xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev_initialize.c (revision eda14cbc264d6969b02f2b1994cef11148e914f1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2016, 2019 by Delphix. All rights reserved.
24  */
25 
26 #include <sys/spa.h>
27 #include <sys/spa_impl.h>
28 #include <sys/txg.h>
29 #include <sys/vdev_impl.h>
30 #include <sys/metaslab_impl.h>
31 #include <sys/dsl_synctask.h>
32 #include <sys/zap.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_initialize.h>
35 
36 /*
37  * Value that is written to disk during initialization.
38  */
39 #ifdef _ILP32
40 unsigned long zfs_initialize_value = 0xdeadbeefUL;
41 #else
42 unsigned long zfs_initialize_value = 0xdeadbeefdeadbeeeULL;
43 #endif
44 
45 /* maximum number of I/Os outstanding per leaf vdev */
46 int zfs_initialize_limit = 1;
47 
48 /* size of initializing writes; default 1MiB, see zfs_remove_max_segment */
49 unsigned long zfs_initialize_chunk_size = 1024 * 1024;
50 
51 static boolean_t
52 vdev_initialize_should_stop(vdev_t *vd)
53 {
54 	return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) ||
55 	    vd->vdev_detached || vd->vdev_top->vdev_removing);
56 }
57 
58 static void
59 vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx)
60 {
61 	/*
62 	 * We pass in the guid instead of the vdev_t since the vdev may
63 	 * have been freed prior to the sync task being processed. This
64 	 * happens when a vdev is detached as we call spa_config_vdev_exit(),
65 	 * stop the initializing thread, schedule the sync task, and free
66 	 * the vdev. Later when the scheduled sync task is invoked, it would
67 	 * find that the vdev has been freed.
68 	 */
69 	uint64_t guid = *(uint64_t *)arg;
70 	uint64_t txg = dmu_tx_get_txg(tx);
71 	kmem_free(arg, sizeof (uint64_t));
72 
73 	vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
74 	if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
75 		return;
76 
77 	uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK];
78 	vd->vdev_initialize_offset[txg & TXG_MASK] = 0;
79 
80 	VERIFY(vd->vdev_leaf_zap != 0);
81 
82 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
83 
84 	if (last_offset > 0) {
85 		vd->vdev_initialize_last_offset = last_offset;
86 		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
87 		    VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
88 		    sizeof (last_offset), 1, &last_offset, tx));
89 	}
90 	if (vd->vdev_initialize_action_time > 0) {
91 		uint64_t val = (uint64_t)vd->vdev_initialize_action_time;
92 		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
93 		    VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val),
94 		    1, &val, tx));
95 	}
96 
97 	uint64_t initialize_state = vd->vdev_initialize_state;
98 	VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
99 	    VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1,
100 	    &initialize_state, tx));
101 }
102 
103 static void
104 vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state)
105 {
106 	ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
107 	spa_t *spa = vd->vdev_spa;
108 
109 	if (new_state == vd->vdev_initialize_state)
110 		return;
111 
112 	/*
113 	 * Copy the vd's guid, this will be freed by the sync task.
114 	 */
115 	uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
116 	*guid = vd->vdev_guid;
117 
118 	/*
119 	 * If we're suspending, then preserving the original start time.
120 	 */
121 	if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) {
122 		vd->vdev_initialize_action_time = gethrestime_sec();
123 	}
124 	vd->vdev_initialize_state = new_state;
125 
126 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
127 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
128 	dsl_sync_task_nowait(spa_get_dsl(spa), vdev_initialize_zap_update_sync,
129 	    guid, 2, ZFS_SPACE_CHECK_NONE, tx);
130 
131 	switch (new_state) {
132 	case VDEV_INITIALIZE_ACTIVE:
133 		spa_history_log_internal(spa, "initialize", tx,
134 		    "vdev=%s activated", vd->vdev_path);
135 		break;
136 	case VDEV_INITIALIZE_SUSPENDED:
137 		spa_history_log_internal(spa, "initialize", tx,
138 		    "vdev=%s suspended", vd->vdev_path);
139 		break;
140 	case VDEV_INITIALIZE_CANCELED:
141 		spa_history_log_internal(spa, "initialize", tx,
142 		    "vdev=%s canceled", vd->vdev_path);
143 		break;
144 	case VDEV_INITIALIZE_COMPLETE:
145 		spa_history_log_internal(spa, "initialize", tx,
146 		    "vdev=%s complete", vd->vdev_path);
147 		break;
148 	default:
149 		panic("invalid state %llu", (unsigned long long)new_state);
150 	}
151 
152 	dmu_tx_commit(tx);
153 
154 	if (new_state != VDEV_INITIALIZE_ACTIVE)
155 		spa_notify_waiters(spa);
156 }
157 
158 static void
159 vdev_initialize_cb(zio_t *zio)
160 {
161 	vdev_t *vd = zio->io_vd;
162 	mutex_enter(&vd->vdev_initialize_io_lock);
163 	if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
164 		/*
165 		 * The I/O failed because the vdev was unavailable; roll the
166 		 * last offset back. (This works because spa_sync waits on
167 		 * spa_txg_zio before it runs sync tasks.)
168 		 */
169 		uint64_t *off =
170 		    &vd->vdev_initialize_offset[zio->io_txg & TXG_MASK];
171 		*off = MIN(*off, zio->io_offset);
172 	} else {
173 		/*
174 		 * Since initializing is best-effort, we ignore I/O errors and
175 		 * rely on vdev_probe to determine if the errors are more
176 		 * critical.
177 		 */
178 		if (zio->io_error != 0)
179 			vd->vdev_stat.vs_initialize_errors++;
180 
181 		vd->vdev_initialize_bytes_done += zio->io_orig_size;
182 	}
183 	ASSERT3U(vd->vdev_initialize_inflight, >, 0);
184 	vd->vdev_initialize_inflight--;
185 	cv_broadcast(&vd->vdev_initialize_io_cv);
186 	mutex_exit(&vd->vdev_initialize_io_lock);
187 
188 	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
189 }
190 
191 /* Takes care of physical writing and limiting # of concurrent ZIOs. */
192 static int
193 vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data)
194 {
195 	spa_t *spa = vd->vdev_spa;
196 
197 	/* Limit inflight initializing I/Os */
198 	mutex_enter(&vd->vdev_initialize_io_lock);
199 	while (vd->vdev_initialize_inflight >= zfs_initialize_limit) {
200 		cv_wait(&vd->vdev_initialize_io_cv,
201 		    &vd->vdev_initialize_io_lock);
202 	}
203 	vd->vdev_initialize_inflight++;
204 	mutex_exit(&vd->vdev_initialize_io_lock);
205 
206 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
207 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
208 	uint64_t txg = dmu_tx_get_txg(tx);
209 
210 	spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
211 	mutex_enter(&vd->vdev_initialize_lock);
212 
213 	if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) {
214 		uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
215 		*guid = vd->vdev_guid;
216 
217 		/* This is the first write of this txg. */
218 		dsl_sync_task_nowait(spa_get_dsl(spa),
219 		    vdev_initialize_zap_update_sync, guid, 2,
220 		    ZFS_SPACE_CHECK_RESERVED, tx);
221 	}
222 
223 	/*
224 	 * We know the vdev struct will still be around since all
225 	 * consumers of vdev_free must stop the initialization first.
226 	 */
227 	if (vdev_initialize_should_stop(vd)) {
228 		mutex_enter(&vd->vdev_initialize_io_lock);
229 		ASSERT3U(vd->vdev_initialize_inflight, >, 0);
230 		vd->vdev_initialize_inflight--;
231 		mutex_exit(&vd->vdev_initialize_io_lock);
232 		spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
233 		mutex_exit(&vd->vdev_initialize_lock);
234 		dmu_tx_commit(tx);
235 		return (SET_ERROR(EINTR));
236 	}
237 	mutex_exit(&vd->vdev_initialize_lock);
238 
239 	vd->vdev_initialize_offset[txg & TXG_MASK] = start + size;
240 	zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start,
241 	    size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL,
242 	    ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE));
243 	/* vdev_initialize_cb releases SCL_STATE_ALL */
244 
245 	dmu_tx_commit(tx);
246 
247 	return (0);
248 }
249 
250 /*
251  * Callback to fill each ABD chunk with zfs_initialize_value. len must be
252  * divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD
253  * allocation will guarantee these for us.
254  */
255 /* ARGSUSED */
256 static int
257 vdev_initialize_block_fill(void *buf, size_t len, void *unused)
258 {
259 	ASSERT0(len % sizeof (uint64_t));
260 #ifdef _ILP32
261 	for (uint64_t i = 0; i < len; i += sizeof (uint32_t)) {
262 		*(uint32_t *)((char *)(buf) + i) = zfs_initialize_value;
263 	}
264 #else
265 	for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) {
266 		*(uint64_t *)((char *)(buf) + i) = zfs_initialize_value;
267 	}
268 #endif
269 	return (0);
270 }
271 
272 static abd_t *
273 vdev_initialize_block_alloc(void)
274 {
275 	/* Allocate ABD for filler data */
276 	abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE);
277 
278 	ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t));
279 	(void) abd_iterate_func(data, 0, zfs_initialize_chunk_size,
280 	    vdev_initialize_block_fill, NULL);
281 
282 	return (data);
283 }
284 
285 static void
286 vdev_initialize_block_free(abd_t *data)
287 {
288 	abd_free(data);
289 }
290 
291 static int
292 vdev_initialize_ranges(vdev_t *vd, abd_t *data)
293 {
294 	range_tree_t *rt = vd->vdev_initialize_tree;
295 	zfs_btree_t *bt = &rt->rt_root;
296 	zfs_btree_index_t where;
297 
298 	for (range_seg_t *rs = zfs_btree_first(bt, &where); rs != NULL;
299 	    rs = zfs_btree_next(bt, &where, &where)) {
300 		uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
301 
302 		/* Split range into legally-sized physical chunks */
303 		uint64_t writes_required =
304 		    ((size - 1) / zfs_initialize_chunk_size) + 1;
305 
306 		for (uint64_t w = 0; w < writes_required; w++) {
307 			int error;
308 
309 			error = vdev_initialize_write(vd,
310 			    VDEV_LABEL_START_SIZE + rs_get_start(rs, rt) +
311 			    (w * zfs_initialize_chunk_size),
312 			    MIN(size - (w * zfs_initialize_chunk_size),
313 			    zfs_initialize_chunk_size), data);
314 			if (error != 0)
315 				return (error);
316 		}
317 	}
318 	return (0);
319 }
320 
321 static void
322 vdev_initialize_calculate_progress(vdev_t *vd)
323 {
324 	ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
325 	    spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
326 	ASSERT(vd->vdev_leaf_zap != 0);
327 
328 	vd->vdev_initialize_bytes_est = 0;
329 	vd->vdev_initialize_bytes_done = 0;
330 
331 	for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
332 		metaslab_t *msp = vd->vdev_top->vdev_ms[i];
333 		mutex_enter(&msp->ms_lock);
334 
335 		uint64_t ms_free = msp->ms_size -
336 		    metaslab_allocated_space(msp);
337 
338 		if (vd->vdev_top->vdev_ops == &vdev_raidz_ops)
339 			ms_free /= vd->vdev_top->vdev_children;
340 
341 		/*
342 		 * Convert the metaslab range to a physical range
343 		 * on our vdev. We use this to determine if we are
344 		 * in the middle of this metaslab range.
345 		 */
346 		range_seg64_t logical_rs, physical_rs;
347 		logical_rs.rs_start = msp->ms_start;
348 		logical_rs.rs_end = msp->ms_start + msp->ms_size;
349 		vdev_xlate(vd, &logical_rs, &physical_rs);
350 
351 		if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) {
352 			vd->vdev_initialize_bytes_est += ms_free;
353 			mutex_exit(&msp->ms_lock);
354 			continue;
355 		} else if (vd->vdev_initialize_last_offset >
356 		    physical_rs.rs_end) {
357 			vd->vdev_initialize_bytes_done += ms_free;
358 			vd->vdev_initialize_bytes_est += ms_free;
359 			mutex_exit(&msp->ms_lock);
360 			continue;
361 		}
362 
363 		/*
364 		 * If we get here, we're in the middle of initializing this
365 		 * metaslab. Load it and walk the free tree for more accurate
366 		 * progress estimation.
367 		 */
368 		VERIFY0(metaslab_load(msp));
369 
370 		zfs_btree_index_t where;
371 		range_tree_t *rt = msp->ms_allocatable;
372 		for (range_seg_t *rs =
373 		    zfs_btree_first(&rt->rt_root, &where); rs;
374 		    rs = zfs_btree_next(&rt->rt_root, &where,
375 		    &where)) {
376 			logical_rs.rs_start = rs_get_start(rs, rt);
377 			logical_rs.rs_end = rs_get_end(rs, rt);
378 			vdev_xlate(vd, &logical_rs, &physical_rs);
379 
380 			uint64_t size = physical_rs.rs_end -
381 			    physical_rs.rs_start;
382 			vd->vdev_initialize_bytes_est += size;
383 			if (vd->vdev_initialize_last_offset >
384 			    physical_rs.rs_end) {
385 				vd->vdev_initialize_bytes_done += size;
386 			} else if (vd->vdev_initialize_last_offset >
387 			    physical_rs.rs_start &&
388 			    vd->vdev_initialize_last_offset <
389 			    physical_rs.rs_end) {
390 				vd->vdev_initialize_bytes_done +=
391 				    vd->vdev_initialize_last_offset -
392 				    physical_rs.rs_start;
393 			}
394 		}
395 		mutex_exit(&msp->ms_lock);
396 	}
397 }
398 
399 static int
400 vdev_initialize_load(vdev_t *vd)
401 {
402 	int err = 0;
403 	ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
404 	    spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
405 	ASSERT(vd->vdev_leaf_zap != 0);
406 
407 	if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE ||
408 	    vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) {
409 		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
410 		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
411 		    sizeof (vd->vdev_initialize_last_offset), 1,
412 		    &vd->vdev_initialize_last_offset);
413 		if (err == ENOENT) {
414 			vd->vdev_initialize_last_offset = 0;
415 			err = 0;
416 		}
417 	}
418 
419 	vdev_initialize_calculate_progress(vd);
420 	return (err);
421 }
422 
423 /*
424  * Convert the logical range into a physical range and add it to our
425  * avl tree.
426  */
427 static void
428 vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size)
429 {
430 	vdev_t *vd = arg;
431 	range_seg64_t logical_rs, physical_rs;
432 	logical_rs.rs_start = start;
433 	logical_rs.rs_end = start + size;
434 
435 	ASSERT(vd->vdev_ops->vdev_op_leaf);
436 	vdev_xlate(vd, &logical_rs, &physical_rs);
437 
438 	IMPLY(vd->vdev_top == vd,
439 	    logical_rs.rs_start == physical_rs.rs_start);
440 	IMPLY(vd->vdev_top == vd,
441 	    logical_rs.rs_end == physical_rs.rs_end);
442 
443 	/* Only add segments that we have not visited yet */
444 	if (physical_rs.rs_end <= vd->vdev_initialize_last_offset)
445 		return;
446 
447 	/* Pick up where we left off mid-range. */
448 	if (vd->vdev_initialize_last_offset > physical_rs.rs_start) {
449 		zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to "
450 		    "(%llu, %llu)", vd->vdev_path,
451 		    (u_longlong_t)physical_rs.rs_start,
452 		    (u_longlong_t)physical_rs.rs_end,
453 		    (u_longlong_t)vd->vdev_initialize_last_offset,
454 		    (u_longlong_t)physical_rs.rs_end);
455 		ASSERT3U(physical_rs.rs_end, >,
456 		    vd->vdev_initialize_last_offset);
457 		physical_rs.rs_start = vd->vdev_initialize_last_offset;
458 	}
459 	ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
460 
461 	/*
462 	 * With raidz, it's possible that the logical range does not live on
463 	 * this leaf vdev. We only add the physical range to this vdev's if it
464 	 * has a length greater than 0.
465 	 */
466 	if (physical_rs.rs_end > physical_rs.rs_start) {
467 		range_tree_add(vd->vdev_initialize_tree, physical_rs.rs_start,
468 		    physical_rs.rs_end - physical_rs.rs_start);
469 	} else {
470 		ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
471 	}
472 }
473 
474 static void
475 vdev_initialize_thread(void *arg)
476 {
477 	vdev_t *vd = arg;
478 	spa_t *spa = vd->vdev_spa;
479 	int error = 0;
480 	uint64_t ms_count = 0;
481 
482 	ASSERT(vdev_is_concrete(vd));
483 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
484 
485 	vd->vdev_initialize_last_offset = 0;
486 	VERIFY0(vdev_initialize_load(vd));
487 
488 	abd_t *deadbeef = vdev_initialize_block_alloc();
489 
490 	vd->vdev_initialize_tree = range_tree_create(NULL, RANGE_SEG64, NULL,
491 	    0, 0);
492 
493 	for (uint64_t i = 0; !vd->vdev_detached &&
494 	    i < vd->vdev_top->vdev_ms_count; i++) {
495 		metaslab_t *msp = vd->vdev_top->vdev_ms[i];
496 		boolean_t unload_when_done = B_FALSE;
497 
498 		/*
499 		 * If we've expanded the top-level vdev or it's our
500 		 * first pass, calculate our progress.
501 		 */
502 		if (vd->vdev_top->vdev_ms_count != ms_count) {
503 			vdev_initialize_calculate_progress(vd);
504 			ms_count = vd->vdev_top->vdev_ms_count;
505 		}
506 
507 		spa_config_exit(spa, SCL_CONFIG, FTAG);
508 		metaslab_disable(msp);
509 		mutex_enter(&msp->ms_lock);
510 		if (!msp->ms_loaded && !msp->ms_loading)
511 			unload_when_done = B_TRUE;
512 		VERIFY0(metaslab_load(msp));
513 
514 		range_tree_walk(msp->ms_allocatable, vdev_initialize_range_add,
515 		    vd);
516 		mutex_exit(&msp->ms_lock);
517 
518 		error = vdev_initialize_ranges(vd, deadbeef);
519 		metaslab_enable(msp, B_TRUE, unload_when_done);
520 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
521 
522 		range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL);
523 		if (error != 0)
524 			break;
525 	}
526 
527 	spa_config_exit(spa, SCL_CONFIG, FTAG);
528 	mutex_enter(&vd->vdev_initialize_io_lock);
529 	while (vd->vdev_initialize_inflight > 0) {
530 		cv_wait(&vd->vdev_initialize_io_cv,
531 		    &vd->vdev_initialize_io_lock);
532 	}
533 	mutex_exit(&vd->vdev_initialize_io_lock);
534 
535 	range_tree_destroy(vd->vdev_initialize_tree);
536 	vdev_initialize_block_free(deadbeef);
537 	vd->vdev_initialize_tree = NULL;
538 
539 	mutex_enter(&vd->vdev_initialize_lock);
540 	if (!vd->vdev_initialize_exit_wanted && vdev_writeable(vd)) {
541 		vdev_initialize_change_state(vd, VDEV_INITIALIZE_COMPLETE);
542 	}
543 	ASSERT(vd->vdev_initialize_thread != NULL ||
544 	    vd->vdev_initialize_inflight == 0);
545 
546 	/*
547 	 * Drop the vdev_initialize_lock while we sync out the
548 	 * txg since it's possible that a device might be trying to
549 	 * come online and must check to see if it needs to restart an
550 	 * initialization. That thread will be holding the spa_config_lock
551 	 * which would prevent the txg_wait_synced from completing.
552 	 */
553 	mutex_exit(&vd->vdev_initialize_lock);
554 	txg_wait_synced(spa_get_dsl(spa), 0);
555 	mutex_enter(&vd->vdev_initialize_lock);
556 
557 	vd->vdev_initialize_thread = NULL;
558 	cv_broadcast(&vd->vdev_initialize_cv);
559 	mutex_exit(&vd->vdev_initialize_lock);
560 
561 	thread_exit();
562 }
563 
564 /*
565  * Initiates a device. Caller must hold vdev_initialize_lock.
566  * Device must be a leaf and not already be initializing.
567  */
568 void
569 vdev_initialize(vdev_t *vd)
570 {
571 	ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
572 	ASSERT(vd->vdev_ops->vdev_op_leaf);
573 	ASSERT(vdev_is_concrete(vd));
574 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
575 	ASSERT(!vd->vdev_detached);
576 	ASSERT(!vd->vdev_initialize_exit_wanted);
577 	ASSERT(!vd->vdev_top->vdev_removing);
578 
579 	vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE);
580 	vd->vdev_initialize_thread = thread_create(NULL, 0,
581 	    vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
582 }
583 
584 /*
585  * Wait for the initialize thread to be terminated (cancelled or stopped).
586  */
587 static void
588 vdev_initialize_stop_wait_impl(vdev_t *vd)
589 {
590 	ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
591 
592 	while (vd->vdev_initialize_thread != NULL)
593 		cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock);
594 
595 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
596 	vd->vdev_initialize_exit_wanted = B_FALSE;
597 }
598 
599 /*
600  * Wait for vdev initialize threads which were either to cleanly exit.
601  */
602 void
603 vdev_initialize_stop_wait(spa_t *spa, list_t *vd_list)
604 {
605 	vdev_t *vd;
606 
607 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
608 
609 	while ((vd = list_remove_head(vd_list)) != NULL) {
610 		mutex_enter(&vd->vdev_initialize_lock);
611 		vdev_initialize_stop_wait_impl(vd);
612 		mutex_exit(&vd->vdev_initialize_lock);
613 	}
614 }
615 
616 /*
617  * Stop initializing a device, with the resultant initializing state being
618  * tgt_state.  For blocking behavior pass NULL for vd_list.  Otherwise, when
619  * a list_t is provided the stopping vdev is inserted in to the list.  Callers
620  * are then required to call vdev_initialize_stop_wait() to block for all the
621  * initialization threads to exit.  The caller must hold vdev_initialize_lock
622  * and must not be writing to the spa config, as the initializing thread may
623  * try to enter the config as a reader before exiting.
624  */
625 void
626 vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state,
627     list_t *vd_list)
628 {
629 	ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
630 	ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
631 	ASSERT(vd->vdev_ops->vdev_op_leaf);
632 	ASSERT(vdev_is_concrete(vd));
633 
634 	/*
635 	 * Allow cancel requests to proceed even if the initialize thread
636 	 * has stopped.
637 	 */
638 	if (vd->vdev_initialize_thread == NULL &&
639 	    tgt_state != VDEV_INITIALIZE_CANCELED) {
640 		return;
641 	}
642 
643 	vdev_initialize_change_state(vd, tgt_state);
644 	vd->vdev_initialize_exit_wanted = B_TRUE;
645 
646 	if (vd_list == NULL) {
647 		vdev_initialize_stop_wait_impl(vd);
648 	} else {
649 		ASSERT(MUTEX_HELD(&spa_namespace_lock));
650 		list_insert_tail(vd_list, vd);
651 	}
652 }
653 
654 static void
655 vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state,
656     list_t *vd_list)
657 {
658 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
659 		mutex_enter(&vd->vdev_initialize_lock);
660 		vdev_initialize_stop(vd, tgt_state, vd_list);
661 		mutex_exit(&vd->vdev_initialize_lock);
662 		return;
663 	}
664 
665 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
666 		vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state,
667 		    vd_list);
668 	}
669 }
670 
671 /*
672  * Convenience function to stop initializing of a vdev tree and set all
673  * initialize thread pointers to NULL.
674  */
675 void
676 vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state)
677 {
678 	spa_t *spa = vd->vdev_spa;
679 	list_t vd_list;
680 
681 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
682 
683 	list_create(&vd_list, sizeof (vdev_t),
684 	    offsetof(vdev_t, vdev_initialize_node));
685 
686 	vdev_initialize_stop_all_impl(vd, tgt_state, &vd_list);
687 	vdev_initialize_stop_wait(spa, &vd_list);
688 
689 	if (vd->vdev_spa->spa_sync_on) {
690 		/* Make sure that our state has been synced to disk */
691 		txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
692 	}
693 
694 	list_destroy(&vd_list);
695 }
696 
697 void
698 vdev_initialize_restart(vdev_t *vd)
699 {
700 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
701 	ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
702 
703 	if (vd->vdev_leaf_zap != 0) {
704 		mutex_enter(&vd->vdev_initialize_lock);
705 		uint64_t initialize_state = VDEV_INITIALIZE_NONE;
706 		int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
707 		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE,
708 		    sizeof (initialize_state), 1, &initialize_state);
709 		ASSERT(err == 0 || err == ENOENT);
710 		vd->vdev_initialize_state = initialize_state;
711 
712 		uint64_t timestamp = 0;
713 		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
714 		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME,
715 		    sizeof (timestamp), 1, &timestamp);
716 		ASSERT(err == 0 || err == ENOENT);
717 		vd->vdev_initialize_action_time = timestamp;
718 
719 		if (vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED ||
720 		    vd->vdev_offline) {
721 			/* load progress for reporting, but don't resume */
722 			VERIFY0(vdev_initialize_load(vd));
723 		} else if (vd->vdev_initialize_state ==
724 		    VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd) &&
725 		    !vd->vdev_top->vdev_removing &&
726 		    vd->vdev_initialize_thread == NULL) {
727 			vdev_initialize(vd);
728 		}
729 
730 		mutex_exit(&vd->vdev_initialize_lock);
731 	}
732 
733 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
734 		vdev_initialize_restart(vd->vdev_child[i]);
735 	}
736 }
737 
738 EXPORT_SYMBOL(vdev_initialize);
739 EXPORT_SYMBOL(vdev_initialize_stop);
740 EXPORT_SYMBOL(vdev_initialize_stop_all);
741 EXPORT_SYMBOL(vdev_initialize_stop_wait);
742 EXPORT_SYMBOL(vdev_initialize_restart);
743 
744 /* BEGIN CSTYLED */
745 ZFS_MODULE_PARAM(zfs, zfs_, initialize_value, ULONG, ZMOD_RW,
746 	"Value written during zpool initialize");
747 
748 ZFS_MODULE_PARAM(zfs, zfs_, initialize_chunk_size, ULONG, ZMOD_RW,
749 	"Size in bytes of writes by zpool initialize");
750 /* END CSTYLED */
751