1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2016, 2019 by Delphix. All rights reserved. 24 */ 25 26 #include <sys/spa.h> 27 #include <sys/spa_impl.h> 28 #include <sys/txg.h> 29 #include <sys/vdev_impl.h> 30 #include <sys/metaslab_impl.h> 31 #include <sys/dsl_synctask.h> 32 #include <sys/zap.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/vdev_initialize.h> 35 36 /* 37 * Value that is written to disk during initialization. 38 */ 39 #ifdef _ILP32 40 unsigned long zfs_initialize_value = 0xdeadbeefUL; 41 #else 42 unsigned long zfs_initialize_value = 0xdeadbeefdeadbeeeULL; 43 #endif 44 45 /* maximum number of I/Os outstanding per leaf vdev */ 46 int zfs_initialize_limit = 1; 47 48 /* size of initializing writes; default 1MiB, see zfs_remove_max_segment */ 49 unsigned long zfs_initialize_chunk_size = 1024 * 1024; 50 51 static boolean_t 52 vdev_initialize_should_stop(vdev_t *vd) 53 { 54 return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) || 55 vd->vdev_detached || vd->vdev_top->vdev_removing); 56 } 57 58 static void 59 vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx) 60 { 61 /* 62 * We pass in the guid instead of the vdev_t since the vdev may 63 * have been freed prior to the sync task being processed. This 64 * happens when a vdev is detached as we call spa_config_vdev_exit(), 65 * stop the initializing thread, schedule the sync task, and free 66 * the vdev. Later when the scheduled sync task is invoked, it would 67 * find that the vdev has been freed. 68 */ 69 uint64_t guid = *(uint64_t *)arg; 70 uint64_t txg = dmu_tx_get_txg(tx); 71 kmem_free(arg, sizeof (uint64_t)); 72 73 vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE); 74 if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd)) 75 return; 76 77 uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK]; 78 vd->vdev_initialize_offset[txg & TXG_MASK] = 0; 79 80 VERIFY(vd->vdev_leaf_zap != 0); 81 82 objset_t *mos = vd->vdev_spa->spa_meta_objset; 83 84 if (last_offset > 0) { 85 vd->vdev_initialize_last_offset = last_offset; 86 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 87 VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET, 88 sizeof (last_offset), 1, &last_offset, tx)); 89 } 90 if (vd->vdev_initialize_action_time > 0) { 91 uint64_t val = (uint64_t)vd->vdev_initialize_action_time; 92 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 93 VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val), 94 1, &val, tx)); 95 } 96 97 uint64_t initialize_state = vd->vdev_initialize_state; 98 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 99 VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1, 100 &initialize_state, tx)); 101 } 102 103 static void 104 vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state) 105 { 106 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock)); 107 spa_t *spa = vd->vdev_spa; 108 109 if (new_state == vd->vdev_initialize_state) 110 return; 111 112 /* 113 * Copy the vd's guid, this will be freed by the sync task. 114 */ 115 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 116 *guid = vd->vdev_guid; 117 118 /* 119 * If we're suspending, then preserving the original start time. 120 */ 121 if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) { 122 vd->vdev_initialize_action_time = gethrestime_sec(); 123 } 124 vd->vdev_initialize_state = new_state; 125 126 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 127 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 128 dsl_sync_task_nowait(spa_get_dsl(spa), vdev_initialize_zap_update_sync, 129 guid, 2, ZFS_SPACE_CHECK_NONE, tx); 130 131 switch (new_state) { 132 case VDEV_INITIALIZE_ACTIVE: 133 spa_history_log_internal(spa, "initialize", tx, 134 "vdev=%s activated", vd->vdev_path); 135 break; 136 case VDEV_INITIALIZE_SUSPENDED: 137 spa_history_log_internal(spa, "initialize", tx, 138 "vdev=%s suspended", vd->vdev_path); 139 break; 140 case VDEV_INITIALIZE_CANCELED: 141 spa_history_log_internal(spa, "initialize", tx, 142 "vdev=%s canceled", vd->vdev_path); 143 break; 144 case VDEV_INITIALIZE_COMPLETE: 145 spa_history_log_internal(spa, "initialize", tx, 146 "vdev=%s complete", vd->vdev_path); 147 break; 148 default: 149 panic("invalid state %llu", (unsigned long long)new_state); 150 } 151 152 dmu_tx_commit(tx); 153 154 if (new_state != VDEV_INITIALIZE_ACTIVE) 155 spa_notify_waiters(spa); 156 } 157 158 static void 159 vdev_initialize_cb(zio_t *zio) 160 { 161 vdev_t *vd = zio->io_vd; 162 mutex_enter(&vd->vdev_initialize_io_lock); 163 if (zio->io_error == ENXIO && !vdev_writeable(vd)) { 164 /* 165 * The I/O failed because the vdev was unavailable; roll the 166 * last offset back. (This works because spa_sync waits on 167 * spa_txg_zio before it runs sync tasks.) 168 */ 169 uint64_t *off = 170 &vd->vdev_initialize_offset[zio->io_txg & TXG_MASK]; 171 *off = MIN(*off, zio->io_offset); 172 } else { 173 /* 174 * Since initializing is best-effort, we ignore I/O errors and 175 * rely on vdev_probe to determine if the errors are more 176 * critical. 177 */ 178 if (zio->io_error != 0) 179 vd->vdev_stat.vs_initialize_errors++; 180 181 vd->vdev_initialize_bytes_done += zio->io_orig_size; 182 } 183 ASSERT3U(vd->vdev_initialize_inflight, >, 0); 184 vd->vdev_initialize_inflight--; 185 cv_broadcast(&vd->vdev_initialize_io_cv); 186 mutex_exit(&vd->vdev_initialize_io_lock); 187 188 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 189 } 190 191 /* Takes care of physical writing and limiting # of concurrent ZIOs. */ 192 static int 193 vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data) 194 { 195 spa_t *spa = vd->vdev_spa; 196 197 /* Limit inflight initializing I/Os */ 198 mutex_enter(&vd->vdev_initialize_io_lock); 199 while (vd->vdev_initialize_inflight >= zfs_initialize_limit) { 200 cv_wait(&vd->vdev_initialize_io_cv, 201 &vd->vdev_initialize_io_lock); 202 } 203 vd->vdev_initialize_inflight++; 204 mutex_exit(&vd->vdev_initialize_io_lock); 205 206 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 207 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 208 uint64_t txg = dmu_tx_get_txg(tx); 209 210 spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER); 211 mutex_enter(&vd->vdev_initialize_lock); 212 213 if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) { 214 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 215 *guid = vd->vdev_guid; 216 217 /* This is the first write of this txg. */ 218 dsl_sync_task_nowait(spa_get_dsl(spa), 219 vdev_initialize_zap_update_sync, guid, 2, 220 ZFS_SPACE_CHECK_RESERVED, tx); 221 } 222 223 /* 224 * We know the vdev struct will still be around since all 225 * consumers of vdev_free must stop the initialization first. 226 */ 227 if (vdev_initialize_should_stop(vd)) { 228 mutex_enter(&vd->vdev_initialize_io_lock); 229 ASSERT3U(vd->vdev_initialize_inflight, >, 0); 230 vd->vdev_initialize_inflight--; 231 mutex_exit(&vd->vdev_initialize_io_lock); 232 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 233 mutex_exit(&vd->vdev_initialize_lock); 234 dmu_tx_commit(tx); 235 return (SET_ERROR(EINTR)); 236 } 237 mutex_exit(&vd->vdev_initialize_lock); 238 239 vd->vdev_initialize_offset[txg & TXG_MASK] = start + size; 240 zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start, 241 size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL, 242 ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE)); 243 /* vdev_initialize_cb releases SCL_STATE_ALL */ 244 245 dmu_tx_commit(tx); 246 247 return (0); 248 } 249 250 /* 251 * Callback to fill each ABD chunk with zfs_initialize_value. len must be 252 * divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD 253 * allocation will guarantee these for us. 254 */ 255 /* ARGSUSED */ 256 static int 257 vdev_initialize_block_fill(void *buf, size_t len, void *unused) 258 { 259 ASSERT0(len % sizeof (uint64_t)); 260 #ifdef _ILP32 261 for (uint64_t i = 0; i < len; i += sizeof (uint32_t)) { 262 *(uint32_t *)((char *)(buf) + i) = zfs_initialize_value; 263 } 264 #else 265 for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) { 266 *(uint64_t *)((char *)(buf) + i) = zfs_initialize_value; 267 } 268 #endif 269 return (0); 270 } 271 272 static abd_t * 273 vdev_initialize_block_alloc(void) 274 { 275 /* Allocate ABD for filler data */ 276 abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE); 277 278 ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t)); 279 (void) abd_iterate_func(data, 0, zfs_initialize_chunk_size, 280 vdev_initialize_block_fill, NULL); 281 282 return (data); 283 } 284 285 static void 286 vdev_initialize_block_free(abd_t *data) 287 { 288 abd_free(data); 289 } 290 291 static int 292 vdev_initialize_ranges(vdev_t *vd, abd_t *data) 293 { 294 range_tree_t *rt = vd->vdev_initialize_tree; 295 zfs_btree_t *bt = &rt->rt_root; 296 zfs_btree_index_t where; 297 298 for (range_seg_t *rs = zfs_btree_first(bt, &where); rs != NULL; 299 rs = zfs_btree_next(bt, &where, &where)) { 300 uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt); 301 302 /* Split range into legally-sized physical chunks */ 303 uint64_t writes_required = 304 ((size - 1) / zfs_initialize_chunk_size) + 1; 305 306 for (uint64_t w = 0; w < writes_required; w++) { 307 int error; 308 309 error = vdev_initialize_write(vd, 310 VDEV_LABEL_START_SIZE + rs_get_start(rs, rt) + 311 (w * zfs_initialize_chunk_size), 312 MIN(size - (w * zfs_initialize_chunk_size), 313 zfs_initialize_chunk_size), data); 314 if (error != 0) 315 return (error); 316 } 317 } 318 return (0); 319 } 320 321 static void 322 vdev_initialize_calculate_progress(vdev_t *vd) 323 { 324 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) || 325 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER)); 326 ASSERT(vd->vdev_leaf_zap != 0); 327 328 vd->vdev_initialize_bytes_est = 0; 329 vd->vdev_initialize_bytes_done = 0; 330 331 for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) { 332 metaslab_t *msp = vd->vdev_top->vdev_ms[i]; 333 mutex_enter(&msp->ms_lock); 334 335 uint64_t ms_free = msp->ms_size - 336 metaslab_allocated_space(msp); 337 338 if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) 339 ms_free /= vd->vdev_top->vdev_children; 340 341 /* 342 * Convert the metaslab range to a physical range 343 * on our vdev. We use this to determine if we are 344 * in the middle of this metaslab range. 345 */ 346 range_seg64_t logical_rs, physical_rs; 347 logical_rs.rs_start = msp->ms_start; 348 logical_rs.rs_end = msp->ms_start + msp->ms_size; 349 vdev_xlate(vd, &logical_rs, &physical_rs); 350 351 if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) { 352 vd->vdev_initialize_bytes_est += ms_free; 353 mutex_exit(&msp->ms_lock); 354 continue; 355 } else if (vd->vdev_initialize_last_offset > 356 physical_rs.rs_end) { 357 vd->vdev_initialize_bytes_done += ms_free; 358 vd->vdev_initialize_bytes_est += ms_free; 359 mutex_exit(&msp->ms_lock); 360 continue; 361 } 362 363 /* 364 * If we get here, we're in the middle of initializing this 365 * metaslab. Load it and walk the free tree for more accurate 366 * progress estimation. 367 */ 368 VERIFY0(metaslab_load(msp)); 369 370 zfs_btree_index_t where; 371 range_tree_t *rt = msp->ms_allocatable; 372 for (range_seg_t *rs = 373 zfs_btree_first(&rt->rt_root, &where); rs; 374 rs = zfs_btree_next(&rt->rt_root, &where, 375 &where)) { 376 logical_rs.rs_start = rs_get_start(rs, rt); 377 logical_rs.rs_end = rs_get_end(rs, rt); 378 vdev_xlate(vd, &logical_rs, &physical_rs); 379 380 uint64_t size = physical_rs.rs_end - 381 physical_rs.rs_start; 382 vd->vdev_initialize_bytes_est += size; 383 if (vd->vdev_initialize_last_offset > 384 physical_rs.rs_end) { 385 vd->vdev_initialize_bytes_done += size; 386 } else if (vd->vdev_initialize_last_offset > 387 physical_rs.rs_start && 388 vd->vdev_initialize_last_offset < 389 physical_rs.rs_end) { 390 vd->vdev_initialize_bytes_done += 391 vd->vdev_initialize_last_offset - 392 physical_rs.rs_start; 393 } 394 } 395 mutex_exit(&msp->ms_lock); 396 } 397 } 398 399 static int 400 vdev_initialize_load(vdev_t *vd) 401 { 402 int err = 0; 403 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) || 404 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER)); 405 ASSERT(vd->vdev_leaf_zap != 0); 406 407 if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE || 408 vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) { 409 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 410 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET, 411 sizeof (vd->vdev_initialize_last_offset), 1, 412 &vd->vdev_initialize_last_offset); 413 if (err == ENOENT) { 414 vd->vdev_initialize_last_offset = 0; 415 err = 0; 416 } 417 } 418 419 vdev_initialize_calculate_progress(vd); 420 return (err); 421 } 422 423 /* 424 * Convert the logical range into a physical range and add it to our 425 * avl tree. 426 */ 427 static void 428 vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size) 429 { 430 vdev_t *vd = arg; 431 range_seg64_t logical_rs, physical_rs; 432 logical_rs.rs_start = start; 433 logical_rs.rs_end = start + size; 434 435 ASSERT(vd->vdev_ops->vdev_op_leaf); 436 vdev_xlate(vd, &logical_rs, &physical_rs); 437 438 IMPLY(vd->vdev_top == vd, 439 logical_rs.rs_start == physical_rs.rs_start); 440 IMPLY(vd->vdev_top == vd, 441 logical_rs.rs_end == physical_rs.rs_end); 442 443 /* Only add segments that we have not visited yet */ 444 if (physical_rs.rs_end <= vd->vdev_initialize_last_offset) 445 return; 446 447 /* Pick up where we left off mid-range. */ 448 if (vd->vdev_initialize_last_offset > physical_rs.rs_start) { 449 zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to " 450 "(%llu, %llu)", vd->vdev_path, 451 (u_longlong_t)physical_rs.rs_start, 452 (u_longlong_t)physical_rs.rs_end, 453 (u_longlong_t)vd->vdev_initialize_last_offset, 454 (u_longlong_t)physical_rs.rs_end); 455 ASSERT3U(physical_rs.rs_end, >, 456 vd->vdev_initialize_last_offset); 457 physical_rs.rs_start = vd->vdev_initialize_last_offset; 458 } 459 ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start); 460 461 /* 462 * With raidz, it's possible that the logical range does not live on 463 * this leaf vdev. We only add the physical range to this vdev's if it 464 * has a length greater than 0. 465 */ 466 if (physical_rs.rs_end > physical_rs.rs_start) { 467 range_tree_add(vd->vdev_initialize_tree, physical_rs.rs_start, 468 physical_rs.rs_end - physical_rs.rs_start); 469 } else { 470 ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start); 471 } 472 } 473 474 static void 475 vdev_initialize_thread(void *arg) 476 { 477 vdev_t *vd = arg; 478 spa_t *spa = vd->vdev_spa; 479 int error = 0; 480 uint64_t ms_count = 0; 481 482 ASSERT(vdev_is_concrete(vd)); 483 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 484 485 vd->vdev_initialize_last_offset = 0; 486 VERIFY0(vdev_initialize_load(vd)); 487 488 abd_t *deadbeef = vdev_initialize_block_alloc(); 489 490 vd->vdev_initialize_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 491 0, 0); 492 493 for (uint64_t i = 0; !vd->vdev_detached && 494 i < vd->vdev_top->vdev_ms_count; i++) { 495 metaslab_t *msp = vd->vdev_top->vdev_ms[i]; 496 boolean_t unload_when_done = B_FALSE; 497 498 /* 499 * If we've expanded the top-level vdev or it's our 500 * first pass, calculate our progress. 501 */ 502 if (vd->vdev_top->vdev_ms_count != ms_count) { 503 vdev_initialize_calculate_progress(vd); 504 ms_count = vd->vdev_top->vdev_ms_count; 505 } 506 507 spa_config_exit(spa, SCL_CONFIG, FTAG); 508 metaslab_disable(msp); 509 mutex_enter(&msp->ms_lock); 510 if (!msp->ms_loaded && !msp->ms_loading) 511 unload_when_done = B_TRUE; 512 VERIFY0(metaslab_load(msp)); 513 514 range_tree_walk(msp->ms_allocatable, vdev_initialize_range_add, 515 vd); 516 mutex_exit(&msp->ms_lock); 517 518 error = vdev_initialize_ranges(vd, deadbeef); 519 metaslab_enable(msp, B_TRUE, unload_when_done); 520 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 521 522 range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL); 523 if (error != 0) 524 break; 525 } 526 527 spa_config_exit(spa, SCL_CONFIG, FTAG); 528 mutex_enter(&vd->vdev_initialize_io_lock); 529 while (vd->vdev_initialize_inflight > 0) { 530 cv_wait(&vd->vdev_initialize_io_cv, 531 &vd->vdev_initialize_io_lock); 532 } 533 mutex_exit(&vd->vdev_initialize_io_lock); 534 535 range_tree_destroy(vd->vdev_initialize_tree); 536 vdev_initialize_block_free(deadbeef); 537 vd->vdev_initialize_tree = NULL; 538 539 mutex_enter(&vd->vdev_initialize_lock); 540 if (!vd->vdev_initialize_exit_wanted && vdev_writeable(vd)) { 541 vdev_initialize_change_state(vd, VDEV_INITIALIZE_COMPLETE); 542 } 543 ASSERT(vd->vdev_initialize_thread != NULL || 544 vd->vdev_initialize_inflight == 0); 545 546 /* 547 * Drop the vdev_initialize_lock while we sync out the 548 * txg since it's possible that a device might be trying to 549 * come online and must check to see if it needs to restart an 550 * initialization. That thread will be holding the spa_config_lock 551 * which would prevent the txg_wait_synced from completing. 552 */ 553 mutex_exit(&vd->vdev_initialize_lock); 554 txg_wait_synced(spa_get_dsl(spa), 0); 555 mutex_enter(&vd->vdev_initialize_lock); 556 557 vd->vdev_initialize_thread = NULL; 558 cv_broadcast(&vd->vdev_initialize_cv); 559 mutex_exit(&vd->vdev_initialize_lock); 560 561 thread_exit(); 562 } 563 564 /* 565 * Initiates a device. Caller must hold vdev_initialize_lock. 566 * Device must be a leaf and not already be initializing. 567 */ 568 void 569 vdev_initialize(vdev_t *vd) 570 { 571 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock)); 572 ASSERT(vd->vdev_ops->vdev_op_leaf); 573 ASSERT(vdev_is_concrete(vd)); 574 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 575 ASSERT(!vd->vdev_detached); 576 ASSERT(!vd->vdev_initialize_exit_wanted); 577 ASSERT(!vd->vdev_top->vdev_removing); 578 579 vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE); 580 vd->vdev_initialize_thread = thread_create(NULL, 0, 581 vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri); 582 } 583 584 /* 585 * Wait for the initialize thread to be terminated (cancelled or stopped). 586 */ 587 static void 588 vdev_initialize_stop_wait_impl(vdev_t *vd) 589 { 590 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock)); 591 592 while (vd->vdev_initialize_thread != NULL) 593 cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock); 594 595 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 596 vd->vdev_initialize_exit_wanted = B_FALSE; 597 } 598 599 /* 600 * Wait for vdev initialize threads which were either to cleanly exit. 601 */ 602 void 603 vdev_initialize_stop_wait(spa_t *spa, list_t *vd_list) 604 { 605 vdev_t *vd; 606 607 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 608 609 while ((vd = list_remove_head(vd_list)) != NULL) { 610 mutex_enter(&vd->vdev_initialize_lock); 611 vdev_initialize_stop_wait_impl(vd); 612 mutex_exit(&vd->vdev_initialize_lock); 613 } 614 } 615 616 /* 617 * Stop initializing a device, with the resultant initializing state being 618 * tgt_state. For blocking behavior pass NULL for vd_list. Otherwise, when 619 * a list_t is provided the stopping vdev is inserted in to the list. Callers 620 * are then required to call vdev_initialize_stop_wait() to block for all the 621 * initialization threads to exit. The caller must hold vdev_initialize_lock 622 * and must not be writing to the spa config, as the initializing thread may 623 * try to enter the config as a reader before exiting. 624 */ 625 void 626 vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state, 627 list_t *vd_list) 628 { 629 ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER)); 630 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock)); 631 ASSERT(vd->vdev_ops->vdev_op_leaf); 632 ASSERT(vdev_is_concrete(vd)); 633 634 /* 635 * Allow cancel requests to proceed even if the initialize thread 636 * has stopped. 637 */ 638 if (vd->vdev_initialize_thread == NULL && 639 tgt_state != VDEV_INITIALIZE_CANCELED) { 640 return; 641 } 642 643 vdev_initialize_change_state(vd, tgt_state); 644 vd->vdev_initialize_exit_wanted = B_TRUE; 645 646 if (vd_list == NULL) { 647 vdev_initialize_stop_wait_impl(vd); 648 } else { 649 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 650 list_insert_tail(vd_list, vd); 651 } 652 } 653 654 static void 655 vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state, 656 list_t *vd_list) 657 { 658 if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) { 659 mutex_enter(&vd->vdev_initialize_lock); 660 vdev_initialize_stop(vd, tgt_state, vd_list); 661 mutex_exit(&vd->vdev_initialize_lock); 662 return; 663 } 664 665 for (uint64_t i = 0; i < vd->vdev_children; i++) { 666 vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state, 667 vd_list); 668 } 669 } 670 671 /* 672 * Convenience function to stop initializing of a vdev tree and set all 673 * initialize thread pointers to NULL. 674 */ 675 void 676 vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state) 677 { 678 spa_t *spa = vd->vdev_spa; 679 list_t vd_list; 680 681 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 682 683 list_create(&vd_list, sizeof (vdev_t), 684 offsetof(vdev_t, vdev_initialize_node)); 685 686 vdev_initialize_stop_all_impl(vd, tgt_state, &vd_list); 687 vdev_initialize_stop_wait(spa, &vd_list); 688 689 if (vd->vdev_spa->spa_sync_on) { 690 /* Make sure that our state has been synced to disk */ 691 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0); 692 } 693 694 list_destroy(&vd_list); 695 } 696 697 void 698 vdev_initialize_restart(vdev_t *vd) 699 { 700 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 701 ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 702 703 if (vd->vdev_leaf_zap != 0) { 704 mutex_enter(&vd->vdev_initialize_lock); 705 uint64_t initialize_state = VDEV_INITIALIZE_NONE; 706 int err = zap_lookup(vd->vdev_spa->spa_meta_objset, 707 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE, 708 sizeof (initialize_state), 1, &initialize_state); 709 ASSERT(err == 0 || err == ENOENT); 710 vd->vdev_initialize_state = initialize_state; 711 712 uint64_t timestamp = 0; 713 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 714 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, 715 sizeof (timestamp), 1, ×tamp); 716 ASSERT(err == 0 || err == ENOENT); 717 vd->vdev_initialize_action_time = timestamp; 718 719 if (vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED || 720 vd->vdev_offline) { 721 /* load progress for reporting, but don't resume */ 722 VERIFY0(vdev_initialize_load(vd)); 723 } else if (vd->vdev_initialize_state == 724 VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd) && 725 !vd->vdev_top->vdev_removing && 726 vd->vdev_initialize_thread == NULL) { 727 vdev_initialize(vd); 728 } 729 730 mutex_exit(&vd->vdev_initialize_lock); 731 } 732 733 for (uint64_t i = 0; i < vd->vdev_children; i++) { 734 vdev_initialize_restart(vd->vdev_child[i]); 735 } 736 } 737 738 EXPORT_SYMBOL(vdev_initialize); 739 EXPORT_SYMBOL(vdev_initialize_stop); 740 EXPORT_SYMBOL(vdev_initialize_stop_all); 741 EXPORT_SYMBOL(vdev_initialize_stop_wait); 742 EXPORT_SYMBOL(vdev_initialize_restart); 743 744 /* BEGIN CSTYLED */ 745 ZFS_MODULE_PARAM(zfs, zfs_, initialize_value, ULONG, ZMOD_RW, 746 "Value written during zpool initialize"); 747 748 ZFS_MODULE_PARAM(zfs, zfs_, initialize_chunk_size, ULONG, ZMOD_RW, 749 "Size in bytes of writes by zpool initialize"); 750 /* END CSTYLED */ 751