1 /*- 2 * Copyright 2021 Intel Corp 3 * Copyright 2021 Rubicon Communications, LLC (Netgate) 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <sys/cdefs.h> 8 __FBSDID("$FreeBSD$"); 9 10 #include "igc_api.h" 11 12 static void igc_reload_nvm_generic(struct igc_hw *hw); 13 14 /** 15 * igc_init_nvm_ops_generic - Initialize NVM function pointers 16 * @hw: pointer to the HW structure 17 * 18 * Setups up the function pointers to no-op functions 19 **/ 20 void igc_init_nvm_ops_generic(struct igc_hw *hw) 21 { 22 struct igc_nvm_info *nvm = &hw->nvm; 23 DEBUGFUNC("igc_init_nvm_ops_generic"); 24 25 /* Initialize function pointers */ 26 nvm->ops.init_params = igc_null_ops_generic; 27 nvm->ops.acquire = igc_null_ops_generic; 28 nvm->ops.read = igc_null_read_nvm; 29 nvm->ops.release = igc_null_nvm_generic; 30 nvm->ops.reload = igc_reload_nvm_generic; 31 nvm->ops.update = igc_null_ops_generic; 32 nvm->ops.validate = igc_null_ops_generic; 33 nvm->ops.write = igc_null_write_nvm; 34 } 35 36 /** 37 * igc_null_nvm_read - No-op function, return 0 38 * @hw: pointer to the HW structure 39 * @a: dummy variable 40 * @b: dummy variable 41 * @c: dummy variable 42 **/ 43 s32 igc_null_read_nvm(struct igc_hw IGC_UNUSEDARG *hw, 44 u16 IGC_UNUSEDARG a, u16 IGC_UNUSEDARG b, 45 u16 IGC_UNUSEDARG *c) 46 { 47 DEBUGFUNC("igc_null_read_nvm"); 48 return IGC_SUCCESS; 49 } 50 51 /** 52 * igc_null_nvm_generic - No-op function, return void 53 * @hw: pointer to the HW structure 54 **/ 55 void igc_null_nvm_generic(struct igc_hw IGC_UNUSEDARG *hw) 56 { 57 DEBUGFUNC("igc_null_nvm_generic"); 58 return; 59 } 60 61 /** 62 * igc_null_write_nvm - No-op function, return 0 63 * @hw: pointer to the HW structure 64 * @a: dummy variable 65 * @b: dummy variable 66 * @c: dummy variable 67 **/ 68 s32 igc_null_write_nvm(struct igc_hw IGC_UNUSEDARG *hw, 69 u16 IGC_UNUSEDARG a, u16 IGC_UNUSEDARG b, 70 u16 IGC_UNUSEDARG *c) 71 { 72 DEBUGFUNC("igc_null_write_nvm"); 73 return IGC_SUCCESS; 74 } 75 76 /** 77 * igc_raise_eec_clk - Raise EEPROM clock 78 * @hw: pointer to the HW structure 79 * @eecd: pointer to the EEPROM 80 * 81 * Enable/Raise the EEPROM clock bit. 82 **/ 83 static void igc_raise_eec_clk(struct igc_hw *hw, u32 *eecd) 84 { 85 *eecd = *eecd | IGC_EECD_SK; 86 IGC_WRITE_REG(hw, IGC_EECD, *eecd); 87 IGC_WRITE_FLUSH(hw); 88 usec_delay(hw->nvm.delay_usec); 89 } 90 91 /** 92 * igc_lower_eec_clk - Lower EEPROM clock 93 * @hw: pointer to the HW structure 94 * @eecd: pointer to the EEPROM 95 * 96 * Clear/Lower the EEPROM clock bit. 97 **/ 98 static void igc_lower_eec_clk(struct igc_hw *hw, u32 *eecd) 99 { 100 *eecd = *eecd & ~IGC_EECD_SK; 101 IGC_WRITE_REG(hw, IGC_EECD, *eecd); 102 IGC_WRITE_FLUSH(hw); 103 usec_delay(hw->nvm.delay_usec); 104 } 105 106 /** 107 * igc_shift_out_eec_bits - Shift data bits our to the EEPROM 108 * @hw: pointer to the HW structure 109 * @data: data to send to the EEPROM 110 * @count: number of bits to shift out 111 * 112 * We need to shift 'count' bits out to the EEPROM. So, the value in the 113 * "data" parameter will be shifted out to the EEPROM one bit at a time. 114 * In order to do this, "data" must be broken down into bits. 115 **/ 116 static void igc_shift_out_eec_bits(struct igc_hw *hw, u16 data, u16 count) 117 { 118 struct igc_nvm_info *nvm = &hw->nvm; 119 u32 eecd = IGC_READ_REG(hw, IGC_EECD); 120 u32 mask; 121 122 DEBUGFUNC("igc_shift_out_eec_bits"); 123 124 mask = 0x01 << (count - 1); 125 if (nvm->type == igc_nvm_eeprom_spi) 126 eecd |= IGC_EECD_DO; 127 128 do { 129 eecd &= ~IGC_EECD_DI; 130 131 if (data & mask) 132 eecd |= IGC_EECD_DI; 133 134 IGC_WRITE_REG(hw, IGC_EECD, eecd); 135 IGC_WRITE_FLUSH(hw); 136 137 usec_delay(nvm->delay_usec); 138 139 igc_raise_eec_clk(hw, &eecd); 140 igc_lower_eec_clk(hw, &eecd); 141 142 mask >>= 1; 143 } while (mask); 144 145 eecd &= ~IGC_EECD_DI; 146 IGC_WRITE_REG(hw, IGC_EECD, eecd); 147 } 148 149 /** 150 * igc_shift_in_eec_bits - Shift data bits in from the EEPROM 151 * @hw: pointer to the HW structure 152 * @count: number of bits to shift in 153 * 154 * In order to read a register from the EEPROM, we need to shift 'count' bits 155 * in from the EEPROM. Bits are "shifted in" by raising the clock input to 156 * the EEPROM (setting the SK bit), and then reading the value of the data out 157 * "DO" bit. During this "shifting in" process the data in "DI" bit should 158 * always be clear. 159 **/ 160 static u16 igc_shift_in_eec_bits(struct igc_hw *hw, u16 count) 161 { 162 u32 eecd; 163 u32 i; 164 u16 data; 165 166 DEBUGFUNC("igc_shift_in_eec_bits"); 167 168 eecd = IGC_READ_REG(hw, IGC_EECD); 169 170 eecd &= ~(IGC_EECD_DO | IGC_EECD_DI); 171 data = 0; 172 173 for (i = 0; i < count; i++) { 174 data <<= 1; 175 igc_raise_eec_clk(hw, &eecd); 176 177 eecd = IGC_READ_REG(hw, IGC_EECD); 178 179 eecd &= ~IGC_EECD_DI; 180 if (eecd & IGC_EECD_DO) 181 data |= 1; 182 183 igc_lower_eec_clk(hw, &eecd); 184 } 185 186 return data; 187 } 188 189 /** 190 * igc_poll_eerd_eewr_done - Poll for EEPROM read/write completion 191 * @hw: pointer to the HW structure 192 * @ee_reg: EEPROM flag for polling 193 * 194 * Polls the EEPROM status bit for either read or write completion based 195 * upon the value of 'ee_reg'. 196 **/ 197 s32 igc_poll_eerd_eewr_done(struct igc_hw *hw, int ee_reg) 198 { 199 u32 attempts = 100000; 200 u32 i, reg = 0; 201 202 DEBUGFUNC("igc_poll_eerd_eewr_done"); 203 204 for (i = 0; i < attempts; i++) { 205 if (ee_reg == IGC_NVM_POLL_READ) 206 reg = IGC_READ_REG(hw, IGC_EERD); 207 else 208 reg = IGC_READ_REG(hw, IGC_EEWR); 209 210 if (reg & IGC_NVM_RW_REG_DONE) 211 return IGC_SUCCESS; 212 213 usec_delay(5); 214 } 215 216 return -IGC_ERR_NVM; 217 } 218 219 /** 220 * igc_acquire_nvm_generic - Generic request for access to EEPROM 221 * @hw: pointer to the HW structure 222 * 223 * Set the EEPROM access request bit and wait for EEPROM access grant bit. 224 * Return successful if access grant bit set, else clear the request for 225 * EEPROM access and return -IGC_ERR_NVM (-1). 226 **/ 227 s32 igc_acquire_nvm_generic(struct igc_hw *hw) 228 { 229 u32 eecd = IGC_READ_REG(hw, IGC_EECD); 230 s32 timeout = IGC_NVM_GRANT_ATTEMPTS; 231 232 DEBUGFUNC("igc_acquire_nvm_generic"); 233 234 IGC_WRITE_REG(hw, IGC_EECD, eecd | IGC_EECD_REQ); 235 eecd = IGC_READ_REG(hw, IGC_EECD); 236 237 while (timeout) { 238 if (eecd & IGC_EECD_GNT) 239 break; 240 usec_delay(5); 241 eecd = IGC_READ_REG(hw, IGC_EECD); 242 timeout--; 243 } 244 245 if (!timeout) { 246 eecd &= ~IGC_EECD_REQ; 247 IGC_WRITE_REG(hw, IGC_EECD, eecd); 248 DEBUGOUT("Could not acquire NVM grant\n"); 249 return -IGC_ERR_NVM; 250 } 251 252 return IGC_SUCCESS; 253 } 254 255 /** 256 * igc_standby_nvm - Return EEPROM to standby state 257 * @hw: pointer to the HW structure 258 * 259 * Return the EEPROM to a standby state. 260 **/ 261 static void igc_standby_nvm(struct igc_hw *hw) 262 { 263 struct igc_nvm_info *nvm = &hw->nvm; 264 u32 eecd = IGC_READ_REG(hw, IGC_EECD); 265 266 DEBUGFUNC("igc_standby_nvm"); 267 268 if (nvm->type == igc_nvm_eeprom_spi) { 269 /* Toggle CS to flush commands */ 270 eecd |= IGC_EECD_CS; 271 IGC_WRITE_REG(hw, IGC_EECD, eecd); 272 IGC_WRITE_FLUSH(hw); 273 usec_delay(nvm->delay_usec); 274 eecd &= ~IGC_EECD_CS; 275 IGC_WRITE_REG(hw, IGC_EECD, eecd); 276 IGC_WRITE_FLUSH(hw); 277 usec_delay(nvm->delay_usec); 278 } 279 } 280 281 /** 282 * igc_stop_nvm - Terminate EEPROM command 283 * @hw: pointer to the HW structure 284 * 285 * Terminates the current command by inverting the EEPROM's chip select pin. 286 **/ 287 static void igc_stop_nvm(struct igc_hw *hw) 288 { 289 u32 eecd; 290 291 DEBUGFUNC("igc_stop_nvm"); 292 293 eecd = IGC_READ_REG(hw, IGC_EECD); 294 if (hw->nvm.type == igc_nvm_eeprom_spi) { 295 /* Pull CS high */ 296 eecd |= IGC_EECD_CS; 297 igc_lower_eec_clk(hw, &eecd); 298 } 299 } 300 301 /** 302 * igc_release_nvm_generic - Release exclusive access to EEPROM 303 * @hw: pointer to the HW structure 304 * 305 * Stop any current commands to the EEPROM and clear the EEPROM request bit. 306 **/ 307 void igc_release_nvm_generic(struct igc_hw *hw) 308 { 309 u32 eecd; 310 311 DEBUGFUNC("igc_release_nvm_generic"); 312 313 igc_stop_nvm(hw); 314 315 eecd = IGC_READ_REG(hw, IGC_EECD); 316 eecd &= ~IGC_EECD_REQ; 317 IGC_WRITE_REG(hw, IGC_EECD, eecd); 318 } 319 320 /** 321 * igc_ready_nvm_eeprom - Prepares EEPROM for read/write 322 * @hw: pointer to the HW structure 323 * 324 * Setups the EEPROM for reading and writing. 325 **/ 326 static s32 igc_ready_nvm_eeprom(struct igc_hw *hw) 327 { 328 struct igc_nvm_info *nvm = &hw->nvm; 329 u32 eecd = IGC_READ_REG(hw, IGC_EECD); 330 u8 spi_stat_reg; 331 332 DEBUGFUNC("igc_ready_nvm_eeprom"); 333 334 if (nvm->type == igc_nvm_eeprom_spi) { 335 u16 timeout = NVM_MAX_RETRY_SPI; 336 337 /* Clear SK and CS */ 338 eecd &= ~(IGC_EECD_CS | IGC_EECD_SK); 339 IGC_WRITE_REG(hw, IGC_EECD, eecd); 340 IGC_WRITE_FLUSH(hw); 341 usec_delay(1); 342 343 /* Read "Status Register" repeatedly until the LSB is cleared. 344 * The EEPROM will signal that the command has been completed 345 * by clearing bit 0 of the internal status register. If it's 346 * not cleared within 'timeout', then error out. 347 */ 348 while (timeout) { 349 igc_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, 350 hw->nvm.opcode_bits); 351 spi_stat_reg = (u8)igc_shift_in_eec_bits(hw, 8); 352 if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) 353 break; 354 355 usec_delay(5); 356 igc_standby_nvm(hw); 357 timeout--; 358 } 359 360 if (!timeout) { 361 DEBUGOUT("SPI NVM Status error\n"); 362 return -IGC_ERR_NVM; 363 } 364 } 365 366 return IGC_SUCCESS; 367 } 368 369 /** 370 * igc_read_nvm_eerd - Reads EEPROM using EERD register 371 * @hw: pointer to the HW structure 372 * @offset: offset of word in the EEPROM to read 373 * @words: number of words to read 374 * @data: word read from the EEPROM 375 * 376 * Reads a 16 bit word from the EEPROM using the EERD register. 377 **/ 378 s32 igc_read_nvm_eerd(struct igc_hw *hw, u16 offset, u16 words, u16 *data) 379 { 380 struct igc_nvm_info *nvm = &hw->nvm; 381 u32 i, eerd = 0; 382 s32 ret_val = IGC_SUCCESS; 383 384 DEBUGFUNC("igc_read_nvm_eerd"); 385 386 /* A check for invalid values: offset too large, too many words, 387 * too many words for the offset, and not enough words. 388 */ 389 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || 390 (words == 0)) { 391 DEBUGOUT("nvm parameter(s) out of bounds\n"); 392 return -IGC_ERR_NVM; 393 } 394 395 for (i = 0; i < words; i++) { 396 eerd = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) + 397 IGC_NVM_RW_REG_START; 398 399 IGC_WRITE_REG(hw, IGC_EERD, eerd); 400 ret_val = igc_poll_eerd_eewr_done(hw, IGC_NVM_POLL_READ); 401 if (ret_val) 402 break; 403 404 data[i] = (IGC_READ_REG(hw, IGC_EERD) >> 405 IGC_NVM_RW_REG_DATA); 406 } 407 408 if (ret_val) 409 DEBUGOUT1("NVM read error: %d\n", ret_val); 410 411 return ret_val; 412 } 413 414 /** 415 * igc_write_nvm_spi - Write to EEPROM using SPI 416 * @hw: pointer to the HW structure 417 * @offset: offset within the EEPROM to be written to 418 * @words: number of words to write 419 * @data: 16 bit word(s) to be written to the EEPROM 420 * 421 * Writes data to EEPROM at offset using SPI interface. 422 * 423 * If igc_update_nvm_checksum is not called after this function , the 424 * EEPROM will most likely contain an invalid checksum. 425 **/ 426 s32 igc_write_nvm_spi(struct igc_hw *hw, u16 offset, u16 words, u16 *data) 427 { 428 struct igc_nvm_info *nvm = &hw->nvm; 429 s32 ret_val = -IGC_ERR_NVM; 430 u16 widx = 0; 431 432 DEBUGFUNC("igc_write_nvm_spi"); 433 434 /* A check for invalid values: offset too large, too many words, 435 * and not enough words. 436 */ 437 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || 438 (words == 0)) { 439 DEBUGOUT("nvm parameter(s) out of bounds\n"); 440 return -IGC_ERR_NVM; 441 } 442 443 while (widx < words) { 444 u8 write_opcode = NVM_WRITE_OPCODE_SPI; 445 446 ret_val = nvm->ops.acquire(hw); 447 if (ret_val) 448 return ret_val; 449 450 ret_val = igc_ready_nvm_eeprom(hw); 451 if (ret_val) { 452 nvm->ops.release(hw); 453 return ret_val; 454 } 455 456 igc_standby_nvm(hw); 457 458 /* Send the WRITE ENABLE command (8 bit opcode) */ 459 igc_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, 460 nvm->opcode_bits); 461 462 igc_standby_nvm(hw); 463 464 /* Some SPI eeproms use the 8th address bit embedded in the 465 * opcode 466 */ 467 if ((nvm->address_bits == 8) && (offset >= 128)) 468 write_opcode |= NVM_A8_OPCODE_SPI; 469 470 /* Send the Write command (8-bit opcode + addr) */ 471 igc_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); 472 igc_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), 473 nvm->address_bits); 474 475 /* Loop to allow for up to whole page write of eeprom */ 476 while (widx < words) { 477 u16 word_out = data[widx]; 478 word_out = (word_out >> 8) | (word_out << 8); 479 igc_shift_out_eec_bits(hw, word_out, 16); 480 widx++; 481 482 if ((((offset + widx) * 2) % nvm->page_size) == 0) { 483 igc_standby_nvm(hw); 484 break; 485 } 486 } 487 msec_delay(10); 488 nvm->ops.release(hw); 489 } 490 491 return ret_val; 492 } 493 494 /** 495 * igc_read_pba_string_generic - Read device part number 496 * @hw: pointer to the HW structure 497 * @pba_num: pointer to device part number 498 * @pba_num_size: size of part number buffer 499 * 500 * Reads the product board assembly (PBA) number from the EEPROM and stores 501 * the value in pba_num. 502 **/ 503 s32 igc_read_pba_string_generic(struct igc_hw *hw, u8 *pba_num, 504 u32 pba_num_size) 505 { 506 s32 ret_val; 507 u16 nvm_data; 508 u16 pba_ptr; 509 u16 offset; 510 u16 length; 511 512 DEBUGFUNC("igc_read_pba_string_generic"); 513 514 if (pba_num == NULL) { 515 DEBUGOUT("PBA string buffer was null\n"); 516 return -IGC_ERR_INVALID_ARGUMENT; 517 } 518 519 ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); 520 if (ret_val) { 521 DEBUGOUT("NVM Read Error\n"); 522 return ret_val; 523 } 524 525 ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr); 526 if (ret_val) { 527 DEBUGOUT("NVM Read Error\n"); 528 return ret_val; 529 } 530 531 /* if nvm_data is not ptr guard the PBA must be in legacy format which 532 * means pba_ptr is actually our second data word for the PBA number 533 * and we can decode it into an ascii string 534 */ 535 if (nvm_data != NVM_PBA_PTR_GUARD) { 536 DEBUGOUT("NVM PBA number is not stored as string\n"); 537 538 /* make sure callers buffer is big enough to store the PBA */ 539 if (pba_num_size < IGC_PBANUM_LENGTH) { 540 DEBUGOUT("PBA string buffer too small\n"); 541 return IGC_ERR_NO_SPACE; 542 } 543 544 /* extract hex string from data and pba_ptr */ 545 pba_num[0] = (nvm_data >> 12) & 0xF; 546 pba_num[1] = (nvm_data >> 8) & 0xF; 547 pba_num[2] = (nvm_data >> 4) & 0xF; 548 pba_num[3] = nvm_data & 0xF; 549 pba_num[4] = (pba_ptr >> 12) & 0xF; 550 pba_num[5] = (pba_ptr >> 8) & 0xF; 551 pba_num[6] = '-'; 552 pba_num[7] = 0; 553 pba_num[8] = (pba_ptr >> 4) & 0xF; 554 pba_num[9] = pba_ptr & 0xF; 555 556 /* put a null character on the end of our string */ 557 pba_num[10] = '\0'; 558 559 /* switch all the data but the '-' to hex char */ 560 for (offset = 0; offset < 10; offset++) { 561 if (pba_num[offset] < 0xA) 562 pba_num[offset] += '0'; 563 else if (pba_num[offset] < 0x10) 564 pba_num[offset] += 'A' - 0xA; 565 } 566 567 return IGC_SUCCESS; 568 } 569 570 ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length); 571 if (ret_val) { 572 DEBUGOUT("NVM Read Error\n"); 573 return ret_val; 574 } 575 576 if (length == 0xFFFF || length == 0) { 577 DEBUGOUT("NVM PBA number section invalid length\n"); 578 return -IGC_ERR_NVM_PBA_SECTION; 579 } 580 /* check if pba_num buffer is big enough */ 581 if (pba_num_size < (((u32)length * 2) - 1)) { 582 DEBUGOUT("PBA string buffer too small\n"); 583 return -IGC_ERR_NO_SPACE; 584 } 585 586 /* trim pba length from start of string */ 587 pba_ptr++; 588 length--; 589 590 for (offset = 0; offset < length; offset++) { 591 ret_val = hw->nvm.ops.read(hw, pba_ptr + offset, 1, &nvm_data); 592 if (ret_val) { 593 DEBUGOUT("NVM Read Error\n"); 594 return ret_val; 595 } 596 pba_num[offset * 2] = (u8)(nvm_data >> 8); 597 pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF); 598 } 599 pba_num[offset * 2] = '\0'; 600 601 return IGC_SUCCESS; 602 } 603 604 605 606 607 608 /** 609 * igc_read_mac_addr_generic - Read device MAC address 610 * @hw: pointer to the HW structure 611 * 612 * Reads the device MAC address from the EEPROM and stores the value. 613 * Since devices with two ports use the same EEPROM, we increment the 614 * last bit in the MAC address for the second port. 615 **/ 616 s32 igc_read_mac_addr_generic(struct igc_hw *hw) 617 { 618 u32 rar_high; 619 u32 rar_low; 620 u16 i; 621 622 rar_high = IGC_READ_REG(hw, IGC_RAH(0)); 623 rar_low = IGC_READ_REG(hw, IGC_RAL(0)); 624 625 for (i = 0; i < IGC_RAL_MAC_ADDR_LEN; i++) 626 hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8)); 627 628 for (i = 0; i < IGC_RAH_MAC_ADDR_LEN; i++) 629 hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8)); 630 631 for (i = 0; i < ETH_ADDR_LEN; i++) 632 hw->mac.addr[i] = hw->mac.perm_addr[i]; 633 634 return IGC_SUCCESS; 635 } 636 637 /** 638 * igc_validate_nvm_checksum_generic - Validate EEPROM checksum 639 * @hw: pointer to the HW structure 640 * 641 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM 642 * and then verifies that the sum of the EEPROM is equal to 0xBABA. 643 **/ 644 s32 igc_validate_nvm_checksum_generic(struct igc_hw *hw) 645 { 646 s32 ret_val; 647 u16 checksum = 0; 648 u16 i, nvm_data; 649 650 DEBUGFUNC("igc_validate_nvm_checksum_generic"); 651 652 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 653 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); 654 if (ret_val) { 655 DEBUGOUT("NVM Read Error\n"); 656 return ret_val; 657 } 658 checksum += nvm_data; 659 } 660 661 if (checksum != (u16) NVM_SUM) { 662 DEBUGOUT("NVM Checksum Invalid\n"); 663 return -IGC_ERR_NVM; 664 } 665 666 return IGC_SUCCESS; 667 } 668 669 /** 670 * igc_update_nvm_checksum_generic - Update EEPROM checksum 671 * @hw: pointer to the HW structure 672 * 673 * Updates the EEPROM checksum by reading/adding each word of the EEPROM 674 * up to the checksum. Then calculates the EEPROM checksum and writes the 675 * value to the EEPROM. 676 **/ 677 s32 igc_update_nvm_checksum_generic(struct igc_hw *hw) 678 { 679 s32 ret_val; 680 u16 checksum = 0; 681 u16 i, nvm_data; 682 683 DEBUGFUNC("igc_update_nvm_checksum"); 684 685 for (i = 0; i < NVM_CHECKSUM_REG; i++) { 686 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); 687 if (ret_val) { 688 DEBUGOUT("NVM Read Error while updating checksum.\n"); 689 return ret_val; 690 } 691 checksum += nvm_data; 692 } 693 checksum = (u16) NVM_SUM - checksum; 694 ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum); 695 if (ret_val) 696 DEBUGOUT("NVM Write Error while updating checksum.\n"); 697 698 return ret_val; 699 } 700 701 /** 702 * igc_reload_nvm_generic - Reloads EEPROM 703 * @hw: pointer to the HW structure 704 * 705 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the 706 * extended control register. 707 **/ 708 static void igc_reload_nvm_generic(struct igc_hw *hw) 709 { 710 u32 ctrl_ext; 711 712 DEBUGFUNC("igc_reload_nvm_generic"); 713 714 usec_delay(10); 715 ctrl_ext = IGC_READ_REG(hw, IGC_CTRL_EXT); 716 ctrl_ext |= IGC_CTRL_EXT_EE_RST; 717 IGC_WRITE_REG(hw, IGC_CTRL_EXT, ctrl_ext); 718 IGC_WRITE_FLUSH(hw); 719 } 720 721 722