1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2012-2014 Thomas Skibo <thomasskibo@yahoo.com> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 /* 30 * A network interface driver for Cadence GEM Gigabit Ethernet 31 * interface such as the one used in Xilinx Zynq-7000 SoC. 32 * 33 * Reference: Zynq-7000 All Programmable SoC Technical Reference Manual. 34 * (v1.4) November 16, 2012. Xilinx doc UG585. GEM is covered in Ch. 16 35 * and register definitions are in appendix B.18. 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/bus.h> 44 #include <sys/kernel.h> 45 #include <sys/malloc.h> 46 #include <sys/mbuf.h> 47 #include <sys/module.h> 48 #include <sys/rman.h> 49 #include <sys/socket.h> 50 #include <sys/sockio.h> 51 #include <sys/sysctl.h> 52 53 #include <machine/bus.h> 54 55 #include <net/ethernet.h> 56 #include <net/if.h> 57 #include <net/if_arp.h> 58 #include <net/if_dl.h> 59 #include <net/if_media.h> 60 #include <net/if_mib.h> 61 #include <net/if_types.h> 62 63 #ifdef INET 64 #include <netinet/in.h> 65 #include <netinet/in_systm.h> 66 #include <netinet/in_var.h> 67 #include <netinet/ip.h> 68 #endif 69 70 #include <net/bpf.h> 71 #include <net/bpfdesc.h> 72 73 #include <dev/fdt/fdt_common.h> 74 #include <dev/ofw/ofw_bus.h> 75 #include <dev/ofw/ofw_bus_subr.h> 76 77 #include <dev/mii/mii.h> 78 #include <dev/mii/miivar.h> 79 #include <dev/mii/mii_fdt.h> 80 81 #include <dev/extres/clk/clk.h> 82 83 #if BUS_SPACE_MAXADDR > BUS_SPACE_MAXADDR_32BIT 84 #define CGEM64 85 #endif 86 87 #include <dev/cadence/if_cgem_hw.h> 88 89 #include "miibus_if.h" 90 91 #define IF_CGEM_NAME "cgem" 92 93 #define CGEM_NUM_RX_DESCS 512 /* size of receive descriptor ring */ 94 #define CGEM_NUM_TX_DESCS 512 /* size of transmit descriptor ring */ 95 96 /* Default for sysctl rxbufs. Must be < CGEM_NUM_RX_DESCS of course. */ 97 #define DEFAULT_NUM_RX_BUFS 256 /* number of receive bufs to queue. */ 98 99 #define TX_MAX_DMA_SEGS 8 /* maximum segs in a tx mbuf dma */ 100 101 #define CGEM_CKSUM_ASSIST (CSUM_IP | CSUM_TCP | CSUM_UDP | \ 102 CSUM_TCP_IPV6 | CSUM_UDP_IPV6) 103 104 #define HWQUIRK_NONE 0 105 #define HWQUIRK_NEEDNULLQS 1 106 #define HWQUIRK_RXHANGWAR 2 107 #define HWQUIRK_TXCLK 4 108 #define HWQUIRK_PCLK 8 109 110 static struct ofw_compat_data compat_data[] = { 111 { "cdns,zynq-gem", HWQUIRK_RXHANGWAR | HWQUIRK_TXCLK }, 112 { "cdns,zynqmp-gem", HWQUIRK_NEEDNULLQS | HWQUIRK_TXCLK }, 113 { "microchip,mpfs-mss-gem", HWQUIRK_NEEDNULLQS | HWQUIRK_TXCLK }, 114 { "sifive,fu540-c000-gem", HWQUIRK_PCLK }, 115 { "sifive,fu740-c000-gem", HWQUIRK_PCLK }, 116 { "cdns,gem", HWQUIRK_NONE }, 117 { "cdns,macb", HWQUIRK_NONE }, 118 { "cadence,gem", HWQUIRK_NONE }, 119 { NULL, 0 } 120 }; 121 122 struct cgem_softc { 123 if_t ifp; 124 struct mtx sc_mtx; 125 device_t dev; 126 device_t miibus; 127 u_int mii_media_active; /* last active media */ 128 int if_old_flags; 129 struct resource *mem_res; 130 struct resource *irq_res; 131 void *intrhand; 132 struct callout tick_ch; 133 uint32_t net_ctl_shadow; 134 uint32_t net_cfg_shadow; 135 clk_t ref_clk; 136 int neednullqs; 137 int phy_contype; 138 139 bus_dma_tag_t desc_dma_tag; 140 bus_dma_tag_t mbuf_dma_tag; 141 142 /* receive descriptor ring */ 143 struct cgem_rx_desc *rxring; 144 bus_addr_t rxring_physaddr; 145 struct mbuf *rxring_m[CGEM_NUM_RX_DESCS]; 146 bus_dmamap_t rxring_m_dmamap[CGEM_NUM_RX_DESCS]; 147 int rxring_hd_ptr; /* where to put rcv bufs */ 148 int rxring_tl_ptr; /* where to get receives */ 149 int rxring_queued; /* how many rcv bufs queued */ 150 bus_dmamap_t rxring_dma_map; 151 int rxbufs; /* tunable number rcv bufs */ 152 int rxhangwar; /* rx hang work-around */ 153 u_int rxoverruns; /* rx overruns */ 154 u_int rxnobufs; /* rx buf ring empty events */ 155 u_int rxdmamapfails; /* rx dmamap failures */ 156 uint32_t rx_frames_prev; 157 158 /* transmit descriptor ring */ 159 struct cgem_tx_desc *txring; 160 bus_addr_t txring_physaddr; 161 struct mbuf *txring_m[CGEM_NUM_TX_DESCS]; 162 bus_dmamap_t txring_m_dmamap[CGEM_NUM_TX_DESCS]; 163 int txring_hd_ptr; /* where to put next xmits */ 164 int txring_tl_ptr; /* next xmit mbuf to free */ 165 int txring_queued; /* num xmits segs queued */ 166 u_int txfull; /* tx ring full events */ 167 u_int txdefrags; /* tx calls to m_defrag() */ 168 u_int txdefragfails; /* tx m_defrag() failures */ 169 u_int txdmamapfails; /* tx dmamap failures */ 170 171 /* null descriptor rings */ 172 void *null_qs; 173 bus_addr_t null_qs_physaddr; 174 175 /* hardware provided statistics */ 176 struct cgem_hw_stats { 177 uint64_t tx_bytes; 178 uint32_t tx_frames; 179 uint32_t tx_frames_bcast; 180 uint32_t tx_frames_multi; 181 uint32_t tx_frames_pause; 182 uint32_t tx_frames_64b; 183 uint32_t tx_frames_65to127b; 184 uint32_t tx_frames_128to255b; 185 uint32_t tx_frames_256to511b; 186 uint32_t tx_frames_512to1023b; 187 uint32_t tx_frames_1024to1536b; 188 uint32_t tx_under_runs; 189 uint32_t tx_single_collisn; 190 uint32_t tx_multi_collisn; 191 uint32_t tx_excsv_collisn; 192 uint32_t tx_late_collisn; 193 uint32_t tx_deferred_frames; 194 uint32_t tx_carrier_sense_errs; 195 196 uint64_t rx_bytes; 197 uint32_t rx_frames; 198 uint32_t rx_frames_bcast; 199 uint32_t rx_frames_multi; 200 uint32_t rx_frames_pause; 201 uint32_t rx_frames_64b; 202 uint32_t rx_frames_65to127b; 203 uint32_t rx_frames_128to255b; 204 uint32_t rx_frames_256to511b; 205 uint32_t rx_frames_512to1023b; 206 uint32_t rx_frames_1024to1536b; 207 uint32_t rx_frames_undersize; 208 uint32_t rx_frames_oversize; 209 uint32_t rx_frames_jabber; 210 uint32_t rx_frames_fcs_errs; 211 uint32_t rx_frames_length_errs; 212 uint32_t rx_symbol_errs; 213 uint32_t rx_align_errs; 214 uint32_t rx_resource_errs; 215 uint32_t rx_overrun_errs; 216 uint32_t rx_ip_hdr_csum_errs; 217 uint32_t rx_tcp_csum_errs; 218 uint32_t rx_udp_csum_errs; 219 } stats; 220 }; 221 222 #define RD4(sc, off) (bus_read_4((sc)->mem_res, (off))) 223 #define WR4(sc, off, val) (bus_write_4((sc)->mem_res, (off), (val))) 224 #define BARRIER(sc, off, len, flags) \ 225 (bus_barrier((sc)->mem_res, (off), (len), (flags)) 226 227 #define CGEM_LOCK(sc) mtx_lock(&(sc)->sc_mtx) 228 #define CGEM_UNLOCK(sc) mtx_unlock(&(sc)->sc_mtx) 229 #define CGEM_LOCK_INIT(sc) mtx_init(&(sc)->sc_mtx, \ 230 device_get_nameunit((sc)->dev), MTX_NETWORK_LOCK, MTX_DEF) 231 #define CGEM_LOCK_DESTROY(sc) mtx_destroy(&(sc)->sc_mtx) 232 #define CGEM_ASSERT_LOCKED(sc) mtx_assert(&(sc)->sc_mtx, MA_OWNED) 233 234 /* Allow platforms to optionally provide a way to set the reference clock. */ 235 int cgem_set_ref_clk(int unit, int frequency); 236 237 static int cgem_probe(device_t dev); 238 static int cgem_attach(device_t dev); 239 static int cgem_detach(device_t dev); 240 static void cgem_tick(void *); 241 static void cgem_intr(void *); 242 243 static void cgem_mediachange(struct cgem_softc *, struct mii_data *); 244 245 static void 246 cgem_get_mac(struct cgem_softc *sc, u_char eaddr[]) 247 { 248 int i; 249 uint32_t rnd; 250 251 /* See if boot loader gave us a MAC address already. */ 252 for (i = 0; i < 4; i++) { 253 uint32_t low = RD4(sc, CGEM_SPEC_ADDR_LOW(i)); 254 uint32_t high = RD4(sc, CGEM_SPEC_ADDR_HI(i)) & 0xffff; 255 if (low != 0 || high != 0) { 256 eaddr[0] = low & 0xff; 257 eaddr[1] = (low >> 8) & 0xff; 258 eaddr[2] = (low >> 16) & 0xff; 259 eaddr[3] = (low >> 24) & 0xff; 260 eaddr[4] = high & 0xff; 261 eaddr[5] = (high >> 8) & 0xff; 262 break; 263 } 264 } 265 266 /* No MAC from boot loader? Assign a random one. */ 267 if (i == 4) { 268 rnd = arc4random(); 269 270 eaddr[0] = 'b'; 271 eaddr[1] = 's'; 272 eaddr[2] = 'd'; 273 eaddr[3] = (rnd >> 16) & 0xff; 274 eaddr[4] = (rnd >> 8) & 0xff; 275 eaddr[5] = rnd & 0xff; 276 277 device_printf(sc->dev, "no mac address found, assigning " 278 "random: %02x:%02x:%02x:%02x:%02x:%02x\n", eaddr[0], 279 eaddr[1], eaddr[2], eaddr[3], eaddr[4], eaddr[5]); 280 } 281 282 /* Move address to first slot and zero out the rest. */ 283 WR4(sc, CGEM_SPEC_ADDR_LOW(0), (eaddr[3] << 24) | 284 (eaddr[2] << 16) | (eaddr[1] << 8) | eaddr[0]); 285 WR4(sc, CGEM_SPEC_ADDR_HI(0), (eaddr[5] << 8) | eaddr[4]); 286 287 for (i = 1; i < 4; i++) { 288 WR4(sc, CGEM_SPEC_ADDR_LOW(i), 0); 289 WR4(sc, CGEM_SPEC_ADDR_HI(i), 0); 290 } 291 } 292 293 /* 294 * cgem_mac_hash(): map 48-bit address to a 6-bit hash. The 6-bit hash 295 * corresponds to a bit in a 64-bit hash register. Setting that bit in the 296 * hash register enables reception of all frames with a destination address 297 * that hashes to that 6-bit value. 298 * 299 * The hash function is described in sec. 16.2.3 in the Zynq-7000 Tech 300 * Reference Manual. Bits 0-5 in the hash are the exclusive-or of 301 * every sixth bit in the destination address. 302 */ 303 static int 304 cgem_mac_hash(u_char eaddr[]) 305 { 306 int hash; 307 int i, j; 308 309 hash = 0; 310 for (i = 0; i < 6; i++) 311 for (j = i; j < 48; j += 6) 312 if ((eaddr[j >> 3] & (1 << (j & 7))) != 0) 313 hash ^= (1 << i); 314 315 return hash; 316 } 317 318 static u_int 319 cgem_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 320 { 321 uint32_t *hashes = arg; 322 int index; 323 324 index = cgem_mac_hash(LLADDR(sdl)); 325 if (index > 31) 326 hashes[0] |= (1U << (index - 32)); 327 else 328 hashes[1] |= (1U << index); 329 330 return (1); 331 } 332 333 /* 334 * After any change in rx flags or multi-cast addresses, set up hash registers 335 * and net config register bits. 336 */ 337 static void 338 cgem_rx_filter(struct cgem_softc *sc) 339 { 340 if_t ifp = sc->ifp; 341 uint32_t hashes[2] = { 0, 0 }; 342 343 sc->net_cfg_shadow &= ~(CGEM_NET_CFG_MULTI_HASH_EN | 344 CGEM_NET_CFG_NO_BCAST | CGEM_NET_CFG_COPY_ALL); 345 346 if ((if_getflags(ifp) & IFF_PROMISC) != 0) 347 sc->net_cfg_shadow |= CGEM_NET_CFG_COPY_ALL; 348 else { 349 if ((if_getflags(ifp) & IFF_BROADCAST) == 0) 350 sc->net_cfg_shadow |= CGEM_NET_CFG_NO_BCAST; 351 if ((if_getflags(ifp) & IFF_ALLMULTI) != 0) { 352 hashes[0] = 0xffffffff; 353 hashes[1] = 0xffffffff; 354 } else 355 if_foreach_llmaddr(ifp, cgem_hash_maddr, hashes); 356 357 if (hashes[0] != 0 || hashes[1] != 0) 358 sc->net_cfg_shadow |= CGEM_NET_CFG_MULTI_HASH_EN; 359 } 360 361 WR4(sc, CGEM_HASH_TOP, hashes[0]); 362 WR4(sc, CGEM_HASH_BOT, hashes[1]); 363 WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow); 364 } 365 366 /* For bus_dmamap_load() callback. */ 367 static void 368 cgem_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 369 { 370 371 if (nsegs != 1 || error != 0) 372 return; 373 *(bus_addr_t *)arg = segs[0].ds_addr; 374 } 375 376 /* Set up null queues for priority queues we actually can't disable. */ 377 static void 378 cgem_null_qs(struct cgem_softc *sc) 379 { 380 struct cgem_rx_desc *rx_desc; 381 struct cgem_tx_desc *tx_desc; 382 uint32_t queue_mask; 383 int n; 384 385 /* Read design config register 6 to determine number of queues. */ 386 queue_mask = (RD4(sc, CGEM_DESIGN_CFG6) & 387 CGEM_DESIGN_CFG6_DMA_PRIO_Q_MASK) >> 1; 388 if (queue_mask == 0) 389 return; 390 391 /* Create empty RX queue and empty TX buf queues. */ 392 memset(sc->null_qs, 0, sizeof(struct cgem_rx_desc) + 393 sizeof(struct cgem_tx_desc)); 394 rx_desc = sc->null_qs; 395 rx_desc->addr = CGEM_RXDESC_OWN | CGEM_RXDESC_WRAP; 396 tx_desc = (struct cgem_tx_desc *)(rx_desc + 1); 397 tx_desc->ctl = CGEM_TXDESC_USED | CGEM_TXDESC_WRAP; 398 399 /* Point all valid ring base pointers to the null queues. */ 400 for (n = 1; (queue_mask & 1) != 0; n++, queue_mask >>= 1) { 401 WR4(sc, CGEM_RX_QN_BAR(n), sc->null_qs_physaddr); 402 WR4(sc, CGEM_TX_QN_BAR(n), sc->null_qs_physaddr + 403 sizeof(struct cgem_rx_desc)); 404 } 405 } 406 407 /* Create DMA'able descriptor rings. */ 408 static int 409 cgem_setup_descs(struct cgem_softc *sc) 410 { 411 int i, err; 412 int desc_rings_size = CGEM_NUM_RX_DESCS * sizeof(struct cgem_rx_desc) + 413 CGEM_NUM_TX_DESCS * sizeof(struct cgem_tx_desc); 414 415 if (sc->neednullqs) 416 desc_rings_size += sizeof(struct cgem_rx_desc) + 417 sizeof(struct cgem_tx_desc); 418 419 sc->txring = NULL; 420 sc->rxring = NULL; 421 422 /* Allocate non-cached DMA space for RX and TX descriptors. */ 423 err = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 424 #ifdef CGEM64 425 1ULL << 32, /* Do not cross a 4G boundary. */ 426 #else 427 0, 428 #endif 429 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 430 desc_rings_size, 1, desc_rings_size, 0, 431 busdma_lock_mutex, &sc->sc_mtx, &sc->desc_dma_tag); 432 if (err) 433 return (err); 434 435 /* Set up a bus_dma_tag for mbufs. */ 436 err = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0, 437 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 438 TX_MAX_DMA_SEGS, MCLBYTES, 0, busdma_lock_mutex, &sc->sc_mtx, 439 &sc->mbuf_dma_tag); 440 if (err) 441 return (err); 442 443 /* 444 * Allocate DMA memory. We allocate transmit, receive and null 445 * descriptor queues all at once because the hardware only provides 446 * one register for the upper 32 bits of rx and tx descriptor queues 447 * hardware addresses. 448 */ 449 err = bus_dmamem_alloc(sc->desc_dma_tag, (void **)&sc->rxring, 450 BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, 451 &sc->rxring_dma_map); 452 if (err) 453 return (err); 454 455 /* Load descriptor DMA memory. */ 456 err = bus_dmamap_load(sc->desc_dma_tag, sc->rxring_dma_map, 457 (void *)sc->rxring, desc_rings_size, 458 cgem_getaddr, &sc->rxring_physaddr, BUS_DMA_NOWAIT); 459 if (err) 460 return (err); 461 462 /* Initialize RX descriptors. */ 463 for (i = 0; i < CGEM_NUM_RX_DESCS; i++) { 464 sc->rxring[i].addr = CGEM_RXDESC_OWN; 465 sc->rxring[i].ctl = 0; 466 sc->rxring_m[i] = NULL; 467 sc->rxring_m_dmamap[i] = NULL; 468 } 469 sc->rxring[CGEM_NUM_RX_DESCS - 1].addr |= CGEM_RXDESC_WRAP; 470 471 sc->rxring_hd_ptr = 0; 472 sc->rxring_tl_ptr = 0; 473 sc->rxring_queued = 0; 474 475 sc->txring = (struct cgem_tx_desc *)(sc->rxring + CGEM_NUM_RX_DESCS); 476 sc->txring_physaddr = sc->rxring_physaddr + CGEM_NUM_RX_DESCS * 477 sizeof(struct cgem_rx_desc); 478 479 /* Initialize TX descriptor ring. */ 480 for (i = 0; i < CGEM_NUM_TX_DESCS; i++) { 481 sc->txring[i].addr = 0; 482 sc->txring[i].ctl = CGEM_TXDESC_USED; 483 sc->txring_m[i] = NULL; 484 sc->txring_m_dmamap[i] = NULL; 485 } 486 sc->txring[CGEM_NUM_TX_DESCS - 1].ctl |= CGEM_TXDESC_WRAP; 487 488 sc->txring_hd_ptr = 0; 489 sc->txring_tl_ptr = 0; 490 sc->txring_queued = 0; 491 492 if (sc->neednullqs) { 493 sc->null_qs = (void *)(sc->txring + CGEM_NUM_TX_DESCS); 494 sc->null_qs_physaddr = sc->txring_physaddr + 495 CGEM_NUM_TX_DESCS * sizeof(struct cgem_tx_desc); 496 497 cgem_null_qs(sc); 498 } 499 500 return (0); 501 } 502 503 /* Fill receive descriptor ring with mbufs. */ 504 static void 505 cgem_fill_rqueue(struct cgem_softc *sc) 506 { 507 struct mbuf *m = NULL; 508 bus_dma_segment_t segs[TX_MAX_DMA_SEGS]; 509 int nsegs; 510 511 CGEM_ASSERT_LOCKED(sc); 512 513 while (sc->rxring_queued < sc->rxbufs) { 514 /* Get a cluster mbuf. */ 515 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 516 if (m == NULL) 517 break; 518 519 m->m_len = MCLBYTES; 520 m->m_pkthdr.len = MCLBYTES; 521 m->m_pkthdr.rcvif = sc->ifp; 522 523 /* Load map and plug in physical address. */ 524 if (bus_dmamap_create(sc->mbuf_dma_tag, 0, 525 &sc->rxring_m_dmamap[sc->rxring_hd_ptr])) { 526 sc->rxdmamapfails++; 527 m_free(m); 528 break; 529 } 530 if (bus_dmamap_load_mbuf_sg(sc->mbuf_dma_tag, 531 sc->rxring_m_dmamap[sc->rxring_hd_ptr], m, 532 segs, &nsegs, BUS_DMA_NOWAIT)) { 533 sc->rxdmamapfails++; 534 bus_dmamap_destroy(sc->mbuf_dma_tag, 535 sc->rxring_m_dmamap[sc->rxring_hd_ptr]); 536 sc->rxring_m_dmamap[sc->rxring_hd_ptr] = NULL; 537 m_free(m); 538 break; 539 } 540 sc->rxring_m[sc->rxring_hd_ptr] = m; 541 542 /* Sync cache with receive buffer. */ 543 bus_dmamap_sync(sc->mbuf_dma_tag, 544 sc->rxring_m_dmamap[sc->rxring_hd_ptr], 545 BUS_DMASYNC_PREREAD); 546 547 /* Write rx descriptor and increment head pointer. */ 548 sc->rxring[sc->rxring_hd_ptr].ctl = 0; 549 #ifdef CGEM64 550 sc->rxring[sc->rxring_hd_ptr].addrhi = segs[0].ds_addr >> 32; 551 #endif 552 if (sc->rxring_hd_ptr == CGEM_NUM_RX_DESCS - 1) { 553 sc->rxring[sc->rxring_hd_ptr].addr = segs[0].ds_addr | 554 CGEM_RXDESC_WRAP; 555 sc->rxring_hd_ptr = 0; 556 } else 557 sc->rxring[sc->rxring_hd_ptr++].addr = segs[0].ds_addr; 558 559 sc->rxring_queued++; 560 } 561 } 562 563 /* Pull received packets off of receive descriptor ring. */ 564 static void 565 cgem_recv(struct cgem_softc *sc) 566 { 567 if_t ifp = sc->ifp; 568 struct mbuf *m, *m_hd, **m_tl; 569 uint32_t ctl; 570 571 CGEM_ASSERT_LOCKED(sc); 572 573 /* Pick up all packets in which the OWN bit is set. */ 574 m_hd = NULL; 575 m_tl = &m_hd; 576 while (sc->rxring_queued > 0 && 577 (sc->rxring[sc->rxring_tl_ptr].addr & CGEM_RXDESC_OWN) != 0) { 578 ctl = sc->rxring[sc->rxring_tl_ptr].ctl; 579 580 /* Grab filled mbuf. */ 581 m = sc->rxring_m[sc->rxring_tl_ptr]; 582 sc->rxring_m[sc->rxring_tl_ptr] = NULL; 583 584 /* Sync cache with receive buffer. */ 585 bus_dmamap_sync(sc->mbuf_dma_tag, 586 sc->rxring_m_dmamap[sc->rxring_tl_ptr], 587 BUS_DMASYNC_POSTREAD); 588 589 /* Unload and destroy dmamap. */ 590 bus_dmamap_unload(sc->mbuf_dma_tag, 591 sc->rxring_m_dmamap[sc->rxring_tl_ptr]); 592 bus_dmamap_destroy(sc->mbuf_dma_tag, 593 sc->rxring_m_dmamap[sc->rxring_tl_ptr]); 594 sc->rxring_m_dmamap[sc->rxring_tl_ptr] = NULL; 595 596 /* Increment tail pointer. */ 597 if (++sc->rxring_tl_ptr == CGEM_NUM_RX_DESCS) 598 sc->rxring_tl_ptr = 0; 599 sc->rxring_queued--; 600 601 /* 602 * Check FCS and make sure entire packet landed in one mbuf 603 * cluster (which is much bigger than the largest ethernet 604 * packet). 605 */ 606 if ((ctl & CGEM_RXDESC_BAD_FCS) != 0 || 607 (ctl & (CGEM_RXDESC_SOF | CGEM_RXDESC_EOF)) != 608 (CGEM_RXDESC_SOF | CGEM_RXDESC_EOF)) { 609 /* discard. */ 610 m_free(m); 611 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 612 continue; 613 } 614 615 /* Ready it to hand off to upper layers. */ 616 m->m_data += ETHER_ALIGN; 617 m->m_len = (ctl & CGEM_RXDESC_LENGTH_MASK); 618 m->m_pkthdr.rcvif = ifp; 619 m->m_pkthdr.len = m->m_len; 620 621 /* 622 * Are we using hardware checksumming? Check the status in the 623 * receive descriptor. 624 */ 625 if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) { 626 /* TCP or UDP checks out, IP checks out too. */ 627 if ((ctl & CGEM_RXDESC_CKSUM_STAT_MASK) == 628 CGEM_RXDESC_CKSUM_STAT_TCP_GOOD || 629 (ctl & CGEM_RXDESC_CKSUM_STAT_MASK) == 630 CGEM_RXDESC_CKSUM_STAT_UDP_GOOD) { 631 m->m_pkthdr.csum_flags |= 632 CSUM_IP_CHECKED | CSUM_IP_VALID | 633 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 634 m->m_pkthdr.csum_data = 0xffff; 635 } else if ((ctl & CGEM_RXDESC_CKSUM_STAT_MASK) == 636 CGEM_RXDESC_CKSUM_STAT_IP_GOOD) { 637 /* Only IP checks out. */ 638 m->m_pkthdr.csum_flags |= 639 CSUM_IP_CHECKED | CSUM_IP_VALID; 640 m->m_pkthdr.csum_data = 0xffff; 641 } 642 } 643 644 /* Queue it up for delivery below. */ 645 *m_tl = m; 646 m_tl = &m->m_next; 647 } 648 649 /* Replenish receive buffers. */ 650 cgem_fill_rqueue(sc); 651 652 /* Unlock and send up packets. */ 653 CGEM_UNLOCK(sc); 654 while (m_hd != NULL) { 655 m = m_hd; 656 m_hd = m_hd->m_next; 657 m->m_next = NULL; 658 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 659 if_input(ifp, m); 660 } 661 CGEM_LOCK(sc); 662 } 663 664 /* Find completed transmits and free their mbufs. */ 665 static void 666 cgem_clean_tx(struct cgem_softc *sc) 667 { 668 struct mbuf *m; 669 uint32_t ctl; 670 671 CGEM_ASSERT_LOCKED(sc); 672 673 /* free up finished transmits. */ 674 while (sc->txring_queued > 0 && 675 ((ctl = sc->txring[sc->txring_tl_ptr].ctl) & 676 CGEM_TXDESC_USED) != 0) { 677 /* Sync cache. */ 678 bus_dmamap_sync(sc->mbuf_dma_tag, 679 sc->txring_m_dmamap[sc->txring_tl_ptr], 680 BUS_DMASYNC_POSTWRITE); 681 682 /* Unload and destroy DMA map. */ 683 bus_dmamap_unload(sc->mbuf_dma_tag, 684 sc->txring_m_dmamap[sc->txring_tl_ptr]); 685 bus_dmamap_destroy(sc->mbuf_dma_tag, 686 sc->txring_m_dmamap[sc->txring_tl_ptr]); 687 sc->txring_m_dmamap[sc->txring_tl_ptr] = NULL; 688 689 /* Free up the mbuf. */ 690 m = sc->txring_m[sc->txring_tl_ptr]; 691 sc->txring_m[sc->txring_tl_ptr] = NULL; 692 m_freem(m); 693 694 /* Check the status. */ 695 if ((ctl & CGEM_TXDESC_AHB_ERR) != 0) { 696 /* Serious bus error. log to console. */ 697 #ifdef CGEM64 698 device_printf(sc->dev, 699 "cgem_clean_tx: AHB error, addr=0x%x%08x\n", 700 sc->txring[sc->txring_tl_ptr].addrhi, 701 sc->txring[sc->txring_tl_ptr].addr); 702 #else 703 device_printf(sc->dev, 704 "cgem_clean_tx: AHB error, addr=0x%x\n", 705 sc->txring[sc->txring_tl_ptr].addr); 706 #endif 707 } else if ((ctl & (CGEM_TXDESC_RETRY_ERR | 708 CGEM_TXDESC_LATE_COLL)) != 0) { 709 if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, 1); 710 } else 711 if_inc_counter(sc->ifp, IFCOUNTER_OPACKETS, 1); 712 713 /* 714 * If the packet spanned more than one tx descriptor, skip 715 * descriptors until we find the end so that only 716 * start-of-frame descriptors are processed. 717 */ 718 while ((ctl & CGEM_TXDESC_LAST_BUF) == 0) { 719 if ((ctl & CGEM_TXDESC_WRAP) != 0) 720 sc->txring_tl_ptr = 0; 721 else 722 sc->txring_tl_ptr++; 723 sc->txring_queued--; 724 725 ctl = sc->txring[sc->txring_tl_ptr].ctl; 726 727 sc->txring[sc->txring_tl_ptr].ctl = 728 ctl | CGEM_TXDESC_USED; 729 } 730 731 /* Next descriptor. */ 732 if ((ctl & CGEM_TXDESC_WRAP) != 0) 733 sc->txring_tl_ptr = 0; 734 else 735 sc->txring_tl_ptr++; 736 sc->txring_queued--; 737 738 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_OACTIVE); 739 } 740 } 741 742 /* Start transmits. */ 743 static void 744 cgem_start_locked(if_t ifp) 745 { 746 struct cgem_softc *sc = (struct cgem_softc *) if_getsoftc(ifp); 747 struct mbuf *m; 748 bus_dma_segment_t segs[TX_MAX_DMA_SEGS]; 749 uint32_t ctl; 750 int i, nsegs, wrap, err; 751 752 CGEM_ASSERT_LOCKED(sc); 753 754 if ((if_getdrvflags(ifp) & IFF_DRV_OACTIVE) != 0) 755 return; 756 757 for (;;) { 758 /* Check that there is room in the descriptor ring. */ 759 if (sc->txring_queued >= 760 CGEM_NUM_TX_DESCS - TX_MAX_DMA_SEGS * 2) { 761 /* Try to make room. */ 762 cgem_clean_tx(sc); 763 764 /* Still no room? */ 765 if (sc->txring_queued >= 766 CGEM_NUM_TX_DESCS - TX_MAX_DMA_SEGS * 2) { 767 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 768 sc->txfull++; 769 break; 770 } 771 } 772 773 /* Grab next transmit packet. */ 774 m = if_dequeue(ifp); 775 if (m == NULL) 776 break; 777 778 /* Create and load DMA map. */ 779 if (bus_dmamap_create(sc->mbuf_dma_tag, 0, 780 &sc->txring_m_dmamap[sc->txring_hd_ptr])) { 781 m_freem(m); 782 sc->txdmamapfails++; 783 continue; 784 } 785 err = bus_dmamap_load_mbuf_sg(sc->mbuf_dma_tag, 786 sc->txring_m_dmamap[sc->txring_hd_ptr], m, segs, &nsegs, 787 BUS_DMA_NOWAIT); 788 if (err == EFBIG) { 789 /* Too many segments! defrag and try again. */ 790 struct mbuf *m2 = m_defrag(m, M_NOWAIT); 791 792 if (m2 == NULL) { 793 sc->txdefragfails++; 794 m_freem(m); 795 bus_dmamap_destroy(sc->mbuf_dma_tag, 796 sc->txring_m_dmamap[sc->txring_hd_ptr]); 797 sc->txring_m_dmamap[sc->txring_hd_ptr] = NULL; 798 continue; 799 } 800 m = m2; 801 err = bus_dmamap_load_mbuf_sg(sc->mbuf_dma_tag, 802 sc->txring_m_dmamap[sc->txring_hd_ptr], m, segs, 803 &nsegs, BUS_DMA_NOWAIT); 804 sc->txdefrags++; 805 } 806 if (err) { 807 /* Give up. */ 808 m_freem(m); 809 bus_dmamap_destroy(sc->mbuf_dma_tag, 810 sc->txring_m_dmamap[sc->txring_hd_ptr]); 811 sc->txring_m_dmamap[sc->txring_hd_ptr] = NULL; 812 sc->txdmamapfails++; 813 continue; 814 } 815 sc->txring_m[sc->txring_hd_ptr] = m; 816 817 /* Sync tx buffer with cache. */ 818 bus_dmamap_sync(sc->mbuf_dma_tag, 819 sc->txring_m_dmamap[sc->txring_hd_ptr], 820 BUS_DMASYNC_PREWRITE); 821 822 /* Set wrap flag if next packet might run off end of ring. */ 823 wrap = sc->txring_hd_ptr + nsegs + TX_MAX_DMA_SEGS >= 824 CGEM_NUM_TX_DESCS; 825 826 /* 827 * Fill in the TX descriptors back to front so that USED bit in 828 * first descriptor is cleared last. 829 */ 830 for (i = nsegs - 1; i >= 0; i--) { 831 /* Descriptor address. */ 832 sc->txring[sc->txring_hd_ptr + i].addr = 833 segs[i].ds_addr; 834 #ifdef CGEM64 835 sc->txring[sc->txring_hd_ptr + i].addrhi = 836 segs[i].ds_addr >> 32; 837 #endif 838 /* Descriptor control word. */ 839 ctl = segs[i].ds_len; 840 if (i == nsegs - 1) { 841 ctl |= CGEM_TXDESC_LAST_BUF; 842 if (wrap) 843 ctl |= CGEM_TXDESC_WRAP; 844 } 845 sc->txring[sc->txring_hd_ptr + i].ctl = ctl; 846 847 if (i != 0) 848 sc->txring_m[sc->txring_hd_ptr + i] = NULL; 849 } 850 851 if (wrap) 852 sc->txring_hd_ptr = 0; 853 else 854 sc->txring_hd_ptr += nsegs; 855 sc->txring_queued += nsegs; 856 857 /* Kick the transmitter. */ 858 WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow | 859 CGEM_NET_CTRL_START_TX); 860 861 /* If there is a BPF listener, bounce a copy to him. */ 862 ETHER_BPF_MTAP(ifp, m); 863 } 864 } 865 866 static void 867 cgem_start(if_t ifp) 868 { 869 struct cgem_softc *sc = (struct cgem_softc *) if_getsoftc(ifp); 870 871 CGEM_LOCK(sc); 872 cgem_start_locked(ifp); 873 CGEM_UNLOCK(sc); 874 } 875 876 static void 877 cgem_poll_hw_stats(struct cgem_softc *sc) 878 { 879 uint32_t n; 880 881 CGEM_ASSERT_LOCKED(sc); 882 883 sc->stats.tx_bytes += RD4(sc, CGEM_OCTETS_TX_BOT); 884 sc->stats.tx_bytes += (uint64_t)RD4(sc, CGEM_OCTETS_TX_TOP) << 32; 885 886 sc->stats.tx_frames += RD4(sc, CGEM_FRAMES_TX); 887 sc->stats.tx_frames_bcast += RD4(sc, CGEM_BCAST_FRAMES_TX); 888 sc->stats.tx_frames_multi += RD4(sc, CGEM_MULTI_FRAMES_TX); 889 sc->stats.tx_frames_pause += RD4(sc, CGEM_PAUSE_FRAMES_TX); 890 sc->stats.tx_frames_64b += RD4(sc, CGEM_FRAMES_64B_TX); 891 sc->stats.tx_frames_65to127b += RD4(sc, CGEM_FRAMES_65_127B_TX); 892 sc->stats.tx_frames_128to255b += RD4(sc, CGEM_FRAMES_128_255B_TX); 893 sc->stats.tx_frames_256to511b += RD4(sc, CGEM_FRAMES_256_511B_TX); 894 sc->stats.tx_frames_512to1023b += RD4(sc, CGEM_FRAMES_512_1023B_TX); 895 sc->stats.tx_frames_1024to1536b += RD4(sc, CGEM_FRAMES_1024_1518B_TX); 896 sc->stats.tx_under_runs += RD4(sc, CGEM_TX_UNDERRUNS); 897 898 n = RD4(sc, CGEM_SINGLE_COLL_FRAMES); 899 sc->stats.tx_single_collisn += n; 900 if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, n); 901 n = RD4(sc, CGEM_MULTI_COLL_FRAMES); 902 sc->stats.tx_multi_collisn += n; 903 if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, n); 904 n = RD4(sc, CGEM_EXCESSIVE_COLL_FRAMES); 905 sc->stats.tx_excsv_collisn += n; 906 if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, n); 907 n = RD4(sc, CGEM_LATE_COLL); 908 sc->stats.tx_late_collisn += n; 909 if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, n); 910 911 sc->stats.tx_deferred_frames += RD4(sc, CGEM_DEFERRED_TX_FRAMES); 912 sc->stats.tx_carrier_sense_errs += RD4(sc, CGEM_CARRIER_SENSE_ERRS); 913 914 sc->stats.rx_bytes += RD4(sc, CGEM_OCTETS_RX_BOT); 915 sc->stats.rx_bytes += (uint64_t)RD4(sc, CGEM_OCTETS_RX_TOP) << 32; 916 917 sc->stats.rx_frames += RD4(sc, CGEM_FRAMES_RX); 918 sc->stats.rx_frames_bcast += RD4(sc, CGEM_BCAST_FRAMES_RX); 919 sc->stats.rx_frames_multi += RD4(sc, CGEM_MULTI_FRAMES_RX); 920 sc->stats.rx_frames_pause += RD4(sc, CGEM_PAUSE_FRAMES_RX); 921 sc->stats.rx_frames_64b += RD4(sc, CGEM_FRAMES_64B_RX); 922 sc->stats.rx_frames_65to127b += RD4(sc, CGEM_FRAMES_65_127B_RX); 923 sc->stats.rx_frames_128to255b += RD4(sc, CGEM_FRAMES_128_255B_RX); 924 sc->stats.rx_frames_256to511b += RD4(sc, CGEM_FRAMES_256_511B_RX); 925 sc->stats.rx_frames_512to1023b += RD4(sc, CGEM_FRAMES_512_1023B_RX); 926 sc->stats.rx_frames_1024to1536b += RD4(sc, CGEM_FRAMES_1024_1518B_RX); 927 sc->stats.rx_frames_undersize += RD4(sc, CGEM_UNDERSZ_RX); 928 sc->stats.rx_frames_oversize += RD4(sc, CGEM_OVERSZ_RX); 929 sc->stats.rx_frames_jabber += RD4(sc, CGEM_JABBERS_RX); 930 sc->stats.rx_frames_fcs_errs += RD4(sc, CGEM_FCS_ERRS); 931 sc->stats.rx_frames_length_errs += RD4(sc, CGEM_LENGTH_FIELD_ERRS); 932 sc->stats.rx_symbol_errs += RD4(sc, CGEM_RX_SYMBOL_ERRS); 933 sc->stats.rx_align_errs += RD4(sc, CGEM_ALIGN_ERRS); 934 sc->stats.rx_resource_errs += RD4(sc, CGEM_RX_RESOURCE_ERRS); 935 sc->stats.rx_overrun_errs += RD4(sc, CGEM_RX_OVERRUN_ERRS); 936 sc->stats.rx_ip_hdr_csum_errs += RD4(sc, CGEM_IP_HDR_CKSUM_ERRS); 937 sc->stats.rx_tcp_csum_errs += RD4(sc, CGEM_TCP_CKSUM_ERRS); 938 sc->stats.rx_udp_csum_errs += RD4(sc, CGEM_UDP_CKSUM_ERRS); 939 } 940 941 static void 942 cgem_tick(void *arg) 943 { 944 struct cgem_softc *sc = (struct cgem_softc *)arg; 945 struct mii_data *mii; 946 947 CGEM_ASSERT_LOCKED(sc); 948 949 /* Poll the phy. */ 950 if (sc->miibus != NULL) { 951 mii = device_get_softc(sc->miibus); 952 mii_tick(mii); 953 } 954 955 /* Poll statistics registers. */ 956 cgem_poll_hw_stats(sc); 957 958 /* Check for receiver hang. */ 959 if (sc->rxhangwar && sc->rx_frames_prev == sc->stats.rx_frames) { 960 /* 961 * Reset receiver logic by toggling RX_EN bit. 1usec 962 * delay is necessary especially when operating at 100mbps 963 * and 10mbps speeds. 964 */ 965 WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow & 966 ~CGEM_NET_CTRL_RX_EN); 967 DELAY(1); 968 WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow); 969 } 970 sc->rx_frames_prev = sc->stats.rx_frames; 971 972 /* Next callout in one second. */ 973 callout_reset(&sc->tick_ch, hz, cgem_tick, sc); 974 } 975 976 /* Interrupt handler. */ 977 static void 978 cgem_intr(void *arg) 979 { 980 struct cgem_softc *sc = (struct cgem_softc *)arg; 981 if_t ifp = sc->ifp; 982 uint32_t istatus; 983 984 CGEM_LOCK(sc); 985 986 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { 987 CGEM_UNLOCK(sc); 988 return; 989 } 990 991 /* Read interrupt status and immediately clear the bits. */ 992 istatus = RD4(sc, CGEM_INTR_STAT); 993 WR4(sc, CGEM_INTR_STAT, istatus); 994 995 /* Packets received. */ 996 if ((istatus & CGEM_INTR_RX_COMPLETE) != 0) 997 cgem_recv(sc); 998 999 /* Free up any completed transmit buffers. */ 1000 cgem_clean_tx(sc); 1001 1002 /* Hresp not ok. Something is very bad with DMA. Try to clear. */ 1003 if ((istatus & CGEM_INTR_HRESP_NOT_OK) != 0) { 1004 device_printf(sc->dev, 1005 "cgem_intr: hresp not okay! rx_status=0x%x\n", 1006 RD4(sc, CGEM_RX_STAT)); 1007 WR4(sc, CGEM_RX_STAT, CGEM_RX_STAT_HRESP_NOT_OK); 1008 } 1009 1010 /* Receiver overrun. */ 1011 if ((istatus & CGEM_INTR_RX_OVERRUN) != 0) { 1012 /* Clear status bit. */ 1013 WR4(sc, CGEM_RX_STAT, CGEM_RX_STAT_OVERRUN); 1014 sc->rxoverruns++; 1015 } 1016 1017 /* Receiver ran out of bufs. */ 1018 if ((istatus & CGEM_INTR_RX_USED_READ) != 0) { 1019 WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow | 1020 CGEM_NET_CTRL_FLUSH_DPRAM_PKT); 1021 cgem_fill_rqueue(sc); 1022 sc->rxnobufs++; 1023 } 1024 1025 /* Restart transmitter if needed. */ 1026 if (!if_sendq_empty(ifp)) 1027 cgem_start_locked(ifp); 1028 1029 CGEM_UNLOCK(sc); 1030 } 1031 1032 /* Reset hardware. */ 1033 static void 1034 cgem_reset(struct cgem_softc *sc) 1035 { 1036 1037 CGEM_ASSERT_LOCKED(sc); 1038 1039 /* Determine data bus width from design configuration register. */ 1040 switch (RD4(sc, CGEM_DESIGN_CFG1) & 1041 CGEM_DESIGN_CFG1_DMA_BUS_WIDTH_MASK) { 1042 case CGEM_DESIGN_CFG1_DMA_BUS_WIDTH_64: 1043 sc->net_cfg_shadow = CGEM_NET_CFG_DBUS_WIDTH_64; 1044 break; 1045 case CGEM_DESIGN_CFG1_DMA_BUS_WIDTH_128: 1046 sc->net_cfg_shadow = CGEM_NET_CFG_DBUS_WIDTH_128; 1047 break; 1048 default: 1049 sc->net_cfg_shadow = CGEM_NET_CFG_DBUS_WIDTH_32; 1050 } 1051 1052 WR4(sc, CGEM_NET_CTRL, 0); 1053 WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow); 1054 WR4(sc, CGEM_NET_CTRL, CGEM_NET_CTRL_CLR_STAT_REGS); 1055 WR4(sc, CGEM_TX_STAT, CGEM_TX_STAT_ALL); 1056 WR4(sc, CGEM_RX_STAT, CGEM_RX_STAT_ALL); 1057 WR4(sc, CGEM_INTR_DIS, CGEM_INTR_ALL); 1058 WR4(sc, CGEM_HASH_BOT, 0); 1059 WR4(sc, CGEM_HASH_TOP, 0); 1060 WR4(sc, CGEM_TX_QBAR, 0); /* manual says do this. */ 1061 WR4(sc, CGEM_RX_QBAR, 0); 1062 1063 /* Get management port running even if interface is down. */ 1064 sc->net_cfg_shadow |= CGEM_NET_CFG_MDC_CLK_DIV_48; 1065 WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow); 1066 1067 sc->net_ctl_shadow = CGEM_NET_CTRL_MGMT_PORT_EN; 1068 WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow); 1069 } 1070 1071 /* Bring up the hardware. */ 1072 static void 1073 cgem_config(struct cgem_softc *sc) 1074 { 1075 if_t ifp = sc->ifp; 1076 uint32_t dma_cfg; 1077 u_char *eaddr = if_getlladdr(ifp); 1078 1079 CGEM_ASSERT_LOCKED(sc); 1080 1081 /* Program Net Config Register. */ 1082 sc->net_cfg_shadow &= (CGEM_NET_CFG_MDC_CLK_DIV_MASK | 1083 CGEM_NET_CFG_DBUS_WIDTH_MASK); 1084 sc->net_cfg_shadow |= (CGEM_NET_CFG_FCS_REMOVE | 1085 CGEM_NET_CFG_RX_BUF_OFFSET(ETHER_ALIGN) | 1086 CGEM_NET_CFG_GIGE_EN | CGEM_NET_CFG_1536RXEN | 1087 CGEM_NET_CFG_FULL_DUPLEX | CGEM_NET_CFG_SPEED100); 1088 1089 /* Check connection type, enable SGMII bits if necessary. */ 1090 if (sc->phy_contype == MII_CONTYPE_SGMII) { 1091 sc->net_cfg_shadow |= CGEM_NET_CFG_SGMII_EN; 1092 sc->net_cfg_shadow |= CGEM_NET_CFG_PCS_SEL; 1093 } 1094 1095 /* Enable receive checksum offloading? */ 1096 if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) 1097 sc->net_cfg_shadow |= CGEM_NET_CFG_RX_CHKSUM_OFFLD_EN; 1098 1099 WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow); 1100 1101 /* Program DMA Config Register. */ 1102 dma_cfg = CGEM_DMA_CFG_RX_BUF_SIZE(MCLBYTES) | 1103 CGEM_DMA_CFG_RX_PKTBUF_MEMSZ_SEL_8K | 1104 CGEM_DMA_CFG_TX_PKTBUF_MEMSZ_SEL | 1105 CGEM_DMA_CFG_AHB_FIXED_BURST_LEN_16 | 1106 #ifdef CGEM64 1107 CGEM_DMA_CFG_ADDR_BUS_64 | 1108 #endif 1109 CGEM_DMA_CFG_DISC_WHEN_NO_AHB; 1110 1111 /* Enable transmit checksum offloading? */ 1112 if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0) 1113 dma_cfg |= CGEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN; 1114 1115 WR4(sc, CGEM_DMA_CFG, dma_cfg); 1116 1117 /* Write the rx and tx descriptor ring addresses to the QBAR regs. */ 1118 WR4(sc, CGEM_RX_QBAR, (uint32_t)sc->rxring_physaddr); 1119 WR4(sc, CGEM_TX_QBAR, (uint32_t)sc->txring_physaddr); 1120 #ifdef CGEM64 1121 WR4(sc, CGEM_RX_QBAR_HI, (uint32_t)(sc->rxring_physaddr >> 32)); 1122 WR4(sc, CGEM_TX_QBAR_HI, (uint32_t)(sc->txring_physaddr >> 32)); 1123 #endif 1124 1125 /* Enable rx and tx. */ 1126 sc->net_ctl_shadow |= (CGEM_NET_CTRL_TX_EN | CGEM_NET_CTRL_RX_EN); 1127 WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow); 1128 1129 /* Set receive address in case it changed. */ 1130 WR4(sc, CGEM_SPEC_ADDR_LOW(0), (eaddr[3] << 24) | 1131 (eaddr[2] << 16) | (eaddr[1] << 8) | eaddr[0]); 1132 WR4(sc, CGEM_SPEC_ADDR_HI(0), (eaddr[5] << 8) | eaddr[4]); 1133 1134 /* Set up interrupts. */ 1135 WR4(sc, CGEM_INTR_EN, CGEM_INTR_RX_COMPLETE | CGEM_INTR_RX_OVERRUN | 1136 CGEM_INTR_TX_USED_READ | CGEM_INTR_RX_USED_READ | 1137 CGEM_INTR_HRESP_NOT_OK); 1138 } 1139 1140 /* Turn on interface and load up receive ring with buffers. */ 1141 static void 1142 cgem_init_locked(struct cgem_softc *sc) 1143 { 1144 struct mii_data *mii; 1145 1146 CGEM_ASSERT_LOCKED(sc); 1147 1148 if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) != 0) 1149 return; 1150 1151 cgem_config(sc); 1152 cgem_fill_rqueue(sc); 1153 1154 if_setdrvflagbits(sc->ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE); 1155 1156 if (sc->miibus != NULL) { 1157 mii = device_get_softc(sc->miibus); 1158 mii_mediachg(mii); 1159 } 1160 1161 callout_reset(&sc->tick_ch, hz, cgem_tick, sc); 1162 } 1163 1164 static void 1165 cgem_init(void *arg) 1166 { 1167 struct cgem_softc *sc = (struct cgem_softc *)arg; 1168 1169 CGEM_LOCK(sc); 1170 cgem_init_locked(sc); 1171 CGEM_UNLOCK(sc); 1172 } 1173 1174 /* Turn off interface. Free up any buffers in transmit or receive queues. */ 1175 static void 1176 cgem_stop(struct cgem_softc *sc) 1177 { 1178 int i; 1179 1180 CGEM_ASSERT_LOCKED(sc); 1181 1182 callout_stop(&sc->tick_ch); 1183 1184 /* Shut down hardware. */ 1185 cgem_reset(sc); 1186 1187 /* Clear out transmit queue. */ 1188 memset(sc->txring, 0, CGEM_NUM_TX_DESCS * sizeof(struct cgem_tx_desc)); 1189 for (i = 0; i < CGEM_NUM_TX_DESCS; i++) { 1190 sc->txring[i].ctl = CGEM_TXDESC_USED; 1191 if (sc->txring_m[i]) { 1192 /* Unload and destroy dmamap. */ 1193 bus_dmamap_unload(sc->mbuf_dma_tag, 1194 sc->txring_m_dmamap[i]); 1195 bus_dmamap_destroy(sc->mbuf_dma_tag, 1196 sc->txring_m_dmamap[i]); 1197 sc->txring_m_dmamap[i] = NULL; 1198 m_freem(sc->txring_m[i]); 1199 sc->txring_m[i] = NULL; 1200 } 1201 } 1202 sc->txring[CGEM_NUM_TX_DESCS - 1].ctl |= CGEM_TXDESC_WRAP; 1203 1204 sc->txring_hd_ptr = 0; 1205 sc->txring_tl_ptr = 0; 1206 sc->txring_queued = 0; 1207 1208 /* Clear out receive queue. */ 1209 memset(sc->rxring, 0, CGEM_NUM_RX_DESCS * sizeof(struct cgem_rx_desc)); 1210 for (i = 0; i < CGEM_NUM_RX_DESCS; i++) { 1211 sc->rxring[i].addr = CGEM_RXDESC_OWN; 1212 if (sc->rxring_m[i]) { 1213 /* Unload and destroy dmamap. */ 1214 bus_dmamap_unload(sc->mbuf_dma_tag, 1215 sc->rxring_m_dmamap[i]); 1216 bus_dmamap_destroy(sc->mbuf_dma_tag, 1217 sc->rxring_m_dmamap[i]); 1218 sc->rxring_m_dmamap[i] = NULL; 1219 1220 m_freem(sc->rxring_m[i]); 1221 sc->rxring_m[i] = NULL; 1222 } 1223 } 1224 sc->rxring[CGEM_NUM_RX_DESCS - 1].addr |= CGEM_RXDESC_WRAP; 1225 1226 sc->rxring_hd_ptr = 0; 1227 sc->rxring_tl_ptr = 0; 1228 sc->rxring_queued = 0; 1229 1230 /* Force next statchg or linkchg to program net config register. */ 1231 sc->mii_media_active = 0; 1232 } 1233 1234 static int 1235 cgem_ioctl(if_t ifp, u_long cmd, caddr_t data) 1236 { 1237 struct cgem_softc *sc = if_getsoftc(ifp); 1238 struct ifreq *ifr = (struct ifreq *)data; 1239 struct mii_data *mii; 1240 int error = 0, mask; 1241 1242 switch (cmd) { 1243 case SIOCSIFFLAGS: 1244 CGEM_LOCK(sc); 1245 if ((if_getflags(ifp) & IFF_UP) != 0) { 1246 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 1247 if (((if_getflags(ifp) ^ sc->if_old_flags) & 1248 (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 1249 cgem_rx_filter(sc); 1250 } 1251 } else { 1252 cgem_init_locked(sc); 1253 } 1254 } else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 1255 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 1256 cgem_stop(sc); 1257 } 1258 sc->if_old_flags = if_getflags(ifp); 1259 CGEM_UNLOCK(sc); 1260 break; 1261 1262 case SIOCADDMULTI: 1263 case SIOCDELMULTI: 1264 /* Set up multi-cast filters. */ 1265 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 1266 CGEM_LOCK(sc); 1267 cgem_rx_filter(sc); 1268 CGEM_UNLOCK(sc); 1269 } 1270 break; 1271 1272 case SIOCSIFMEDIA: 1273 case SIOCGIFMEDIA: 1274 if (sc->miibus == NULL) 1275 return (ENXIO); 1276 mii = device_get_softc(sc->miibus); 1277 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); 1278 break; 1279 1280 case SIOCSIFCAP: 1281 CGEM_LOCK(sc); 1282 mask = if_getcapenable(ifp) ^ ifr->ifr_reqcap; 1283 1284 if ((mask & IFCAP_TXCSUM) != 0) { 1285 if ((ifr->ifr_reqcap & IFCAP_TXCSUM) != 0) { 1286 /* Turn on TX checksumming. */ 1287 if_setcapenablebit(ifp, IFCAP_TXCSUM | 1288 IFCAP_TXCSUM_IPV6, 0); 1289 if_sethwassistbits(ifp, CGEM_CKSUM_ASSIST, 0); 1290 1291 WR4(sc, CGEM_DMA_CFG, 1292 RD4(sc, CGEM_DMA_CFG) | 1293 CGEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN); 1294 } else { 1295 /* Turn off TX checksumming. */ 1296 if_setcapenablebit(ifp, 0, IFCAP_TXCSUM | 1297 IFCAP_TXCSUM_IPV6); 1298 if_sethwassistbits(ifp, 0, CGEM_CKSUM_ASSIST); 1299 1300 WR4(sc, CGEM_DMA_CFG, 1301 RD4(sc, CGEM_DMA_CFG) & 1302 ~CGEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN); 1303 } 1304 } 1305 if ((mask & IFCAP_RXCSUM) != 0) { 1306 if ((ifr->ifr_reqcap & IFCAP_RXCSUM) != 0) { 1307 /* Turn on RX checksumming. */ 1308 if_setcapenablebit(ifp, IFCAP_RXCSUM | 1309 IFCAP_RXCSUM_IPV6, 0); 1310 sc->net_cfg_shadow |= 1311 CGEM_NET_CFG_RX_CHKSUM_OFFLD_EN; 1312 WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow); 1313 } else { 1314 /* Turn off RX checksumming. */ 1315 if_setcapenablebit(ifp, 0, IFCAP_RXCSUM | 1316 IFCAP_RXCSUM_IPV6); 1317 sc->net_cfg_shadow &= 1318 ~CGEM_NET_CFG_RX_CHKSUM_OFFLD_EN; 1319 WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow); 1320 } 1321 } 1322 if ((if_getcapenable(ifp) & (IFCAP_RXCSUM | IFCAP_TXCSUM)) == 1323 (IFCAP_RXCSUM | IFCAP_TXCSUM)) 1324 if_setcapenablebit(ifp, IFCAP_VLAN_HWCSUM, 0); 1325 else 1326 if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWCSUM); 1327 1328 CGEM_UNLOCK(sc); 1329 break; 1330 default: 1331 error = ether_ioctl(ifp, cmd, data); 1332 break; 1333 } 1334 1335 return (error); 1336 } 1337 1338 /* MII bus support routines. 1339 */ 1340 static int 1341 cgem_ifmedia_upd(if_t ifp) 1342 { 1343 struct cgem_softc *sc = (struct cgem_softc *) if_getsoftc(ifp); 1344 struct mii_data *mii; 1345 struct mii_softc *miisc; 1346 int error = 0; 1347 1348 mii = device_get_softc(sc->miibus); 1349 CGEM_LOCK(sc); 1350 if ((if_getflags(ifp) & IFF_UP) != 0) { 1351 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 1352 PHY_RESET(miisc); 1353 error = mii_mediachg(mii); 1354 } 1355 CGEM_UNLOCK(sc); 1356 1357 return (error); 1358 } 1359 1360 static void 1361 cgem_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr) 1362 { 1363 struct cgem_softc *sc = (struct cgem_softc *) if_getsoftc(ifp); 1364 struct mii_data *mii; 1365 1366 mii = device_get_softc(sc->miibus); 1367 CGEM_LOCK(sc); 1368 mii_pollstat(mii); 1369 ifmr->ifm_active = mii->mii_media_active; 1370 ifmr->ifm_status = mii->mii_media_status; 1371 CGEM_UNLOCK(sc); 1372 } 1373 1374 static int 1375 cgem_miibus_readreg(device_t dev, int phy, int reg) 1376 { 1377 struct cgem_softc *sc = device_get_softc(dev); 1378 int tries, val; 1379 1380 WR4(sc, CGEM_PHY_MAINT, CGEM_PHY_MAINT_CLAUSE_22 | 1381 CGEM_PHY_MAINT_MUST_10 | CGEM_PHY_MAINT_OP_READ | 1382 (phy << CGEM_PHY_MAINT_PHY_ADDR_SHIFT) | 1383 (reg << CGEM_PHY_MAINT_REG_ADDR_SHIFT)); 1384 1385 /* Wait for completion. */ 1386 tries=0; 1387 while ((RD4(sc, CGEM_NET_STAT) & CGEM_NET_STAT_PHY_MGMT_IDLE) == 0) { 1388 DELAY(5); 1389 if (++tries > 200) { 1390 device_printf(dev, "phy read timeout: %d\n", reg); 1391 return (-1); 1392 } 1393 } 1394 1395 val = RD4(sc, CGEM_PHY_MAINT) & CGEM_PHY_MAINT_DATA_MASK; 1396 1397 if (reg == MII_EXTSR) 1398 /* 1399 * MAC does not support half-duplex at gig speeds. 1400 * Let mii(4) exclude the capability. 1401 */ 1402 val &= ~(EXTSR_1000XHDX | EXTSR_1000THDX); 1403 1404 return (val); 1405 } 1406 1407 static int 1408 cgem_miibus_writereg(device_t dev, int phy, int reg, int data) 1409 { 1410 struct cgem_softc *sc = device_get_softc(dev); 1411 int tries; 1412 1413 WR4(sc, CGEM_PHY_MAINT, CGEM_PHY_MAINT_CLAUSE_22 | 1414 CGEM_PHY_MAINT_MUST_10 | CGEM_PHY_MAINT_OP_WRITE | 1415 (phy << CGEM_PHY_MAINT_PHY_ADDR_SHIFT) | 1416 (reg << CGEM_PHY_MAINT_REG_ADDR_SHIFT) | 1417 (data & CGEM_PHY_MAINT_DATA_MASK)); 1418 1419 /* Wait for completion. */ 1420 tries = 0; 1421 while ((RD4(sc, CGEM_NET_STAT) & CGEM_NET_STAT_PHY_MGMT_IDLE) == 0) { 1422 DELAY(5); 1423 if (++tries > 200) { 1424 device_printf(dev, "phy write timeout: %d\n", reg); 1425 return (-1); 1426 } 1427 } 1428 1429 return (0); 1430 } 1431 1432 static void 1433 cgem_miibus_statchg(device_t dev) 1434 { 1435 struct cgem_softc *sc = device_get_softc(dev); 1436 struct mii_data *mii = device_get_softc(sc->miibus); 1437 1438 CGEM_ASSERT_LOCKED(sc); 1439 1440 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 1441 (IFM_ACTIVE | IFM_AVALID) && 1442 sc->mii_media_active != mii->mii_media_active) 1443 cgem_mediachange(sc, mii); 1444 } 1445 1446 static void 1447 cgem_miibus_linkchg(device_t dev) 1448 { 1449 struct cgem_softc *sc = device_get_softc(dev); 1450 struct mii_data *mii = device_get_softc(sc->miibus); 1451 1452 CGEM_ASSERT_LOCKED(sc); 1453 1454 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 1455 (IFM_ACTIVE | IFM_AVALID) && 1456 sc->mii_media_active != mii->mii_media_active) 1457 cgem_mediachange(sc, mii); 1458 } 1459 1460 /* 1461 * Overridable weak symbol cgem_set_ref_clk(). This allows platforms to 1462 * provide a function to set the cgem's reference clock. 1463 */ 1464 static int __used 1465 cgem_default_set_ref_clk(int unit, int frequency) 1466 { 1467 1468 return 0; 1469 } 1470 __weak_reference(cgem_default_set_ref_clk, cgem_set_ref_clk); 1471 1472 /* Call to set reference clock and network config bits according to media. */ 1473 static void 1474 cgem_mediachange(struct cgem_softc *sc, struct mii_data *mii) 1475 { 1476 int ref_clk_freq; 1477 1478 CGEM_ASSERT_LOCKED(sc); 1479 1480 /* Update hardware to reflect media. */ 1481 sc->net_cfg_shadow &= ~(CGEM_NET_CFG_SPEED100 | CGEM_NET_CFG_GIGE_EN | 1482 CGEM_NET_CFG_FULL_DUPLEX); 1483 1484 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1485 case IFM_1000_T: 1486 sc->net_cfg_shadow |= (CGEM_NET_CFG_SPEED100 | 1487 CGEM_NET_CFG_GIGE_EN); 1488 ref_clk_freq = 125000000; 1489 break; 1490 case IFM_100_TX: 1491 sc->net_cfg_shadow |= CGEM_NET_CFG_SPEED100; 1492 ref_clk_freq = 25000000; 1493 break; 1494 default: 1495 ref_clk_freq = 2500000; 1496 } 1497 1498 if ((mii->mii_media_active & IFM_FDX) != 0) 1499 sc->net_cfg_shadow |= CGEM_NET_CFG_FULL_DUPLEX; 1500 1501 WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow); 1502 1503 if (sc->ref_clk != NULL) { 1504 CGEM_UNLOCK(sc); 1505 if (clk_set_freq(sc->ref_clk, ref_clk_freq, 0)) 1506 device_printf(sc->dev, "could not set ref clk to %d\n", 1507 ref_clk_freq); 1508 CGEM_LOCK(sc); 1509 } 1510 1511 sc->mii_media_active = mii->mii_media_active; 1512 } 1513 1514 static void 1515 cgem_add_sysctls(device_t dev) 1516 { 1517 struct cgem_softc *sc = device_get_softc(dev); 1518 struct sysctl_ctx_list *ctx; 1519 struct sysctl_oid_list *child; 1520 struct sysctl_oid *tree; 1521 1522 ctx = device_get_sysctl_ctx(dev); 1523 child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev)); 1524 1525 SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rxbufs", CTLFLAG_RW, 1526 &sc->rxbufs, 0, "Number receive buffers to provide"); 1527 1528 SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rxhangwar", CTLFLAG_RW, 1529 &sc->rxhangwar, 0, "Enable receive hang work-around"); 1530 1531 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_rxoverruns", CTLFLAG_RD, 1532 &sc->rxoverruns, 0, "Receive overrun events"); 1533 1534 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_rxnobufs", CTLFLAG_RD, 1535 &sc->rxnobufs, 0, "Receive buf queue empty events"); 1536 1537 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_rxdmamapfails", CTLFLAG_RD, 1538 &sc->rxdmamapfails, 0, "Receive DMA map failures"); 1539 1540 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_txfull", CTLFLAG_RD, 1541 &sc->txfull, 0, "Transmit ring full events"); 1542 1543 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_txdmamapfails", CTLFLAG_RD, 1544 &sc->txdmamapfails, 0, "Transmit DMA map failures"); 1545 1546 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_txdefrags", CTLFLAG_RD, 1547 &sc->txdefrags, 0, "Transmit m_defrag() calls"); 1548 1549 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_txdefragfails", CTLFLAG_RD, 1550 &sc->txdefragfails, 0, "Transmit m_defrag() failures"); 1551 1552 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", 1553 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "GEM statistics"); 1554 child = SYSCTL_CHILDREN(tree); 1555 1556 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_bytes", CTLFLAG_RD, 1557 &sc->stats.tx_bytes, "Total bytes transmitted"); 1558 1559 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames", CTLFLAG_RD, 1560 &sc->stats.tx_frames, 0, "Total frames transmitted"); 1561 1562 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_bcast", CTLFLAG_RD, 1563 &sc->stats.tx_frames_bcast, 0, 1564 "Number broadcast frames transmitted"); 1565 1566 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_multi", CTLFLAG_RD, 1567 &sc->stats.tx_frames_multi, 0, 1568 "Number multicast frames transmitted"); 1569 1570 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_pause", 1571 CTLFLAG_RD, &sc->stats.tx_frames_pause, 0, 1572 "Number pause frames transmitted"); 1573 1574 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_64b", CTLFLAG_RD, 1575 &sc->stats.tx_frames_64b, 0, 1576 "Number frames transmitted of size 64 bytes or less"); 1577 1578 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_65to127b", CTLFLAG_RD, 1579 &sc->stats.tx_frames_65to127b, 0, 1580 "Number frames transmitted of size 65-127 bytes"); 1581 1582 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_128to255b", 1583 CTLFLAG_RD, &sc->stats.tx_frames_128to255b, 0, 1584 "Number frames transmitted of size 128-255 bytes"); 1585 1586 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_256to511b", 1587 CTLFLAG_RD, &sc->stats.tx_frames_256to511b, 0, 1588 "Number frames transmitted of size 256-511 bytes"); 1589 1590 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_512to1023b", 1591 CTLFLAG_RD, &sc->stats.tx_frames_512to1023b, 0, 1592 "Number frames transmitted of size 512-1023 bytes"); 1593 1594 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_1024to1536b", 1595 CTLFLAG_RD, &sc->stats.tx_frames_1024to1536b, 0, 1596 "Number frames transmitted of size 1024-1536 bytes"); 1597 1598 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_under_runs", 1599 CTLFLAG_RD, &sc->stats.tx_under_runs, 0, 1600 "Number transmit under-run events"); 1601 1602 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_single_collisn", 1603 CTLFLAG_RD, &sc->stats.tx_single_collisn, 0, 1604 "Number single-collision transmit frames"); 1605 1606 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_multi_collisn", 1607 CTLFLAG_RD, &sc->stats.tx_multi_collisn, 0, 1608 "Number multi-collision transmit frames"); 1609 1610 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_excsv_collisn", 1611 CTLFLAG_RD, &sc->stats.tx_excsv_collisn, 0, 1612 "Number excessive collision transmit frames"); 1613 1614 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_late_collisn", 1615 CTLFLAG_RD, &sc->stats.tx_late_collisn, 0, 1616 "Number late-collision transmit frames"); 1617 1618 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_deferred_frames", 1619 CTLFLAG_RD, &sc->stats.tx_deferred_frames, 0, 1620 "Number deferred transmit frames"); 1621 1622 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_carrier_sense_errs", 1623 CTLFLAG_RD, &sc->stats.tx_carrier_sense_errs, 0, 1624 "Number carrier sense errors on transmit"); 1625 1626 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_bytes", CTLFLAG_RD, 1627 &sc->stats.rx_bytes, "Total bytes received"); 1628 1629 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames", CTLFLAG_RD, 1630 &sc->stats.rx_frames, 0, "Total frames received"); 1631 1632 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_bcast", 1633 CTLFLAG_RD, &sc->stats.rx_frames_bcast, 0, 1634 "Number broadcast frames received"); 1635 1636 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_multi", 1637 CTLFLAG_RD, &sc->stats.rx_frames_multi, 0, 1638 "Number multicast frames received"); 1639 1640 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_pause", 1641 CTLFLAG_RD, &sc->stats.rx_frames_pause, 0, 1642 "Number pause frames received"); 1643 1644 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_64b", 1645 CTLFLAG_RD, &sc->stats.rx_frames_64b, 0, 1646 "Number frames received of size 64 bytes or less"); 1647 1648 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_65to127b", 1649 CTLFLAG_RD, &sc->stats.rx_frames_65to127b, 0, 1650 "Number frames received of size 65-127 bytes"); 1651 1652 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_128to255b", 1653 CTLFLAG_RD, &sc->stats.rx_frames_128to255b, 0, 1654 "Number frames received of size 128-255 bytes"); 1655 1656 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_256to511b", 1657 CTLFLAG_RD, &sc->stats.rx_frames_256to511b, 0, 1658 "Number frames received of size 256-511 bytes"); 1659 1660 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_512to1023b", 1661 CTLFLAG_RD, &sc->stats.rx_frames_512to1023b, 0, 1662 "Number frames received of size 512-1023 bytes"); 1663 1664 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_1024to1536b", 1665 CTLFLAG_RD, &sc->stats.rx_frames_1024to1536b, 0, 1666 "Number frames received of size 1024-1536 bytes"); 1667 1668 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_undersize", 1669 CTLFLAG_RD, &sc->stats.rx_frames_undersize, 0, 1670 "Number undersize frames received"); 1671 1672 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_oversize", 1673 CTLFLAG_RD, &sc->stats.rx_frames_oversize, 0, 1674 "Number oversize frames received"); 1675 1676 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_jabber", 1677 CTLFLAG_RD, &sc->stats.rx_frames_jabber, 0, 1678 "Number jabber frames received"); 1679 1680 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_fcs_errs", 1681 CTLFLAG_RD, &sc->stats.rx_frames_fcs_errs, 0, 1682 "Number frames received with FCS errors"); 1683 1684 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_length_errs", 1685 CTLFLAG_RD, &sc->stats.rx_frames_length_errs, 0, 1686 "Number frames received with length errors"); 1687 1688 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_symbol_errs", 1689 CTLFLAG_RD, &sc->stats.rx_symbol_errs, 0, 1690 "Number receive symbol errors"); 1691 1692 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_align_errs", 1693 CTLFLAG_RD, &sc->stats.rx_align_errs, 0, 1694 "Number receive alignment errors"); 1695 1696 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_resource_errs", 1697 CTLFLAG_RD, &sc->stats.rx_resource_errs, 0, 1698 "Number frames received when no rx buffer available"); 1699 1700 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_overrun_errs", 1701 CTLFLAG_RD, &sc->stats.rx_overrun_errs, 0, 1702 "Number frames received but not copied due to receive overrun"); 1703 1704 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_ip_hdr_csum_errs", 1705 CTLFLAG_RD, &sc->stats.rx_ip_hdr_csum_errs, 0, 1706 "Number frames received with IP header checksum errors"); 1707 1708 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_tcp_csum_errs", 1709 CTLFLAG_RD, &sc->stats.rx_tcp_csum_errs, 0, 1710 "Number frames received with TCP checksum errors"); 1711 1712 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_udp_csum_errs", 1713 CTLFLAG_RD, &sc->stats.rx_udp_csum_errs, 0, 1714 "Number frames received with UDP checksum errors"); 1715 } 1716 1717 static int 1718 cgem_probe(device_t dev) 1719 { 1720 1721 if (!ofw_bus_status_okay(dev)) 1722 return (ENXIO); 1723 1724 if (ofw_bus_search_compatible(dev, compat_data)->ocd_str == NULL) 1725 return (ENXIO); 1726 1727 device_set_desc(dev, "Cadence CGEM Gigabit Ethernet Interface"); 1728 return (0); 1729 } 1730 1731 static int 1732 cgem_attach(device_t dev) 1733 { 1734 struct cgem_softc *sc = device_get_softc(dev); 1735 if_t ifp = NULL; 1736 int rid, err; 1737 u_char eaddr[ETHER_ADDR_LEN]; 1738 int hwquirks; 1739 phandle_t node; 1740 1741 sc->dev = dev; 1742 CGEM_LOCK_INIT(sc); 1743 1744 /* Key off of compatible string and set hardware-specific options. */ 1745 hwquirks = ofw_bus_search_compatible(dev, compat_data)->ocd_data; 1746 if ((hwquirks & HWQUIRK_NEEDNULLQS) != 0) 1747 sc->neednullqs = 1; 1748 if ((hwquirks & HWQUIRK_RXHANGWAR) != 0) 1749 sc->rxhangwar = 1; 1750 if ((hwquirks & HWQUIRK_TXCLK) != 0) { 1751 if (clk_get_by_ofw_name(dev, 0, "tx_clk", &sc->ref_clk) != 0) 1752 device_printf(dev, 1753 "could not retrieve reference clock.\n"); 1754 else if (clk_enable(sc->ref_clk) != 0) 1755 device_printf(dev, "could not enable clock.\n"); 1756 } 1757 if ((hwquirks & HWQUIRK_PCLK) != 0) { 1758 if (clk_get_by_ofw_name(dev, 0, "pclk", &sc->ref_clk) != 0) 1759 device_printf(dev, 1760 "could not retrieve reference clock.\n"); 1761 else if (clk_enable(sc->ref_clk) != 0) 1762 device_printf(dev, "could not enable clock.\n"); 1763 } 1764 1765 node = ofw_bus_get_node(dev); 1766 sc->phy_contype = mii_fdt_get_contype(node); 1767 1768 /* Get memory resource. */ 1769 rid = 0; 1770 sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 1771 RF_ACTIVE); 1772 if (sc->mem_res == NULL) { 1773 device_printf(dev, "could not allocate memory resources.\n"); 1774 return (ENOMEM); 1775 } 1776 1777 /* Get IRQ resource. */ 1778 rid = 0; 1779 sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 1780 RF_ACTIVE); 1781 if (sc->irq_res == NULL) { 1782 device_printf(dev, "could not allocate interrupt resource.\n"); 1783 cgem_detach(dev); 1784 return (ENOMEM); 1785 } 1786 1787 /* Set up ifnet structure. */ 1788 ifp = sc->ifp = if_alloc(IFT_ETHER); 1789 if (ifp == NULL) { 1790 device_printf(dev, "could not allocate ifnet structure\n"); 1791 cgem_detach(dev); 1792 return (ENOMEM); 1793 } 1794 if_setsoftc(ifp, sc); 1795 if_initname(ifp, IF_CGEM_NAME, device_get_unit(dev)); 1796 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 1797 if_setinitfn(ifp, cgem_init); 1798 if_setioctlfn(ifp, cgem_ioctl); 1799 if_setstartfn(ifp, cgem_start); 1800 if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6 | 1801 IFCAP_VLAN_MTU | IFCAP_VLAN_HWCSUM, 0); 1802 if_setsendqlen(ifp, CGEM_NUM_TX_DESCS); 1803 if_setsendqready(ifp); 1804 1805 /* Disable hardware checksumming by default. */ 1806 if_sethwassist(ifp, 0); 1807 if_setcapenable(ifp, if_getcapabilities(ifp) & 1808 ~(IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6 | IFCAP_VLAN_HWCSUM)); 1809 1810 sc->if_old_flags = if_getflags(ifp); 1811 sc->rxbufs = DEFAULT_NUM_RX_BUFS; 1812 1813 /* Reset hardware. */ 1814 CGEM_LOCK(sc); 1815 cgem_reset(sc); 1816 CGEM_UNLOCK(sc); 1817 1818 /* Attach phy to mii bus. */ 1819 err = mii_attach(dev, &sc->miibus, ifp, 1820 cgem_ifmedia_upd, cgem_ifmedia_sts, BMSR_DEFCAPMASK, 1821 MII_PHY_ANY, MII_OFFSET_ANY, 0); 1822 if (err) 1823 device_printf(dev, "warning: attaching PHYs failed\n"); 1824 1825 /* Set up TX and RX descriptor area. */ 1826 err = cgem_setup_descs(sc); 1827 if (err) { 1828 device_printf(dev, "could not set up dma mem for descs.\n"); 1829 cgem_detach(dev); 1830 return (ENOMEM); 1831 } 1832 1833 /* Get a MAC address. */ 1834 cgem_get_mac(sc, eaddr); 1835 1836 /* Start ticks. */ 1837 callout_init_mtx(&sc->tick_ch, &sc->sc_mtx, 0); 1838 1839 ether_ifattach(ifp, eaddr); 1840 1841 err = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET | INTR_MPSAFE | 1842 INTR_EXCL, NULL, cgem_intr, sc, &sc->intrhand); 1843 if (err) { 1844 device_printf(dev, "could not set interrupt handler.\n"); 1845 ether_ifdetach(ifp); 1846 cgem_detach(dev); 1847 return (err); 1848 } 1849 1850 cgem_add_sysctls(dev); 1851 1852 return (0); 1853 } 1854 1855 static int 1856 cgem_detach(device_t dev) 1857 { 1858 struct cgem_softc *sc = device_get_softc(dev); 1859 int i; 1860 1861 if (sc == NULL) 1862 return (ENODEV); 1863 1864 if (device_is_attached(dev)) { 1865 CGEM_LOCK(sc); 1866 cgem_stop(sc); 1867 CGEM_UNLOCK(sc); 1868 callout_drain(&sc->tick_ch); 1869 if_setflagbits(sc->ifp, 0, IFF_UP); 1870 ether_ifdetach(sc->ifp); 1871 } 1872 1873 if (sc->miibus != NULL) { 1874 device_delete_child(dev, sc->miibus); 1875 sc->miibus = NULL; 1876 } 1877 1878 /* Release resources. */ 1879 if (sc->mem_res != NULL) { 1880 bus_release_resource(dev, SYS_RES_MEMORY, 1881 rman_get_rid(sc->mem_res), sc->mem_res); 1882 sc->mem_res = NULL; 1883 } 1884 if (sc->irq_res != NULL) { 1885 if (sc->intrhand) 1886 bus_teardown_intr(dev, sc->irq_res, sc->intrhand); 1887 bus_release_resource(dev, SYS_RES_IRQ, 1888 rman_get_rid(sc->irq_res), sc->irq_res); 1889 sc->irq_res = NULL; 1890 } 1891 1892 /* Release DMA resources. */ 1893 if (sc->rxring != NULL) { 1894 if (sc->rxring_physaddr != 0) { 1895 bus_dmamap_unload(sc->desc_dma_tag, 1896 sc->rxring_dma_map); 1897 sc->rxring_physaddr = 0; 1898 sc->txring_physaddr = 0; 1899 sc->null_qs_physaddr = 0; 1900 } 1901 bus_dmamem_free(sc->desc_dma_tag, sc->rxring, 1902 sc->rxring_dma_map); 1903 sc->rxring = NULL; 1904 sc->txring = NULL; 1905 sc->null_qs = NULL; 1906 1907 for (i = 0; i < CGEM_NUM_RX_DESCS; i++) 1908 if (sc->rxring_m_dmamap[i] != NULL) { 1909 bus_dmamap_destroy(sc->mbuf_dma_tag, 1910 sc->rxring_m_dmamap[i]); 1911 sc->rxring_m_dmamap[i] = NULL; 1912 } 1913 for (i = 0; i < CGEM_NUM_TX_DESCS; i++) 1914 if (sc->txring_m_dmamap[i] != NULL) { 1915 bus_dmamap_destroy(sc->mbuf_dma_tag, 1916 sc->txring_m_dmamap[i]); 1917 sc->txring_m_dmamap[i] = NULL; 1918 } 1919 } 1920 if (sc->desc_dma_tag != NULL) { 1921 bus_dma_tag_destroy(sc->desc_dma_tag); 1922 sc->desc_dma_tag = NULL; 1923 } 1924 if (sc->mbuf_dma_tag != NULL) { 1925 bus_dma_tag_destroy(sc->mbuf_dma_tag); 1926 sc->mbuf_dma_tag = NULL; 1927 } 1928 1929 if (sc->ref_clk != NULL) { 1930 clk_release(sc->ref_clk); 1931 sc->ref_clk = NULL; 1932 } 1933 1934 bus_generic_detach(dev); 1935 1936 CGEM_LOCK_DESTROY(sc); 1937 1938 return (0); 1939 } 1940 1941 static device_method_t cgem_methods[] = { 1942 /* Device interface */ 1943 DEVMETHOD(device_probe, cgem_probe), 1944 DEVMETHOD(device_attach, cgem_attach), 1945 DEVMETHOD(device_detach, cgem_detach), 1946 1947 /* MII interface */ 1948 DEVMETHOD(miibus_readreg, cgem_miibus_readreg), 1949 DEVMETHOD(miibus_writereg, cgem_miibus_writereg), 1950 DEVMETHOD(miibus_statchg, cgem_miibus_statchg), 1951 DEVMETHOD(miibus_linkchg, cgem_miibus_linkchg), 1952 1953 DEVMETHOD_END 1954 }; 1955 1956 static driver_t cgem_driver = { 1957 "cgem", 1958 cgem_methods, 1959 sizeof(struct cgem_softc), 1960 }; 1961 1962 DRIVER_MODULE(cgem, simplebus, cgem_driver, NULL, NULL); 1963 DRIVER_MODULE(miibus, cgem, miibus_driver, NULL, NULL); 1964 MODULE_DEPEND(cgem, miibus, 1, 1, 1); 1965 MODULE_DEPEND(cgem, ether, 1, 1, 1); 1966 SIMPLEBUS_PNP_INFO(compat_data); 1967