/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include /* POLLIN, POLLOUT */ #include /* types used in module initialization */ #include /* DEV_MODULE_ORDERED */ #include #include /* kern_ioctl() */ #include #include /* vtophys */ #include /* vtophys */ #include #include #include #include #include #include #include /* sockaddrs */ #include #include /* kthread_add() */ #include /* PROC_LOCK() */ #include /* RFNOWAIT */ #include /* sched_bind() */ #include /* mp_maxid */ #include /* taskqueue_enqueue(), taskqueue_create(), ... */ #include #include #include /* IFT_ETHER */ #include /* ether_ifdetach */ #include /* LLADDR */ #include /* bus_dmamap_* */ #include /* in6_cksum_pseudo() */ #include /* in_pseudo(), in_cksum_hdr() */ #include #include #include #include /* ======================== FREEBSD-SPECIFIC ROUTINES ================== */ static void nm_kqueue_notify(void *opaque, int pending) { struct nm_selinfo *si = opaque; /* We use a non-zero hint to distinguish this notification call * from the call done in kqueue_scan(), which uses hint=0. */ KNOTE_UNLOCKED(&si->si.si_note, /*hint=*/0x100); } int nm_os_selinfo_init(NM_SELINFO_T *si, const char *name) { int err; TASK_INIT(&si->ntfytask, 0, nm_kqueue_notify, si); si->ntfytq = taskqueue_create(name, M_NOWAIT, taskqueue_thread_enqueue, &si->ntfytq); if (si->ntfytq == NULL) return -ENOMEM; err = taskqueue_start_threads(&si->ntfytq, 1, PI_NET, "tq %s", name); if (err) { taskqueue_free(si->ntfytq); si->ntfytq = NULL; return err; } snprintf(si->mtxname, sizeof(si->mtxname), "nmkl%s", name); mtx_init(&si->m, si->mtxname, NULL, MTX_DEF); knlist_init_mtx(&si->si.si_note, &si->m); si->kqueue_users = 0; return (0); } void nm_os_selinfo_uninit(NM_SELINFO_T *si) { if (si->ntfytq == NULL) { return; /* si was not initialized */ } taskqueue_drain(si->ntfytq, &si->ntfytask); taskqueue_free(si->ntfytq); si->ntfytq = NULL; knlist_delete(&si->si.si_note, curthread, /*islocked=*/0); knlist_destroy(&si->si.si_note); /* now we don't need the mutex anymore */ mtx_destroy(&si->m); } void * nm_os_malloc(size_t size) { return malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); } void * nm_os_realloc(void *addr, size_t new_size, size_t old_size __unused) { return realloc(addr, new_size, M_DEVBUF, M_NOWAIT | M_ZERO); } void nm_os_free(void *addr) { free(addr, M_DEVBUF); } void nm_os_ifnet_lock(void) { IFNET_RLOCK(); } void nm_os_ifnet_unlock(void) { IFNET_RUNLOCK(); } static int netmap_use_count = 0; void nm_os_get_module(void) { netmap_use_count++; } void nm_os_put_module(void) { netmap_use_count--; } static void netmap_ifnet_arrival_handler(void *arg __unused, if_t ifp) { netmap_undo_zombie(ifp); } static void netmap_ifnet_departure_handler(void *arg __unused, if_t ifp) { netmap_make_zombie(ifp); } static eventhandler_tag nm_ifnet_ah_tag; static eventhandler_tag nm_ifnet_dh_tag; int nm_os_ifnet_init(void) { nm_ifnet_ah_tag = EVENTHANDLER_REGISTER(ifnet_arrival_event, netmap_ifnet_arrival_handler, NULL, EVENTHANDLER_PRI_ANY); nm_ifnet_dh_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, netmap_ifnet_departure_handler, NULL, EVENTHANDLER_PRI_ANY); return 0; } void nm_os_ifnet_fini(void) { EVENTHANDLER_DEREGISTER(ifnet_arrival_event, nm_ifnet_ah_tag); EVENTHANDLER_DEREGISTER(ifnet_departure_event, nm_ifnet_dh_tag); } unsigned nm_os_ifnet_mtu(if_t ifp) { return if_getmtu(ifp); } rawsum_t nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum) { /* TODO XXX please use the FreeBSD implementation for this. */ uint16_t *words = (uint16_t *)data; int nw = len / 2; int i; for (i = 0; i < nw; i++) cur_sum += be16toh(words[i]); if (len & 1) cur_sum += (data[len-1] << 8); return cur_sum; } /* Fold a raw checksum: 'cur_sum' is in host byte order, while the * return value is in network byte order. */ uint16_t nm_os_csum_fold(rawsum_t cur_sum) { /* TODO XXX please use the FreeBSD implementation for this. */ while (cur_sum >> 16) cur_sum = (cur_sum & 0xFFFF) + (cur_sum >> 16); return htobe16((~cur_sum) & 0xFFFF); } uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph) { #if 0 return in_cksum_hdr((void *)iph); #else return nm_os_csum_fold(nm_os_csum_raw((uint8_t*)iph, sizeof(struct nm_iphdr), 0)); #endif } void nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data, size_t datalen, uint16_t *check) { #ifdef INET uint16_t pseudolen = datalen + iph->protocol; /* Compute and insert the pseudo-header checksum. */ *check = in_pseudo(iph->saddr, iph->daddr, htobe16(pseudolen)); /* Compute the checksum on TCP/UDP header + payload * (includes the pseudo-header). */ *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0)); #else static int notsupported = 0; if (!notsupported) { notsupported = 1; nm_prerr("inet4 segmentation not supported"); } #endif } void nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data, size_t datalen, uint16_t *check) { #ifdef INET6 *check = in6_cksum_pseudo((void*)ip6h, datalen, ip6h->nexthdr, 0); *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0)); #else static int notsupported = 0; if (!notsupported) { notsupported = 1; nm_prerr("inet6 segmentation not supported"); } #endif } /* on FreeBSD we send up one packet at a time */ void * nm_os_send_up(if_t ifp, struct mbuf *m, struct mbuf *prev) { NA(ifp)->if_input(ifp, m); return NULL; } int nm_os_mbuf_has_csum_offld(struct mbuf *m) { return m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_SCTP | CSUM_TCP_IPV6 | CSUM_UDP_IPV6 | CSUM_SCTP_IPV6); } int nm_os_mbuf_has_seg_offld(struct mbuf *m) { return m->m_pkthdr.csum_flags & CSUM_TSO; } static void freebsd_generic_rx_handler(if_t ifp, struct mbuf *m) { int stolen; if (unlikely(!NM_NA_VALID(ifp))) { nm_prlim(1, "Warning: RX packet intercepted, but no" " emulated adapter"); return; } do { struct mbuf *n; n = m->m_nextpkt; m->m_nextpkt = NULL; stolen = generic_rx_handler(ifp, m); if (!stolen) { NA(ifp)->if_input(ifp, m); } m = n; } while (m != NULL); } /* * Intercept the rx routine in the standard device driver. * Second argument is non-zero to intercept, 0 to restore */ int nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept) { struct netmap_adapter *na = &gna->up.up; if_t ifp = na->ifp; int ret = 0; nm_os_ifnet_lock(); if (intercept) { if_setcapenablebit(ifp, IFCAP_NETMAP, 0); if_setinputfn(ifp, freebsd_generic_rx_handler); } else { if_setcapenablebit(ifp, 0, IFCAP_NETMAP); if_setinputfn(ifp, na->if_input); } nm_os_ifnet_unlock(); return ret; } /* * Intercept the packet steering routine in the tx path, * so that we can decide which queue is used for an mbuf. * Second argument is non-zero to intercept, 0 to restore. * On freebsd we just intercept if_transmit. */ int nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept) { struct netmap_adapter *na = &gna->up.up; if_t ifp = netmap_generic_getifp(gna); nm_os_ifnet_lock(); if (intercept) { na->if_transmit = if_gettransmitfn(ifp); if_settransmitfn(ifp, netmap_transmit); } else { if_settransmitfn(ifp, na->if_transmit); } nm_os_ifnet_unlock(); return 0; } /* * Transmit routine used by generic_netmap_txsync(). Returns 0 on success * and non-zero on error (which may be packet drops or other errors). * addr and len identify the netmap buffer, m is the (preallocated) * mbuf to use for transmissions. * * Zero-copy transmission is possible if netmap is attached directly to a * hardware interface: when cleaning we simply wait for the mbuf cluster * refcount to decrement to 1, indicating that the driver has completed * transmission and is done with the buffer. However, this approach can * lead to queue deadlocks when attaching to software interfaces (e.g., * if_bridge) since we cannot rely on member ports to promptly reclaim * transmitted mbufs. Since there is no easy way to distinguish these * cases, we currently always copy the buffer. * * On multiqueue cards, we can force the queue using * if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) * i = m->m_pkthdr.flowid % adapter->num_queues; * else * i = curcpu % adapter->num_queues; */ int nm_os_generic_xmit_frame(struct nm_os_gen_arg *a) { int ret; u_int len = a->len; if_t ifp = a->ifp; struct mbuf *m = a->m; M_ASSERTPKTHDR(m); KASSERT((m->m_flags & M_EXT) != 0, ("%s: mbuf %p has no cluster", __func__, m)); if (MBUF_REFCNT(m) != 1) { nm_prerr("invalid refcnt %d for %p", MBUF_REFCNT(m), m); panic("in generic_xmit_frame"); } if (unlikely(m->m_ext.ext_size < len)) { nm_prlim(2, "size %d < len %d", m->m_ext.ext_size, len); len = m->m_ext.ext_size; } m_copyback(m, 0, len, a->addr); m->m_len = m->m_pkthdr.len = len; SET_MBUF_REFCNT(m, 2); M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE); m->m_pkthdr.flowid = a->ring_nr; m->m_pkthdr.rcvif = ifp; /* used for tx notification */ CURVNET_SET(if_getvnet(ifp)); ret = NA(ifp)->if_transmit(ifp, m); CURVNET_RESTORE(); return ret ? -1 : 0; } struct netmap_adapter * netmap_getna(if_t ifp) { return (NA(ifp)); } /* * The following two functions are empty until we have a generic * way to extract the info from the ifp */ int nm_os_generic_find_num_desc(if_t ifp, unsigned int *tx, unsigned int *rx) { return 0; } void nm_os_generic_find_num_queues(if_t ifp, u_int *txq, u_int *rxq) { unsigned num_rings = netmap_generic_rings ? netmap_generic_rings : 1; *txq = num_rings; *rxq = num_rings; } void nm_os_generic_set_features(struct netmap_generic_adapter *gna) { gna->rxsg = 1; /* Supported through m_copydata. */ gna->txqdisc = 0; /* Not supported. */ } void nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, struct netmap_adapter *na) { mit->mit_pending = 0; mit->mit_ring_idx = idx; mit->mit_na = na; } void nm_os_mitigation_start(struct nm_generic_mit *mit) { } void nm_os_mitigation_restart(struct nm_generic_mit *mit) { } int nm_os_mitigation_active(struct nm_generic_mit *mit) { return 0; } void nm_os_mitigation_cleanup(struct nm_generic_mit *mit) { } static int nm_vi_dummy(if_t ifp, u_long cmd, caddr_t addr) { return EINVAL; } static void nm_vi_start(if_t ifp) { panic("nm_vi_start() must not be called"); } /* * Index manager of persistent virtual interfaces. * It is used to decide the lowest byte of the MAC address. * We use the same algorithm with management of bridge port index. */ #define NM_VI_MAX 255 static struct { uint8_t index[NM_VI_MAX]; /* XXX just for a reasonable number */ uint8_t active; struct mtx lock; } nm_vi_indices; void nm_os_vi_init_index(void) { int i; for (i = 0; i < NM_VI_MAX; i++) nm_vi_indices.index[i] = i; nm_vi_indices.active = 0; mtx_init(&nm_vi_indices.lock, "nm_vi_indices_lock", NULL, MTX_DEF); } /* return -1 if no index available */ static int nm_vi_get_index(void) { int ret; mtx_lock(&nm_vi_indices.lock); ret = nm_vi_indices.active == NM_VI_MAX ? -1 : nm_vi_indices.index[nm_vi_indices.active++]; mtx_unlock(&nm_vi_indices.lock); return ret; } static void nm_vi_free_index(uint8_t val) { int i, lim; mtx_lock(&nm_vi_indices.lock); lim = nm_vi_indices.active; for (i = 0; i < lim; i++) { if (nm_vi_indices.index[i] == val) { /* swap index[lim-1] and j */ int tmp = nm_vi_indices.index[lim-1]; nm_vi_indices.index[lim-1] = val; nm_vi_indices.index[i] = tmp; nm_vi_indices.active--; break; } } if (lim == nm_vi_indices.active) nm_prerr("Index %u not found", val); mtx_unlock(&nm_vi_indices.lock); } #undef NM_VI_MAX /* * Implementation of a netmap-capable virtual interface that * registered to the system. * It is based on if_tap.c and ip_fw_log.c in FreeBSD 9. * * Note: Linux sets refcount to 0 on allocation of net_device, * then increments it on registration to the system. * FreeBSD sets refcount to 1 on if_alloc(), and does not * increment this refcount on if_attach(). */ int nm_os_vi_persist(const char *name, if_t *ret) { if_t ifp; u_short macaddr_hi; uint32_t macaddr_mid; u_char eaddr[6]; int unit = nm_vi_get_index(); /* just to decide MAC address */ if (unit < 0) return EBUSY; /* * We use the same MAC address generation method with tap * except for the highest octet is 00:be instead of 00:bd */ macaddr_hi = htons(0x00be); /* XXX tap + 1 */ macaddr_mid = (uint32_t) ticks; bcopy(&macaddr_hi, eaddr, sizeof(short)); bcopy(&macaddr_mid, &eaddr[2], sizeof(uint32_t)); eaddr[5] = (uint8_t)unit; ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { nm_prerr("if_alloc failed"); return ENOMEM; } if_initname(ifp, name, IF_DUNIT_NONE); if_setflags(ifp, IFF_UP | IFF_SIMPLEX | IFF_MULTICAST); if_setinitfn(ifp, (void *)nm_vi_dummy); if_setioctlfn(ifp, nm_vi_dummy); if_setstartfn(ifp, nm_vi_start); if_setmtu(ifp, ETHERMTU); if_setsendqlen(ifp, ifqmaxlen); if_setcapabilitiesbit(ifp, IFCAP_LINKSTATE, 0); if_setcapenablebit(ifp, IFCAP_LINKSTATE, 0); ether_ifattach(ifp, eaddr); *ret = ifp; return 0; } /* unregister from the system and drop the final refcount */ void nm_os_vi_detach(if_t ifp) { nm_vi_free_index(((char *)if_getlladdr(ifp))[5]); ether_ifdetach(ifp); if_free(ifp); } #ifdef WITH_EXTMEM #include #include #include struct nm_os_extmem { vm_object_t obj; vm_offset_t kva; vm_offset_t size; uintptr_t scan; }; void nm_os_extmem_delete(struct nm_os_extmem *e) { nm_prinf("freeing %zx bytes", (size_t)e->size); vm_map_remove(kernel_map, e->kva, e->kva + e->size); nm_os_free(e); } char * nm_os_extmem_nextpage(struct nm_os_extmem *e) { char *rv = NULL; if (e->scan < e->kva + e->size) { rv = (char *)e->scan; e->scan += PAGE_SIZE; } return rv; } int nm_os_extmem_isequal(struct nm_os_extmem *e1, struct nm_os_extmem *e2) { return (e1->obj == e2->obj); } int nm_os_extmem_nr_pages(struct nm_os_extmem *e) { return e->size >> PAGE_SHIFT; } struct nm_os_extmem * nm_os_extmem_create(unsigned long p, struct nmreq_pools_info *pi, int *perror) { vm_map_t map; vm_map_entry_t entry; vm_object_t obj; vm_prot_t prot; vm_pindex_t index; boolean_t wired; struct nm_os_extmem *e = NULL; int rv, error = 0; e = nm_os_malloc(sizeof(*e)); if (e == NULL) { error = ENOMEM; goto out; } map = &curthread->td_proc->p_vmspace->vm_map; rv = vm_map_lookup(&map, p, VM_PROT_RW, &entry, &obj, &index, &prot, &wired); if (rv != KERN_SUCCESS) { nm_prerr("address %lx not found", p); error = vm_mmap_to_errno(rv); goto out_free; } vm_object_reference(obj); /* check that we are given the whole vm_object ? */ vm_map_lookup_done(map, entry); e->obj = obj; /* Wire the memory and add the vm_object to the kernel map, * to make sure that it is not freed even if all the processes * that are mmap()ing should munmap() it. */ e->kva = vm_map_min(kernel_map); e->size = obj->size << PAGE_SHIFT; rv = vm_map_find(kernel_map, obj, 0, &e->kva, e->size, 0, VMFS_OPTIMAL_SPACE, VM_PROT_READ | VM_PROT_WRITE, VM_PROT_READ | VM_PROT_WRITE, 0); if (rv != KERN_SUCCESS) { nm_prerr("vm_map_find(%zx) failed", (size_t)e->size); error = vm_mmap_to_errno(rv); goto out_rel; } rv = vm_map_wire(kernel_map, e->kva, e->kva + e->size, VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES); if (rv != KERN_SUCCESS) { nm_prerr("vm_map_wire failed"); error = vm_mmap_to_errno(rv); goto out_rem; } e->scan = e->kva; return e; out_rem: vm_map_remove(kernel_map, e->kva, e->kva + e->size); out_rel: vm_object_deallocate(e->obj); e->obj = NULL; out_free: nm_os_free(e); out: if (perror) *perror = error; return NULL; } #endif /* WITH_EXTMEM */ /* ================== PTNETMAP GUEST SUPPORT ==================== */ #ifdef WITH_PTNETMAP #include #include #include /* bus_dmamap_* */ #include #include #include /* * ptnetmap memory device (memdev) for freebsd guest, * ssed to expose host netmap memory to the guest through a PCI BAR. */ /* * ptnetmap memdev private data structure */ struct ptnetmap_memdev { device_t dev; struct resource *pci_io; struct resource *pci_mem; struct netmap_mem_d *nm_mem; }; static int ptn_memdev_probe(device_t); static int ptn_memdev_attach(device_t); static int ptn_memdev_detach(device_t); static int ptn_memdev_shutdown(device_t); static device_method_t ptn_memdev_methods[] = { DEVMETHOD(device_probe, ptn_memdev_probe), DEVMETHOD(device_attach, ptn_memdev_attach), DEVMETHOD(device_detach, ptn_memdev_detach), DEVMETHOD(device_shutdown, ptn_memdev_shutdown), DEVMETHOD_END }; static driver_t ptn_memdev_driver = { PTNETMAP_MEMDEV_NAME, ptn_memdev_methods, sizeof(struct ptnetmap_memdev), }; /* We use (SI_ORDER_MIDDLE+1) here, see DEV_MODULE_ORDERED() invocation * below. */ DRIVER_MODULE_ORDERED(ptn_memdev, pci, ptn_memdev_driver, NULL, NULL, SI_ORDER_MIDDLE + 1); /* * Map host netmap memory through PCI-BAR in the guest OS, * returning physical (nm_paddr) and virtual (nm_addr) addresses * of the netmap memory mapped in the guest. */ int nm_os_pt_memdev_iomap(struct ptnetmap_memdev *ptn_dev, vm_paddr_t *nm_paddr, void **nm_addr, uint64_t *mem_size) { int rid; nm_prinf("ptn_memdev_driver iomap"); rid = PCIR_BAR(PTNETMAP_MEM_PCI_BAR); *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_HI); *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_LO) | (*mem_size << 32); /* map memory allocator */ ptn_dev->pci_mem = bus_alloc_resource(ptn_dev->dev, SYS_RES_MEMORY, &rid, 0, ~0, *mem_size, RF_ACTIVE); if (ptn_dev->pci_mem == NULL) { *nm_paddr = 0; *nm_addr = NULL; return ENOMEM; } *nm_paddr = rman_get_start(ptn_dev->pci_mem); *nm_addr = rman_get_virtual(ptn_dev->pci_mem); nm_prinf("=== BAR %d start %lx len %lx mem_size %lx ===", PTNETMAP_MEM_PCI_BAR, (unsigned long)(*nm_paddr), (unsigned long)rman_get_size(ptn_dev->pci_mem), (unsigned long)*mem_size); return (0); } uint32_t nm_os_pt_memdev_ioread(struct ptnetmap_memdev *ptn_dev, unsigned int reg) { return bus_read_4(ptn_dev->pci_io, reg); } /* Unmap host netmap memory. */ void nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *ptn_dev) { nm_prinf("ptn_memdev_driver iounmap"); if (ptn_dev->pci_mem) { bus_release_resource(ptn_dev->dev, SYS_RES_MEMORY, PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem); ptn_dev->pci_mem = NULL; } } /* Device identification routine, return BUS_PROBE_DEFAULT on success, * positive on failure */ static int ptn_memdev_probe(device_t dev) { if (pci_get_vendor(dev) != PTNETMAP_PCI_VENDOR_ID) return (ENXIO); if (pci_get_device(dev) != PTNETMAP_PCI_DEVICE_ID) return (ENXIO); device_set_descf(dev, "%s PCI adapter", PTNETMAP_MEMDEV_NAME); return (BUS_PROBE_DEFAULT); } /* Device initialization routine. */ static int ptn_memdev_attach(device_t dev) { struct ptnetmap_memdev *ptn_dev; int rid; uint16_t mem_id; ptn_dev = device_get_softc(dev); ptn_dev->dev = dev; pci_enable_busmaster(dev); rid = PCIR_BAR(PTNETMAP_IO_PCI_BAR); ptn_dev->pci_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid, RF_ACTIVE); if (ptn_dev->pci_io == NULL) { device_printf(dev, "cannot map I/O space\n"); return (ENXIO); } mem_id = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMID); /* create guest allocator */ ptn_dev->nm_mem = netmap_mem_pt_guest_attach(ptn_dev, mem_id); if (ptn_dev->nm_mem == NULL) { ptn_memdev_detach(dev); return (ENOMEM); } netmap_mem_get(ptn_dev->nm_mem); nm_prinf("ptnetmap memdev attached, host memid: %u", mem_id); return (0); } /* Device removal routine. */ static int ptn_memdev_detach(device_t dev) { struct ptnetmap_memdev *ptn_dev; ptn_dev = device_get_softc(dev); if (ptn_dev->nm_mem) { nm_prinf("ptnetmap memdev detached, host memid %u", netmap_mem_get_id(ptn_dev->nm_mem)); netmap_mem_put(ptn_dev->nm_mem); ptn_dev->nm_mem = NULL; } if (ptn_dev->pci_mem) { bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem); ptn_dev->pci_mem = NULL; } if (ptn_dev->pci_io) { bus_release_resource(dev, SYS_RES_IOPORT, PCIR_BAR(PTNETMAP_IO_PCI_BAR), ptn_dev->pci_io); ptn_dev->pci_io = NULL; } return (0); } static int ptn_memdev_shutdown(device_t dev) { return bus_generic_shutdown(dev); } #endif /* WITH_PTNETMAP */ /* * In order to track whether pages are still mapped, we hook into * the standard cdev_pager and intercept the constructor and * destructor. */ struct netmap_vm_handle_t { struct cdev *dev; struct netmap_priv_d *priv; }; static int netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot, vm_ooffset_t foff, struct ucred *cred, u_short *color) { struct netmap_vm_handle_t *vmh = handle; if (netmap_verbose) nm_prinf("handle %p size %jd prot %d foff %jd", handle, (intmax_t)size, prot, (intmax_t)foff); if (color) *color = 0; dev_ref(vmh->dev); return 0; } static void netmap_dev_pager_dtor(void *handle) { struct netmap_vm_handle_t *vmh = handle; struct cdev *dev = vmh->dev; struct netmap_priv_d *priv = vmh->priv; if (netmap_verbose) nm_prinf("handle %p", handle); netmap_dtor(priv); free(vmh, M_DEVBUF); dev_rel(dev); } static int netmap_dev_pager_fault(vm_object_t object, vm_ooffset_t offset, int prot, vm_page_t *mres) { struct netmap_vm_handle_t *vmh = object->handle; struct netmap_priv_d *priv = vmh->priv; struct netmap_adapter *na = priv->np_na; vm_paddr_t paddr; vm_page_t page; vm_memattr_t memattr; nm_prdis("object %p offset %jd prot %d mres %p", object, (intmax_t)offset, prot, mres); memattr = object->memattr; paddr = netmap_mem_ofstophys(na->nm_mem, offset); if (paddr == 0) return VM_PAGER_FAIL; if (((*mres)->flags & PG_FICTITIOUS) != 0) { /* * If the passed in result page is a fake page, update it with * the new physical address. */ page = *mres; vm_page_updatefake(page, paddr, memattr); } else { /* * Replace the passed in reqpage page with our own fake page and * free up the all of the original pages. */ VM_OBJECT_WUNLOCK(object); page = vm_page_getfake(paddr, memattr); VM_OBJECT_WLOCK(object); vm_page_replace(page, object, (*mres)->pindex, *mres); *mres = page; } page->valid = VM_PAGE_BITS_ALL; return (VM_PAGER_OK); } static struct cdev_pager_ops netmap_cdev_pager_ops = { .cdev_pg_ctor = netmap_dev_pager_ctor, .cdev_pg_dtor = netmap_dev_pager_dtor, .cdev_pg_fault = netmap_dev_pager_fault, }; static int netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff, vm_size_t objsize, vm_object_t *objp, int prot) { int error; struct netmap_vm_handle_t *vmh; struct netmap_priv_d *priv; vm_object_t obj; if (netmap_verbose) nm_prinf("cdev %p foff %jd size %jd objp %p prot %d", cdev, (intmax_t )*foff, (intmax_t )objsize, objp, prot); vmh = malloc(sizeof(struct netmap_vm_handle_t), M_DEVBUF, M_NOWAIT | M_ZERO); if (vmh == NULL) return ENOMEM; vmh->dev = cdev; NMG_LOCK(); error = devfs_get_cdevpriv((void**)&priv); if (error) goto err_unlock; if (priv->np_nifp == NULL) { error = EINVAL; goto err_unlock; } vmh->priv = priv; priv->np_refs++; NMG_UNLOCK(); obj = cdev_pager_allocate(vmh, OBJT_DEVICE, &netmap_cdev_pager_ops, objsize, prot, *foff, NULL); if (obj == NULL) { nm_prerr("cdev_pager_allocate failed"); error = EINVAL; goto err_deref; } *objp = obj; return 0; err_deref: NMG_LOCK(); priv->np_refs--; err_unlock: NMG_UNLOCK(); // err: free(vmh, M_DEVBUF); return error; } /* * On FreeBSD the close routine is only called on the last close on * the device (/dev/netmap) so we cannot do anything useful. * To track close() on individual file descriptors we pass netmap_dtor() to * devfs_set_cdevpriv() on open(). The FreeBSD kernel will call the destructor * when the last fd pointing to the device is closed. * * Note that FreeBSD does not even munmap() on close() so we also have * to track mmap() ourselves, and postpone the call to * netmap_dtor() is called when the process has no open fds and no active * memory maps on /dev/netmap, as in linux. */ static int netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td) { if (netmap_verbose) nm_prinf("dev %p fflag 0x%x devtype %d td %p", dev, fflag, devtype, td); return 0; } static int netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td) { struct netmap_priv_d *priv; int error; (void)dev; (void)oflags; (void)devtype; (void)td; NMG_LOCK(); priv = netmap_priv_new(); if (priv == NULL) { error = ENOMEM; goto out; } error = devfs_set_cdevpriv(priv, netmap_dtor); if (error) { netmap_priv_delete(priv); } out: NMG_UNLOCK(); return error; } /******************** kthread wrapper ****************/ #include u_int nm_os_ncpus(void) { return mp_maxid + 1; } struct nm_kctx_ctx { /* Userspace thread (kthread creator). */ struct thread *user_td; /* worker function and parameter */ nm_kctx_worker_fn_t worker_fn; void *worker_private; struct nm_kctx *nmk; /* integer to manage multiple worker contexts (e.g., RX or TX on ptnetmap) */ long type; }; struct nm_kctx { struct thread *worker; struct mtx worker_lock; struct nm_kctx_ctx worker_ctx; int run; /* used to stop kthread */ int attach_user; /* kthread attached to user_process */ int affinity; }; static void nm_kctx_worker(void *data) { struct nm_kctx *nmk = data; struct nm_kctx_ctx *ctx = &nmk->worker_ctx; if (nmk->affinity >= 0) { thread_lock(curthread); sched_bind(curthread, nmk->affinity); thread_unlock(curthread); } while (nmk->run) { /* * check if the parent process dies * (when kthread is attached to user process) */ if (ctx->user_td) { PROC_LOCK(curproc); thread_suspend_check(0); PROC_UNLOCK(curproc); } else { kthread_suspend_check(); } /* Continuously execute worker process. */ ctx->worker_fn(ctx->worker_private); /* worker body */ } kthread_exit(); } void nm_os_kctx_worker_setaff(struct nm_kctx *nmk, int affinity) { nmk->affinity = affinity; } struct nm_kctx * nm_os_kctx_create(struct nm_kctx_cfg *cfg, void *opaque) { struct nm_kctx *nmk = NULL; nmk = malloc(sizeof(*nmk), M_DEVBUF, M_NOWAIT | M_ZERO); if (!nmk) return NULL; mtx_init(&nmk->worker_lock, "nm_kthread lock", NULL, MTX_DEF); nmk->worker_ctx.worker_fn = cfg->worker_fn; nmk->worker_ctx.worker_private = cfg->worker_private; nmk->worker_ctx.type = cfg->type; nmk->affinity = -1; /* attach kthread to user process (ptnetmap) */ nmk->attach_user = cfg->attach_user; return nmk; } int nm_os_kctx_worker_start(struct nm_kctx *nmk) { struct proc *p = NULL; int error = 0; /* Temporarily disable this function as it is currently broken * and causes kernel crashes. The failure can be triggered by * the "vale_polling_enable_disable" test in ctrl-api-test.c. */ return EOPNOTSUPP; if (nmk->worker) return EBUSY; /* check if we want to attach kthread to user process */ if (nmk->attach_user) { nmk->worker_ctx.user_td = curthread; p = curthread->td_proc; } /* enable kthread main loop */ nmk->run = 1; /* create kthread */ if((error = kthread_add(nm_kctx_worker, nmk, p, &nmk->worker, RFNOWAIT /* to be checked */, 0, "nm-kthread-%ld", nmk->worker_ctx.type))) { goto err; } nm_prinf("nm_kthread started td %p", nmk->worker); return 0; err: nm_prerr("nm_kthread start failed err %d", error); nmk->worker = NULL; return error; } void nm_os_kctx_worker_stop(struct nm_kctx *nmk) { if (!nmk->worker) return; /* tell to kthread to exit from main loop */ nmk->run = 0; /* wake up kthread if it sleeps */ kthread_resume(nmk->worker); nmk->worker = NULL; } void nm_os_kctx_destroy(struct nm_kctx *nmk) { if (!nmk) return; if (nmk->worker) nm_os_kctx_worker_stop(nmk); free(nmk, M_DEVBUF); } /******************** kqueue support ****************/ /* * In addition to calling selwakeuppri(), nm_os_selwakeup() also * needs to call knote() to wake up kqueue listeners. * This operation is deferred to a taskqueue in order to avoid possible * lock order reversals; these may happen because knote() grabs a * private lock associated to the 'si' (see struct selinfo, * struct nm_selinfo, and nm_os_selinfo_init), and nm_os_selwakeup() * can be called while holding the lock associated to a different * 'si'. * When calling knote() we use a non-zero 'hint' argument to inform * the netmap_knrw() function that it is being called from * 'nm_os_selwakeup'; this is necessary because when netmap_knrw() is * called by the kevent subsystem (i.e. kevent_scan()) we also need to * call netmap_poll(). * * The netmap_kqfilter() function registers one or another f_event * depending on read or write mode. A pointer to the struct * 'netmap_priv_d' is stored into kn->kn_hook, so that it can later * be passed to netmap_poll(). We pass NULL as a third argument to * netmap_poll(), so that the latter only runs the txsync/rxsync * (if necessary), and skips the nm_os_selrecord() calls. */ void nm_os_selwakeup(struct nm_selinfo *si) { selwakeuppri(&si->si, PI_NET); if (si->kqueue_users > 0) { taskqueue_enqueue(si->ntfytq, &si->ntfytask); } } void nm_os_selrecord(struct thread *td, struct nm_selinfo *si) { selrecord(td, &si->si); } static void netmap_knrdetach(struct knote *kn) { struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook; struct nm_selinfo *si = priv->np_si[NR_RX]; knlist_remove(&si->si.si_note, kn, /*islocked=*/0); NMG_LOCK(); KASSERT(si->kqueue_users > 0, ("kqueue_user underflow on %s", si->mtxname)); si->kqueue_users--; nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); NMG_UNLOCK(); } static void netmap_knwdetach(struct knote *kn) { struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook; struct nm_selinfo *si = priv->np_si[NR_TX]; knlist_remove(&si->si.si_note, kn, /*islocked=*/0); NMG_LOCK(); si->kqueue_users--; nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); NMG_UNLOCK(); } /* * Callback triggered by netmap notifications (see netmap_notify()), * and by the application calling kevent(). In the former case we * just return 1 (events ready), since we are not able to do better. * In the latter case we use netmap_poll() to see which events are * ready. */ static int netmap_knrw(struct knote *kn, long hint, int events) { struct netmap_priv_d *priv; int revents; if (hint != 0) { /* Called from netmap_notify(), typically from a * thread different from the one issuing kevent(). * Assume we are ready. */ return 1; } /* Called from kevent(). */ priv = kn->kn_hook; revents = netmap_poll(priv, events, /*thread=*/NULL); return (events & revents) ? 1 : 0; } static int netmap_knread(struct knote *kn, long hint) { return netmap_knrw(kn, hint, POLLIN); } static int netmap_knwrite(struct knote *kn, long hint) { return netmap_knrw(kn, hint, POLLOUT); } static struct filterops netmap_rfiltops = { .f_isfd = 1, .f_detach = netmap_knrdetach, .f_event = netmap_knread, }; static struct filterops netmap_wfiltops = { .f_isfd = 1, .f_detach = netmap_knwdetach, .f_event = netmap_knwrite, }; /* * This is called when a thread invokes kevent() to record * a change in the configuration of the kqueue(). * The 'priv' is the one associated to the open netmap device. */ static int netmap_kqfilter(struct cdev *dev, struct knote *kn) { struct netmap_priv_d *priv; int error; struct netmap_adapter *na; struct nm_selinfo *si; int ev = kn->kn_filter; if (ev != EVFILT_READ && ev != EVFILT_WRITE) { nm_prerr("bad filter request %d", ev); return 1; } error = devfs_get_cdevpriv((void**)&priv); if (error) { nm_prerr("device not yet setup"); return 1; } na = priv->np_na; if (na == NULL) { nm_prerr("no netmap adapter for this file descriptor"); return 1; } /* the si is indicated in the priv */ si = priv->np_si[(ev == EVFILT_WRITE) ? NR_TX : NR_RX]; kn->kn_fop = (ev == EVFILT_WRITE) ? &netmap_wfiltops : &netmap_rfiltops; kn->kn_hook = priv; NMG_LOCK(); si->kqueue_users++; nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); NMG_UNLOCK(); knlist_add(&si->si.si_note, kn, /*islocked=*/0); return 0; } static int freebsd_netmap_poll(struct cdev *cdevi __unused, int events, struct thread *td) { struct netmap_priv_d *priv; if (devfs_get_cdevpriv((void **)&priv)) { return POLLERR; } return netmap_poll(priv, events, td); } static int freebsd_netmap_ioctl(struct cdev *dev __unused, u_long cmd, caddr_t data, int ffla __unused, struct thread *td) { int error; struct netmap_priv_d *priv; CURVNET_SET(TD_TO_VNET(td)); error = devfs_get_cdevpriv((void **)&priv); if (error) { /* XXX ENOENT should be impossible, since the priv * is now created in the open */ if (error == ENOENT) error = ENXIO; goto out; } error = netmap_ioctl(priv, cmd, data, td, /*nr_body_is_user=*/1); out: CURVNET_RESTORE(); return error; } void nm_os_onattach(if_t ifp) { if_setcapabilitiesbit(ifp, IFCAP_NETMAP, 0); } void nm_os_onenter(if_t ifp) { struct netmap_adapter *na = NA(ifp); na->if_transmit = if_gettransmitfn(ifp); if_settransmitfn(ifp, netmap_transmit); if_setcapenablebit(ifp, IFCAP_NETMAP, 0); } void nm_os_onexit(if_t ifp) { struct netmap_adapter *na = NA(ifp); if_settransmitfn(ifp, na->if_transmit); if_setcapenablebit(ifp, 0, IFCAP_NETMAP); } extern struct cdevsw netmap_cdevsw; /* XXX used in netmap.c, should go elsewhere */ struct cdevsw netmap_cdevsw = { .d_version = D_VERSION, .d_name = "netmap", .d_open = netmap_open, .d_mmap_single = netmap_mmap_single, .d_ioctl = freebsd_netmap_ioctl, .d_poll = freebsd_netmap_poll, .d_kqfilter = netmap_kqfilter, .d_close = netmap_close, }; /*--- end of kqueue support ----*/ /* * Kernel entry point. * * Initialize/finalize the module and return. * * Return 0 on success, errno on failure. */ static int netmap_loader(__unused struct module *module, int event, __unused void *arg) { int error = 0; switch (event) { case MOD_LOAD: error = netmap_init(); break; case MOD_UNLOAD: /* * if some one is still using netmap, * then the module can not be unloaded. */ if (netmap_use_count) { nm_prerr("netmap module can not be unloaded - netmap_use_count: %d", netmap_use_count); error = EBUSY; break; } netmap_fini(); break; default: error = EOPNOTSUPP; break; } return (error); } #ifdef DEV_MODULE_ORDERED /* * The netmap module contains three drivers: (i) the netmap character device * driver; (ii) the ptnetmap memdev PCI device driver, (iii) the ptnet PCI * device driver. The attach() routines of both (ii) and (iii) need the * lock of the global allocator, and such lock is initialized in netmap_init(), * which is part of (i). * Therefore, we make sure that (i) is loaded before (ii) and (iii), using * the 'order' parameter of driver declaration macros. For (i), we specify * SI_ORDER_MIDDLE, while higher orders are used with the DRIVER_MODULE_ORDERED * macros for (ii) and (iii). */ DEV_MODULE_ORDERED(netmap, netmap_loader, NULL, SI_ORDER_MIDDLE); #else /* !DEV_MODULE_ORDERED */ DEV_MODULE(netmap, netmap_loader, NULL); #endif /* DEV_MODULE_ORDERED */ MODULE_DEPEND(netmap, pci, 1, 1, 1); MODULE_VERSION(netmap, 1); /* reduce conditional code */ // linux API, use for the knlist in FreeBSD /* use a private mutex for the knlist */