1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include "opt_inet.h" 29 #include "opt_inet6.h" 30 31 #include <sys/param.h> 32 #include <sys/module.h> 33 #include <sys/errno.h> 34 #include <sys/eventhandler.h> 35 #include <sys/jail.h> 36 #include <sys/poll.h> /* POLLIN, POLLOUT */ 37 #include <sys/kernel.h> /* types used in module initialization */ 38 #include <sys/conf.h> /* DEV_MODULE_ORDERED */ 39 #include <sys/endian.h> 40 #include <sys/syscallsubr.h> /* kern_ioctl() */ 41 42 #include <sys/rwlock.h> 43 44 #include <vm/vm.h> /* vtophys */ 45 #include <vm/pmap.h> /* vtophys */ 46 #include <vm/vm_param.h> 47 #include <vm/vm_object.h> 48 #include <vm/vm_page.h> 49 #include <vm/vm_pager.h> 50 #include <vm/uma.h> 51 52 53 #include <sys/malloc.h> 54 #include <sys/socket.h> /* sockaddrs */ 55 #include <sys/selinfo.h> 56 #include <sys/kthread.h> /* kthread_add() */ 57 #include <sys/proc.h> /* PROC_LOCK() */ 58 #include <sys/unistd.h> /* RFNOWAIT */ 59 #include <sys/sched.h> /* sched_bind() */ 60 #include <sys/smp.h> /* mp_maxid */ 61 #include <sys/taskqueue.h> /* taskqueue_enqueue(), taskqueue_create(), ... */ 62 #include <net/if.h> 63 #include <net/if_var.h> 64 #include <net/if_types.h> /* IFT_ETHER */ 65 #include <net/ethernet.h> /* ether_ifdetach */ 66 #include <net/if_dl.h> /* LLADDR */ 67 #include <machine/bus.h> /* bus_dmamap_* */ 68 #include <netinet/in.h> /* in6_cksum_pseudo() */ 69 #include <machine/in_cksum.h> /* in_pseudo(), in_cksum_hdr() */ 70 71 #include <net/netmap.h> 72 #include <dev/netmap/netmap_kern.h> 73 #include <net/netmap_virt.h> 74 #include <dev/netmap/netmap_mem2.h> 75 76 77 /* ======================== FREEBSD-SPECIFIC ROUTINES ================== */ 78 79 static void 80 nm_kqueue_notify(void *opaque, int pending) 81 { 82 struct nm_selinfo *si = opaque; 83 84 /* We use a non-zero hint to distinguish this notification call 85 * from the call done in kqueue_scan(), which uses hint=0. 86 */ 87 KNOTE_UNLOCKED(&si->si.si_note, /*hint=*/0x100); 88 } 89 90 int nm_os_selinfo_init(NM_SELINFO_T *si, const char *name) { 91 int err; 92 93 TASK_INIT(&si->ntfytask, 0, nm_kqueue_notify, si); 94 si->ntfytq = taskqueue_create(name, M_NOWAIT, 95 taskqueue_thread_enqueue, &si->ntfytq); 96 if (si->ntfytq == NULL) 97 return -ENOMEM; 98 err = taskqueue_start_threads(&si->ntfytq, 1, PI_NET, "tq %s", name); 99 if (err) { 100 taskqueue_free(si->ntfytq); 101 si->ntfytq = NULL; 102 return err; 103 } 104 105 snprintf(si->mtxname, sizeof(si->mtxname), "nmkl%s", name); 106 mtx_init(&si->m, si->mtxname, NULL, MTX_DEF); 107 knlist_init_mtx(&si->si.si_note, &si->m); 108 si->kqueue_users = 0; 109 110 return (0); 111 } 112 113 void 114 nm_os_selinfo_uninit(NM_SELINFO_T *si) 115 { 116 if (si->ntfytq == NULL) { 117 return; /* si was not initialized */ 118 } 119 taskqueue_drain(si->ntfytq, &si->ntfytask); 120 taskqueue_free(si->ntfytq); 121 si->ntfytq = NULL; 122 knlist_delete(&si->si.si_note, curthread, /*islocked=*/0); 123 knlist_destroy(&si->si.si_note); 124 /* now we don't need the mutex anymore */ 125 mtx_destroy(&si->m); 126 } 127 128 void * 129 nm_os_malloc(size_t size) 130 { 131 return malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); 132 } 133 134 void * 135 nm_os_realloc(void *addr, size_t new_size, size_t old_size __unused) 136 { 137 return realloc(addr, new_size, M_DEVBUF, M_NOWAIT | M_ZERO); 138 } 139 140 void 141 nm_os_free(void *addr) 142 { 143 free(addr, M_DEVBUF); 144 } 145 146 void 147 nm_os_ifnet_lock(void) 148 { 149 IFNET_RLOCK(); 150 } 151 152 void 153 nm_os_ifnet_unlock(void) 154 { 155 IFNET_RUNLOCK(); 156 } 157 158 static int netmap_use_count = 0; 159 160 void 161 nm_os_get_module(void) 162 { 163 netmap_use_count++; 164 } 165 166 void 167 nm_os_put_module(void) 168 { 169 netmap_use_count--; 170 } 171 172 static void 173 netmap_ifnet_arrival_handler(void *arg __unused, if_t ifp) 174 { 175 netmap_undo_zombie(ifp); 176 } 177 178 static void 179 netmap_ifnet_departure_handler(void *arg __unused, if_t ifp) 180 { 181 netmap_make_zombie(ifp); 182 } 183 184 static eventhandler_tag nm_ifnet_ah_tag; 185 static eventhandler_tag nm_ifnet_dh_tag; 186 187 int 188 nm_os_ifnet_init(void) 189 { 190 nm_ifnet_ah_tag = 191 EVENTHANDLER_REGISTER(ifnet_arrival_event, 192 netmap_ifnet_arrival_handler, 193 NULL, EVENTHANDLER_PRI_ANY); 194 nm_ifnet_dh_tag = 195 EVENTHANDLER_REGISTER(ifnet_departure_event, 196 netmap_ifnet_departure_handler, 197 NULL, EVENTHANDLER_PRI_ANY); 198 return 0; 199 } 200 201 void 202 nm_os_ifnet_fini(void) 203 { 204 EVENTHANDLER_DEREGISTER(ifnet_arrival_event, 205 nm_ifnet_ah_tag); 206 EVENTHANDLER_DEREGISTER(ifnet_departure_event, 207 nm_ifnet_dh_tag); 208 } 209 210 unsigned 211 nm_os_ifnet_mtu(if_t ifp) 212 { 213 return if_getmtu(ifp); 214 } 215 216 rawsum_t 217 nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum) 218 { 219 /* TODO XXX please use the FreeBSD implementation for this. */ 220 uint16_t *words = (uint16_t *)data; 221 int nw = len / 2; 222 int i; 223 224 for (i = 0; i < nw; i++) 225 cur_sum += be16toh(words[i]); 226 227 if (len & 1) 228 cur_sum += (data[len-1] << 8); 229 230 return cur_sum; 231 } 232 233 /* Fold a raw checksum: 'cur_sum' is in host byte order, while the 234 * return value is in network byte order. 235 */ 236 uint16_t 237 nm_os_csum_fold(rawsum_t cur_sum) 238 { 239 /* TODO XXX please use the FreeBSD implementation for this. */ 240 while (cur_sum >> 16) 241 cur_sum = (cur_sum & 0xFFFF) + (cur_sum >> 16); 242 243 return htobe16((~cur_sum) & 0xFFFF); 244 } 245 246 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph) 247 { 248 #if 0 249 return in_cksum_hdr((void *)iph); 250 #else 251 return nm_os_csum_fold(nm_os_csum_raw((uint8_t*)iph, sizeof(struct nm_iphdr), 0)); 252 #endif 253 } 254 255 void 256 nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data, 257 size_t datalen, uint16_t *check) 258 { 259 #ifdef INET 260 uint16_t pseudolen = datalen + iph->protocol; 261 262 /* Compute and insert the pseudo-header checksum. */ 263 *check = in_pseudo(iph->saddr, iph->daddr, 264 htobe16(pseudolen)); 265 /* Compute the checksum on TCP/UDP header + payload 266 * (includes the pseudo-header). 267 */ 268 *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0)); 269 #else 270 static int notsupported = 0; 271 if (!notsupported) { 272 notsupported = 1; 273 nm_prerr("inet4 segmentation not supported"); 274 } 275 #endif 276 } 277 278 void 279 nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data, 280 size_t datalen, uint16_t *check) 281 { 282 #ifdef INET6 283 *check = in6_cksum_pseudo((void*)ip6h, datalen, ip6h->nexthdr, 0); 284 *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0)); 285 #else 286 static int notsupported = 0; 287 if (!notsupported) { 288 notsupported = 1; 289 nm_prerr("inet6 segmentation not supported"); 290 } 291 #endif 292 } 293 294 /* on FreeBSD we send up one packet at a time */ 295 void * 296 nm_os_send_up(if_t ifp, struct mbuf *m, struct mbuf *prev) 297 { 298 NA(ifp)->if_input(ifp, m); 299 return NULL; 300 } 301 302 int 303 nm_os_mbuf_has_csum_offld(struct mbuf *m) 304 { 305 return m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_SCTP | 306 CSUM_TCP_IPV6 | CSUM_UDP_IPV6 | 307 CSUM_SCTP_IPV6); 308 } 309 310 int 311 nm_os_mbuf_has_seg_offld(struct mbuf *m) 312 { 313 return m->m_pkthdr.csum_flags & CSUM_TSO; 314 } 315 316 static void 317 freebsd_generic_rx_handler(if_t ifp, struct mbuf *m) 318 { 319 int stolen; 320 321 if (unlikely(!NM_NA_VALID(ifp))) { 322 nm_prlim(1, "Warning: RX packet intercepted, but no" 323 " emulated adapter"); 324 return; 325 } 326 327 do { 328 struct mbuf *n; 329 330 n = m->m_nextpkt; 331 m->m_nextpkt = NULL; 332 stolen = generic_rx_handler(ifp, m); 333 if (!stolen) { 334 NA(ifp)->if_input(ifp, m); 335 } 336 m = n; 337 } while (m != NULL); 338 } 339 340 /* 341 * Intercept the rx routine in the standard device driver. 342 * Second argument is non-zero to intercept, 0 to restore 343 */ 344 int 345 nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept) 346 { 347 struct netmap_adapter *na = &gna->up.up; 348 if_t ifp = na->ifp; 349 int ret = 0; 350 351 nm_os_ifnet_lock(); 352 if (intercept) { 353 if_setcapenablebit(ifp, IFCAP_NETMAP, 0); 354 if_setinputfn(ifp, freebsd_generic_rx_handler); 355 } else { 356 if_setcapenablebit(ifp, 0, IFCAP_NETMAP); 357 if_setinputfn(ifp, na->if_input); 358 } 359 nm_os_ifnet_unlock(); 360 361 return ret; 362 } 363 364 365 /* 366 * Intercept the packet steering routine in the tx path, 367 * so that we can decide which queue is used for an mbuf. 368 * Second argument is non-zero to intercept, 0 to restore. 369 * On freebsd we just intercept if_transmit. 370 */ 371 int 372 nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept) 373 { 374 struct netmap_adapter *na = &gna->up.up; 375 if_t ifp = netmap_generic_getifp(gna); 376 377 nm_os_ifnet_lock(); 378 if (intercept) { 379 na->if_transmit = if_gettransmitfn(ifp); 380 if_settransmitfn(ifp, netmap_transmit); 381 } else { 382 if_settransmitfn(ifp, na->if_transmit); 383 } 384 nm_os_ifnet_unlock(); 385 386 return 0; 387 } 388 389 390 /* 391 * Transmit routine used by generic_netmap_txsync(). Returns 0 on success 392 * and non-zero on error (which may be packet drops or other errors). 393 * addr and len identify the netmap buffer, m is the (preallocated) 394 * mbuf to use for transmissions. 395 * 396 * Zero-copy transmission is possible if netmap is attached directly to a 397 * hardware interface: when cleaning we simply wait for the mbuf cluster 398 * refcount to decrement to 1, indicating that the driver has completed 399 * transmission and is done with the buffer. However, this approach can 400 * lead to queue deadlocks when attaching to software interfaces (e.g., 401 * if_bridge) since we cannot rely on member ports to promptly reclaim 402 * transmitted mbufs. Since there is no easy way to distinguish these 403 * cases, we currently always copy the buffer. 404 * 405 * On multiqueue cards, we can force the queue using 406 * if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 407 * i = m->m_pkthdr.flowid % adapter->num_queues; 408 * else 409 * i = curcpu % adapter->num_queues; 410 */ 411 int 412 nm_os_generic_xmit_frame(struct nm_os_gen_arg *a) 413 { 414 int ret; 415 u_int len = a->len; 416 if_t ifp = a->ifp; 417 struct mbuf *m = a->m; 418 419 M_ASSERTPKTHDR(m); 420 KASSERT((m->m_flags & M_EXT) != 0, 421 ("%s: mbuf %p has no cluster", __func__, m)); 422 423 if (MBUF_REFCNT(m) != 1) { 424 nm_prerr("invalid refcnt %d for %p", MBUF_REFCNT(m), m); 425 panic("in generic_xmit_frame"); 426 } 427 if (unlikely(m->m_ext.ext_size < len)) { 428 nm_prlim(2, "size %d < len %d", m->m_ext.ext_size, len); 429 len = m->m_ext.ext_size; 430 } 431 432 m_copyback(m, 0, len, a->addr); 433 m->m_len = m->m_pkthdr.len = len; 434 SET_MBUF_REFCNT(m, 2); 435 M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE); 436 m->m_pkthdr.flowid = a->ring_nr; 437 m->m_pkthdr.rcvif = ifp; /* used for tx notification */ 438 CURVNET_SET(if_getvnet(ifp)); 439 ret = NA(ifp)->if_transmit(ifp, m); 440 CURVNET_RESTORE(); 441 return ret ? -1 : 0; 442 } 443 444 struct netmap_adapter * 445 netmap_getna(if_t ifp) 446 { 447 return (NA(ifp)); 448 } 449 450 /* 451 * The following two functions are empty until we have a generic 452 * way to extract the info from the ifp 453 */ 454 int 455 nm_os_generic_find_num_desc(if_t ifp, unsigned int *tx, unsigned int *rx) 456 { 457 return 0; 458 } 459 460 461 void 462 nm_os_generic_find_num_queues(if_t ifp, u_int *txq, u_int *rxq) 463 { 464 unsigned num_rings = netmap_generic_rings ? netmap_generic_rings : 1; 465 466 *txq = num_rings; 467 *rxq = num_rings; 468 } 469 470 void 471 nm_os_generic_set_features(struct netmap_generic_adapter *gna) 472 { 473 474 gna->rxsg = 1; /* Supported through m_copydata. */ 475 gna->txqdisc = 0; /* Not supported. */ 476 } 477 478 void 479 nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, struct netmap_adapter *na) 480 { 481 mit->mit_pending = 0; 482 mit->mit_ring_idx = idx; 483 mit->mit_na = na; 484 } 485 486 487 void 488 nm_os_mitigation_start(struct nm_generic_mit *mit) 489 { 490 } 491 492 493 void 494 nm_os_mitigation_restart(struct nm_generic_mit *mit) 495 { 496 } 497 498 499 int 500 nm_os_mitigation_active(struct nm_generic_mit *mit) 501 { 502 503 return 0; 504 } 505 506 507 void 508 nm_os_mitigation_cleanup(struct nm_generic_mit *mit) 509 { 510 } 511 512 static int 513 nm_vi_dummy(if_t ifp, u_long cmd, caddr_t addr) 514 { 515 516 return EINVAL; 517 } 518 519 static void 520 nm_vi_start(if_t ifp) 521 { 522 panic("nm_vi_start() must not be called"); 523 } 524 525 /* 526 * Index manager of persistent virtual interfaces. 527 * It is used to decide the lowest byte of the MAC address. 528 * We use the same algorithm with management of bridge port index. 529 */ 530 #define NM_VI_MAX 255 531 static struct { 532 uint8_t index[NM_VI_MAX]; /* XXX just for a reasonable number */ 533 uint8_t active; 534 struct mtx lock; 535 } nm_vi_indices; 536 537 void 538 nm_os_vi_init_index(void) 539 { 540 int i; 541 for (i = 0; i < NM_VI_MAX; i++) 542 nm_vi_indices.index[i] = i; 543 nm_vi_indices.active = 0; 544 mtx_init(&nm_vi_indices.lock, "nm_vi_indices_lock", NULL, MTX_DEF); 545 } 546 547 /* return -1 if no index available */ 548 static int 549 nm_vi_get_index(void) 550 { 551 int ret; 552 553 mtx_lock(&nm_vi_indices.lock); 554 ret = nm_vi_indices.active == NM_VI_MAX ? -1 : 555 nm_vi_indices.index[nm_vi_indices.active++]; 556 mtx_unlock(&nm_vi_indices.lock); 557 return ret; 558 } 559 560 static void 561 nm_vi_free_index(uint8_t val) 562 { 563 int i, lim; 564 565 mtx_lock(&nm_vi_indices.lock); 566 lim = nm_vi_indices.active; 567 for (i = 0; i < lim; i++) { 568 if (nm_vi_indices.index[i] == val) { 569 /* swap index[lim-1] and j */ 570 int tmp = nm_vi_indices.index[lim-1]; 571 nm_vi_indices.index[lim-1] = val; 572 nm_vi_indices.index[i] = tmp; 573 nm_vi_indices.active--; 574 break; 575 } 576 } 577 if (lim == nm_vi_indices.active) 578 nm_prerr("Index %u not found", val); 579 mtx_unlock(&nm_vi_indices.lock); 580 } 581 #undef NM_VI_MAX 582 583 /* 584 * Implementation of a netmap-capable virtual interface that 585 * registered to the system. 586 * It is based on if_tap.c and ip_fw_log.c in FreeBSD 9. 587 * 588 * Note: Linux sets refcount to 0 on allocation of net_device, 589 * then increments it on registration to the system. 590 * FreeBSD sets refcount to 1 on if_alloc(), and does not 591 * increment this refcount on if_attach(). 592 */ 593 int 594 nm_os_vi_persist(const char *name, if_t *ret) 595 { 596 if_t ifp; 597 u_short macaddr_hi; 598 uint32_t macaddr_mid; 599 u_char eaddr[6]; 600 int unit = nm_vi_get_index(); /* just to decide MAC address */ 601 602 if (unit < 0) 603 return EBUSY; 604 /* 605 * We use the same MAC address generation method with tap 606 * except for the highest octet is 00:be instead of 00:bd 607 */ 608 macaddr_hi = htons(0x00be); /* XXX tap + 1 */ 609 macaddr_mid = (uint32_t) ticks; 610 bcopy(&macaddr_hi, eaddr, sizeof(short)); 611 bcopy(&macaddr_mid, &eaddr[2], sizeof(uint32_t)); 612 eaddr[5] = (uint8_t)unit; 613 614 ifp = if_alloc(IFT_ETHER); 615 if (ifp == NULL) { 616 nm_prerr("if_alloc failed"); 617 return ENOMEM; 618 } 619 if_initname(ifp, name, IF_DUNIT_NONE); 620 if_setflags(ifp, IFF_UP | IFF_SIMPLEX | IFF_MULTICAST); 621 if_setinitfn(ifp, (void *)nm_vi_dummy); 622 if_setioctlfn(ifp, nm_vi_dummy); 623 if_setstartfn(ifp, nm_vi_start); 624 if_setmtu(ifp, ETHERMTU); 625 if_setsendqlen(ifp, ifqmaxlen); 626 if_setcapabilitiesbit(ifp, IFCAP_LINKSTATE, 0); 627 if_setcapenablebit(ifp, IFCAP_LINKSTATE, 0); 628 629 ether_ifattach(ifp, eaddr); 630 *ret = ifp; 631 return 0; 632 } 633 634 /* unregister from the system and drop the final refcount */ 635 void 636 nm_os_vi_detach(if_t ifp) 637 { 638 nm_vi_free_index(((char *)if_getlladdr(ifp))[5]); 639 ether_ifdetach(ifp); 640 if_free(ifp); 641 } 642 643 #ifdef WITH_EXTMEM 644 #include <vm/vm_map.h> 645 #include <vm/vm_extern.h> 646 #include <vm/vm_kern.h> 647 struct nm_os_extmem { 648 vm_object_t obj; 649 vm_offset_t kva; 650 vm_offset_t size; 651 uintptr_t scan; 652 }; 653 654 void 655 nm_os_extmem_delete(struct nm_os_extmem *e) 656 { 657 nm_prinf("freeing %zx bytes", (size_t)e->size); 658 vm_map_remove(kernel_map, e->kva, e->kva + e->size); 659 nm_os_free(e); 660 } 661 662 char * 663 nm_os_extmem_nextpage(struct nm_os_extmem *e) 664 { 665 char *rv = NULL; 666 if (e->scan < e->kva + e->size) { 667 rv = (char *)e->scan; 668 e->scan += PAGE_SIZE; 669 } 670 return rv; 671 } 672 673 int 674 nm_os_extmem_isequal(struct nm_os_extmem *e1, struct nm_os_extmem *e2) 675 { 676 return (e1->obj == e2->obj); 677 } 678 679 int 680 nm_os_extmem_nr_pages(struct nm_os_extmem *e) 681 { 682 return e->size >> PAGE_SHIFT; 683 } 684 685 struct nm_os_extmem * 686 nm_os_extmem_create(unsigned long p, struct nmreq_pools_info *pi, int *perror) 687 { 688 vm_map_t map; 689 vm_map_entry_t entry; 690 vm_object_t obj; 691 vm_prot_t prot; 692 vm_pindex_t index; 693 boolean_t wired; 694 struct nm_os_extmem *e = NULL; 695 int rv, error = 0; 696 697 e = nm_os_malloc(sizeof(*e)); 698 if (e == NULL) { 699 error = ENOMEM; 700 goto out; 701 } 702 703 map = &curthread->td_proc->p_vmspace->vm_map; 704 rv = vm_map_lookup(&map, p, VM_PROT_RW, &entry, 705 &obj, &index, &prot, &wired); 706 if (rv != KERN_SUCCESS) { 707 nm_prerr("address %lx not found", p); 708 error = vm_mmap_to_errno(rv); 709 goto out_free; 710 } 711 vm_object_reference(obj); 712 713 /* check that we are given the whole vm_object ? */ 714 vm_map_lookup_done(map, entry); 715 716 e->obj = obj; 717 /* Wire the memory and add the vm_object to the kernel map, 718 * to make sure that it is not freed even if all the processes 719 * that are mmap()ing should munmap() it. 720 */ 721 e->kva = vm_map_min(kernel_map); 722 e->size = obj->size << PAGE_SHIFT; 723 rv = vm_map_find(kernel_map, obj, 0, &e->kva, e->size, 0, 724 VMFS_OPTIMAL_SPACE, VM_PROT_READ | VM_PROT_WRITE, 725 VM_PROT_READ | VM_PROT_WRITE, 0); 726 if (rv != KERN_SUCCESS) { 727 nm_prerr("vm_map_find(%zx) failed", (size_t)e->size); 728 error = vm_mmap_to_errno(rv); 729 goto out_rel; 730 } 731 rv = vm_map_wire(kernel_map, e->kva, e->kva + e->size, 732 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES); 733 if (rv != KERN_SUCCESS) { 734 nm_prerr("vm_map_wire failed"); 735 error = vm_mmap_to_errno(rv); 736 goto out_rem; 737 } 738 739 e->scan = e->kva; 740 741 return e; 742 743 out_rem: 744 vm_map_remove(kernel_map, e->kva, e->kva + e->size); 745 out_rel: 746 vm_object_deallocate(e->obj); 747 e->obj = NULL; 748 out_free: 749 nm_os_free(e); 750 out: 751 if (perror) 752 *perror = error; 753 return NULL; 754 } 755 #endif /* WITH_EXTMEM */ 756 757 /* ================== PTNETMAP GUEST SUPPORT ==================== */ 758 759 #ifdef WITH_PTNETMAP 760 #include <sys/bus.h> 761 #include <sys/rman.h> 762 #include <machine/bus.h> /* bus_dmamap_* */ 763 #include <machine/resource.h> 764 #include <dev/pci/pcivar.h> 765 #include <dev/pci/pcireg.h> 766 /* 767 * ptnetmap memory device (memdev) for freebsd guest, 768 * ssed to expose host netmap memory to the guest through a PCI BAR. 769 */ 770 771 /* 772 * ptnetmap memdev private data structure 773 */ 774 struct ptnetmap_memdev { 775 device_t dev; 776 struct resource *pci_io; 777 struct resource *pci_mem; 778 struct netmap_mem_d *nm_mem; 779 }; 780 781 static int ptn_memdev_probe(device_t); 782 static int ptn_memdev_attach(device_t); 783 static int ptn_memdev_detach(device_t); 784 static int ptn_memdev_shutdown(device_t); 785 786 static device_method_t ptn_memdev_methods[] = { 787 DEVMETHOD(device_probe, ptn_memdev_probe), 788 DEVMETHOD(device_attach, ptn_memdev_attach), 789 DEVMETHOD(device_detach, ptn_memdev_detach), 790 DEVMETHOD(device_shutdown, ptn_memdev_shutdown), 791 DEVMETHOD_END 792 }; 793 794 static driver_t ptn_memdev_driver = { 795 PTNETMAP_MEMDEV_NAME, 796 ptn_memdev_methods, 797 sizeof(struct ptnetmap_memdev), 798 }; 799 800 /* We use (SI_ORDER_MIDDLE+1) here, see DEV_MODULE_ORDERED() invocation 801 * below. */ 802 DRIVER_MODULE_ORDERED(ptn_memdev, pci, ptn_memdev_driver, NULL, NULL, 803 SI_ORDER_MIDDLE + 1); 804 805 /* 806 * Map host netmap memory through PCI-BAR in the guest OS, 807 * returning physical (nm_paddr) and virtual (nm_addr) addresses 808 * of the netmap memory mapped in the guest. 809 */ 810 int 811 nm_os_pt_memdev_iomap(struct ptnetmap_memdev *ptn_dev, vm_paddr_t *nm_paddr, 812 void **nm_addr, uint64_t *mem_size) 813 { 814 int rid; 815 816 nm_prinf("ptn_memdev_driver iomap"); 817 818 rid = PCIR_BAR(PTNETMAP_MEM_PCI_BAR); 819 *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_HI); 820 *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_LO) | 821 (*mem_size << 32); 822 823 /* map memory allocator */ 824 ptn_dev->pci_mem = bus_alloc_resource(ptn_dev->dev, SYS_RES_MEMORY, 825 &rid, 0, ~0, *mem_size, RF_ACTIVE); 826 if (ptn_dev->pci_mem == NULL) { 827 *nm_paddr = 0; 828 *nm_addr = NULL; 829 return ENOMEM; 830 } 831 832 *nm_paddr = rman_get_start(ptn_dev->pci_mem); 833 *nm_addr = rman_get_virtual(ptn_dev->pci_mem); 834 835 nm_prinf("=== BAR %d start %lx len %lx mem_size %lx ===", 836 PTNETMAP_MEM_PCI_BAR, 837 (unsigned long)(*nm_paddr), 838 (unsigned long)rman_get_size(ptn_dev->pci_mem), 839 (unsigned long)*mem_size); 840 return (0); 841 } 842 843 uint32_t 844 nm_os_pt_memdev_ioread(struct ptnetmap_memdev *ptn_dev, unsigned int reg) 845 { 846 return bus_read_4(ptn_dev->pci_io, reg); 847 } 848 849 /* Unmap host netmap memory. */ 850 void 851 nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *ptn_dev) 852 { 853 nm_prinf("ptn_memdev_driver iounmap"); 854 855 if (ptn_dev->pci_mem) { 856 bus_release_resource(ptn_dev->dev, SYS_RES_MEMORY, 857 PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem); 858 ptn_dev->pci_mem = NULL; 859 } 860 } 861 862 /* Device identification routine, return BUS_PROBE_DEFAULT on success, 863 * positive on failure */ 864 static int 865 ptn_memdev_probe(device_t dev) 866 { 867 if (pci_get_vendor(dev) != PTNETMAP_PCI_VENDOR_ID) 868 return (ENXIO); 869 if (pci_get_device(dev) != PTNETMAP_PCI_DEVICE_ID) 870 return (ENXIO); 871 872 device_set_descf(dev, "%s PCI adapter", PTNETMAP_MEMDEV_NAME); 873 874 return (BUS_PROBE_DEFAULT); 875 } 876 877 /* Device initialization routine. */ 878 static int 879 ptn_memdev_attach(device_t dev) 880 { 881 struct ptnetmap_memdev *ptn_dev; 882 int rid; 883 uint16_t mem_id; 884 885 ptn_dev = device_get_softc(dev); 886 ptn_dev->dev = dev; 887 888 pci_enable_busmaster(dev); 889 890 rid = PCIR_BAR(PTNETMAP_IO_PCI_BAR); 891 ptn_dev->pci_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid, 892 RF_ACTIVE); 893 if (ptn_dev->pci_io == NULL) { 894 device_printf(dev, "cannot map I/O space\n"); 895 return (ENXIO); 896 } 897 898 mem_id = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMID); 899 900 /* create guest allocator */ 901 ptn_dev->nm_mem = netmap_mem_pt_guest_attach(ptn_dev, mem_id); 902 if (ptn_dev->nm_mem == NULL) { 903 ptn_memdev_detach(dev); 904 return (ENOMEM); 905 } 906 netmap_mem_get(ptn_dev->nm_mem); 907 908 nm_prinf("ptnetmap memdev attached, host memid: %u", mem_id); 909 910 return (0); 911 } 912 913 /* Device removal routine. */ 914 static int 915 ptn_memdev_detach(device_t dev) 916 { 917 struct ptnetmap_memdev *ptn_dev; 918 919 ptn_dev = device_get_softc(dev); 920 921 if (ptn_dev->nm_mem) { 922 nm_prinf("ptnetmap memdev detached, host memid %u", 923 netmap_mem_get_id(ptn_dev->nm_mem)); 924 netmap_mem_put(ptn_dev->nm_mem); 925 ptn_dev->nm_mem = NULL; 926 } 927 if (ptn_dev->pci_mem) { 928 bus_release_resource(dev, SYS_RES_MEMORY, 929 PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem); 930 ptn_dev->pci_mem = NULL; 931 } 932 if (ptn_dev->pci_io) { 933 bus_release_resource(dev, SYS_RES_IOPORT, 934 PCIR_BAR(PTNETMAP_IO_PCI_BAR), ptn_dev->pci_io); 935 ptn_dev->pci_io = NULL; 936 } 937 938 return (0); 939 } 940 941 static int 942 ptn_memdev_shutdown(device_t dev) 943 { 944 return bus_generic_shutdown(dev); 945 } 946 947 #endif /* WITH_PTNETMAP */ 948 949 /* 950 * In order to track whether pages are still mapped, we hook into 951 * the standard cdev_pager and intercept the constructor and 952 * destructor. 953 */ 954 955 struct netmap_vm_handle_t { 956 struct cdev *dev; 957 struct netmap_priv_d *priv; 958 }; 959 960 961 static int 962 netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot, 963 vm_ooffset_t foff, struct ucred *cred, u_short *color) 964 { 965 struct netmap_vm_handle_t *vmh = handle; 966 967 if (netmap_verbose) 968 nm_prinf("handle %p size %jd prot %d foff %jd", 969 handle, (intmax_t)size, prot, (intmax_t)foff); 970 if (color) 971 *color = 0; 972 dev_ref(vmh->dev); 973 return 0; 974 } 975 976 977 static void 978 netmap_dev_pager_dtor(void *handle) 979 { 980 struct netmap_vm_handle_t *vmh = handle; 981 struct cdev *dev = vmh->dev; 982 struct netmap_priv_d *priv = vmh->priv; 983 984 if (netmap_verbose) 985 nm_prinf("handle %p", handle); 986 netmap_dtor(priv); 987 free(vmh, M_DEVBUF); 988 dev_rel(dev); 989 } 990 991 992 static int 993 netmap_dev_pager_fault(vm_object_t object, vm_ooffset_t offset, 994 int prot, vm_page_t *mres) 995 { 996 struct netmap_vm_handle_t *vmh = object->handle; 997 struct netmap_priv_d *priv = vmh->priv; 998 struct netmap_adapter *na = priv->np_na; 999 vm_paddr_t paddr; 1000 vm_page_t page; 1001 vm_memattr_t memattr; 1002 1003 nm_prdis("object %p offset %jd prot %d mres %p", 1004 object, (intmax_t)offset, prot, mres); 1005 memattr = object->memattr; 1006 paddr = netmap_mem_ofstophys(na->nm_mem, offset); 1007 if (paddr == 0) 1008 return VM_PAGER_FAIL; 1009 1010 if (((*mres)->flags & PG_FICTITIOUS) != 0) { 1011 /* 1012 * If the passed in result page is a fake page, update it with 1013 * the new physical address. 1014 */ 1015 page = *mres; 1016 vm_page_updatefake(page, paddr, memattr); 1017 } else { 1018 /* 1019 * Replace the passed in reqpage page with our own fake page and 1020 * free up the all of the original pages. 1021 */ 1022 VM_OBJECT_WUNLOCK(object); 1023 page = vm_page_getfake(paddr, memattr); 1024 VM_OBJECT_WLOCK(object); 1025 vm_page_replace(page, object, (*mres)->pindex, *mres); 1026 *mres = page; 1027 } 1028 page->valid = VM_PAGE_BITS_ALL; 1029 return (VM_PAGER_OK); 1030 } 1031 1032 1033 static struct cdev_pager_ops netmap_cdev_pager_ops = { 1034 .cdev_pg_ctor = netmap_dev_pager_ctor, 1035 .cdev_pg_dtor = netmap_dev_pager_dtor, 1036 .cdev_pg_fault = netmap_dev_pager_fault, 1037 }; 1038 1039 1040 static int 1041 netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff, 1042 vm_size_t objsize, vm_object_t *objp, int prot) 1043 { 1044 int error; 1045 struct netmap_vm_handle_t *vmh; 1046 struct netmap_priv_d *priv; 1047 vm_object_t obj; 1048 1049 if (netmap_verbose) 1050 nm_prinf("cdev %p foff %jd size %jd objp %p prot %d", cdev, 1051 (intmax_t )*foff, (intmax_t )objsize, objp, prot); 1052 1053 vmh = malloc(sizeof(struct netmap_vm_handle_t), M_DEVBUF, 1054 M_NOWAIT | M_ZERO); 1055 if (vmh == NULL) 1056 return ENOMEM; 1057 vmh->dev = cdev; 1058 1059 NMG_LOCK(); 1060 error = devfs_get_cdevpriv((void**)&priv); 1061 if (error) 1062 goto err_unlock; 1063 if (priv->np_nifp == NULL) { 1064 error = EINVAL; 1065 goto err_unlock; 1066 } 1067 vmh->priv = priv; 1068 priv->np_refs++; 1069 NMG_UNLOCK(); 1070 1071 obj = cdev_pager_allocate(vmh, OBJT_DEVICE, 1072 &netmap_cdev_pager_ops, objsize, prot, 1073 *foff, NULL); 1074 if (obj == NULL) { 1075 nm_prerr("cdev_pager_allocate failed"); 1076 error = EINVAL; 1077 goto err_deref; 1078 } 1079 1080 *objp = obj; 1081 return 0; 1082 1083 err_deref: 1084 NMG_LOCK(); 1085 priv->np_refs--; 1086 err_unlock: 1087 NMG_UNLOCK(); 1088 // err: 1089 free(vmh, M_DEVBUF); 1090 return error; 1091 } 1092 1093 /* 1094 * On FreeBSD the close routine is only called on the last close on 1095 * the device (/dev/netmap) so we cannot do anything useful. 1096 * To track close() on individual file descriptors we pass netmap_dtor() to 1097 * devfs_set_cdevpriv() on open(). The FreeBSD kernel will call the destructor 1098 * when the last fd pointing to the device is closed. 1099 * 1100 * Note that FreeBSD does not even munmap() on close() so we also have 1101 * to track mmap() ourselves, and postpone the call to 1102 * netmap_dtor() is called when the process has no open fds and no active 1103 * memory maps on /dev/netmap, as in linux. 1104 */ 1105 static int 1106 netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td) 1107 { 1108 if (netmap_verbose) 1109 nm_prinf("dev %p fflag 0x%x devtype %d td %p", 1110 dev, fflag, devtype, td); 1111 return 0; 1112 } 1113 1114 1115 static int 1116 netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 1117 { 1118 struct netmap_priv_d *priv; 1119 int error; 1120 1121 (void)dev; 1122 (void)oflags; 1123 (void)devtype; 1124 (void)td; 1125 1126 NMG_LOCK(); 1127 priv = netmap_priv_new(); 1128 if (priv == NULL) { 1129 error = ENOMEM; 1130 goto out; 1131 } 1132 error = devfs_set_cdevpriv(priv, netmap_dtor); 1133 if (error) { 1134 netmap_priv_delete(priv); 1135 } 1136 out: 1137 NMG_UNLOCK(); 1138 return error; 1139 } 1140 1141 /******************** kthread wrapper ****************/ 1142 #include <sys/sysproto.h> 1143 u_int 1144 nm_os_ncpus(void) 1145 { 1146 return mp_maxid + 1; 1147 } 1148 1149 struct nm_kctx_ctx { 1150 /* Userspace thread (kthread creator). */ 1151 struct thread *user_td; 1152 1153 /* worker function and parameter */ 1154 nm_kctx_worker_fn_t worker_fn; 1155 void *worker_private; 1156 1157 struct nm_kctx *nmk; 1158 1159 /* integer to manage multiple worker contexts (e.g., RX or TX on ptnetmap) */ 1160 long type; 1161 }; 1162 1163 struct nm_kctx { 1164 struct thread *worker; 1165 struct mtx worker_lock; 1166 struct nm_kctx_ctx worker_ctx; 1167 int run; /* used to stop kthread */ 1168 int attach_user; /* kthread attached to user_process */ 1169 int affinity; 1170 }; 1171 1172 static void 1173 nm_kctx_worker(void *data) 1174 { 1175 struct nm_kctx *nmk = data; 1176 struct nm_kctx_ctx *ctx = &nmk->worker_ctx; 1177 1178 if (nmk->affinity >= 0) { 1179 thread_lock(curthread); 1180 sched_bind(curthread, nmk->affinity); 1181 thread_unlock(curthread); 1182 } 1183 1184 while (nmk->run) { 1185 /* 1186 * check if the parent process dies 1187 * (when kthread is attached to user process) 1188 */ 1189 if (ctx->user_td) { 1190 PROC_LOCK(curproc); 1191 thread_suspend_check(0); 1192 PROC_UNLOCK(curproc); 1193 } else { 1194 kthread_suspend_check(); 1195 } 1196 1197 /* Continuously execute worker process. */ 1198 ctx->worker_fn(ctx->worker_private); /* worker body */ 1199 } 1200 1201 kthread_exit(); 1202 } 1203 1204 void 1205 nm_os_kctx_worker_setaff(struct nm_kctx *nmk, int affinity) 1206 { 1207 nmk->affinity = affinity; 1208 } 1209 1210 struct nm_kctx * 1211 nm_os_kctx_create(struct nm_kctx_cfg *cfg, void *opaque) 1212 { 1213 struct nm_kctx *nmk = NULL; 1214 1215 nmk = malloc(sizeof(*nmk), M_DEVBUF, M_NOWAIT | M_ZERO); 1216 if (!nmk) 1217 return NULL; 1218 1219 mtx_init(&nmk->worker_lock, "nm_kthread lock", NULL, MTX_DEF); 1220 nmk->worker_ctx.worker_fn = cfg->worker_fn; 1221 nmk->worker_ctx.worker_private = cfg->worker_private; 1222 nmk->worker_ctx.type = cfg->type; 1223 nmk->affinity = -1; 1224 1225 /* attach kthread to user process (ptnetmap) */ 1226 nmk->attach_user = cfg->attach_user; 1227 1228 return nmk; 1229 } 1230 1231 int 1232 nm_os_kctx_worker_start(struct nm_kctx *nmk) 1233 { 1234 struct proc *p = NULL; 1235 int error = 0; 1236 1237 /* Temporarily disable this function as it is currently broken 1238 * and causes kernel crashes. The failure can be triggered by 1239 * the "vale_polling_enable_disable" test in ctrl-api-test.c. */ 1240 return EOPNOTSUPP; 1241 1242 if (nmk->worker) 1243 return EBUSY; 1244 1245 /* check if we want to attach kthread to user process */ 1246 if (nmk->attach_user) { 1247 nmk->worker_ctx.user_td = curthread; 1248 p = curthread->td_proc; 1249 } 1250 1251 /* enable kthread main loop */ 1252 nmk->run = 1; 1253 /* create kthread */ 1254 if((error = kthread_add(nm_kctx_worker, nmk, p, 1255 &nmk->worker, RFNOWAIT /* to be checked */, 0, "nm-kthread-%ld", 1256 nmk->worker_ctx.type))) { 1257 goto err; 1258 } 1259 1260 nm_prinf("nm_kthread started td %p", nmk->worker); 1261 1262 return 0; 1263 err: 1264 nm_prerr("nm_kthread start failed err %d", error); 1265 nmk->worker = NULL; 1266 return error; 1267 } 1268 1269 void 1270 nm_os_kctx_worker_stop(struct nm_kctx *nmk) 1271 { 1272 if (!nmk->worker) 1273 return; 1274 1275 /* tell to kthread to exit from main loop */ 1276 nmk->run = 0; 1277 1278 /* wake up kthread if it sleeps */ 1279 kthread_resume(nmk->worker); 1280 1281 nmk->worker = NULL; 1282 } 1283 1284 void 1285 nm_os_kctx_destroy(struct nm_kctx *nmk) 1286 { 1287 if (!nmk) 1288 return; 1289 1290 if (nmk->worker) 1291 nm_os_kctx_worker_stop(nmk); 1292 1293 free(nmk, M_DEVBUF); 1294 } 1295 1296 /******************** kqueue support ****************/ 1297 1298 /* 1299 * In addition to calling selwakeuppri(), nm_os_selwakeup() also 1300 * needs to call knote() to wake up kqueue listeners. 1301 * This operation is deferred to a taskqueue in order to avoid possible 1302 * lock order reversals; these may happen because knote() grabs a 1303 * private lock associated to the 'si' (see struct selinfo, 1304 * struct nm_selinfo, and nm_os_selinfo_init), and nm_os_selwakeup() 1305 * can be called while holding the lock associated to a different 1306 * 'si'. 1307 * When calling knote() we use a non-zero 'hint' argument to inform 1308 * the netmap_knrw() function that it is being called from 1309 * 'nm_os_selwakeup'; this is necessary because when netmap_knrw() is 1310 * called by the kevent subsystem (i.e. kevent_scan()) we also need to 1311 * call netmap_poll(). 1312 * 1313 * The netmap_kqfilter() function registers one or another f_event 1314 * depending on read or write mode. A pointer to the struct 1315 * 'netmap_priv_d' is stored into kn->kn_hook, so that it can later 1316 * be passed to netmap_poll(). We pass NULL as a third argument to 1317 * netmap_poll(), so that the latter only runs the txsync/rxsync 1318 * (if necessary), and skips the nm_os_selrecord() calls. 1319 */ 1320 1321 1322 void 1323 nm_os_selwakeup(struct nm_selinfo *si) 1324 { 1325 selwakeuppri(&si->si, PI_NET); 1326 if (si->kqueue_users > 0) { 1327 taskqueue_enqueue(si->ntfytq, &si->ntfytask); 1328 } 1329 } 1330 1331 void 1332 nm_os_selrecord(struct thread *td, struct nm_selinfo *si) 1333 { 1334 selrecord(td, &si->si); 1335 } 1336 1337 static void 1338 netmap_knrdetach(struct knote *kn) 1339 { 1340 struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook; 1341 struct nm_selinfo *si = priv->np_si[NR_RX]; 1342 1343 knlist_remove(&si->si.si_note, kn, /*islocked=*/0); 1344 NMG_LOCK(); 1345 KASSERT(si->kqueue_users > 0, ("kqueue_user underflow on %s", 1346 si->mtxname)); 1347 si->kqueue_users--; 1348 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); 1349 NMG_UNLOCK(); 1350 } 1351 1352 static void 1353 netmap_knwdetach(struct knote *kn) 1354 { 1355 struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook; 1356 struct nm_selinfo *si = priv->np_si[NR_TX]; 1357 1358 knlist_remove(&si->si.si_note, kn, /*islocked=*/0); 1359 NMG_LOCK(); 1360 si->kqueue_users--; 1361 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); 1362 NMG_UNLOCK(); 1363 } 1364 1365 /* 1366 * Callback triggered by netmap notifications (see netmap_notify()), 1367 * and by the application calling kevent(). In the former case we 1368 * just return 1 (events ready), since we are not able to do better. 1369 * In the latter case we use netmap_poll() to see which events are 1370 * ready. 1371 */ 1372 static int 1373 netmap_knrw(struct knote *kn, long hint, int events) 1374 { 1375 struct netmap_priv_d *priv; 1376 int revents; 1377 1378 if (hint != 0) { 1379 /* Called from netmap_notify(), typically from a 1380 * thread different from the one issuing kevent(). 1381 * Assume we are ready. */ 1382 return 1; 1383 } 1384 1385 /* Called from kevent(). */ 1386 priv = kn->kn_hook; 1387 revents = netmap_poll(priv, events, /*thread=*/NULL); 1388 1389 return (events & revents) ? 1 : 0; 1390 } 1391 1392 static int 1393 netmap_knread(struct knote *kn, long hint) 1394 { 1395 return netmap_knrw(kn, hint, POLLIN); 1396 } 1397 1398 static int 1399 netmap_knwrite(struct knote *kn, long hint) 1400 { 1401 return netmap_knrw(kn, hint, POLLOUT); 1402 } 1403 1404 static struct filterops netmap_rfiltops = { 1405 .f_isfd = 1, 1406 .f_detach = netmap_knrdetach, 1407 .f_event = netmap_knread, 1408 }; 1409 1410 static struct filterops netmap_wfiltops = { 1411 .f_isfd = 1, 1412 .f_detach = netmap_knwdetach, 1413 .f_event = netmap_knwrite, 1414 }; 1415 1416 1417 /* 1418 * This is called when a thread invokes kevent() to record 1419 * a change in the configuration of the kqueue(). 1420 * The 'priv' is the one associated to the open netmap device. 1421 */ 1422 static int 1423 netmap_kqfilter(struct cdev *dev, struct knote *kn) 1424 { 1425 struct netmap_priv_d *priv; 1426 int error; 1427 struct netmap_adapter *na; 1428 struct nm_selinfo *si; 1429 int ev = kn->kn_filter; 1430 1431 if (ev != EVFILT_READ && ev != EVFILT_WRITE) { 1432 nm_prerr("bad filter request %d", ev); 1433 return 1; 1434 } 1435 error = devfs_get_cdevpriv((void**)&priv); 1436 if (error) { 1437 nm_prerr("device not yet setup"); 1438 return 1; 1439 } 1440 na = priv->np_na; 1441 if (na == NULL) { 1442 nm_prerr("no netmap adapter for this file descriptor"); 1443 return 1; 1444 } 1445 /* the si is indicated in the priv */ 1446 si = priv->np_si[(ev == EVFILT_WRITE) ? NR_TX : NR_RX]; 1447 kn->kn_fop = (ev == EVFILT_WRITE) ? 1448 &netmap_wfiltops : &netmap_rfiltops; 1449 kn->kn_hook = priv; 1450 NMG_LOCK(); 1451 si->kqueue_users++; 1452 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); 1453 NMG_UNLOCK(); 1454 knlist_add(&si->si.si_note, kn, /*islocked=*/0); 1455 1456 return 0; 1457 } 1458 1459 static int 1460 freebsd_netmap_poll(struct cdev *cdevi __unused, int events, struct thread *td) 1461 { 1462 struct netmap_priv_d *priv; 1463 if (devfs_get_cdevpriv((void **)&priv)) { 1464 return POLLERR; 1465 } 1466 return netmap_poll(priv, events, td); 1467 } 1468 1469 static int 1470 freebsd_netmap_ioctl(struct cdev *dev __unused, u_long cmd, caddr_t data, 1471 int ffla __unused, struct thread *td) 1472 { 1473 int error; 1474 struct netmap_priv_d *priv; 1475 1476 CURVNET_SET(TD_TO_VNET(td)); 1477 error = devfs_get_cdevpriv((void **)&priv); 1478 if (error) { 1479 /* XXX ENOENT should be impossible, since the priv 1480 * is now created in the open */ 1481 if (error == ENOENT) 1482 error = ENXIO; 1483 goto out; 1484 } 1485 error = netmap_ioctl(priv, cmd, data, td, /*nr_body_is_user=*/1); 1486 out: 1487 CURVNET_RESTORE(); 1488 1489 return error; 1490 } 1491 1492 void 1493 nm_os_onattach(if_t ifp) 1494 { 1495 if_setcapabilitiesbit(ifp, IFCAP_NETMAP, 0); 1496 } 1497 1498 void 1499 nm_os_onenter(if_t ifp) 1500 { 1501 struct netmap_adapter *na = NA(ifp); 1502 1503 na->if_transmit = if_gettransmitfn(ifp); 1504 if_settransmitfn(ifp, netmap_transmit); 1505 if_setcapenablebit(ifp, IFCAP_NETMAP, 0); 1506 } 1507 1508 void 1509 nm_os_onexit(if_t ifp) 1510 { 1511 struct netmap_adapter *na = NA(ifp); 1512 1513 if_settransmitfn(ifp, na->if_transmit); 1514 if_setcapenablebit(ifp, 0, IFCAP_NETMAP); 1515 } 1516 1517 extern struct cdevsw netmap_cdevsw; /* XXX used in netmap.c, should go elsewhere */ 1518 struct cdevsw netmap_cdevsw = { 1519 .d_version = D_VERSION, 1520 .d_name = "netmap", 1521 .d_open = netmap_open, 1522 .d_mmap_single = netmap_mmap_single, 1523 .d_ioctl = freebsd_netmap_ioctl, 1524 .d_poll = freebsd_netmap_poll, 1525 .d_kqfilter = netmap_kqfilter, 1526 .d_close = netmap_close, 1527 }; 1528 /*--- end of kqueue support ----*/ 1529 1530 /* 1531 * Kernel entry point. 1532 * 1533 * Initialize/finalize the module and return. 1534 * 1535 * Return 0 on success, errno on failure. 1536 */ 1537 static int 1538 netmap_loader(__unused struct module *module, int event, __unused void *arg) 1539 { 1540 int error = 0; 1541 1542 switch (event) { 1543 case MOD_LOAD: 1544 error = netmap_init(); 1545 break; 1546 1547 case MOD_UNLOAD: 1548 /* 1549 * if some one is still using netmap, 1550 * then the module can not be unloaded. 1551 */ 1552 if (netmap_use_count) { 1553 nm_prerr("netmap module can not be unloaded - netmap_use_count: %d", 1554 netmap_use_count); 1555 error = EBUSY; 1556 break; 1557 } 1558 netmap_fini(); 1559 break; 1560 1561 default: 1562 error = EOPNOTSUPP; 1563 break; 1564 } 1565 1566 return (error); 1567 } 1568 1569 #ifdef DEV_MODULE_ORDERED 1570 /* 1571 * The netmap module contains three drivers: (i) the netmap character device 1572 * driver; (ii) the ptnetmap memdev PCI device driver, (iii) the ptnet PCI 1573 * device driver. The attach() routines of both (ii) and (iii) need the 1574 * lock of the global allocator, and such lock is initialized in netmap_init(), 1575 * which is part of (i). 1576 * Therefore, we make sure that (i) is loaded before (ii) and (iii), using 1577 * the 'order' parameter of driver declaration macros. For (i), we specify 1578 * SI_ORDER_MIDDLE, while higher orders are used with the DRIVER_MODULE_ORDERED 1579 * macros for (ii) and (iii). 1580 */ 1581 DEV_MODULE_ORDERED(netmap, netmap_loader, NULL, SI_ORDER_MIDDLE); 1582 #else /* !DEV_MODULE_ORDERED */ 1583 DEV_MODULE(netmap, netmap_loader, NULL); 1584 #endif /* DEV_MODULE_ORDERED */ 1585 MODULE_DEPEND(netmap, pci, 1, 1, 1); 1586 MODULE_VERSION(netmap, 1); 1587 /* reduce conditional code */ 1588 // linux API, use for the knlist in FreeBSD 1589 /* use a private mutex for the knlist */ 1590