  * and passes them to the standard device driver
668  * (ndo_start_xmit() or ifp->if_transmit() ).
669  * On linux this is not done directly, but using dev_queue_xmit(),
670  * since it implements the TX flow control (and takes some locks).
671  */
672 static int
673 generic_netmap_txsync(struct netmap_kring *kring, int flags)
674 {
675 	struct netmap_adapter *na = kring->na;
676 	struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
677 	struct ifnet *ifp = na->ifp;
678 	struct netmap_ring *ring = kring->ring;
679 	u_int nm_i;	/* index into the netmap ring */ // j
680 	u_int const lim = kring->nkr_num_slots - 1;
681 	u_int const head = kring->rhead;
682 	u_int ring_nr = kring->ring_id;
683 
684 	IFRATE(rate_ctx.new.txsync++);
685 
686 	rmb();
687 
688 	/*
689 	 * First part: process new packets to send.
690 	 */
691 	nm_i = kring->nr_hwcur;
692 	if (nm_i != head) {	/* we have new packets to send */
693 		struct nm_os_gen_arg a;
694 		u_int event = -1;
695 
696 		if (gna->txqdisc && nm_kr_txempty(kring)) {
697 			/* In txqdisc mode, we ask for a delayed notification,
698 			 * but only when cur == hwtail, which means that the
699 			 * client is going to block. */
700 			event = ring_middle(nm_i, head, lim);
701 			nm_prdis("Place txqdisc event (hwcur=%u,event=%u,"
702 			      "head=%u,hwtail=%u)", nm_i, event, head,
703 			      kring->nr_hwtail);
704 		}
705 
706 		a.ifp = ifp;
707 		a.ring_nr = ring_nr;
708 		a.head = a.tail = NULL;
709 
710 		while (nm_i != head) {
711 			struct netmap_slot *slot = &ring->slot[nm_i];
712 			u_int len = slot->len;
713 			void *addr = NMB(na, slot);
714 			/* device-specific */
715 			struct mbuf *m;
716 			int tx_ret;
717 
718 			NM_CHECK_ADDR_LEN(na, addr, len);
719 
720 			/* Tale a mbuf from the tx pool (replenishing the pool
721 			 * entry if necessary) and copy in the user packet. */
722 			m = kring->tx_pool[nm_i];
723 			if (unlikely(m == NULL)) {
724 				kring->tx_pool[nm_i] = m =
725 					nm_os_get_mbuf(ifp, NETMAP_BUF_SIZE(na));
726 				if (m == NULL) {
727 					nm_prlim(2, "Failed to replenish mbuf");
728 					/* Here we could schedule a timer which
729 					 * retries to replenish after a while,
730 					 * and notifies the client when it
731 					 * manages to replenish some slots. In
732 					 * any case we break early to avoid
733 					 * crashes. */
734 					break;
735 				}
736 				IFRATE(rate_ctx.new.txrepl++);
737 			}
738 
739 			a.m = m;
740 			a.addr = addr;
741 			a.len = len;
742 			a.qevent = (nm_i == event);
743 			/* When not in txqdisc mode, we should ask
744 			 * notifications when NS_REPORT is set, or roughly
745 			 * every half ring. To optimize this, we set a
746 			 * notification event when the client runs out of
747 			 * TX ring space, or when transmission fails. In
748 			 * the latter case we also break early.
749 			 */
750 			tx_ret = nm_os_generic_xmit_frame(&a);
751 			if (unlikely(tx_ret)) {
752 				if (!gna->txqdisc) {
753 					/*
754 					 * No room for this mbuf in the device driver.
755 					 * Request a notification FOR A PREVIOUS MBUF,
756 					 * then call generic_netmap_tx_clean(kring) to do the
757 					 * double check and see if we can free more buffers.
758 					 * If there is space continue, else break;
759 					 * NOTE: the double check is necessary if the problem
760 					 * occurs in the txsync call after selrecord().
761 					 * Also, we need some way to tell the caller that not
762 					 * all buffers were queued onto the device (this was
763 					 * not a problem with native netmap driver where space
764 					 * is preallocated). The bridge has a similar problem
765 					 * and we solve it there by dropping the excess packets.
766 					 */
767 					generic_set_tx_event(kring, nm_i);
768 					if (generic_netmap_tx_clean(kring, gna->txqdisc)) {
769 						/* space now available */
770 						continue;
771 					} else {
772 						break;
773 					}
774 				}
775 
776 				/* In txqdisc mode, the netmap-aware qdisc
777 				 * queue has the same length as the number of
778 				 * netmap slots (N). Since tail is advanced
779 				 * only when packets are dequeued, qdisc
780 				 * queue overrun cannot happen, so
781 				 * nm_os_generic_xmit_frame() did not fail
782 				 * because of that.
783 				 * However, packets can be dropped because
784 				 * carrier is off, or because our qdisc is
785 				 * being deactivated, or possibly for other
786 				 * reasons. In these cases, we just let the
787 				 * packet to be dropped. */
788 				IFRATE(rate_ctx.new.txdrop++);
789 			}
790 
791 			slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED);
792 			nm_i = nm_next(nm_i, lim);
793 			IFRATE(rate_ctx.new.txpkt++);
794 		}
795 		if (a.head != NULL) {
796 			a.addr = NULL;
797 			nm_os_generic_xmit_frame(&a);
798 		}
799 		/* Update hwcur to the next slot to transmit. Here nm_i
800 		 * is not necessarily head, we could break early. */
801 		kring->nr_hwcur = nm_i;
802 	}
803 
804 	/*
805 	 * Second, reclaim completed buffers
806 	 */
807 	if (!gna->txqdisc && (flags & NAF_FORCE_RECLAIM || nm_kr_txempty(kring))) {
808 		/* No more available slots? Set a notification event
809 		 * on a netmap slot that will be cleaned in the future.
810 		 * No doublecheck is performed, since txsync() will be
811 		 * called twice by netmap_poll().
812 		 */
813 		generic_set_tx_event(kring, nm_i);
814 	}
815 
816 	generic_netmap_tx_clean(kring, gna->txqdisc);
817 
818 	return 0;
819 }
820 
821 
822 /*
823  * This handler is registered (through nm_os_catch_rx())
824  * within the attached network interface
825  * in the RX subsystem, so that every mbuf passed up by
826  * the driver can be stolen to the network stack.
827  * Stolen packets are put in a queue where the
828  * generic_netmap_rxsync() callback can extract them.
829  * Returns 1 if the packet was stolen, 0 otherwise.
830  */
831 int
832 generic_rx_handler(struct ifnet *ifp, struct mbuf *m)
833 {
834 	struct netmap_adapter *na = NA(ifp);
835 	struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
836 	struct netmap_kring *kring;
837 	u_int work_done;
838 	u_int r = MBUF_RXQ(m); /* receive ring number */
839 
840 	if (r >= na->num_rx_rings) {
841 		r = r % na->num_rx_rings;
842 	}
843 
844 	kring = na->rx_rings[r];
845 
846 	if (kring->nr_mode == NKR_NETMAP_OFF) {
847 		/* We must not intercept this mbuf. */
848 		return 0;
849 	}
850 
851 	/* limit the size of the queue */
852 	if (unlikely(!gna->rxsg && MBUF_LEN(m) > NETMAP_BUF_SIZE(na))) {
853 		/* This may happen when GRO/LRO features are enabled for
854 		 * the NIC driver when the generic adapter does not
855 		 * support RX scatter-gather. */
856 		nm_prlim(2, "Warning: driver pushed up big packet "
857 				"(size=%d)", (int)MBUF_LEN(m));
858 		m_freem(m);
859 	} else if (unlikely(mbq_len(&kring->rx_queue) > 1024)) {
860 		m_freem(m);
861 	} else {
862 		mbq_safe_enqueue(&kring->rx_queue, m);
863 	}
864 
865 	if (netmap_generic_mit < 32768) {
866 		/* no rx mitigation, pass notification up */
867 		netmap_generic_irq(na, r, &work_done);
868 	} else {
869 		/* same as send combining, filter notification if there is a
870 		 * pending timer, otherwise pass it up and start a timer.
871 		 */
872 		if (likely(nm_os_mitigation_active(&gna->mit[r]))) {
873 			/* Record that there is some pending work. */
874 			gna->mit[r].mit_pending = 1;
875 		} else {
876 			netmap_generic_irq(na, r, &work_done);
877 			nm_os_mitigation_start(&gna->mit[r]);
878 		}
879 	}
880 
881 	/* We have intercepted the mbuf. */
882 	return 1;
883 }
884 
885 /*
886  * generic_netmap_rxsync() extracts mbufs from the queue filled by
887  * generic_netmap_rx_handler() and puts their content in the netmap
888  * receive ring.
889  * Access must be protected because the rx handler is asynchronous,
890  */
891 static int
892 generic_netmap_rxsync(struct netmap_kring *kring, int flags)
893 {
894 	struct netmap_ring *ring = kring->ring;
895 	struct netmap_adapter *na = kring->na;
896 	u_int nm_i;	/* index into the netmap ring */ //j,
897 	u_int n;
898 	u_int const lim = kring->nkr_num_slots - 1;
899 	u_int const head = kring->rhead;
900 	int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR;
901 
902 	/* Adapter-specific variables. */
903 	u_int nm_buf_len = NETMAP_BUF_SIZE(na);
904 	struct mbq tmpq;
905 	struct mbuf *m;
906 	int avail; /* in bytes */
907 	int mlen;
908 	int copy;
909 
910 	if (head > lim)
911 		return netmap_ring_reinit(kring);
912 
913 	IFRATE(rate_ctx.new.rxsync++);
914 
915 	/*
916 	 * First part: skip past packets that userspace has released.
917 	 * This can possibly make room for the second part.
918 	 */
919 	nm_i = kring->nr_hwcur;
920 	if (nm_i != head) {
921 		/* Userspace has released some packets. */
922 		for (n = 0; nm_i != head; n++) {
923 			struct netmap_slot *slot = &ring->slot[nm_i];
924 
925 			slot->flags &= ~NS_BUF_CHANGED;
926 			nm_i = nm_next(nm_i, lim);
927 		}
928 		kring->nr_hwcur = head;
929 	}
930 
931 	/*
932 	 * Second part: import newly received packets.
933 	 */
934 	if (!netmap_no_pendintr && !force_update) {
935 		return 0;
936 	}
937 
938 	nm_i = kring->nr_hwtail; /* First empty slot in the receive ring. */
939 
940 	/* Compute the available space (in bytes) in this netmap ring.
941 	 * The first slot that is not considered in is the one before
942 	 * nr_hwcur. */
943 
944 	avail = nm_prev(kring->nr_hwcur, lim) - nm_i;
945 	if (avail < 0)
946 		avail += lim + 1;
947 	avail *= nm_buf_len;
948 
949 	/* First pass: While holding the lock on the RX mbuf queue,
950 	 * extract as many mbufs as they fit the available space,
951 	 * and put them in a temporary queue.
952 	 * To avoid performing a per-mbuf division (mlen / nm_buf_len) to
953 	 * to update avail, we do the update in a while loop that we
954 	 * also use to set the RX slots, but without performing the copy. */
955 	mbq_init(&tmpq);
956 	mbq_lock(&kring->rx_queue);
957 	for (n = 0;; n++) {
958 		m = mbq_peek(&kring->rx_queue);
959 		if (!m) {
960 			/* No more packets from the driver. */
961 			break;
962 		}
963 
964 		mlen = MBUF_LEN(m);
965 		if (mlen > avail) {
966 			/* No more space in the ring. */
967 			break;
968 		}
969 
970 		mbq_dequeue(&kring->rx_queue);
971 
972 		while (mlen) {
973 			copy = nm_buf_len;
974 			if (mlen < copy) {
975 				copy = mlen;
976 			}
977 			mlen -= copy;
978 			avail -= nm_buf_len;
979 
980 			ring->slot[nm_i].len = copy;
981 			ring->slot[nm_i].flags = (mlen ? NS_MOREFRAG : 0);
982 			nm_i = nm_next(nm_i, lim);
983 		}
984 
985 		mbq_enqueue(&tmpq, m);
986 	}
987 	mbq_unlock(&kring->rx_queue);
988 
989 	/* Second pass: Drain the temporary queue, going over the used RX slots,
990 	 * and perform the copy out of the RX queue lock. */
991 	nm_i = kring->nr_hwtail;
992 
993 	for (;;) {
994 		void *nmaddr;
995 		int ofs = 0;
996 		int morefrag;
997 
998 		m = mbq_dequeue(&tmpq);
999 		if (!m)	{
1000 			break;
1001 		}
1002 
1003 		do {
1004 			nmaddr = NMB(na, &ring->slot[nm_i]);
1005 			/* We only check the address here on generic rx rings. */
1006 			if (nmaddr == NETMAP_BUF_BASE(na)) { /* Bad buffer */
1007 				m_freem(m);
1008 				mbq_purge(&tmpq);
1009 				mbq_fini(&tmpq);
1010 				return netmap_ring_reinit(kring);
1011 			}
1012 
1013 			copy = ring->slot[nm_i].len;
1014 			m_copydata(m, ofs, copy, nmaddr);
1015 			ofs += copy;
1016 			morefrag = ring->slot[nm_i].flags & NS_MOREFRAG;
1017 			nm_i = nm_next(nm_i, lim);
1018 		} while (morefrag);
1019 
1020 		m_freem(m);
1021 	}
1022 
1023 	mbq_fini(&tmpq);
1024 
1025 	if (n) {
1026 		kring->nr_hwtail = nm_i;
1027 		IFRATE(rate_ctx.new.rxpkt += n);
1028 	}
1029 	kring->nr_kflags &= ~NKR_PENDINTR;
1030 
1031 	return 0;
1032 }
1033 
1034 static void
1035 generic_netmap_dtor(struct netmap_adapter *na)
1036 {
1037 	struct netmap_generic_adapter *gna = (struct netmap_generic_adapter*)na;
1038 	struct ifnet *ifp = netmap_generic_getifp(gna);
1039 	struct netmap_adapter *prev_na = gna->prev;
1040 
1041 	if (prev_na != NULL) {
1042 		netmap_adapter_put(prev_na);
1043 		if (nm_iszombie(na)) {
1044 		        /*
1045 		         * The driver has been removed without releasing
1046 		         * the reference so we need to do it here.
1047 		         */
1048 		        netmap_adapter_put(prev_na);
1049 		}
1050 		nm_prinf("Native netmap adapter %p restored", prev_na);
1051 	}
1052 	NM_RESTORE_NA(ifp, prev_na);
1053 	/*
1054 	 * netmap_detach_common(), that it's called after this function,
1055 	 * overrides WNA(ifp) if na->ifp is not NULL.
1056 	 */
1057 	na->ifp = NULL;
1058 	nm_prinf("Emulated netmap adapter for %s destroyed", na->name);
1059 }
1060 
1061 int
1062 na_is_generic(struct netmap_adapter *na)
1063 {
1064 	return na->nm_register == generic_netmap_register;
1065 }
1066 
1067 /*
1068  * generic_netmap_attach() makes it possible to use netmap on
1069  * a device without native netmap support.
1070  * This is less performant than native support but potentially
1071  * faster than raw sockets or similar schemes.
1072  *
1073  * In this "emulated" mode, netmap rings do not necessarily
1074  * have the same size as those in the NIC. We use a default
1075  * value and possibly override it if the OS has ways to fetch the
1076  * actual configuration.
1077  */
1078 int
1079 generic_netmap_attach(struct ifnet *ifp)
1080 {
1081 	struct netmap_adapter *na;
1082 	struct netmap_generic_adapter *gna;
1083 	int retval;
1084 	u_int num_tx_desc, num_rx_desc;
1085 
1086 #ifdef __FreeBSD__
1087 	if (ifp->if_type == IFT_LOOP) {
1088 		nm_prerr("if_loop is not supported by %s", __func__);
1089 		return EINVAL;
1090 	}
1091 #endif
1092 
1093 	if (NM_NA_CLASH(ifp)) {
1094 		/* If NA(ifp) is not null but there is no valid netmap
1095 		 * adapter it means that someone else is using the same
1096 		 * pointer (e.g. ax25_ptr on linux). This happens for
1097 		 * instance when also PF_RING is in use. */
1098 		nm_prerr("Error: netmap adapter hook is busy");
1099 		return EBUSY;
1100 	}
1101 
1102 	num_tx_desc = num_rx_desc = netmap_generic_ringsize; /* starting point */
1103 
1104 	nm_os_generic_find_num_desc(ifp, &num_tx_desc, &num_rx_desc); /* ignore errors */
1105 	if (num_tx_desc == 0 || num_rx_desc == 0) {
1106 		nm_prerr("Device has no hw slots (tx %u, rx %u)", num_tx_desc, num_rx_desc);
1107 		return EINVAL;
1108 	}
1109 
1110 	gna = nm_os_malloc(sizeof(*gna));
1111 	if (gna == NULL) {
1112 		nm_prerr("no memory on attach, give up");
1113 		return ENOMEM;
1114 	}
1115 	na = (struct netmap_adapter *)gna;
1116 	strlcpy(na->name, ifp->if_xname, sizeof(na->name));
1117 	na->ifp = ifp;
1118 	na->num_tx_desc = num_tx_desc;
1119 	na->num_rx_desc = num_rx_desc;
1120 	na->rx_buf_maxsize = 32768;
1121 	na->nm_register = &generic_netmap_register;
1122 	na->nm_txsync = &generic_netmap_txsync;
1123 	na->nm_rxsync = &generic_netmap_rxsync;
1124 	na->nm_dtor = &generic_netmap_dtor;
1125 	/* when using generic, NAF_NETMAP_ON is set so we force
1126 	 * NAF_SKIP_INTR to use the regular interrupt handler
1127 	 */
1128 	na->na_flags = NAF_SKIP_INTR | NAF_HOST_RINGS;
1129 
1130 	nm_prdis("[GNA] num_tx_queues(%d), real_num_tx_queues(%d), len(%lu)",
1131 			ifp->num_tx_queues, ifp->real_num_tx_queues,
1132 			ifp->tx_queue_len);
1133 	nm_prdis("[GNA] num_rx_queues(%d), real_num_rx_queues(%d)",
1134 			ifp->num_rx_queues, ifp->real_num_rx_queues);
1135 
1136 	nm_os_generic_find_num_queues(ifp, &na->num_tx_rings, &na->num_rx_rings);
1137 
1138 	retval = netmap_attach_common(na);
1139 	if (retval) {
1140 		nm_os_free(gna);
1141 		return retval;
1142 	}
1143 
1144 	if (NM_NA_VALID(ifp)) {
1145 		gna->prev = NA(ifp); /* save old na */
1146 		netmap_adapter_get(gna->prev);
1147 	}
1148 	NM_ATTACH_NA(ifp, na);
1149 
1150 	nm_os_generic_set_features(gna);
1151 
1152 	nm_prinf("Emulated adapter for %s created (prev was %p)", na->name, gna->prev);
1153 
1154 	return retval;
1155 }
1156