/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2012-2014 Thomas Skibo * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * A network interface driver for Cadence GEM Gigabit Ethernet * interface such as the one used in Xilinx Zynq-7000 SoC. * * Reference: Zynq-7000 All Programmable SoC Technical Reference Manual. * (v1.4) November 16, 2012. Xilinx doc UG585. GEM is covered in Ch. 16 * and register definitions are in appendix B.18. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #endif #include #include #include #include #include #include #include #include #include #if BUS_SPACE_MAXADDR > BUS_SPACE_MAXADDR_32BIT #define CGEM64 #endif #include #include "miibus_if.h" #define IF_CGEM_NAME "cgem" #define CGEM_NUM_RX_DESCS 512 /* size of receive descriptor ring */ #define CGEM_NUM_TX_DESCS 512 /* size of transmit descriptor ring */ /* Default for sysctl rxbufs. Must be < CGEM_NUM_RX_DESCS of course. */ #define DEFAULT_NUM_RX_BUFS 256 /* number of receive bufs to queue. */ #define TX_MAX_DMA_SEGS 8 /* maximum segs in a tx mbuf dma */ #define CGEM_CKSUM_ASSIST (CSUM_IP | CSUM_TCP | CSUM_UDP | \ CSUM_TCP_IPV6 | CSUM_UDP_IPV6) #define HWQUIRK_NONE 0 #define HWQUIRK_NEEDNULLQS 1 #define HWQUIRK_RXHANGWAR 2 #define HWQUIRK_TXCLK 4 #define HWQUIRK_PCLK 8 static struct ofw_compat_data compat_data[] = { { "cdns,zynq-gem", HWQUIRK_RXHANGWAR | HWQUIRK_TXCLK }, { "cdns,zynqmp-gem", HWQUIRK_NEEDNULLQS | HWQUIRK_TXCLK }, { "microchip,mpfs-mss-gem", HWQUIRK_NEEDNULLQS | HWQUIRK_TXCLK }, { "sifive,fu540-c000-gem", HWQUIRK_PCLK }, { "sifive,fu740-c000-gem", HWQUIRK_PCLK }, { "cdns,gem", HWQUIRK_NONE }, { "cdns,macb", HWQUIRK_NONE }, { "cadence,gem", HWQUIRK_NONE }, { NULL, 0 } }; struct cgem_softc { if_t ifp; struct mtx sc_mtx; device_t dev; device_t miibus; u_int mii_media_active; /* last active media */ int if_old_flags; struct resource *mem_res; struct resource *irq_res; void *intrhand; struct callout tick_ch; uint32_t net_ctl_shadow; uint32_t net_cfg_shadow; clk_t ref_clk; int neednullqs; int phy_contype; bus_dma_tag_t desc_dma_tag; bus_dma_tag_t mbuf_dma_tag; /* receive descriptor ring */ struct cgem_rx_desc *rxring; bus_addr_t rxring_physaddr; struct mbuf *rxring_m[CGEM_NUM_RX_DESCS]; bus_dmamap_t rxring_m_dmamap[CGEM_NUM_RX_DESCS]; int rxring_hd_ptr; /* where to put rcv bufs */ int rxring_tl_ptr; /* where to get receives */ int rxring_queued; /* how many rcv bufs queued */ bus_dmamap_t rxring_dma_map; int rxbufs; /* tunable number rcv bufs */ int rxhangwar; /* rx hang work-around */ u_int rxoverruns; /* rx overruns */ u_int rxnobufs; /* rx buf ring empty events */ u_int rxdmamapfails; /* rx dmamap failures */ uint32_t rx_frames_prev; /* transmit descriptor ring */ struct cgem_tx_desc *txring; bus_addr_t txring_physaddr; struct mbuf *txring_m[CGEM_NUM_TX_DESCS]; bus_dmamap_t txring_m_dmamap[CGEM_NUM_TX_DESCS]; int txring_hd_ptr; /* where to put next xmits */ int txring_tl_ptr; /* next xmit mbuf to free */ int txring_queued; /* num xmits segs queued */ u_int txfull; /* tx ring full events */ u_int txdefrags; /* tx calls to m_defrag() */ u_int txdefragfails; /* tx m_defrag() failures */ u_int txdmamapfails; /* tx dmamap failures */ /* null descriptor rings */ void *null_qs; bus_addr_t null_qs_physaddr; /* hardware provided statistics */ struct cgem_hw_stats { uint64_t tx_bytes; uint32_t tx_frames; uint32_t tx_frames_bcast; uint32_t tx_frames_multi; uint32_t tx_frames_pause; uint32_t tx_frames_64b; uint32_t tx_frames_65to127b; uint32_t tx_frames_128to255b; uint32_t tx_frames_256to511b; uint32_t tx_frames_512to1023b; uint32_t tx_frames_1024to1536b; uint32_t tx_under_runs; uint32_t tx_single_collisn; uint32_t tx_multi_collisn; uint32_t tx_excsv_collisn; uint32_t tx_late_collisn; uint32_t tx_deferred_frames; uint32_t tx_carrier_sense_errs; uint64_t rx_bytes; uint32_t rx_frames; uint32_t rx_frames_bcast; uint32_t rx_frames_multi; uint32_t rx_frames_pause; uint32_t rx_frames_64b; uint32_t rx_frames_65to127b; uint32_t rx_frames_128to255b; uint32_t rx_frames_256to511b; uint32_t rx_frames_512to1023b; uint32_t rx_frames_1024to1536b; uint32_t rx_frames_undersize; uint32_t rx_frames_oversize; uint32_t rx_frames_jabber; uint32_t rx_frames_fcs_errs; uint32_t rx_frames_length_errs; uint32_t rx_symbol_errs; uint32_t rx_align_errs; uint32_t rx_resource_errs; uint32_t rx_overrun_errs; uint32_t rx_ip_hdr_csum_errs; uint32_t rx_tcp_csum_errs; uint32_t rx_udp_csum_errs; } stats; }; #define RD4(sc, off) (bus_read_4((sc)->mem_res, (off))) #define WR4(sc, off, val) (bus_write_4((sc)->mem_res, (off), (val))) #define BARRIER(sc, off, len, flags) \ (bus_barrier((sc)->mem_res, (off), (len), (flags)) #define CGEM_LOCK(sc) mtx_lock(&(sc)->sc_mtx) #define CGEM_UNLOCK(sc) mtx_unlock(&(sc)->sc_mtx) #define CGEM_LOCK_INIT(sc) mtx_init(&(sc)->sc_mtx, \ device_get_nameunit((sc)->dev), MTX_NETWORK_LOCK, MTX_DEF) #define CGEM_LOCK_DESTROY(sc) mtx_destroy(&(sc)->sc_mtx) #define CGEM_ASSERT_LOCKED(sc) mtx_assert(&(sc)->sc_mtx, MA_OWNED) /* Allow platforms to optionally provide a way to set the reference clock. */ int cgem_set_ref_clk(int unit, int frequency); static int cgem_probe(device_t dev); static int cgem_attach(device_t dev); static int cgem_detach(device_t dev); static void cgem_tick(void *); static void cgem_intr(void *); static void cgem_mediachange(struct cgem_softc *, struct mii_data *); static void cgem_get_mac(struct cgem_softc *sc, u_char eaddr[]) { int i; uint32_t rnd; /* See if boot loader gave us a MAC address already. */ for (i = 0; i < 4; i++) { uint32_t low = RD4(sc, CGEM_SPEC_ADDR_LOW(i)); uint32_t high = RD4(sc, CGEM_SPEC_ADDR_HI(i)) & 0xffff; if (low != 0 || high != 0) { eaddr[0] = low & 0xff; eaddr[1] = (low >> 8) & 0xff; eaddr[2] = (low >> 16) & 0xff; eaddr[3] = (low >> 24) & 0xff; eaddr[4] = high & 0xff; eaddr[5] = (high >> 8) & 0xff; break; } } /* No MAC from boot loader? Assign a random one. */ if (i == 4) { rnd = arc4random(); eaddr[0] = 'b'; eaddr[1] = 's'; eaddr[2] = 'd'; eaddr[3] = (rnd >> 16) & 0xff; eaddr[4] = (rnd >> 8) & 0xff; eaddr[5] = rnd & 0xff; device_printf(sc->dev, "no mac address found, assigning " "random: %02x:%02x:%02x:%02x:%02x:%02x\n", eaddr[0], eaddr[1], eaddr[2], eaddr[3], eaddr[4], eaddr[5]); } /* Move address to first slot and zero out the rest. */ WR4(sc, CGEM_SPEC_ADDR_LOW(0), (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) | eaddr[0]); WR4(sc, CGEM_SPEC_ADDR_HI(0), (eaddr[5] << 8) | eaddr[4]); for (i = 1; i < 4; i++) { WR4(sc, CGEM_SPEC_ADDR_LOW(i), 0); WR4(sc, CGEM_SPEC_ADDR_HI(i), 0); } } /* * cgem_mac_hash(): map 48-bit address to a 6-bit hash. The 6-bit hash * corresponds to a bit in a 64-bit hash register. Setting that bit in the * hash register enables reception of all frames with a destination address * that hashes to that 6-bit value. * * The hash function is described in sec. 16.2.3 in the Zynq-7000 Tech * Reference Manual. Bits 0-5 in the hash are the exclusive-or of * every sixth bit in the destination address. */ static int cgem_mac_hash(u_char eaddr[]) { int hash; int i, j; hash = 0; for (i = 0; i < 6; i++) for (j = i; j < 48; j += 6) if ((eaddr[j >> 3] & (1 << (j & 7))) != 0) hash ^= (1 << i); return hash; } static u_int cgem_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) { uint32_t *hashes = arg; int index; index = cgem_mac_hash(LLADDR(sdl)); if (index > 31) hashes[0] |= (1U << (index - 32)); else hashes[1] |= (1U << index); return (1); } /* * After any change in rx flags or multi-cast addresses, set up hash registers * and net config register bits. */ static void cgem_rx_filter(struct cgem_softc *sc) { if_t ifp = sc->ifp; uint32_t hashes[2] = { 0, 0 }; sc->net_cfg_shadow &= ~(CGEM_NET_CFG_MULTI_HASH_EN | CGEM_NET_CFG_NO_BCAST | CGEM_NET_CFG_COPY_ALL); if ((if_getflags(ifp) & IFF_PROMISC) != 0) sc->net_cfg_shadow |= CGEM_NET_CFG_COPY_ALL; else { if ((if_getflags(ifp) & IFF_BROADCAST) == 0) sc->net_cfg_shadow |= CGEM_NET_CFG_NO_BCAST; if ((if_getflags(ifp) & IFF_ALLMULTI) != 0) { hashes[0] = 0xffffffff; hashes[1] = 0xffffffff; } else if_foreach_llmaddr(ifp, cgem_hash_maddr, hashes); if (hashes[0] != 0 || hashes[1] != 0) sc->net_cfg_shadow |= CGEM_NET_CFG_MULTI_HASH_EN; } WR4(sc, CGEM_HASH_TOP, hashes[0]); WR4(sc, CGEM_HASH_BOT, hashes[1]); WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow); } /* For bus_dmamap_load() callback. */ static void cgem_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { if (nsegs != 1 || error != 0) return; *(bus_addr_t *)arg = segs[0].ds_addr; } /* Set up null queues for priority queues we actually can't disable. */ static void cgem_null_qs(struct cgem_softc *sc) { struct cgem_rx_desc *rx_desc; struct cgem_tx_desc *tx_desc; uint32_t queue_mask; int n; /* Read design config register 6 to determine number of queues. */ queue_mask = (RD4(sc, CGEM_DESIGN_CFG6) & CGEM_DESIGN_CFG6_DMA_PRIO_Q_MASK) >> 1; if (queue_mask == 0) return; /* Create empty RX queue and empty TX buf queues. */ memset(sc->null_qs, 0, sizeof(struct cgem_rx_desc) + sizeof(struct cgem_tx_desc)); rx_desc = sc->null_qs; rx_desc->addr = CGEM_RXDESC_OWN | CGEM_RXDESC_WRAP; tx_desc = (struct cgem_tx_desc *)(rx_desc + 1); tx_desc->ctl = CGEM_TXDESC_USED | CGEM_TXDESC_WRAP; /* Point all valid ring base pointers to the null queues. */ for (n = 1; (queue_mask & 1) != 0; n++, queue_mask >>= 1) { WR4(sc, CGEM_RX_QN_BAR(n), sc->null_qs_physaddr); WR4(sc, CGEM_TX_QN_BAR(n), sc->null_qs_physaddr + sizeof(struct cgem_rx_desc)); } } /* Create DMA'able descriptor rings. */ static int cgem_setup_descs(struct cgem_softc *sc) { int i, err; int desc_rings_size = CGEM_NUM_RX_DESCS * sizeof(struct cgem_rx_desc) + CGEM_NUM_TX_DESCS * sizeof(struct cgem_tx_desc); if (sc->neednullqs) desc_rings_size += sizeof(struct cgem_rx_desc) + sizeof(struct cgem_tx_desc); sc->txring = NULL; sc->rxring = NULL; /* Allocate non-cached DMA space for RX and TX descriptors. */ err = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, #ifdef CGEM64 1ULL << 32, /* Do not cross a 4G boundary. */ #else 0, #endif BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, desc_rings_size, 1, desc_rings_size, 0, busdma_lock_mutex, &sc->sc_mtx, &sc->desc_dma_tag); if (err) return (err); /* Set up a bus_dma_tag for mbufs. */ err = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, TX_MAX_DMA_SEGS, MCLBYTES, 0, busdma_lock_mutex, &sc->sc_mtx, &sc->mbuf_dma_tag); if (err) return (err); /* * Allocate DMA memory. We allocate transmit, receive and null * descriptor queues all at once because the hardware only provides * one register for the upper 32 bits of rx and tx descriptor queues * hardware addresses. */ err = bus_dmamem_alloc(sc->desc_dma_tag, (void **)&sc->rxring, BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->rxring_dma_map); if (err) return (err); /* Load descriptor DMA memory. */ err = bus_dmamap_load(sc->desc_dma_tag, sc->rxring_dma_map, (void *)sc->rxring, desc_rings_size, cgem_getaddr, &sc->rxring_physaddr, BUS_DMA_NOWAIT); if (err) return (err); /* Initialize RX descriptors. */ for (i = 0; i < CGEM_NUM_RX_DESCS; i++) { sc->rxring[i].addr = CGEM_RXDESC_OWN; sc->rxring[i].ctl = 0; sc->rxring_m[i] = NULL; sc->rxring_m_dmamap[i] = NULL; } sc->rxring[CGEM_NUM_RX_DESCS - 1].addr |= CGEM_RXDESC_WRAP; sc->rxring_hd_ptr = 0; sc->rxring_tl_ptr = 0; sc->rxring_queued = 0; sc->txring = (struct cgem_tx_desc *)(sc->rxring + CGEM_NUM_RX_DESCS); sc->txring_physaddr = sc->rxring_physaddr + CGEM_NUM_RX_DESCS * sizeof(struct cgem_rx_desc); /* Initialize TX descriptor ring. */ for (i = 0; i < CGEM_NUM_TX_DESCS; i++) { sc->txring[i].addr = 0; sc->txring[i].ctl = CGEM_TXDESC_USED; sc->txring_m[i] = NULL; sc->txring_m_dmamap[i] = NULL; } sc->txring[CGEM_NUM_TX_DESCS - 1].ctl |= CGEM_TXDESC_WRAP; sc->txring_hd_ptr = 0; sc->txring_tl_ptr = 0; sc->txring_queued = 0; if (sc->neednullqs) { sc->null_qs = (void *)(sc->txring + CGEM_NUM_TX_DESCS); sc->null_qs_physaddr = sc->txring_physaddr + CGEM_NUM_TX_DESCS * sizeof(struct cgem_tx_desc); cgem_null_qs(sc); } return (0); } /* Fill receive descriptor ring with mbufs. */ static void cgem_fill_rqueue(struct cgem_softc *sc) { struct mbuf *m = NULL; bus_dma_segment_t segs[TX_MAX_DMA_SEGS]; int nsegs; CGEM_ASSERT_LOCKED(sc); while (sc->rxring_queued < sc->rxbufs) { /* Get a cluster mbuf. */ m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) break; m->m_len = MCLBYTES; m->m_pkthdr.len = MCLBYTES; m->m_pkthdr.rcvif = sc->ifp; /* Load map and plug in physical address. */ if (bus_dmamap_create(sc->mbuf_dma_tag, 0, &sc->rxring_m_dmamap[sc->rxring_hd_ptr])) { sc->rxdmamapfails++; m_free(m); break; } if (bus_dmamap_load_mbuf_sg(sc->mbuf_dma_tag, sc->rxring_m_dmamap[sc->rxring_hd_ptr], m, segs, &nsegs, BUS_DMA_NOWAIT)) { sc->rxdmamapfails++; bus_dmamap_destroy(sc->mbuf_dma_tag, sc->rxring_m_dmamap[sc->rxring_hd_ptr]); sc->rxring_m_dmamap[sc->rxring_hd_ptr] = NULL; m_free(m); break; } sc->rxring_m[sc->rxring_hd_ptr] = m; /* Sync cache with receive buffer. */ bus_dmamap_sync(sc->mbuf_dma_tag, sc->rxring_m_dmamap[sc->rxring_hd_ptr], BUS_DMASYNC_PREREAD); /* Write rx descriptor and increment head pointer. */ sc->rxring[sc->rxring_hd_ptr].ctl = 0; #ifdef CGEM64 sc->rxring[sc->rxring_hd_ptr].addrhi = segs[0].ds_addr >> 32; #endif if (sc->rxring_hd_ptr == CGEM_NUM_RX_DESCS - 1) { sc->rxring[sc->rxring_hd_ptr].addr = segs[0].ds_addr | CGEM_RXDESC_WRAP; sc->rxring_hd_ptr = 0; } else sc->rxring[sc->rxring_hd_ptr++].addr = segs[0].ds_addr; sc->rxring_queued++; } } /* Pull received packets off of receive descriptor ring. */ static void cgem_recv(struct cgem_softc *sc) { if_t ifp = sc->ifp; struct mbuf *m, *m_hd, **m_tl; uint32_t ctl; CGEM_ASSERT_LOCKED(sc); /* Pick up all packets in which the OWN bit is set. */ m_hd = NULL; m_tl = &m_hd; while (sc->rxring_queued > 0 && (sc->rxring[sc->rxring_tl_ptr].addr & CGEM_RXDESC_OWN) != 0) { ctl = sc->rxring[sc->rxring_tl_ptr].ctl; /* Grab filled mbuf. */ m = sc->rxring_m[sc->rxring_tl_ptr]; sc->rxring_m[sc->rxring_tl_ptr] = NULL; /* Sync cache with receive buffer. */ bus_dmamap_sync(sc->mbuf_dma_tag, sc->rxring_m_dmamap[sc->rxring_tl_ptr], BUS_DMASYNC_POSTREAD); /* Unload and destroy dmamap. */ bus_dmamap_unload(sc->mbuf_dma_tag, sc->rxring_m_dmamap[sc->rxring_tl_ptr]); bus_dmamap_destroy(sc->mbuf_dma_tag, sc->rxring_m_dmamap[sc->rxring_tl_ptr]); sc->rxring_m_dmamap[sc->rxring_tl_ptr] = NULL; /* Increment tail pointer. */ if (++sc->rxring_tl_ptr == CGEM_NUM_RX_DESCS) sc->rxring_tl_ptr = 0; sc->rxring_queued--; /* * Check FCS and make sure entire packet landed in one mbuf * cluster (which is much bigger than the largest ethernet * packet). */ if ((ctl & CGEM_RXDESC_BAD_FCS) != 0 || (ctl & (CGEM_RXDESC_SOF | CGEM_RXDESC_EOF)) != (CGEM_RXDESC_SOF | CGEM_RXDESC_EOF)) { /* discard. */ m_free(m); if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); continue; } /* Ready it to hand off to upper layers. */ m->m_data += ETHER_ALIGN; m->m_len = (ctl & CGEM_RXDESC_LENGTH_MASK); m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len; /* * Are we using hardware checksumming? Check the status in the * receive descriptor. */ if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) { /* TCP or UDP checks out, IP checks out too. */ if ((ctl & CGEM_RXDESC_CKSUM_STAT_MASK) == CGEM_RXDESC_CKSUM_STAT_TCP_GOOD || (ctl & CGEM_RXDESC_CKSUM_STAT_MASK) == CGEM_RXDESC_CKSUM_STAT_UDP_GOOD) { m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } else if ((ctl & CGEM_RXDESC_CKSUM_STAT_MASK) == CGEM_RXDESC_CKSUM_STAT_IP_GOOD) { /* Only IP checks out. */ m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID; m->m_pkthdr.csum_data = 0xffff; } } /* Queue it up for delivery below. */ *m_tl = m; m_tl = &m->m_next; } /* Replenish receive buffers. */ cgem_fill_rqueue(sc); /* Unlock and send up packets. */ CGEM_UNLOCK(sc); while (m_hd != NULL) { m = m_hd; m_hd = m_hd->m_next; m->m_next = NULL; if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); if_input(ifp, m); } CGEM_LOCK(sc); } /* Find completed transmits and free their mbufs. */ static void cgem_clean_tx(struct cgem_softc *sc) { struct mbuf *m; uint32_t ctl; CGEM_ASSERT_LOCKED(sc); /* free up finished transmits. */ while (sc->txring_queued > 0 && ((ctl = sc->txring[sc->txring_tl_ptr].ctl) & CGEM_TXDESC_USED) != 0) { /* Sync cache. */ bus_dmamap_sync(sc->mbuf_dma_tag, sc->txring_m_dmamap[sc->txring_tl_ptr], BUS_DMASYNC_POSTWRITE); /* Unload and destroy DMA map. */ bus_dmamap_unload(sc->mbuf_dma_tag, sc->txring_m_dmamap[sc->txring_tl_ptr]); bus_dmamap_destroy(sc->mbuf_dma_tag, sc->txring_m_dmamap[sc->txring_tl_ptr]); sc->txring_m_dmamap[sc->txring_tl_ptr] = NULL; /* Free up the mbuf. */ m = sc->txring_m[sc->txring_tl_ptr]; sc->txring_m[sc->txring_tl_ptr] = NULL; m_freem(m); /* Check the status. */ if ((ctl & CGEM_TXDESC_AHB_ERR) != 0) { /* Serious bus error. log to console. */ #ifdef CGEM64 device_printf(sc->dev, "cgem_clean_tx: AHB error, addr=0x%x%08x\n", sc->txring[sc->txring_tl_ptr].addrhi, sc->txring[sc->txring_tl_ptr].addr); #else device_printf(sc->dev, "cgem_clean_tx: AHB error, addr=0x%x\n", sc->txring[sc->txring_tl_ptr].addr); #endif } else if ((ctl & (CGEM_TXDESC_RETRY_ERR | CGEM_TXDESC_LATE_COLL)) != 0) { if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, 1); } else if_inc_counter(sc->ifp, IFCOUNTER_OPACKETS, 1); /* * If the packet spanned more than one tx descriptor, skip * descriptors until we find the end so that only * start-of-frame descriptors are processed. */ while ((ctl & CGEM_TXDESC_LAST_BUF) == 0) { if ((ctl & CGEM_TXDESC_WRAP) != 0) sc->txring_tl_ptr = 0; else sc->txring_tl_ptr++; sc->txring_queued--; ctl = sc->txring[sc->txring_tl_ptr].ctl; sc->txring[sc->txring_tl_ptr].ctl = ctl | CGEM_TXDESC_USED; } /* Next descriptor. */ if ((ctl & CGEM_TXDESC_WRAP) != 0) sc->txring_tl_ptr = 0; else sc->txring_tl_ptr++; sc->txring_queued--; if_setdrvflagbits(sc->ifp, 0, IFF_DRV_OACTIVE); } } /* Start transmits. */ static void cgem_start_locked(if_t ifp) { struct cgem_softc *sc = (struct cgem_softc *) if_getsoftc(ifp); struct mbuf *m; bus_dma_segment_t segs[TX_MAX_DMA_SEGS]; uint32_t ctl; int i, nsegs, wrap, err; CGEM_ASSERT_LOCKED(sc); if ((if_getdrvflags(ifp) & IFF_DRV_OACTIVE) != 0) return; for (;;) { /* Check that there is room in the descriptor ring. */ if (sc->txring_queued >= CGEM_NUM_TX_DESCS - TX_MAX_DMA_SEGS * 2) { /* Try to make room. */ cgem_clean_tx(sc); /* Still no room? */ if (sc->txring_queued >= CGEM_NUM_TX_DESCS - TX_MAX_DMA_SEGS * 2) { if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); sc->txfull++; break; } } /* Grab next transmit packet. */ m = if_dequeue(ifp); if (m == NULL) break; /* Create and load DMA map. */ if (bus_dmamap_create(sc->mbuf_dma_tag, 0, &sc->txring_m_dmamap[sc->txring_hd_ptr])) { m_freem(m); sc->txdmamapfails++; continue; } err = bus_dmamap_load_mbuf_sg(sc->mbuf_dma_tag, sc->txring_m_dmamap[sc->txring_hd_ptr], m, segs, &nsegs, BUS_DMA_NOWAIT); if (err == EFBIG) { /* Too many segments! defrag and try again. */ struct mbuf *m2 = m_defrag(m, M_NOWAIT); if (m2 == NULL) { sc->txdefragfails++; m_freem(m); bus_dmamap_destroy(sc->mbuf_dma_tag, sc->txring_m_dmamap[sc->txring_hd_ptr]); sc->txring_m_dmamap[sc->txring_hd_ptr] = NULL; continue; } m = m2; err = bus_dmamap_load_mbuf_sg(sc->mbuf_dma_tag, sc->txring_m_dmamap[sc->txring_hd_ptr], m, segs, &nsegs, BUS_DMA_NOWAIT); sc->txdefrags++; } if (err) { /* Give up. */ m_freem(m); bus_dmamap_destroy(sc->mbuf_dma_tag, sc->txring_m_dmamap[sc->txring_hd_ptr]); sc->txring_m_dmamap[sc->txring_hd_ptr] = NULL; sc->txdmamapfails++; continue; } sc->txring_m[sc->txring_hd_ptr] = m; /* Sync tx buffer with cache. */ bus_dmamap_sync(sc->mbuf_dma_tag, sc->txring_m_dmamap[sc->txring_hd_ptr], BUS_DMASYNC_PREWRITE); /* Set wrap flag if next packet might run off end of ring. */ wrap = sc->txring_hd_ptr + nsegs + TX_MAX_DMA_SEGS >= CGEM_NUM_TX_DESCS; /* * Fill in the TX descriptors back to front so that USED bit in * first descriptor is cleared last. */ for (i = nsegs - 1; i >= 0; i--) { /* Descriptor address. */ sc->txring[sc->txring_hd_ptr + i].addr = segs[i].ds_addr; #ifdef CGEM64 sc->txring[sc->txring_hd_ptr + i].addrhi = segs[i].ds_addr >> 32; #endif /* Descriptor control word. */ ctl = segs[i].ds_len; if (i == nsegs - 1) { ctl |= CGEM_TXDESC_LAST_BUF; if (wrap) ctl |= CGEM_TXDESC_WRAP; } sc->txring[sc->txring_hd_ptr + i].ctl = ctl; if (i != 0) sc->txring_m[sc->txring_hd_ptr + i] = NULL; } if (wrap) sc->txring_hd_ptr = 0; else sc->txring_hd_ptr += nsegs; sc->txring_queued += nsegs; /* Kick the transmitter. */ WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow | CGEM_NET_CTRL_START_TX); /* If there is a BPF listener, bounce a copy to him. */ ETHER_BPF_MTAP(ifp, m); } } static void cgem_start(if_t ifp) { struct cgem_softc *sc = (struct cgem_softc *) if_getsoftc(ifp); CGEM_LOCK(sc); cgem_start_locked(ifp); CGEM_UNLOCK(sc); } static void cgem_poll_hw_stats(struct cgem_softc *sc) { uint32_t n; CGEM_ASSERT_LOCKED(sc); sc->stats.tx_bytes += RD4(sc, CGEM_OCTETS_TX_BOT); sc->stats.tx_bytes += (uint64_t)RD4(sc, CGEM_OCTETS_TX_TOP) << 32; sc->stats.tx_frames += RD4(sc, CGEM_FRAMES_TX); sc->stats.tx_frames_bcast += RD4(sc, CGEM_BCAST_FRAMES_TX); sc->stats.tx_frames_multi += RD4(sc, CGEM_MULTI_FRAMES_TX); sc->stats.tx_frames_pause += RD4(sc, CGEM_PAUSE_FRAMES_TX); sc->stats.tx_frames_64b += RD4(sc, CGEM_FRAMES_64B_TX); sc->stats.tx_frames_65to127b += RD4(sc, CGEM_FRAMES_65_127B_TX); sc->stats.tx_frames_128to255b += RD4(sc, CGEM_FRAMES_128_255B_TX); sc->stats.tx_frames_256to511b += RD4(sc, CGEM_FRAMES_256_511B_TX); sc->stats.tx_frames_512to1023b += RD4(sc, CGEM_FRAMES_512_1023B_TX); sc->stats.tx_frames_1024to1536b += RD4(sc, CGEM_FRAMES_1024_1518B_TX); sc->stats.tx_under_runs += RD4(sc, CGEM_TX_UNDERRUNS); n = RD4(sc, CGEM_SINGLE_COLL_FRAMES); sc->stats.tx_single_collisn += n; if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, n); n = RD4(sc, CGEM_MULTI_COLL_FRAMES); sc->stats.tx_multi_collisn += n; if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, n); n = RD4(sc, CGEM_EXCESSIVE_COLL_FRAMES); sc->stats.tx_excsv_collisn += n; if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, n); n = RD4(sc, CGEM_LATE_COLL); sc->stats.tx_late_collisn += n; if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, n); sc->stats.tx_deferred_frames += RD4(sc, CGEM_DEFERRED_TX_FRAMES); sc->stats.tx_carrier_sense_errs += RD4(sc, CGEM_CARRIER_SENSE_ERRS); sc->stats.rx_bytes += RD4(sc, CGEM_OCTETS_RX_BOT); sc->stats.rx_bytes += (uint64_t)RD4(sc, CGEM_OCTETS_RX_TOP) << 32; sc->stats.rx_frames += RD4(sc, CGEM_FRAMES_RX); sc->stats.rx_frames_bcast += RD4(sc, CGEM_BCAST_FRAMES_RX); sc->stats.rx_frames_multi += RD4(sc, CGEM_MULTI_FRAMES_RX); sc->stats.rx_frames_pause += RD4(sc, CGEM_PAUSE_FRAMES_RX); sc->stats.rx_frames_64b += RD4(sc, CGEM_FRAMES_64B_RX); sc->stats.rx_frames_65to127b += RD4(sc, CGEM_FRAMES_65_127B_RX); sc->stats.rx_frames_128to255b += RD4(sc, CGEM_FRAMES_128_255B_RX); sc->stats.rx_frames_256to511b += RD4(sc, CGEM_FRAMES_256_511B_RX); sc->stats.rx_frames_512to1023b += RD4(sc, CGEM_FRAMES_512_1023B_RX); sc->stats.rx_frames_1024to1536b += RD4(sc, CGEM_FRAMES_1024_1518B_RX); sc->stats.rx_frames_undersize += RD4(sc, CGEM_UNDERSZ_RX); sc->stats.rx_frames_oversize += RD4(sc, CGEM_OVERSZ_RX); sc->stats.rx_frames_jabber += RD4(sc, CGEM_JABBERS_RX); sc->stats.rx_frames_fcs_errs += RD4(sc, CGEM_FCS_ERRS); sc->stats.rx_frames_length_errs += RD4(sc, CGEM_LENGTH_FIELD_ERRS); sc->stats.rx_symbol_errs += RD4(sc, CGEM_RX_SYMBOL_ERRS); sc->stats.rx_align_errs += RD4(sc, CGEM_ALIGN_ERRS); sc->stats.rx_resource_errs += RD4(sc, CGEM_RX_RESOURCE_ERRS); sc->stats.rx_overrun_errs += RD4(sc, CGEM_RX_OVERRUN_ERRS); sc->stats.rx_ip_hdr_csum_errs += RD4(sc, CGEM_IP_HDR_CKSUM_ERRS); sc->stats.rx_tcp_csum_errs += RD4(sc, CGEM_TCP_CKSUM_ERRS); sc->stats.rx_udp_csum_errs += RD4(sc, CGEM_UDP_CKSUM_ERRS); } static void cgem_tick(void *arg) { struct cgem_softc *sc = (struct cgem_softc *)arg; struct mii_data *mii; CGEM_ASSERT_LOCKED(sc); /* Poll the phy. */ if (sc->miibus != NULL) { mii = device_get_softc(sc->miibus); mii_tick(mii); } /* Poll statistics registers. */ cgem_poll_hw_stats(sc); /* Check for receiver hang. */ if (sc->rxhangwar && sc->rx_frames_prev == sc->stats.rx_frames) { /* * Reset receiver logic by toggling RX_EN bit. 1usec * delay is necessary especially when operating at 100mbps * and 10mbps speeds. */ WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow & ~CGEM_NET_CTRL_RX_EN); DELAY(1); WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow); } sc->rx_frames_prev = sc->stats.rx_frames; /* Next callout in one second. */ callout_reset(&sc->tick_ch, hz, cgem_tick, sc); } /* Interrupt handler. */ static void cgem_intr(void *arg) { struct cgem_softc *sc = (struct cgem_softc *)arg; if_t ifp = sc->ifp; uint32_t istatus; CGEM_LOCK(sc); if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { CGEM_UNLOCK(sc); return; } /* Read interrupt status and immediately clear the bits. */ istatus = RD4(sc, CGEM_INTR_STAT); WR4(sc, CGEM_INTR_STAT, istatus); /* Packets received. */ if ((istatus & CGEM_INTR_RX_COMPLETE) != 0) cgem_recv(sc); /* Free up any completed transmit buffers. */ cgem_clean_tx(sc); /* Hresp not ok. Something is very bad with DMA. Try to clear. */ if ((istatus & CGEM_INTR_HRESP_NOT_OK) != 0) { device_printf(sc->dev, "cgem_intr: hresp not okay! rx_status=0x%x\n", RD4(sc, CGEM_RX_STAT)); WR4(sc, CGEM_RX_STAT, CGEM_RX_STAT_HRESP_NOT_OK); } /* Receiver overrun. */ if ((istatus & CGEM_INTR_RX_OVERRUN) != 0) { /* Clear status bit. */ WR4(sc, CGEM_RX_STAT, CGEM_RX_STAT_OVERRUN); sc->rxoverruns++; } /* Receiver ran out of bufs. */ if ((istatus & CGEM_INTR_RX_USED_READ) != 0) { WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow | CGEM_NET_CTRL_FLUSH_DPRAM_PKT); cgem_fill_rqueue(sc); sc->rxnobufs++; } /* Restart transmitter if needed. */ if (!if_sendq_empty(ifp)) cgem_start_locked(ifp); CGEM_UNLOCK(sc); } /* Reset hardware. */ static void cgem_reset(struct cgem_softc *sc) { CGEM_ASSERT_LOCKED(sc); /* Determine data bus width from design configuration register. */ switch (RD4(sc, CGEM_DESIGN_CFG1) & CGEM_DESIGN_CFG1_DMA_BUS_WIDTH_MASK) { case CGEM_DESIGN_CFG1_DMA_BUS_WIDTH_64: sc->net_cfg_shadow = CGEM_NET_CFG_DBUS_WIDTH_64; break; case CGEM_DESIGN_CFG1_DMA_BUS_WIDTH_128: sc->net_cfg_shadow = CGEM_NET_CFG_DBUS_WIDTH_128; break; default: sc->net_cfg_shadow = CGEM_NET_CFG_DBUS_WIDTH_32; } WR4(sc, CGEM_NET_CTRL, 0); WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow); WR4(sc, CGEM_NET_CTRL, CGEM_NET_CTRL_CLR_STAT_REGS); WR4(sc, CGEM_TX_STAT, CGEM_TX_STAT_ALL); WR4(sc, CGEM_RX_STAT, CGEM_RX_STAT_ALL); WR4(sc, CGEM_INTR_DIS, CGEM_INTR_ALL); WR4(sc, CGEM_HASH_BOT, 0); WR4(sc, CGEM_HASH_TOP, 0); WR4(sc, CGEM_TX_QBAR, 0); /* manual says do this. */ WR4(sc, CGEM_RX_QBAR, 0); /* Get management port running even if interface is down. */ sc->net_cfg_shadow |= CGEM_NET_CFG_MDC_CLK_DIV_48; WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow); sc->net_ctl_shadow = CGEM_NET_CTRL_MGMT_PORT_EN; WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow); } /* Bring up the hardware. */ static void cgem_config(struct cgem_softc *sc) { if_t ifp = sc->ifp; uint32_t dma_cfg; u_char *eaddr = if_getlladdr(ifp); CGEM_ASSERT_LOCKED(sc); /* Program Net Config Register. */ sc->net_cfg_shadow &= (CGEM_NET_CFG_MDC_CLK_DIV_MASK | CGEM_NET_CFG_DBUS_WIDTH_MASK); sc->net_cfg_shadow |= (CGEM_NET_CFG_FCS_REMOVE | CGEM_NET_CFG_RX_BUF_OFFSET(ETHER_ALIGN) | CGEM_NET_CFG_GIGE_EN | CGEM_NET_CFG_1536RXEN | CGEM_NET_CFG_FULL_DUPLEX | CGEM_NET_CFG_SPEED100); /* Check connection type, enable SGMII bits if necessary. */ if (sc->phy_contype == MII_CONTYPE_SGMII) { sc->net_cfg_shadow |= CGEM_NET_CFG_SGMII_EN; sc->net_cfg_shadow |= CGEM_NET_CFG_PCS_SEL; } /* Enable receive checksum offloading? */ if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) sc->net_cfg_shadow |= CGEM_NET_CFG_RX_CHKSUM_OFFLD_EN; WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow); /* Program DMA Config Register. */ dma_cfg = CGEM_DMA_CFG_RX_BUF_SIZE(MCLBYTES) | CGEM_DMA_CFG_RX_PKTBUF_MEMSZ_SEL_8K | CGEM_DMA_CFG_TX_PKTBUF_MEMSZ_SEL | CGEM_DMA_CFG_AHB_FIXED_BURST_LEN_16 | #ifdef CGEM64 CGEM_DMA_CFG_ADDR_BUS_64 | #endif CGEM_DMA_CFG_DISC_WHEN_NO_AHB; /* Enable transmit checksum offloading? */ if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0) dma_cfg |= CGEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN; WR4(sc, CGEM_DMA_CFG, dma_cfg); /* Write the rx and tx descriptor ring addresses to the QBAR regs. */ WR4(sc, CGEM_RX_QBAR, (uint32_t)sc->rxring_physaddr); WR4(sc, CGEM_TX_QBAR, (uint32_t)sc->txring_physaddr); #ifdef CGEM64 WR4(sc, CGEM_RX_QBAR_HI, (uint32_t)(sc->rxring_physaddr >> 32)); WR4(sc, CGEM_TX_QBAR_HI, (uint32_t)(sc->txring_physaddr >> 32)); #endif /* Enable rx and tx. */ sc->net_ctl_shadow |= (CGEM_NET_CTRL_TX_EN | CGEM_NET_CTRL_RX_EN); WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow); /* Set receive address in case it changed. */ WR4(sc, CGEM_SPEC_ADDR_LOW(0), (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) | eaddr[0]); WR4(sc, CGEM_SPEC_ADDR_HI(0), (eaddr[5] << 8) | eaddr[4]); /* Set up interrupts. */ WR4(sc, CGEM_INTR_EN, CGEM_INTR_RX_COMPLETE | CGEM_INTR_RX_OVERRUN | CGEM_INTR_TX_USED_READ | CGEM_INTR_RX_USED_READ | CGEM_INTR_HRESP_NOT_OK); } /* Turn on interface and load up receive ring with buffers. */ static void cgem_init_locked(struct cgem_softc *sc) { struct mii_data *mii; CGEM_ASSERT_LOCKED(sc); if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) != 0) return; cgem_config(sc); cgem_fill_rqueue(sc); if_setdrvflagbits(sc->ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE); if (sc->miibus != NULL) { mii = device_get_softc(sc->miibus); mii_mediachg(mii); } callout_reset(&sc->tick_ch, hz, cgem_tick, sc); } static void cgem_init(void *arg) { struct cgem_softc *sc = (struct cgem_softc *)arg; CGEM_LOCK(sc); cgem_init_locked(sc); CGEM_UNLOCK(sc); } /* Turn off interface. Free up any buffers in transmit or receive queues. */ static void cgem_stop(struct cgem_softc *sc) { int i; CGEM_ASSERT_LOCKED(sc); callout_stop(&sc->tick_ch); /* Shut down hardware. */ cgem_reset(sc); /* Clear out transmit queue. */ memset(sc->txring, 0, CGEM_NUM_TX_DESCS * sizeof(struct cgem_tx_desc)); for (i = 0; i < CGEM_NUM_TX_DESCS; i++) { sc->txring[i].ctl = CGEM_TXDESC_USED; if (sc->txring_m[i]) { /* Unload and destroy dmamap. */ bus_dmamap_unload(sc->mbuf_dma_tag, sc->txring_m_dmamap[i]); bus_dmamap_destroy(sc->mbuf_dma_tag, sc->txring_m_dmamap[i]); sc->txring_m_dmamap[i] = NULL; m_freem(sc->txring_m[i]); sc->txring_m[i] = NULL; } } sc->txring[CGEM_NUM_TX_DESCS - 1].ctl |= CGEM_TXDESC_WRAP; sc->txring_hd_ptr = 0; sc->txring_tl_ptr = 0; sc->txring_queued = 0; /* Clear out receive queue. */ memset(sc->rxring, 0, CGEM_NUM_RX_DESCS * sizeof(struct cgem_rx_desc)); for (i = 0; i < CGEM_NUM_RX_DESCS; i++) { sc->rxring[i].addr = CGEM_RXDESC_OWN; if (sc->rxring_m[i]) { /* Unload and destroy dmamap. */ bus_dmamap_unload(sc->mbuf_dma_tag, sc->rxring_m_dmamap[i]); bus_dmamap_destroy(sc->mbuf_dma_tag, sc->rxring_m_dmamap[i]); sc->rxring_m_dmamap[i] = NULL; m_freem(sc->rxring_m[i]); sc->rxring_m[i] = NULL; } } sc->rxring[CGEM_NUM_RX_DESCS - 1].addr |= CGEM_RXDESC_WRAP; sc->rxring_hd_ptr = 0; sc->rxring_tl_ptr = 0; sc->rxring_queued = 0; /* Force next statchg or linkchg to program net config register. */ sc->mii_media_active = 0; } static int cgem_ioctl(if_t ifp, u_long cmd, caddr_t data) { struct cgem_softc *sc = if_getsoftc(ifp); struct ifreq *ifr = (struct ifreq *)data; struct mii_data *mii; int error = 0, mask; switch (cmd) { case SIOCSIFFLAGS: CGEM_LOCK(sc); if ((if_getflags(ifp) & IFF_UP) != 0) { if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { if (((if_getflags(ifp) ^ sc->if_old_flags) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { cgem_rx_filter(sc); } } else { cgem_init_locked(sc); } } else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); cgem_stop(sc); } sc->if_old_flags = if_getflags(ifp); CGEM_UNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: /* Set up multi-cast filters. */ if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { CGEM_LOCK(sc); cgem_rx_filter(sc); CGEM_UNLOCK(sc); } break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: if (sc->miibus == NULL) return (ENXIO); mii = device_get_softc(sc->miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); break; case SIOCSIFCAP: CGEM_LOCK(sc); mask = if_getcapenable(ifp) ^ ifr->ifr_reqcap; if ((mask & IFCAP_TXCSUM) != 0) { if ((ifr->ifr_reqcap & IFCAP_TXCSUM) != 0) { /* Turn on TX checksumming. */ if_setcapenablebit(ifp, IFCAP_TXCSUM | IFCAP_TXCSUM_IPV6, 0); if_sethwassistbits(ifp, CGEM_CKSUM_ASSIST, 0); WR4(sc, CGEM_DMA_CFG, RD4(sc, CGEM_DMA_CFG) | CGEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN); } else { /* Turn off TX checksumming. */ if_setcapenablebit(ifp, 0, IFCAP_TXCSUM | IFCAP_TXCSUM_IPV6); if_sethwassistbits(ifp, 0, CGEM_CKSUM_ASSIST); WR4(sc, CGEM_DMA_CFG, RD4(sc, CGEM_DMA_CFG) & ~CGEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN); } } if ((mask & IFCAP_RXCSUM) != 0) { if ((ifr->ifr_reqcap & IFCAP_RXCSUM) != 0) { /* Turn on RX checksumming. */ if_setcapenablebit(ifp, IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6, 0); sc->net_cfg_shadow |= CGEM_NET_CFG_RX_CHKSUM_OFFLD_EN; WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow); } else { /* Turn off RX checksumming. */ if_setcapenablebit(ifp, 0, IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6); sc->net_cfg_shadow &= ~CGEM_NET_CFG_RX_CHKSUM_OFFLD_EN; WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow); } } if ((if_getcapenable(ifp) & (IFCAP_RXCSUM | IFCAP_TXCSUM)) == (IFCAP_RXCSUM | IFCAP_TXCSUM)) if_setcapenablebit(ifp, IFCAP_VLAN_HWCSUM, 0); else if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWCSUM); CGEM_UNLOCK(sc); break; default: error = ether_ioctl(ifp, cmd, data); break; } return (error); } /* MII bus support routines. */ static int cgem_ifmedia_upd(if_t ifp) { struct cgem_softc *sc = (struct cgem_softc *) if_getsoftc(ifp); struct mii_data *mii; struct mii_softc *miisc; int error = 0; mii = device_get_softc(sc->miibus); CGEM_LOCK(sc); if ((if_getflags(ifp) & IFF_UP) != 0) { LIST_FOREACH(miisc, &mii->mii_phys, mii_list) PHY_RESET(miisc); error = mii_mediachg(mii); } CGEM_UNLOCK(sc); return (error); } static void cgem_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr) { struct cgem_softc *sc = (struct cgem_softc *) if_getsoftc(ifp); struct mii_data *mii; mii = device_get_softc(sc->miibus); CGEM_LOCK(sc); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; CGEM_UNLOCK(sc); } static int cgem_miibus_readreg(device_t dev, int phy, int reg) { struct cgem_softc *sc = device_get_softc(dev); int tries, val; WR4(sc, CGEM_PHY_MAINT, CGEM_PHY_MAINT_CLAUSE_22 | CGEM_PHY_MAINT_MUST_10 | CGEM_PHY_MAINT_OP_READ | (phy << CGEM_PHY_MAINT_PHY_ADDR_SHIFT) | (reg << CGEM_PHY_MAINT_REG_ADDR_SHIFT)); /* Wait for completion. */ tries=0; while ((RD4(sc, CGEM_NET_STAT) & CGEM_NET_STAT_PHY_MGMT_IDLE) == 0) { DELAY(5); if (++tries > 200) { device_printf(dev, "phy read timeout: %d\n", reg); return (-1); } } val = RD4(sc, CGEM_PHY_MAINT) & CGEM_PHY_MAINT_DATA_MASK; if (reg == MII_EXTSR) /* * MAC does not support half-duplex at gig speeds. * Let mii(4) exclude the capability. */ val &= ~(EXTSR_1000XHDX | EXTSR_1000THDX); return (val); } static int cgem_miibus_writereg(device_t dev, int phy, int reg, int data) { struct cgem_softc *sc = device_get_softc(dev); int tries; WR4(sc, CGEM_PHY_MAINT, CGEM_PHY_MAINT_CLAUSE_22 | CGEM_PHY_MAINT_MUST_10 | CGEM_PHY_MAINT_OP_WRITE | (phy << CGEM_PHY_MAINT_PHY_ADDR_SHIFT) | (reg << CGEM_PHY_MAINT_REG_ADDR_SHIFT) | (data & CGEM_PHY_MAINT_DATA_MASK)); /* Wait for completion. */ tries = 0; while ((RD4(sc, CGEM_NET_STAT) & CGEM_NET_STAT_PHY_MGMT_IDLE) == 0) { DELAY(5); if (++tries > 200) { device_printf(dev, "phy write timeout: %d\n", reg); return (-1); } } return (0); } static void cgem_miibus_statchg(device_t dev) { struct cgem_softc *sc = device_get_softc(dev); struct mii_data *mii = device_get_softc(sc->miibus); CGEM_ASSERT_LOCKED(sc); if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID) && sc->mii_media_active != mii->mii_media_active) cgem_mediachange(sc, mii); } static void cgem_miibus_linkchg(device_t dev) { struct cgem_softc *sc = device_get_softc(dev); struct mii_data *mii = device_get_softc(sc->miibus); CGEM_ASSERT_LOCKED(sc); if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID) && sc->mii_media_active != mii->mii_media_active) cgem_mediachange(sc, mii); } /* * Overridable weak symbol cgem_set_ref_clk(). This allows platforms to * provide a function to set the cgem's reference clock. */ static int __used cgem_default_set_ref_clk(int unit, int frequency) { return 0; } __weak_reference(cgem_default_set_ref_clk, cgem_set_ref_clk); /* Call to set reference clock and network config bits according to media. */ static void cgem_mediachange(struct cgem_softc *sc, struct mii_data *mii) { int ref_clk_freq; CGEM_ASSERT_LOCKED(sc); /* Update hardware to reflect media. */ sc->net_cfg_shadow &= ~(CGEM_NET_CFG_SPEED100 | CGEM_NET_CFG_GIGE_EN | CGEM_NET_CFG_FULL_DUPLEX); switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_1000_T: sc->net_cfg_shadow |= (CGEM_NET_CFG_SPEED100 | CGEM_NET_CFG_GIGE_EN); ref_clk_freq = 125000000; break; case IFM_100_TX: sc->net_cfg_shadow |= CGEM_NET_CFG_SPEED100; ref_clk_freq = 25000000; break; default: ref_clk_freq = 2500000; } if ((mii->mii_media_active & IFM_FDX) != 0) sc->net_cfg_shadow |= CGEM_NET_CFG_FULL_DUPLEX; WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow); if (sc->ref_clk != NULL) { CGEM_UNLOCK(sc); if (clk_set_freq(sc->ref_clk, ref_clk_freq, 0)) device_printf(sc->dev, "could not set ref clk to %d\n", ref_clk_freq); CGEM_LOCK(sc); } sc->mii_media_active = mii->mii_media_active; } static void cgem_add_sysctls(device_t dev) { struct cgem_softc *sc = device_get_softc(dev); struct sysctl_ctx_list *ctx; struct sysctl_oid_list *child; struct sysctl_oid *tree; ctx = device_get_sysctl_ctx(dev); child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev)); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rxbufs", CTLFLAG_RW, &sc->rxbufs, 0, "Number receive buffers to provide"); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rxhangwar", CTLFLAG_RW, &sc->rxhangwar, 0, "Enable receive hang work-around"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_rxoverruns", CTLFLAG_RD, &sc->rxoverruns, 0, "Receive overrun events"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_rxnobufs", CTLFLAG_RD, &sc->rxnobufs, 0, "Receive buf queue empty events"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_rxdmamapfails", CTLFLAG_RD, &sc->rxdmamapfails, 0, "Receive DMA map failures"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_txfull", CTLFLAG_RD, &sc->txfull, 0, "Transmit ring full events"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_txdmamapfails", CTLFLAG_RD, &sc->txdmamapfails, 0, "Transmit DMA map failures"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_txdefrags", CTLFLAG_RD, &sc->txdefrags, 0, "Transmit m_defrag() calls"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_txdefragfails", CTLFLAG_RD, &sc->txdefragfails, 0, "Transmit m_defrag() failures"); tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "GEM statistics"); child = SYSCTL_CHILDREN(tree); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_bytes", CTLFLAG_RD, &sc->stats.tx_bytes, "Total bytes transmitted"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames", CTLFLAG_RD, &sc->stats.tx_frames, 0, "Total frames transmitted"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_bcast", CTLFLAG_RD, &sc->stats.tx_frames_bcast, 0, "Number broadcast frames transmitted"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_multi", CTLFLAG_RD, &sc->stats.tx_frames_multi, 0, "Number multicast frames transmitted"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_pause", CTLFLAG_RD, &sc->stats.tx_frames_pause, 0, "Number pause frames transmitted"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_64b", CTLFLAG_RD, &sc->stats.tx_frames_64b, 0, "Number frames transmitted of size 64 bytes or less"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_65to127b", CTLFLAG_RD, &sc->stats.tx_frames_65to127b, 0, "Number frames transmitted of size 65-127 bytes"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_128to255b", CTLFLAG_RD, &sc->stats.tx_frames_128to255b, 0, "Number frames transmitted of size 128-255 bytes"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_256to511b", CTLFLAG_RD, &sc->stats.tx_frames_256to511b, 0, "Number frames transmitted of size 256-511 bytes"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_512to1023b", CTLFLAG_RD, &sc->stats.tx_frames_512to1023b, 0, "Number frames transmitted of size 512-1023 bytes"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_1024to1536b", CTLFLAG_RD, &sc->stats.tx_frames_1024to1536b, 0, "Number frames transmitted of size 1024-1536 bytes"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_under_runs", CTLFLAG_RD, &sc->stats.tx_under_runs, 0, "Number transmit under-run events"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_single_collisn", CTLFLAG_RD, &sc->stats.tx_single_collisn, 0, "Number single-collision transmit frames"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_multi_collisn", CTLFLAG_RD, &sc->stats.tx_multi_collisn, 0, "Number multi-collision transmit frames"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_excsv_collisn", CTLFLAG_RD, &sc->stats.tx_excsv_collisn, 0, "Number excessive collision transmit frames"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_late_collisn", CTLFLAG_RD, &sc->stats.tx_late_collisn, 0, "Number late-collision transmit frames"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_deferred_frames", CTLFLAG_RD, &sc->stats.tx_deferred_frames, 0, "Number deferred transmit frames"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_carrier_sense_errs", CTLFLAG_RD, &sc->stats.tx_carrier_sense_errs, 0, "Number carrier sense errors on transmit"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_bytes", CTLFLAG_RD, &sc->stats.rx_bytes, "Total bytes received"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames", CTLFLAG_RD, &sc->stats.rx_frames, 0, "Total frames received"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_bcast", CTLFLAG_RD, &sc->stats.rx_frames_bcast, 0, "Number broadcast frames received"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_multi", CTLFLAG_RD, &sc->stats.rx_frames_multi, 0, "Number multicast frames received"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_pause", CTLFLAG_RD, &sc->stats.rx_frames_pause, 0, "Number pause frames received"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_64b", CTLFLAG_RD, &sc->stats.rx_frames_64b, 0, "Number frames received of size 64 bytes or less"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_65to127b", CTLFLAG_RD, &sc->stats.rx_frames_65to127b, 0, "Number frames received of size 65-127 bytes"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_128to255b", CTLFLAG_RD, &sc->stats.rx_frames_128to255b, 0, "Number frames received of size 128-255 bytes"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_256to511b", CTLFLAG_RD, &sc->stats.rx_frames_256to511b, 0, "Number frames received of size 256-511 bytes"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_512to1023b", CTLFLAG_RD, &sc->stats.rx_frames_512to1023b, 0, "Number frames received of size 512-1023 bytes"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_1024to1536b", CTLFLAG_RD, &sc->stats.rx_frames_1024to1536b, 0, "Number frames received of size 1024-1536 bytes"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_undersize", CTLFLAG_RD, &sc->stats.rx_frames_undersize, 0, "Number undersize frames received"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_oversize", CTLFLAG_RD, &sc->stats.rx_frames_oversize, 0, "Number oversize frames received"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_jabber", CTLFLAG_RD, &sc->stats.rx_frames_jabber, 0, "Number jabber frames received"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_fcs_errs", CTLFLAG_RD, &sc->stats.rx_frames_fcs_errs, 0, "Number frames received with FCS errors"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_length_errs", CTLFLAG_RD, &sc->stats.rx_frames_length_errs, 0, "Number frames received with length errors"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_symbol_errs", CTLFLAG_RD, &sc->stats.rx_symbol_errs, 0, "Number receive symbol errors"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_align_errs", CTLFLAG_RD, &sc->stats.rx_align_errs, 0, "Number receive alignment errors"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_resource_errs", CTLFLAG_RD, &sc->stats.rx_resource_errs, 0, "Number frames received when no rx buffer available"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_overrun_errs", CTLFLAG_RD, &sc->stats.rx_overrun_errs, 0, "Number frames received but not copied due to receive overrun"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_ip_hdr_csum_errs", CTLFLAG_RD, &sc->stats.rx_ip_hdr_csum_errs, 0, "Number frames received with IP header checksum errors"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_tcp_csum_errs", CTLFLAG_RD, &sc->stats.rx_tcp_csum_errs, 0, "Number frames received with TCP checksum errors"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_udp_csum_errs", CTLFLAG_RD, &sc->stats.rx_udp_csum_errs, 0, "Number frames received with UDP checksum errors"); } static int cgem_probe(device_t dev) { if (!ofw_bus_status_okay(dev)) return (ENXIO); if (ofw_bus_search_compatible(dev, compat_data)->ocd_str == NULL) return (ENXIO); device_set_desc(dev, "Cadence CGEM Gigabit Ethernet Interface"); return (0); } static int cgem_attach(device_t dev) { struct cgem_softc *sc = device_get_softc(dev); if_t ifp = NULL; int rid, err; u_char eaddr[ETHER_ADDR_LEN]; int hwquirks; phandle_t node; sc->dev = dev; CGEM_LOCK_INIT(sc); /* Key off of compatible string and set hardware-specific options. */ hwquirks = ofw_bus_search_compatible(dev, compat_data)->ocd_data; if ((hwquirks & HWQUIRK_NEEDNULLQS) != 0) sc->neednullqs = 1; if ((hwquirks & HWQUIRK_RXHANGWAR) != 0) sc->rxhangwar = 1; if ((hwquirks & HWQUIRK_TXCLK) != 0) { if (clk_get_by_ofw_name(dev, 0, "tx_clk", &sc->ref_clk) != 0) device_printf(dev, "could not retrieve reference clock.\n"); else if (clk_enable(sc->ref_clk) != 0) device_printf(dev, "could not enable clock.\n"); } if ((hwquirks & HWQUIRK_PCLK) != 0) { if (clk_get_by_ofw_name(dev, 0, "pclk", &sc->ref_clk) != 0) device_printf(dev, "could not retrieve reference clock.\n"); else if (clk_enable(sc->ref_clk) != 0) device_printf(dev, "could not enable clock.\n"); } node = ofw_bus_get_node(dev); sc->phy_contype = mii_fdt_get_contype(node); /* Get memory resource. */ rid = 0; sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->mem_res == NULL) { device_printf(dev, "could not allocate memory resources.\n"); return (ENOMEM); } /* Get IRQ resource. */ rid = 0; sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE); if (sc->irq_res == NULL) { device_printf(dev, "could not allocate interrupt resource.\n"); cgem_detach(dev); return (ENOMEM); } /* Set up ifnet structure. */ ifp = sc->ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "could not allocate ifnet structure\n"); cgem_detach(dev); return (ENOMEM); } if_setsoftc(ifp, sc); if_initname(ifp, IF_CGEM_NAME, device_get_unit(dev)); if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); if_setinitfn(ifp, cgem_init); if_setioctlfn(ifp, cgem_ioctl); if_setstartfn(ifp, cgem_start); if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6 | IFCAP_VLAN_MTU | IFCAP_VLAN_HWCSUM, 0); if_setsendqlen(ifp, CGEM_NUM_TX_DESCS); if_setsendqready(ifp); /* Disable hardware checksumming by default. */ if_sethwassist(ifp, 0); if_setcapenable(ifp, if_getcapabilities(ifp) & ~(IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6 | IFCAP_VLAN_HWCSUM)); sc->if_old_flags = if_getflags(ifp); sc->rxbufs = DEFAULT_NUM_RX_BUFS; /* Reset hardware. */ CGEM_LOCK(sc); cgem_reset(sc); CGEM_UNLOCK(sc); /* Attach phy to mii bus. */ err = mii_attach(dev, &sc->miibus, ifp, cgem_ifmedia_upd, cgem_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (err) device_printf(dev, "warning: attaching PHYs failed\n"); /* Set up TX and RX descriptor area. */ err = cgem_setup_descs(sc); if (err) { device_printf(dev, "could not set up dma mem for descs.\n"); cgem_detach(dev); return (ENOMEM); } /* Get a MAC address. */ cgem_get_mac(sc, eaddr); /* Start ticks. */ callout_init_mtx(&sc->tick_ch, &sc->sc_mtx, 0); ether_ifattach(ifp, eaddr); err = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET | INTR_MPSAFE | INTR_EXCL, NULL, cgem_intr, sc, &sc->intrhand); if (err) { device_printf(dev, "could not set interrupt handler.\n"); ether_ifdetach(ifp); cgem_detach(dev); return (err); } cgem_add_sysctls(dev); return (0); } static int cgem_detach(device_t dev) { struct cgem_softc *sc = device_get_softc(dev); int i; if (sc == NULL) return (ENODEV); if (device_is_attached(dev)) { CGEM_LOCK(sc); cgem_stop(sc); CGEM_UNLOCK(sc); callout_drain(&sc->tick_ch); if_setflagbits(sc->ifp, 0, IFF_UP); ether_ifdetach(sc->ifp); } if (sc->miibus != NULL) { device_delete_child(dev, sc->miibus); sc->miibus = NULL; } /* Release resources. */ if (sc->mem_res != NULL) { bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem_res), sc->mem_res); sc->mem_res = NULL; } if (sc->irq_res != NULL) { if (sc->intrhand) bus_teardown_intr(dev, sc->irq_res, sc->intrhand); bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq_res), sc->irq_res); sc->irq_res = NULL; } /* Release DMA resources. */ if (sc->rxring != NULL) { if (sc->rxring_physaddr != 0) { bus_dmamap_unload(sc->desc_dma_tag, sc->rxring_dma_map); sc->rxring_physaddr = 0; sc->txring_physaddr = 0; sc->null_qs_physaddr = 0; } bus_dmamem_free(sc->desc_dma_tag, sc->rxring, sc->rxring_dma_map); sc->rxring = NULL; sc->txring = NULL; sc->null_qs = NULL; for (i = 0; i < CGEM_NUM_RX_DESCS; i++) if (sc->rxring_m_dmamap[i] != NULL) { bus_dmamap_destroy(sc->mbuf_dma_tag, sc->rxring_m_dmamap[i]); sc->rxring_m_dmamap[i] = NULL; } for (i = 0; i < CGEM_NUM_TX_DESCS; i++) if (sc->txring_m_dmamap[i] != NULL) { bus_dmamap_destroy(sc->mbuf_dma_tag, sc->txring_m_dmamap[i]); sc->txring_m_dmamap[i] = NULL; } } if (sc->desc_dma_tag != NULL) { bus_dma_tag_destroy(sc->desc_dma_tag); sc->desc_dma_tag = NULL; } if (sc->mbuf_dma_tag != NULL) { bus_dma_tag_destroy(sc->mbuf_dma_tag); sc->mbuf_dma_tag = NULL; } if (sc->ref_clk != NULL) { clk_release(sc->ref_clk); sc->ref_clk = NULL; } bus_generic_detach(dev); CGEM_LOCK_DESTROY(sc); return (0); } static device_method_t cgem_methods[] = { /* Device interface */ DEVMETHOD(device_probe, cgem_probe), DEVMETHOD(device_attach, cgem_attach), DEVMETHOD(device_detach, cgem_detach), /* MII interface */ DEVMETHOD(miibus_readreg, cgem_miibus_readreg), DEVMETHOD(miibus_writereg, cgem_miibus_writereg), DEVMETHOD(miibus_statchg, cgem_miibus_statchg), DEVMETHOD(miibus_linkchg, cgem_miibus_linkchg), DEVMETHOD_END }; static driver_t cgem_driver = { "cgem", cgem_methods, sizeof(struct cgem_softc), }; DRIVER_MODULE(cgem, simplebus, cgem_driver, NULL, NULL); DRIVER_MODULE(miibus, cgem, miibus_driver, NULL, NULL); MODULE_DEPEND(cgem, miibus, 1, 1, 1); MODULE_DEPEND(cgem, ether, 1, 1, 1); SIMPLEBUS_PNP_INFO(compat_data);