xref: /freebsd/sys/dev/ath/ath_hal/ar5211/ar5211_misc.c (revision b2d2a78ad80ec68d4a17f5aef97d21686cb1e29b)
1 /*-
2  * SPDX-License-Identifier: ISC
3  *
4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5  * Copyright (c) 2002-2006 Atheros Communications, Inc.
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_internal.h"
23 
24 #include "ar5211/ar5211.h"
25 #include "ar5211/ar5211reg.h"
26 #include "ar5211/ar5211phy.h"
27 
28 #include "ah_eeprom_v3.h"
29 
30 #define	AR_NUM_GPIO	6		/* 6 GPIO bits */
31 #define	AR_GPIOD_MASK	0x2f		/* 6-bit mask */
32 
33 void
34 ar5211GetMacAddress(struct ath_hal *ah, uint8_t *mac)
35 {
36 	struct ath_hal_5211 *ahp = AH5211(ah);
37 
38 	OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
39 }
40 
41 HAL_BOOL
42 ar5211SetMacAddress(struct ath_hal *ah, const uint8_t *mac)
43 {
44 	struct ath_hal_5211 *ahp = AH5211(ah);
45 
46 	OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
47 	return AH_TRUE;
48 }
49 
50 void
51 ar5211GetBssIdMask(struct ath_hal *ah, uint8_t *mask)
52 {
53 	static const uint8_t ones[IEEE80211_ADDR_LEN] =
54 		{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
55 	OS_MEMCPY(mask, ones, IEEE80211_ADDR_LEN);
56 }
57 
58 HAL_BOOL
59 ar5211SetBssIdMask(struct ath_hal *ah, const uint8_t *mask)
60 {
61 	return AH_FALSE;
62 }
63 
64 /*
65  * Read 16 bits of data from the specified EEPROM offset.
66  */
67 HAL_BOOL
68 ar5211EepromRead(struct ath_hal *ah, u_int off, uint16_t *data)
69 {
70 	OS_REG_WRITE(ah, AR_EEPROM_ADDR, off);
71 	OS_REG_WRITE(ah, AR_EEPROM_CMD, AR_EEPROM_CMD_READ);
72 
73 	if (!ath_hal_wait(ah, AR_EEPROM_STS,
74 	    AR_EEPROM_STS_READ_COMPLETE | AR_EEPROM_STS_READ_ERROR,
75 	    AR_EEPROM_STS_READ_COMPLETE)) {
76 		HALDEBUG(ah, HAL_DEBUG_ANY,
77 		    "%s: read failed for entry 0x%x\n", __func__, off);
78 		return AH_FALSE;
79 	}
80 	*data = OS_REG_READ(ah, AR_EEPROM_DATA) & 0xffff;
81 	return AH_TRUE;
82 }
83 
84 #ifdef AH_SUPPORT_WRITE_EEPROM
85 /*
86  * Write 16 bits of data to the specified EEPROM offset.
87  */
88 HAL_BOOL
89 ar5211EepromWrite(struct ath_hal *ah, u_int off, uint16_t data)
90 {
91 	return AH_FALSE;
92 }
93 #endif /* AH_SUPPORT_WRITE_EEPROM */
94 
95 /*
96  * Attempt to change the cards operating regulatory domain to the given value
97  */
98 HAL_BOOL
99 ar5211SetRegulatoryDomain(struct ath_hal *ah,
100 	uint16_t regDomain, HAL_STATUS *status)
101 {
102 	HAL_STATUS ecode;
103 
104 	if (AH_PRIVATE(ah)->ah_currentRD == regDomain) {
105 		ecode = HAL_EINVAL;
106 		goto bad;
107 	}
108 	/*
109 	 * Check if EEPROM is configured to allow this; must
110 	 * be a proper version and the protection bits must
111 	 * permit re-writing that segment of the EEPROM.
112 	 */
113 	if (ath_hal_eepromGetFlag(ah, AR_EEP_WRITEPROTECT)) {
114 		ecode = HAL_EEWRITE;
115 		goto bad;
116 	}
117 #ifdef AH_SUPPORT_WRITE_REGDOMAIN
118 	if (ar5211EepromWrite(ah, AR_EEPROM_REG_DOMAIN, regDomain)) {
119 		HALDEBUG(ah, HAL_DEBUG_ANY,
120 		    "%s: set regulatory domain to %u (0x%x)\n",
121 		    __func__, regDomain, regDomain);
122 		AH_PRIVATE(ah)->ah_currentRD = regDomain;
123 		return AH_TRUE;
124 	}
125 #endif
126 	ecode = HAL_EIO;
127 bad:
128 	if (status)
129 		*status = ecode;
130 	return AH_FALSE;
131 }
132 
133 /*
134  * Return the wireless modes (a,b,g,t) supported by hardware.
135  *
136  * This value is what is actually supported by the hardware
137  * and is unaffected by regulatory/country code settings.
138  *
139  */
140 u_int
141 ar5211GetWirelessModes(struct ath_hal *ah)
142 {
143 	u_int mode = 0;
144 
145 	if (ath_hal_eepromGetFlag(ah, AR_EEP_AMODE)) {
146 		mode = HAL_MODE_11A;
147 		if (!ath_hal_eepromGetFlag(ah, AR_EEP_TURBO5DISABLE))
148 			mode |= HAL_MODE_TURBO | HAL_MODE_108A;
149 	}
150 	if (ath_hal_eepromGetFlag(ah, AR_EEP_BMODE))
151 		mode |= HAL_MODE_11B;
152 	return mode;
153 }
154 
155 #if 0
156 HAL_BOOL
157 ar5211GetTurboDisable(struct ath_hal *ah)
158 {
159 	return (AH5211(ah)->ah_turboDisable != 0);
160 }
161 #endif
162 
163 /*
164  * Called if RfKill is supported (according to EEPROM).  Set the interrupt and
165  * GPIO values so the ISR and can disable RF on a switch signal
166  */
167 void
168 ar5211EnableRfKill(struct ath_hal *ah)
169 {
170 	uint16_t rfsilent = AH_PRIVATE(ah)->ah_rfsilent;
171 	int select = MS(rfsilent, AR_EEPROM_RFSILENT_GPIO_SEL);
172 	int polarity = MS(rfsilent, AR_EEPROM_RFSILENT_POLARITY);
173 
174 	/*
175 	 * Configure the desired GPIO port for input
176 	 * and enable baseband rf silence.
177 	 */
178 	ar5211GpioCfgInput(ah, select);
179 	OS_REG_SET_BIT(ah, AR_PHY_BASE, 0x00002000);
180 	/*
181 	 * If radio disable switch connection to GPIO bit x is enabled
182 	 * program GPIO interrupt.
183 	 * If rfkill bit on eeprom is 1, setupeeprommap routine has already
184 	 * verified that it is a later version of eeprom, it has a place for
185 	 * rfkill bit and it is set to 1, indicating that GPIO bit x hardware
186 	 * connection is present.
187 	 */
188 	ar5211GpioSetIntr(ah, select, (ar5211GpioGet(ah, select) != polarity));
189 }
190 
191 /*
192  * Configure GPIO Output lines
193  */
194 HAL_BOOL
195 ar5211GpioCfgOutput(struct ath_hal *ah, uint32_t gpio, HAL_GPIO_MUX_TYPE type)
196 {
197 	uint32_t reg;
198 
199 	HALASSERT(gpio < AR_NUM_GPIO);
200 
201 	reg =  OS_REG_READ(ah, AR_GPIOCR);
202 	reg &= ~(AR_GPIOCR_0_CR_A << (gpio * AR_GPIOCR_CR_SHIFT));
203 	reg |= AR_GPIOCR_0_CR_A << (gpio * AR_GPIOCR_CR_SHIFT);
204 
205 	OS_REG_WRITE(ah, AR_GPIOCR, reg);
206 	return AH_TRUE;
207 }
208 
209 /*
210  * Configure GPIO Input lines
211  */
212 HAL_BOOL
213 ar5211GpioCfgInput(struct ath_hal *ah, uint32_t gpio)
214 {
215 	uint32_t reg;
216 
217 	HALASSERT(gpio < AR_NUM_GPIO);
218 
219 	reg =  OS_REG_READ(ah, AR_GPIOCR);
220 	reg &= ~(AR_GPIOCR_0_CR_A << (gpio * AR_GPIOCR_CR_SHIFT));
221 	reg |= AR_GPIOCR_0_CR_N << (gpio * AR_GPIOCR_CR_SHIFT);
222 
223 	OS_REG_WRITE(ah, AR_GPIOCR, reg);
224 	return AH_TRUE;
225 }
226 
227 /*
228  * Once configured for I/O - set output lines
229  */
230 HAL_BOOL
231 ar5211GpioSet(struct ath_hal *ah, uint32_t gpio, uint32_t val)
232 {
233 	uint32_t reg;
234 
235 	HALASSERT(gpio < AR_NUM_GPIO);
236 
237 	reg =  OS_REG_READ(ah, AR_GPIODO);
238 	reg &= ~(1 << gpio);
239 	reg |= (val&1) << gpio;
240 
241 	OS_REG_WRITE(ah, AR_GPIODO, reg);
242 	return AH_TRUE;
243 }
244 
245 /*
246  * Once configured for I/O - get input lines
247  */
248 uint32_t
249 ar5211GpioGet(struct ath_hal *ah, uint32_t gpio)
250 {
251 	if (gpio < AR_NUM_GPIO) {
252 		uint32_t val = OS_REG_READ(ah, AR_GPIODI);
253 		val = ((val & AR_GPIOD_MASK) >> gpio) & 0x1;
254 		return val;
255 	} else  {
256 		return 0xffffffff;
257 	}
258 }
259 
260 /*
261  * Set the GPIO 0 Interrupt (gpio is ignored)
262  */
263 void
264 ar5211GpioSetIntr(struct ath_hal *ah, u_int gpio, uint32_t ilevel)
265 {
266 	uint32_t val = OS_REG_READ(ah, AR_GPIOCR);
267 
268 	/* Clear the bits that we will modify. */
269 	val &= ~(AR_GPIOCR_INT_SEL0 | AR_GPIOCR_INT_SELH | AR_GPIOCR_INT_ENA |
270 			AR_GPIOCR_0_CR_A);
271 
272 	val |= AR_GPIOCR_INT_SEL0 | AR_GPIOCR_INT_ENA;
273 	if (ilevel)
274 		val |= AR_GPIOCR_INT_SELH;
275 
276 	/* Don't need to change anything for low level interrupt. */
277 	OS_REG_WRITE(ah, AR_GPIOCR, val);
278 
279 	/* Change the interrupt mask. */
280 	ar5211SetInterrupts(ah, AH5211(ah)->ah_maskReg | HAL_INT_GPIO);
281 }
282 
283 /*
284  * Change the LED blinking pattern to correspond to the connectivity
285  */
286 void
287 ar5211SetLedState(struct ath_hal *ah, HAL_LED_STATE state)
288 {
289 	static const uint32_t ledbits[8] = {
290 		AR_PCICFG_LEDCTL_NONE|AR_PCICFG_LEDMODE_PROP, /* HAL_LED_INIT */
291 		AR_PCICFG_LEDCTL_PEND|AR_PCICFG_LEDMODE_PROP, /* HAL_LED_SCAN */
292 		AR_PCICFG_LEDCTL_PEND|AR_PCICFG_LEDMODE_PROP, /* HAL_LED_AUTH */
293 		AR_PCICFG_LEDCTL_ASSOC|AR_PCICFG_LEDMODE_PROP,/* HAL_LED_ASSOC*/
294 		AR_PCICFG_LEDCTL_ASSOC|AR_PCICFG_LEDMODE_PROP,/* HAL_LED_RUN */
295 		AR_PCICFG_LEDCTL_NONE|AR_PCICFG_LEDMODE_RAND,
296 		AR_PCICFG_LEDCTL_NONE|AR_PCICFG_LEDMODE_RAND,
297 		AR_PCICFG_LEDCTL_NONE|AR_PCICFG_LEDMODE_RAND,
298 	};
299 	OS_REG_WRITE(ah, AR_PCICFG,
300 		(OS_REG_READ(ah, AR_PCICFG) &~
301 			(AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE))
302 		| ledbits[state & 0x7]
303 	);
304 }
305 
306 /*
307  * Change association related fields programmed into the hardware.
308  * Writing a valid BSSID to the hardware effectively enables the hardware
309  * to synchronize its TSF to the correct beacons and receive frames coming
310  * from that BSSID. It is called by the SME JOIN operation.
311  */
312 void
313 ar5211WriteAssocid(struct ath_hal *ah, const uint8_t *bssid, uint16_t assocId)
314 {
315 	struct ath_hal_5211 *ahp = AH5211(ah);
316 
317 	/* XXX save bssid for possible re-use on reset */
318 	OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
319 	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
320 	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid+4) |
321 				     ((assocId & 0x3fff)<<AR_BSS_ID1_AID_S));
322 }
323 
324 /*
325  * Get the current hardware tsf for stamlme.
326  */
327 uint64_t
328 ar5211GetTsf64(struct ath_hal *ah)
329 {
330 	uint32_t low1, low2, u32;
331 
332 	/* sync multi-word read */
333 	low1 = OS_REG_READ(ah, AR_TSF_L32);
334 	u32 = OS_REG_READ(ah, AR_TSF_U32);
335 	low2 = OS_REG_READ(ah, AR_TSF_L32);
336 	if (low2 < low1) {	/* roll over */
337 		/*
338 		 * If we are not preempted this will work.  If we are
339 		 * then we re-reading AR_TSF_U32 does no good as the
340 		 * low bits will be meaningless.  Likewise reading
341 		 * L32, U32, U32, then comparing the last two reads
342 		 * to check for rollover doesn't help if preempted--so
343 		 * we take this approach as it costs one less PCI
344 		 * read which can be noticeable when doing things
345 		 * like timestamping packets in monitor mode.
346 		 */
347 		u32++;
348 	}
349 	return (((uint64_t) u32) << 32) | ((uint64_t) low2);
350 }
351 
352 /*
353  * Get the current hardware tsf for stamlme.
354  */
355 uint32_t
356 ar5211GetTsf32(struct ath_hal *ah)
357 {
358 	return OS_REG_READ(ah, AR_TSF_L32);
359 }
360 
361 /*
362  * Reset the current hardware tsf for stamlme
363  */
364 void
365 ar5211ResetTsf(struct ath_hal *ah)
366 {
367 	uint32_t val = OS_REG_READ(ah, AR_BEACON);
368 
369 	OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
370 }
371 
372 /*
373  * Grab a semi-random value from hardware registers - may not
374  * change often
375  */
376 uint32_t
377 ar5211GetRandomSeed(struct ath_hal *ah)
378 {
379 	uint32_t nf;
380 
381 	nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
382 	if (nf & 0x100)
383 		nf = 0 - ((nf ^ 0x1ff) + 1);
384 	return (OS_REG_READ(ah, AR_TSF_U32) ^
385 		OS_REG_READ(ah, AR_TSF_L32) ^ nf);
386 }
387 
388 /*
389  * Detect if our card is present
390  */
391 HAL_BOOL
392 ar5211DetectCardPresent(struct ath_hal *ah)
393 {
394 	uint16_t macVersion, macRev;
395 	uint32_t v;
396 
397 	/*
398 	 * Read the Silicon Revision register and compare that
399 	 * to what we read at attach time.  If the same, we say
400 	 * a card/device is present.
401 	 */
402 	v = OS_REG_READ(ah, AR_SREV) & AR_SREV_ID_M;
403 	macVersion = v >> AR_SREV_ID_S;
404 	macRev = v & AR_SREV_REVISION_M;
405 	return (AH_PRIVATE(ah)->ah_macVersion == macVersion &&
406 		AH_PRIVATE(ah)->ah_macRev == macRev);
407 }
408 
409 /*
410  * Update MIB Counters
411  */
412 void
413 ar5211UpdateMibCounters(struct ath_hal *ah, HAL_MIB_STATS *stats)
414 {
415 	stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
416 	stats->rts_bad	  += OS_REG_READ(ah, AR_RTS_FAIL);
417 	stats->fcs_bad	  += OS_REG_READ(ah, AR_FCS_FAIL);
418 	stats->rts_good	  += OS_REG_READ(ah, AR_RTS_OK);
419 	stats->beacons	  += OS_REG_READ(ah, AR_BEACON_CNT);
420 }
421 
422 HAL_BOOL
423 ar5211SetSifsTime(struct ath_hal *ah, u_int us)
424 {
425 	struct ath_hal_5211 *ahp = AH5211(ah);
426 
427 	if (us > ath_hal_mac_usec(ah, 0xffff)) {
428 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad SIFS time %u\n",
429 		    __func__, us);
430 		ahp->ah_sifstime = (u_int) -1;	/* restore default handling */
431 		return AH_FALSE;
432 	} else {
433 		/* convert to system clocks */
434 		OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, ath_hal_mac_clks(ah, us));
435 		ahp->ah_slottime = us;
436 		return AH_TRUE;
437 	}
438 }
439 
440 u_int
441 ar5211GetSifsTime(struct ath_hal *ah)
442 {
443 	u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SIFS) & 0xffff;
444 	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
445 }
446 
447 HAL_BOOL
448 ar5211SetSlotTime(struct ath_hal *ah, u_int us)
449 {
450 	struct ath_hal_5211 *ahp = AH5211(ah);
451 
452 	if (us < HAL_SLOT_TIME_9 || us > ath_hal_mac_usec(ah, 0xffff)) {
453 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad slot time %u\n",
454 		    __func__, us);
455 		ahp->ah_slottime = us;	/* restore default handling */
456 		return AH_FALSE;
457 	} else {
458 		/* convert to system clocks */
459 		OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath_hal_mac_clks(ah, us));
460 		ahp->ah_slottime = us;
461 		return AH_TRUE;
462 	}
463 }
464 
465 u_int
466 ar5211GetSlotTime(struct ath_hal *ah)
467 {
468 	u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SLOT) & 0xffff;
469 	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
470 }
471 
472 HAL_BOOL
473 ar5211SetAckTimeout(struct ath_hal *ah, u_int us)
474 {
475 	struct ath_hal_5211 *ahp = AH5211(ah);
476 
477 	if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
478 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad ack timeout %u\n",
479 		    __func__, us);
480 		ahp->ah_acktimeout = (u_int) -1; /* restore default handling */
481 		return AH_FALSE;
482 	} else {
483 		/* convert to system clocks */
484 		OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
485 			AR_TIME_OUT_ACK, ath_hal_mac_clks(ah, us));
486 		ahp->ah_acktimeout = us;
487 		return AH_TRUE;
488 	}
489 }
490 
491 u_int
492 ar5211GetAckTimeout(struct ath_hal *ah)
493 {
494 	u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
495 	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
496 }
497 
498 u_int
499 ar5211GetAckCTSRate(struct ath_hal *ah)
500 {
501 	return ((AH5211(ah)->ah_staId1Defaults & AR_STA_ID1_ACKCTS_6MB) == 0);
502 }
503 
504 HAL_BOOL
505 ar5211SetAckCTSRate(struct ath_hal *ah, u_int high)
506 {
507 	struct ath_hal_5211 *ahp = AH5211(ah);
508 
509 	if (high) {
510 		OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
511 		ahp->ah_staId1Defaults &= ~AR_STA_ID1_ACKCTS_6MB;
512 	} else {
513 		OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
514 		ahp->ah_staId1Defaults |= AR_STA_ID1_ACKCTS_6MB;
515 	}
516 	return AH_TRUE;
517 }
518 
519 HAL_BOOL
520 ar5211SetCTSTimeout(struct ath_hal *ah, u_int us)
521 {
522 	struct ath_hal_5211 *ahp = AH5211(ah);
523 
524 	if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
525 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad cts timeout %u\n",
526 		    __func__, us);
527 		ahp->ah_ctstimeout = (u_int) -1; /* restore default handling */
528 		return AH_FALSE;
529 	} else {
530 		/* convert to system clocks */
531 		OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
532 			AR_TIME_OUT_CTS, ath_hal_mac_clks(ah, us));
533 		ahp->ah_ctstimeout = us;
534 		return AH_TRUE;
535 	}
536 }
537 
538 u_int
539 ar5211GetCTSTimeout(struct ath_hal *ah)
540 {
541 	u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_CTS);
542 	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
543 }
544 
545 HAL_BOOL
546 ar5211SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en)
547 {
548 	/* nothing to do */
549         return AH_TRUE;
550 }
551 
552 void
553 ar5211SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now)
554 {
555 }
556 
557 HAL_STATUS
558 ar5211SetQuiet(struct ath_hal *ah, uint32_t period, uint32_t duration,
559     uint32_t next_start, HAL_QUIET_FLAG flags)
560 {
561 	return HAL_OK;
562 }
563 
564 /*
565  * Control Adaptive Noise Immunity Parameters
566  */
567 HAL_BOOL
568 ar5211AniControl(struct ath_hal *ah, HAL_ANI_CMD cmd, int param)
569 {
570 	return AH_FALSE;
571 }
572 
573 void
574 ar5211AniPoll(struct ath_hal *ah, const struct ieee80211_channel *chan)
575 {
576 }
577 
578 void
579 ar5211RxMonitor(struct ath_hal *ah, const HAL_NODE_STATS *stats,
580 	const struct ieee80211_channel *chan)
581 {
582 }
583 
584 void
585 ar5211MibEvent(struct ath_hal *ah, const HAL_NODE_STATS *stats)
586 {
587 }
588 
589 /*
590  * Get the rssi of frame curently being received.
591  */
592 uint32_t
593 ar5211GetCurRssi(struct ath_hal *ah)
594 {
595 	return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff);
596 }
597 
598 u_int
599 ar5211GetDefAntenna(struct ath_hal *ah)
600 {
601 	return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7);
602 }
603 
604 void
605 ar5211SetDefAntenna(struct ath_hal *ah, u_int antenna)
606 {
607 	OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
608 }
609 
610 HAL_ANT_SETTING
611 ar5211GetAntennaSwitch(struct ath_hal *ah)
612 {
613 	return AH5211(ah)->ah_diversityControl;
614 }
615 
616 HAL_BOOL
617 ar5211SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING settings)
618 {
619 	const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
620 
621 	if (chan == AH_NULL) {
622 		AH5211(ah)->ah_diversityControl = settings;
623 		return AH_TRUE;
624 	}
625 	return ar5211SetAntennaSwitchInternal(ah, settings, chan);
626 }
627 
628 HAL_STATUS
629 ar5211GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
630 	uint32_t capability, uint32_t *result)
631 {
632 
633 	switch (type) {
634 	case HAL_CAP_CIPHER:		/* cipher handled in hardware */
635 		switch (capability) {
636 		case HAL_CIPHER_AES_OCB:
637 		case HAL_CIPHER_WEP:
638 		case HAL_CIPHER_CLR:
639 			return HAL_OK;
640 		default:
641 			return HAL_ENOTSUPP;
642 		}
643 	default:
644 		return ath_hal_getcapability(ah, type, capability, result);
645 	}
646 }
647 
648 HAL_BOOL
649 ar5211SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
650 	uint32_t capability, uint32_t setting, HAL_STATUS *status)
651 {
652 	switch (type) {
653 	case HAL_CAP_DIAG:		/* hardware diagnostic support */
654 		/*
655 		 * NB: could split this up into virtual capabilities,
656 		 *     (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
657 		 *     seems worth the additional complexity.
658 		 */
659 #ifdef AH_DEBUG
660 		AH_PRIVATE(ah)->ah_diagreg = setting;
661 #else
662 		AH_PRIVATE(ah)->ah_diagreg = setting & 0x6;	/* ACK+CTS */
663 #endif
664 		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
665 		return AH_TRUE;
666 	default:
667 		return ath_hal_setcapability(ah, type, capability,
668 			setting, status);
669 	}
670 }
671 
672 HAL_BOOL
673 ar5211GetDiagState(struct ath_hal *ah, int request,
674 	const void *args, uint32_t argsize,
675 	void **result, uint32_t *resultsize)
676 {
677 	struct ath_hal_5211 *ahp = AH5211(ah);
678 
679 	(void) ahp;
680 	if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize))
681 		return AH_TRUE;
682 	switch (request) {
683 	case HAL_DIAG_EEPROM:
684 		return ath_hal_eepromDiag(ah, request,
685 		    args, argsize, result, resultsize);
686 	case HAL_DIAG_RFGAIN:
687 		*result = &ahp->ah_gainValues;
688 		*resultsize = sizeof(GAIN_VALUES);
689 		return AH_TRUE;
690 	case HAL_DIAG_RFGAIN_CURSTEP:
691 		*result = __DECONST(void *, ahp->ah_gainValues.currStep);
692 		*resultsize = (*result == AH_NULL) ?
693 			0 : sizeof(GAIN_OPTIMIZATION_STEP);
694 		return AH_TRUE;
695 	}
696 	return AH_FALSE;
697 }
698 
699 /*
700  * Return what percentage of the extension channel is busy.
701  * This is always disabled for AR5211 series NICs.
702  */
703 uint32_t
704 ar5211Get11nExtBusy(struct ath_hal *ah)
705 {
706 	return (0);
707 }
708 
709 /*
710  * There's no channel survey support for the AR5211.
711  */
712 HAL_BOOL
713 ar5211GetMibCycleCounts(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hsample)
714 {
715 
716 	return (AH_FALSE);
717 }
718 
719 void
720 ar5211SetChainMasks(struct ath_hal *ah, uint32_t txchainmask,
721     uint32_t rxchainmask)
722 {
723 }
724 
725 void
726 ar5211EnableDfs(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
727 {
728 }
729 
730 void
731 ar5211GetDfsThresh(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
732 {
733 }
734 
735 /*
736  * Get the current NAV value from the hardware.
737  */
738 u_int
739 ar5211GetNav(struct ath_hal *ah)
740 {
741 	uint32_t reg;
742 
743 	reg = OS_REG_READ(ah, AR_NAV);
744 	return (reg);
745 }
746 
747 /*
748  * Set the current NAV value to the hardware.
749  */
750 void
751 ar5211SetNav(struct ath_hal *ah, u_int val)
752 {
753 
754 	OS_REG_WRITE(ah, AR_NAV, val);
755 }
756 
757