1 /*-
2 * Copyright 2021 Intel Corp
3 * Copyright 2021 Rubicon Communications, LLC (Netgate)
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <sys/cdefs.h>
8 #include "igc_api.h"
9
10 static void igc_reload_nvm_generic(struct igc_hw *hw);
11
12 /**
13 * igc_init_nvm_ops_generic - Initialize NVM function pointers
14 * @hw: pointer to the HW structure
15 *
16 * Setups up the function pointers to no-op functions
17 **/
igc_init_nvm_ops_generic(struct igc_hw * hw)18 void igc_init_nvm_ops_generic(struct igc_hw *hw)
19 {
20 struct igc_nvm_info *nvm = &hw->nvm;
21 DEBUGFUNC("igc_init_nvm_ops_generic");
22
23 /* Initialize function pointers */
24 nvm->ops.init_params = igc_null_ops_generic;
25 nvm->ops.acquire = igc_null_ops_generic;
26 nvm->ops.read = igc_null_read_nvm;
27 nvm->ops.release = igc_null_nvm_generic;
28 nvm->ops.reload = igc_reload_nvm_generic;
29 nvm->ops.update = igc_null_ops_generic;
30 nvm->ops.validate = igc_null_ops_generic;
31 nvm->ops.write = igc_null_write_nvm;
32 }
33
34 /**
35 * igc_null_nvm_read - No-op function, return 0
36 * @hw: pointer to the HW structure
37 * @a: dummy variable
38 * @b: dummy variable
39 * @c: dummy variable
40 **/
igc_null_read_nvm(struct igc_hw IGC_UNUSEDARG * hw,u16 IGC_UNUSEDARG a,u16 IGC_UNUSEDARG b,u16 IGC_UNUSEDARG * c)41 s32 igc_null_read_nvm(struct igc_hw IGC_UNUSEDARG *hw,
42 u16 IGC_UNUSEDARG a, u16 IGC_UNUSEDARG b,
43 u16 IGC_UNUSEDARG *c)
44 {
45 DEBUGFUNC("igc_null_read_nvm");
46 return IGC_SUCCESS;
47 }
48
49 /**
50 * igc_null_nvm_generic - No-op function, return void
51 * @hw: pointer to the HW structure
52 **/
igc_null_nvm_generic(struct igc_hw IGC_UNUSEDARG * hw)53 void igc_null_nvm_generic(struct igc_hw IGC_UNUSEDARG *hw)
54 {
55 DEBUGFUNC("igc_null_nvm_generic");
56 return;
57 }
58
59 /**
60 * igc_null_write_nvm - No-op function, return 0
61 * @hw: pointer to the HW structure
62 * @a: dummy variable
63 * @b: dummy variable
64 * @c: dummy variable
65 **/
igc_null_write_nvm(struct igc_hw IGC_UNUSEDARG * hw,u16 IGC_UNUSEDARG a,u16 IGC_UNUSEDARG b,u16 IGC_UNUSEDARG * c)66 s32 igc_null_write_nvm(struct igc_hw IGC_UNUSEDARG *hw,
67 u16 IGC_UNUSEDARG a, u16 IGC_UNUSEDARG b,
68 u16 IGC_UNUSEDARG *c)
69 {
70 DEBUGFUNC("igc_null_write_nvm");
71 return IGC_SUCCESS;
72 }
73
74 /**
75 * igc_raise_eec_clk - Raise EEPROM clock
76 * @hw: pointer to the HW structure
77 * @eecd: pointer to the EEPROM
78 *
79 * Enable/Raise the EEPROM clock bit.
80 **/
igc_raise_eec_clk(struct igc_hw * hw,u32 * eecd)81 static void igc_raise_eec_clk(struct igc_hw *hw, u32 *eecd)
82 {
83 *eecd = *eecd | IGC_EECD_SK;
84 IGC_WRITE_REG(hw, IGC_EECD, *eecd);
85 IGC_WRITE_FLUSH(hw);
86 usec_delay(hw->nvm.delay_usec);
87 }
88
89 /**
90 * igc_lower_eec_clk - Lower EEPROM clock
91 * @hw: pointer to the HW structure
92 * @eecd: pointer to the EEPROM
93 *
94 * Clear/Lower the EEPROM clock bit.
95 **/
igc_lower_eec_clk(struct igc_hw * hw,u32 * eecd)96 static void igc_lower_eec_clk(struct igc_hw *hw, u32 *eecd)
97 {
98 *eecd = *eecd & ~IGC_EECD_SK;
99 IGC_WRITE_REG(hw, IGC_EECD, *eecd);
100 IGC_WRITE_FLUSH(hw);
101 usec_delay(hw->nvm.delay_usec);
102 }
103
104 /**
105 * igc_shift_out_eec_bits - Shift data bits our to the EEPROM
106 * @hw: pointer to the HW structure
107 * @data: data to send to the EEPROM
108 * @count: number of bits to shift out
109 *
110 * We need to shift 'count' bits out to the EEPROM. So, the value in the
111 * "data" parameter will be shifted out to the EEPROM one bit at a time.
112 * In order to do this, "data" must be broken down into bits.
113 **/
igc_shift_out_eec_bits(struct igc_hw * hw,u16 data,u16 count)114 static void igc_shift_out_eec_bits(struct igc_hw *hw, u16 data, u16 count)
115 {
116 struct igc_nvm_info *nvm = &hw->nvm;
117 u32 eecd = IGC_READ_REG(hw, IGC_EECD);
118 u32 mask;
119
120 DEBUGFUNC("igc_shift_out_eec_bits");
121
122 mask = 0x01 << (count - 1);
123 if (nvm->type == igc_nvm_eeprom_spi)
124 eecd |= IGC_EECD_DO;
125
126 do {
127 eecd &= ~IGC_EECD_DI;
128
129 if (data & mask)
130 eecd |= IGC_EECD_DI;
131
132 IGC_WRITE_REG(hw, IGC_EECD, eecd);
133 IGC_WRITE_FLUSH(hw);
134
135 usec_delay(nvm->delay_usec);
136
137 igc_raise_eec_clk(hw, &eecd);
138 igc_lower_eec_clk(hw, &eecd);
139
140 mask >>= 1;
141 } while (mask);
142
143 eecd &= ~IGC_EECD_DI;
144 IGC_WRITE_REG(hw, IGC_EECD, eecd);
145 }
146
147 /**
148 * igc_shift_in_eec_bits - Shift data bits in from the EEPROM
149 * @hw: pointer to the HW structure
150 * @count: number of bits to shift in
151 *
152 * In order to read a register from the EEPROM, we need to shift 'count' bits
153 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
154 * the EEPROM (setting the SK bit), and then reading the value of the data out
155 * "DO" bit. During this "shifting in" process the data in "DI" bit should
156 * always be clear.
157 **/
igc_shift_in_eec_bits(struct igc_hw * hw,u16 count)158 static u16 igc_shift_in_eec_bits(struct igc_hw *hw, u16 count)
159 {
160 u32 eecd;
161 u32 i;
162 u16 data;
163
164 DEBUGFUNC("igc_shift_in_eec_bits");
165
166 eecd = IGC_READ_REG(hw, IGC_EECD);
167
168 eecd &= ~(IGC_EECD_DO | IGC_EECD_DI);
169 data = 0;
170
171 for (i = 0; i < count; i++) {
172 data <<= 1;
173 igc_raise_eec_clk(hw, &eecd);
174
175 eecd = IGC_READ_REG(hw, IGC_EECD);
176
177 eecd &= ~IGC_EECD_DI;
178 if (eecd & IGC_EECD_DO)
179 data |= 1;
180
181 igc_lower_eec_clk(hw, &eecd);
182 }
183
184 return data;
185 }
186
187 /**
188 * igc_poll_eerd_eewr_done - Poll for EEPROM read/write completion
189 * @hw: pointer to the HW structure
190 * @ee_reg: EEPROM flag for polling
191 *
192 * Polls the EEPROM status bit for either read or write completion based
193 * upon the value of 'ee_reg'.
194 **/
igc_poll_eerd_eewr_done(struct igc_hw * hw,int ee_reg)195 s32 igc_poll_eerd_eewr_done(struct igc_hw *hw, int ee_reg)
196 {
197 u32 attempts = 100000;
198 u32 i, reg = 0;
199
200 DEBUGFUNC("igc_poll_eerd_eewr_done");
201
202 for (i = 0; i < attempts; i++) {
203 if (ee_reg == IGC_NVM_POLL_READ)
204 reg = IGC_READ_REG(hw, IGC_EERD);
205 else
206 reg = IGC_READ_REG(hw, IGC_EEWR);
207
208 if (reg & IGC_NVM_RW_REG_DONE)
209 return IGC_SUCCESS;
210
211 usec_delay(5);
212 }
213
214 return -IGC_ERR_NVM;
215 }
216
217 /**
218 * igc_acquire_nvm_generic - Generic request for access to EEPROM
219 * @hw: pointer to the HW structure
220 *
221 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
222 * Return successful if access grant bit set, else clear the request for
223 * EEPROM access and return -IGC_ERR_NVM (-1).
224 **/
igc_acquire_nvm_generic(struct igc_hw * hw)225 s32 igc_acquire_nvm_generic(struct igc_hw *hw)
226 {
227 u32 eecd = IGC_READ_REG(hw, IGC_EECD);
228 s32 timeout = IGC_NVM_GRANT_ATTEMPTS;
229
230 DEBUGFUNC("igc_acquire_nvm_generic");
231
232 IGC_WRITE_REG(hw, IGC_EECD, eecd | IGC_EECD_REQ);
233 eecd = IGC_READ_REG(hw, IGC_EECD);
234
235 while (timeout) {
236 if (eecd & IGC_EECD_GNT)
237 break;
238 usec_delay(5);
239 eecd = IGC_READ_REG(hw, IGC_EECD);
240 timeout--;
241 }
242
243 if (!timeout) {
244 eecd &= ~IGC_EECD_REQ;
245 IGC_WRITE_REG(hw, IGC_EECD, eecd);
246 DEBUGOUT("Could not acquire NVM grant\n");
247 return -IGC_ERR_NVM;
248 }
249
250 return IGC_SUCCESS;
251 }
252
253 /**
254 * igc_standby_nvm - Return EEPROM to standby state
255 * @hw: pointer to the HW structure
256 *
257 * Return the EEPROM to a standby state.
258 **/
igc_standby_nvm(struct igc_hw * hw)259 static void igc_standby_nvm(struct igc_hw *hw)
260 {
261 struct igc_nvm_info *nvm = &hw->nvm;
262 u32 eecd = IGC_READ_REG(hw, IGC_EECD);
263
264 DEBUGFUNC("igc_standby_nvm");
265
266 if (nvm->type == igc_nvm_eeprom_spi) {
267 /* Toggle CS to flush commands */
268 eecd |= IGC_EECD_CS;
269 IGC_WRITE_REG(hw, IGC_EECD, eecd);
270 IGC_WRITE_FLUSH(hw);
271 usec_delay(nvm->delay_usec);
272 eecd &= ~IGC_EECD_CS;
273 IGC_WRITE_REG(hw, IGC_EECD, eecd);
274 IGC_WRITE_FLUSH(hw);
275 usec_delay(nvm->delay_usec);
276 }
277 }
278
279 /**
280 * igc_stop_nvm - Terminate EEPROM command
281 * @hw: pointer to the HW structure
282 *
283 * Terminates the current command by inverting the EEPROM's chip select pin.
284 **/
igc_stop_nvm(struct igc_hw * hw)285 static void igc_stop_nvm(struct igc_hw *hw)
286 {
287 u32 eecd;
288
289 DEBUGFUNC("igc_stop_nvm");
290
291 eecd = IGC_READ_REG(hw, IGC_EECD);
292 if (hw->nvm.type == igc_nvm_eeprom_spi) {
293 /* Pull CS high */
294 eecd |= IGC_EECD_CS;
295 igc_lower_eec_clk(hw, &eecd);
296 }
297 }
298
299 /**
300 * igc_release_nvm_generic - Release exclusive access to EEPROM
301 * @hw: pointer to the HW structure
302 *
303 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
304 **/
igc_release_nvm_generic(struct igc_hw * hw)305 void igc_release_nvm_generic(struct igc_hw *hw)
306 {
307 u32 eecd;
308
309 DEBUGFUNC("igc_release_nvm_generic");
310
311 igc_stop_nvm(hw);
312
313 eecd = IGC_READ_REG(hw, IGC_EECD);
314 eecd &= ~IGC_EECD_REQ;
315 IGC_WRITE_REG(hw, IGC_EECD, eecd);
316 }
317
318 /**
319 * igc_ready_nvm_eeprom - Prepares EEPROM for read/write
320 * @hw: pointer to the HW structure
321 *
322 * Setups the EEPROM for reading and writing.
323 **/
igc_ready_nvm_eeprom(struct igc_hw * hw)324 static s32 igc_ready_nvm_eeprom(struct igc_hw *hw)
325 {
326 struct igc_nvm_info *nvm = &hw->nvm;
327 u32 eecd = IGC_READ_REG(hw, IGC_EECD);
328 u8 spi_stat_reg;
329
330 DEBUGFUNC("igc_ready_nvm_eeprom");
331
332 if (nvm->type == igc_nvm_eeprom_spi) {
333 u16 timeout = NVM_MAX_RETRY_SPI;
334
335 /* Clear SK and CS */
336 eecd &= ~(IGC_EECD_CS | IGC_EECD_SK);
337 IGC_WRITE_REG(hw, IGC_EECD, eecd);
338 IGC_WRITE_FLUSH(hw);
339 usec_delay(1);
340
341 /* Read "Status Register" repeatedly until the LSB is cleared.
342 * The EEPROM will signal that the command has been completed
343 * by clearing bit 0 of the internal status register. If it's
344 * not cleared within 'timeout', then error out.
345 */
346 while (timeout) {
347 igc_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
348 hw->nvm.opcode_bits);
349 spi_stat_reg = (u8)igc_shift_in_eec_bits(hw, 8);
350 if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
351 break;
352
353 usec_delay(5);
354 igc_standby_nvm(hw);
355 timeout--;
356 }
357
358 if (!timeout) {
359 DEBUGOUT("SPI NVM Status error\n");
360 return -IGC_ERR_NVM;
361 }
362 }
363
364 return IGC_SUCCESS;
365 }
366
367 /**
368 * igc_read_nvm_eerd - Reads EEPROM using EERD register
369 * @hw: pointer to the HW structure
370 * @offset: offset of word in the EEPROM to read
371 * @words: number of words to read
372 * @data: word read from the EEPROM
373 *
374 * Reads a 16 bit word from the EEPROM using the EERD register.
375 **/
igc_read_nvm_eerd(struct igc_hw * hw,u16 offset,u16 words,u16 * data)376 s32 igc_read_nvm_eerd(struct igc_hw *hw, u16 offset, u16 words, u16 *data)
377 {
378 struct igc_nvm_info *nvm = &hw->nvm;
379 u32 i, eerd = 0;
380 s32 ret_val = IGC_SUCCESS;
381
382 DEBUGFUNC("igc_read_nvm_eerd");
383
384 /* A check for invalid values: offset too large, too many words,
385 * too many words for the offset, and not enough words.
386 */
387 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
388 (words == 0)) {
389 DEBUGOUT("nvm parameter(s) out of bounds\n");
390 return -IGC_ERR_NVM;
391 }
392
393 for (i = 0; i < words; i++) {
394 eerd = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) +
395 IGC_NVM_RW_REG_START;
396
397 IGC_WRITE_REG(hw, IGC_EERD, eerd);
398 ret_val = igc_poll_eerd_eewr_done(hw, IGC_NVM_POLL_READ);
399 if (ret_val)
400 break;
401
402 data[i] = (IGC_READ_REG(hw, IGC_EERD) >>
403 IGC_NVM_RW_REG_DATA);
404 }
405
406 if (ret_val)
407 DEBUGOUT1("NVM read error: %d\n", ret_val);
408
409 return ret_val;
410 }
411
412 /**
413 * igc_write_nvm_spi - Write to EEPROM using SPI
414 * @hw: pointer to the HW structure
415 * @offset: offset within the EEPROM to be written to
416 * @words: number of words to write
417 * @data: 16 bit word(s) to be written to the EEPROM
418 *
419 * Writes data to EEPROM at offset using SPI interface.
420 *
421 * If igc_update_nvm_checksum is not called after this function , the
422 * EEPROM will most likely contain an invalid checksum.
423 **/
igc_write_nvm_spi(struct igc_hw * hw,u16 offset,u16 words,u16 * data)424 s32 igc_write_nvm_spi(struct igc_hw *hw, u16 offset, u16 words, u16 *data)
425 {
426 struct igc_nvm_info *nvm = &hw->nvm;
427 s32 ret_val = -IGC_ERR_NVM;
428 u16 widx = 0;
429
430 DEBUGFUNC("igc_write_nvm_spi");
431
432 /* A check for invalid values: offset too large, too many words,
433 * and not enough words.
434 */
435 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
436 (words == 0)) {
437 DEBUGOUT("nvm parameter(s) out of bounds\n");
438 return -IGC_ERR_NVM;
439 }
440
441 while (widx < words) {
442 u8 write_opcode = NVM_WRITE_OPCODE_SPI;
443
444 ret_val = nvm->ops.acquire(hw);
445 if (ret_val)
446 return ret_val;
447
448 ret_val = igc_ready_nvm_eeprom(hw);
449 if (ret_val) {
450 nvm->ops.release(hw);
451 return ret_val;
452 }
453
454 igc_standby_nvm(hw);
455
456 /* Send the WRITE ENABLE command (8 bit opcode) */
457 igc_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
458 nvm->opcode_bits);
459
460 igc_standby_nvm(hw);
461
462 /* Some SPI eeproms use the 8th address bit embedded in the
463 * opcode
464 */
465 if ((nvm->address_bits == 8) && (offset >= 128))
466 write_opcode |= NVM_A8_OPCODE_SPI;
467
468 /* Send the Write command (8-bit opcode + addr) */
469 igc_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
470 igc_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
471 nvm->address_bits);
472
473 /* Loop to allow for up to whole page write of eeprom */
474 while (widx < words) {
475 u16 word_out = data[widx];
476 word_out = (word_out >> 8) | (word_out << 8);
477 igc_shift_out_eec_bits(hw, word_out, 16);
478 widx++;
479
480 if ((((offset + widx) * 2) % nvm->page_size) == 0) {
481 igc_standby_nvm(hw);
482 break;
483 }
484 }
485 msec_delay(10);
486 nvm->ops.release(hw);
487 }
488
489 return ret_val;
490 }
491
492 /**
493 * igc_read_pba_string_generic - Read device part number
494 * @hw: pointer to the HW structure
495 * @pba_num: pointer to device part number
496 * @pba_num_size: size of part number buffer
497 *
498 * Reads the product board assembly (PBA) number from the EEPROM and stores
499 * the value in pba_num.
500 **/
igc_read_pba_string_generic(struct igc_hw * hw,u8 * pba_num,u32 pba_num_size)501 s32 igc_read_pba_string_generic(struct igc_hw *hw, u8 *pba_num,
502 u32 pba_num_size)
503 {
504 s32 ret_val;
505 u16 nvm_data;
506 u16 pba_ptr;
507 u16 offset;
508 u16 length;
509
510 DEBUGFUNC("igc_read_pba_string_generic");
511
512 if (pba_num == NULL) {
513 DEBUGOUT("PBA string buffer was null\n");
514 return -IGC_ERR_INVALID_ARGUMENT;
515 }
516
517 ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
518 if (ret_val) {
519 DEBUGOUT("NVM Read Error\n");
520 return ret_val;
521 }
522
523 ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
524 if (ret_val) {
525 DEBUGOUT("NVM Read Error\n");
526 return ret_val;
527 }
528
529 /* if nvm_data is not ptr guard the PBA must be in legacy format which
530 * means pba_ptr is actually our second data word for the PBA number
531 * and we can decode it into an ascii string
532 */
533 if (nvm_data != NVM_PBA_PTR_GUARD) {
534 DEBUGOUT("NVM PBA number is not stored as string\n");
535
536 /* make sure callers buffer is big enough to store the PBA */
537 if (pba_num_size < IGC_PBANUM_LENGTH) {
538 DEBUGOUT("PBA string buffer too small\n");
539 return IGC_ERR_NO_SPACE;
540 }
541
542 /* extract hex string from data and pba_ptr */
543 pba_num[0] = (nvm_data >> 12) & 0xF;
544 pba_num[1] = (nvm_data >> 8) & 0xF;
545 pba_num[2] = (nvm_data >> 4) & 0xF;
546 pba_num[3] = nvm_data & 0xF;
547 pba_num[4] = (pba_ptr >> 12) & 0xF;
548 pba_num[5] = (pba_ptr >> 8) & 0xF;
549 pba_num[6] = '-';
550 pba_num[7] = 0;
551 pba_num[8] = (pba_ptr >> 4) & 0xF;
552 pba_num[9] = pba_ptr & 0xF;
553
554 /* put a null character on the end of our string */
555 pba_num[10] = '\0';
556
557 /* switch all the data but the '-' to hex char */
558 for (offset = 0; offset < 10; offset++) {
559 if (pba_num[offset] < 0xA)
560 pba_num[offset] += '0';
561 else if (pba_num[offset] < 0x10)
562 pba_num[offset] += 'A' - 0xA;
563 }
564
565 return IGC_SUCCESS;
566 }
567
568 ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
569 if (ret_val) {
570 DEBUGOUT("NVM Read Error\n");
571 return ret_val;
572 }
573
574 if (length == 0xFFFF || length == 0) {
575 DEBUGOUT("NVM PBA number section invalid length\n");
576 return -IGC_ERR_NVM_PBA_SECTION;
577 }
578 /* check if pba_num buffer is big enough */
579 if (pba_num_size < (((u32)length * 2) - 1)) {
580 DEBUGOUT("PBA string buffer too small\n");
581 return -IGC_ERR_NO_SPACE;
582 }
583
584 /* trim pba length from start of string */
585 pba_ptr++;
586 length--;
587
588 for (offset = 0; offset < length; offset++) {
589 ret_val = hw->nvm.ops.read(hw, pba_ptr + offset, 1, &nvm_data);
590 if (ret_val) {
591 DEBUGOUT("NVM Read Error\n");
592 return ret_val;
593 }
594 pba_num[offset * 2] = (u8)(nvm_data >> 8);
595 pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
596 }
597 pba_num[offset * 2] = '\0';
598
599 return IGC_SUCCESS;
600 }
601
602
603
604
605
606 /**
607 * igc_read_mac_addr_generic - Read device MAC address
608 * @hw: pointer to the HW structure
609 *
610 * Reads the device MAC address from the EEPROM and stores the value.
611 * Since devices with two ports use the same EEPROM, we increment the
612 * last bit in the MAC address for the second port.
613 **/
igc_read_mac_addr_generic(struct igc_hw * hw)614 s32 igc_read_mac_addr_generic(struct igc_hw *hw)
615 {
616 u32 rar_high;
617 u32 rar_low;
618 u16 i;
619
620 rar_high = IGC_READ_REG(hw, IGC_RAH(0));
621 rar_low = IGC_READ_REG(hw, IGC_RAL(0));
622
623 for (i = 0; i < IGC_RAL_MAC_ADDR_LEN; i++)
624 hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
625
626 for (i = 0; i < IGC_RAH_MAC_ADDR_LEN; i++)
627 hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
628
629 for (i = 0; i < ETH_ADDR_LEN; i++)
630 hw->mac.addr[i] = hw->mac.perm_addr[i];
631
632 return IGC_SUCCESS;
633 }
634
635 /**
636 * igc_validate_nvm_checksum_generic - Validate EEPROM checksum
637 * @hw: pointer to the HW structure
638 *
639 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
640 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
641 **/
igc_validate_nvm_checksum_generic(struct igc_hw * hw)642 s32 igc_validate_nvm_checksum_generic(struct igc_hw *hw)
643 {
644 s32 ret_val;
645 u16 checksum = 0;
646 u16 i, nvm_data;
647
648 DEBUGFUNC("igc_validate_nvm_checksum_generic");
649
650 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
651 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
652 if (ret_val) {
653 DEBUGOUT("NVM Read Error\n");
654 return ret_val;
655 }
656 checksum += nvm_data;
657 }
658
659 if (checksum != (u16) NVM_SUM) {
660 DEBUGOUT("NVM Checksum Invalid\n");
661 return -IGC_ERR_NVM;
662 }
663
664 return IGC_SUCCESS;
665 }
666
667 /**
668 * igc_update_nvm_checksum_generic - Update EEPROM checksum
669 * @hw: pointer to the HW structure
670 *
671 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
672 * up to the checksum. Then calculates the EEPROM checksum and writes the
673 * value to the EEPROM.
674 **/
igc_update_nvm_checksum_generic(struct igc_hw * hw)675 s32 igc_update_nvm_checksum_generic(struct igc_hw *hw)
676 {
677 s32 ret_val;
678 u16 checksum = 0;
679 u16 i, nvm_data;
680
681 DEBUGFUNC("igc_update_nvm_checksum");
682
683 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
684 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
685 if (ret_val) {
686 DEBUGOUT("NVM Read Error while updating checksum.\n");
687 return ret_val;
688 }
689 checksum += nvm_data;
690 }
691 checksum = (u16) NVM_SUM - checksum;
692 ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
693 if (ret_val)
694 DEBUGOUT("NVM Write Error while updating checksum.\n");
695
696 return ret_val;
697 }
698
699 /**
700 * igc_reload_nvm_generic - Reloads EEPROM
701 * @hw: pointer to the HW structure
702 *
703 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
704 * extended control register.
705 **/
igc_reload_nvm_generic(struct igc_hw * hw)706 static void igc_reload_nvm_generic(struct igc_hw *hw)
707 {
708 u32 ctrl_ext;
709
710 DEBUGFUNC("igc_reload_nvm_generic");
711
712 usec_delay(10);
713 ctrl_ext = IGC_READ_REG(hw, IGC_CTRL_EXT);
714 ctrl_ext |= IGC_CTRL_EXT_EE_RST;
715 IGC_WRITE_REG(hw, IGC_CTRL_EXT, ctrl_ext);
716 IGC_WRITE_FLUSH(hw);
717 }
718
719 /**
720 * igc_get_fw_version - Get firmware version information
721 * @hw: pointer to the HW structure
722 * @fw_vers: pointer to output version structure
723 *
724 * unsupported/not present features return 0 in version structure
725 **/
igc_get_fw_version(struct igc_hw * hw,struct igc_fw_version * fw_vers)726 void igc_get_fw_version(struct igc_hw *hw, struct igc_fw_version *fw_vers)
727 {
728 u16 eeprom_verh, eeprom_verl, etrack_test, fw_version;
729 u8 q, hval, rem, result;
730 u16 comb_verh, comb_verl, comb_offset;
731
732 memset(fw_vers, 0, sizeof(struct igc_fw_version));
733
734 /*
735 * basic eeprom version numbers, bits used vary by part and by tool
736 * used to create the nvm images. Check which data format we have.
737 */
738 switch (hw->mac.type) {
739 case igc_i225:
740 hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
741 /* find combo image version */
742 hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
743 if (comb_offset && comb_offset != NVM_VER_INVALID) {
744 hw->nvm.ops.read(hw, NVM_COMB_VER_OFF + comb_offset + 1,
745 1, &comb_verh);
746 hw->nvm.ops.read(hw, NVM_COMB_VER_OFF + comb_offset,
747 1, &comb_verl);
748
749 /* get Option Rom version if it exists and is valid */
750 if (comb_verh && comb_verl &&
751 comb_verh != NVM_VER_INVALID &&
752 comb_verl != NVM_VER_INVALID) {
753 fw_vers->or_valid = true;
754 fw_vers->or_major = comb_verl >>
755 NVM_COMB_VER_SHFT;
756 fw_vers->or_build = (comb_verl <<
757 NVM_COMB_VER_SHFT) |
758 (comb_verh >>
759 NVM_COMB_VER_SHFT);
760 fw_vers->or_patch = comb_verh &
761 NVM_COMB_VER_MASK;
762 }
763 }
764 break;
765 default:
766 hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
767 return;
768 }
769 hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
770 fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
771 >> NVM_MAJOR_SHIFT;
772
773 /* check for old style version format in newer images*/
774 if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) {
775 eeprom_verl = (fw_version & NVM_COMB_VER_MASK);
776 } else {
777 eeprom_verl = (fw_version & NVM_MINOR_MASK)
778 >> NVM_MINOR_SHIFT;
779 }
780 /* Convert minor value to hex before assigning to output struct
781 * Val to be converted will not be higher than 99, per tool output
782 */
783 q = eeprom_verl / NVM_HEX_CONV;
784 hval = q * NVM_HEX_TENS;
785 rem = eeprom_verl % NVM_HEX_CONV;
786 result = hval + rem;
787 fw_vers->eep_minor = result;
788
789 if ((etrack_test & NVM_MAJOR_MASK) == NVM_ETRACK_VALID) {
790 hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl);
791 hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh);
792 fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT)
793 | eeprom_verl;
794 } else if ((etrack_test & NVM_ETRACK_VALID) == 0) {
795 hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verh);
796 hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verl);
797 fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT) |
798 eeprom_verl;
799 }
800 }
801