1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2016, 2024 by Delphix. All rights reserved.
24 */
25
26 #include <sys/spa.h>
27 #include <sys/spa_impl.h>
28 #include <sys/txg.h>
29 #include <sys/vdev_impl.h>
30 #include <sys/metaslab_impl.h>
31 #include <sys/dsl_synctask.h>
32 #include <sys/zap.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_initialize.h>
35
36 /*
37 * Value that is written to disk during initialization.
38 */
39 static uint64_t zfs_initialize_value = 0xdeadbeefdeadbeeeULL;
40
41 /* maximum number of I/Os outstanding per leaf vdev */
42 static const int zfs_initialize_limit = 1;
43
44 /* size of initializing writes; default 1MiB, see zfs_remove_max_segment */
45 static uint64_t zfs_initialize_chunk_size = 1024 * 1024;
46
47 static boolean_t
vdev_initialize_should_stop(vdev_t * vd)48 vdev_initialize_should_stop(vdev_t *vd)
49 {
50 return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) ||
51 vd->vdev_detached || vd->vdev_top->vdev_removing ||
52 vd->vdev_top->vdev_rz_expanding);
53 }
54
55 static void
vdev_initialize_zap_update_sync(void * arg,dmu_tx_t * tx)56 vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx)
57 {
58 /*
59 * We pass in the guid instead of the vdev_t since the vdev may
60 * have been freed prior to the sync task being processed. This
61 * happens when a vdev is detached as we call spa_config_vdev_exit(),
62 * stop the initializing thread, schedule the sync task, and free
63 * the vdev. Later when the scheduled sync task is invoked, it would
64 * find that the vdev has been freed.
65 */
66 uint64_t guid = *(uint64_t *)arg;
67 uint64_t txg = dmu_tx_get_txg(tx);
68 kmem_free(arg, sizeof (uint64_t));
69
70 vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
71 if (vd == NULL || vd->vdev_top->vdev_removing ||
72 !vdev_is_concrete(vd) || vd->vdev_top->vdev_rz_expanding)
73 return;
74
75 uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK];
76 vd->vdev_initialize_offset[txg & TXG_MASK] = 0;
77
78 VERIFY(vd->vdev_leaf_zap != 0);
79
80 objset_t *mos = vd->vdev_spa->spa_meta_objset;
81
82 if (last_offset > 0) {
83 vd->vdev_initialize_last_offset = last_offset;
84 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
85 VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
86 sizeof (last_offset), 1, &last_offset, tx));
87 }
88 if (vd->vdev_initialize_action_time > 0) {
89 uint64_t val = (uint64_t)vd->vdev_initialize_action_time;
90 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
91 VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val),
92 1, &val, tx));
93 }
94
95 uint64_t initialize_state = vd->vdev_initialize_state;
96 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
97 VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1,
98 &initialize_state, tx));
99 }
100
101 static void
vdev_initialize_zap_remove_sync(void * arg,dmu_tx_t * tx)102 vdev_initialize_zap_remove_sync(void *arg, dmu_tx_t *tx)
103 {
104 uint64_t guid = *(uint64_t *)arg;
105
106 kmem_free(arg, sizeof (uint64_t));
107
108 vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
109 if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
110 return;
111
112 ASSERT3S(vd->vdev_initialize_state, ==, VDEV_INITIALIZE_NONE);
113 ASSERT3U(vd->vdev_leaf_zap, !=, 0);
114
115 vd->vdev_initialize_last_offset = 0;
116 vd->vdev_initialize_action_time = 0;
117
118 objset_t *mos = vd->vdev_spa->spa_meta_objset;
119 int error;
120
121 error = zap_remove(mos, vd->vdev_leaf_zap,
122 VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET, tx);
123 VERIFY(error == 0 || error == ENOENT);
124
125 error = zap_remove(mos, vd->vdev_leaf_zap,
126 VDEV_LEAF_ZAP_INITIALIZE_STATE, tx);
127 VERIFY(error == 0 || error == ENOENT);
128
129 error = zap_remove(mos, vd->vdev_leaf_zap,
130 VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, tx);
131 VERIFY(error == 0 || error == ENOENT);
132 }
133
134 static void
vdev_initialize_change_state(vdev_t * vd,vdev_initializing_state_t new_state)135 vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state)
136 {
137 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
138 spa_t *spa = vd->vdev_spa;
139
140 if (new_state == vd->vdev_initialize_state)
141 return;
142
143 /*
144 * Copy the vd's guid, this will be freed by the sync task.
145 */
146 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
147 *guid = vd->vdev_guid;
148
149 /*
150 * If we're suspending, then preserving the original start time.
151 */
152 if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) {
153 vd->vdev_initialize_action_time = gethrestime_sec();
154 }
155
156 vdev_initializing_state_t old_state = vd->vdev_initialize_state;
157 vd->vdev_initialize_state = new_state;
158
159 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
160 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
161
162 if (new_state != VDEV_INITIALIZE_NONE) {
163 dsl_sync_task_nowait(spa_get_dsl(spa),
164 vdev_initialize_zap_update_sync, guid, tx);
165 } else {
166 dsl_sync_task_nowait(spa_get_dsl(spa),
167 vdev_initialize_zap_remove_sync, guid, tx);
168 }
169
170 switch (new_state) {
171 case VDEV_INITIALIZE_ACTIVE:
172 spa_history_log_internal(spa, "initialize", tx,
173 "vdev=%s activated", vd->vdev_path);
174 break;
175 case VDEV_INITIALIZE_SUSPENDED:
176 spa_history_log_internal(spa, "initialize", tx,
177 "vdev=%s suspended", vd->vdev_path);
178 break;
179 case VDEV_INITIALIZE_CANCELED:
180 if (old_state == VDEV_INITIALIZE_ACTIVE ||
181 old_state == VDEV_INITIALIZE_SUSPENDED)
182 spa_history_log_internal(spa, "initialize", tx,
183 "vdev=%s canceled", vd->vdev_path);
184 break;
185 case VDEV_INITIALIZE_COMPLETE:
186 spa_history_log_internal(spa, "initialize", tx,
187 "vdev=%s complete", vd->vdev_path);
188 break;
189 case VDEV_INITIALIZE_NONE:
190 spa_history_log_internal(spa, "uninitialize", tx,
191 "vdev=%s", vd->vdev_path);
192 break;
193 default:
194 panic("invalid state %llu", (unsigned long long)new_state);
195 }
196
197 dmu_tx_commit(tx);
198
199 if (new_state != VDEV_INITIALIZE_ACTIVE)
200 spa_notify_waiters(spa);
201 }
202
203 static void
vdev_initialize_cb(zio_t * zio)204 vdev_initialize_cb(zio_t *zio)
205 {
206 vdev_t *vd = zio->io_vd;
207 mutex_enter(&vd->vdev_initialize_io_lock);
208 if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
209 /*
210 * The I/O failed because the vdev was unavailable; roll the
211 * last offset back. (This works because spa_sync waits on
212 * spa_txg_zio before it runs sync tasks.)
213 */
214 uint64_t *off =
215 &vd->vdev_initialize_offset[zio->io_txg & TXG_MASK];
216 *off = MIN(*off, zio->io_offset);
217 } else {
218 /*
219 * Since initializing is best-effort, we ignore I/O errors and
220 * rely on vdev_probe to determine if the errors are more
221 * critical.
222 */
223 if (zio->io_error != 0)
224 vd->vdev_stat.vs_initialize_errors++;
225
226 vd->vdev_initialize_bytes_done += zio->io_orig_size;
227 }
228 ASSERT3U(vd->vdev_initialize_inflight, >, 0);
229 vd->vdev_initialize_inflight--;
230 cv_broadcast(&vd->vdev_initialize_io_cv);
231 mutex_exit(&vd->vdev_initialize_io_lock);
232
233 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
234 }
235
236 /* Takes care of physical writing and limiting # of concurrent ZIOs. */
237 static int
vdev_initialize_write(vdev_t * vd,uint64_t start,uint64_t size,abd_t * data)238 vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data)
239 {
240 spa_t *spa = vd->vdev_spa;
241
242 /* Limit inflight initializing I/Os */
243 mutex_enter(&vd->vdev_initialize_io_lock);
244 while (vd->vdev_initialize_inflight >= zfs_initialize_limit) {
245 cv_wait(&vd->vdev_initialize_io_cv,
246 &vd->vdev_initialize_io_lock);
247 }
248 vd->vdev_initialize_inflight++;
249 mutex_exit(&vd->vdev_initialize_io_lock);
250
251 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
252 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
253 uint64_t txg = dmu_tx_get_txg(tx);
254
255 spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
256 mutex_enter(&vd->vdev_initialize_lock);
257
258 if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) {
259 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
260 *guid = vd->vdev_guid;
261
262 /* This is the first write of this txg. */
263 dsl_sync_task_nowait(spa_get_dsl(spa),
264 vdev_initialize_zap_update_sync, guid, tx);
265 }
266
267 /*
268 * We know the vdev struct will still be around since all
269 * consumers of vdev_free must stop the initialization first.
270 */
271 if (vdev_initialize_should_stop(vd)) {
272 mutex_enter(&vd->vdev_initialize_io_lock);
273 ASSERT3U(vd->vdev_initialize_inflight, >, 0);
274 vd->vdev_initialize_inflight--;
275 mutex_exit(&vd->vdev_initialize_io_lock);
276 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
277 mutex_exit(&vd->vdev_initialize_lock);
278 dmu_tx_commit(tx);
279 return (SET_ERROR(EINTR));
280 }
281 mutex_exit(&vd->vdev_initialize_lock);
282
283 vd->vdev_initialize_offset[txg & TXG_MASK] = start + size;
284 zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start,
285 size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL,
286 ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE));
287 /* vdev_initialize_cb releases SCL_STATE_ALL */
288
289 dmu_tx_commit(tx);
290
291 return (0);
292 }
293
294 /*
295 * Callback to fill each ABD chunk with zfs_initialize_value. len must be
296 * divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD
297 * allocation will guarantee these for us.
298 */
299 static int
vdev_initialize_block_fill(void * buf,size_t len,void * unused)300 vdev_initialize_block_fill(void *buf, size_t len, void *unused)
301 {
302 (void) unused;
303
304 ASSERT0(len % sizeof (uint64_t));
305 for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) {
306 *(uint64_t *)((char *)(buf) + i) = zfs_initialize_value;
307 }
308 return (0);
309 }
310
311 static abd_t *
vdev_initialize_block_alloc(void)312 vdev_initialize_block_alloc(void)
313 {
314 /* Allocate ABD for filler data */
315 abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE);
316
317 ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t));
318 (void) abd_iterate_func(data, 0, zfs_initialize_chunk_size,
319 vdev_initialize_block_fill, NULL);
320
321 return (data);
322 }
323
324 static void
vdev_initialize_block_free(abd_t * data)325 vdev_initialize_block_free(abd_t *data)
326 {
327 abd_free(data);
328 }
329
330 static int
vdev_initialize_ranges(vdev_t * vd,abd_t * data)331 vdev_initialize_ranges(vdev_t *vd, abd_t *data)
332 {
333 range_tree_t *rt = vd->vdev_initialize_tree;
334 zfs_btree_t *bt = &rt->rt_root;
335 zfs_btree_index_t where;
336
337 for (range_seg_t *rs = zfs_btree_first(bt, &where); rs != NULL;
338 rs = zfs_btree_next(bt, &where, &where)) {
339 uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
340
341 /* Split range into legally-sized physical chunks */
342 uint64_t writes_required =
343 ((size - 1) / zfs_initialize_chunk_size) + 1;
344
345 for (uint64_t w = 0; w < writes_required; w++) {
346 int error;
347
348 error = vdev_initialize_write(vd,
349 VDEV_LABEL_START_SIZE + rs_get_start(rs, rt) +
350 (w * zfs_initialize_chunk_size),
351 MIN(size - (w * zfs_initialize_chunk_size),
352 zfs_initialize_chunk_size), data);
353 if (error != 0)
354 return (error);
355 }
356 }
357 return (0);
358 }
359
360 static void
vdev_initialize_xlate_last_rs_end(void * arg,range_seg64_t * physical_rs)361 vdev_initialize_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs)
362 {
363 uint64_t *last_rs_end = (uint64_t *)arg;
364
365 if (physical_rs->rs_end > *last_rs_end)
366 *last_rs_end = physical_rs->rs_end;
367 }
368
369 static void
vdev_initialize_xlate_progress(void * arg,range_seg64_t * physical_rs)370 vdev_initialize_xlate_progress(void *arg, range_seg64_t *physical_rs)
371 {
372 vdev_t *vd = (vdev_t *)arg;
373
374 uint64_t size = physical_rs->rs_end - physical_rs->rs_start;
375 vd->vdev_initialize_bytes_est += size;
376
377 if (vd->vdev_initialize_last_offset > physical_rs->rs_end) {
378 vd->vdev_initialize_bytes_done += size;
379 } else if (vd->vdev_initialize_last_offset > physical_rs->rs_start &&
380 vd->vdev_initialize_last_offset < physical_rs->rs_end) {
381 vd->vdev_initialize_bytes_done +=
382 vd->vdev_initialize_last_offset - physical_rs->rs_start;
383 }
384 }
385
386 static void
vdev_initialize_calculate_progress(vdev_t * vd)387 vdev_initialize_calculate_progress(vdev_t *vd)
388 {
389 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
390 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
391 ASSERT(vd->vdev_leaf_zap != 0);
392
393 vd->vdev_initialize_bytes_est = 0;
394 vd->vdev_initialize_bytes_done = 0;
395
396 for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
397 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
398 mutex_enter(&msp->ms_lock);
399
400 uint64_t ms_free = (msp->ms_size -
401 metaslab_allocated_space(msp)) /
402 vdev_get_ndisks(vd->vdev_top);
403
404 /*
405 * Convert the metaslab range to a physical range
406 * on our vdev. We use this to determine if we are
407 * in the middle of this metaslab range.
408 */
409 range_seg64_t logical_rs, physical_rs, remain_rs;
410 logical_rs.rs_start = msp->ms_start;
411 logical_rs.rs_end = msp->ms_start + msp->ms_size;
412
413 /* Metaslab space after this offset has not been initialized */
414 vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs);
415 if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) {
416 vd->vdev_initialize_bytes_est += ms_free;
417 mutex_exit(&msp->ms_lock);
418 continue;
419 }
420
421 /* Metaslab space before this offset has been initialized */
422 uint64_t last_rs_end = physical_rs.rs_end;
423 if (!vdev_xlate_is_empty(&remain_rs)) {
424 vdev_xlate_walk(vd, &remain_rs,
425 vdev_initialize_xlate_last_rs_end, &last_rs_end);
426 }
427
428 if (vd->vdev_initialize_last_offset > last_rs_end) {
429 vd->vdev_initialize_bytes_done += ms_free;
430 vd->vdev_initialize_bytes_est += ms_free;
431 mutex_exit(&msp->ms_lock);
432 continue;
433 }
434
435 /*
436 * If we get here, we're in the middle of initializing this
437 * metaslab. Load it and walk the free tree for more accurate
438 * progress estimation.
439 */
440 VERIFY0(metaslab_load(msp));
441
442 zfs_btree_index_t where;
443 range_tree_t *rt = msp->ms_allocatable;
444 for (range_seg_t *rs =
445 zfs_btree_first(&rt->rt_root, &where); rs;
446 rs = zfs_btree_next(&rt->rt_root, &where,
447 &where)) {
448 logical_rs.rs_start = rs_get_start(rs, rt);
449 logical_rs.rs_end = rs_get_end(rs, rt);
450
451 vdev_xlate_walk(vd, &logical_rs,
452 vdev_initialize_xlate_progress, vd);
453 }
454 mutex_exit(&msp->ms_lock);
455 }
456 }
457
458 static int
vdev_initialize_load(vdev_t * vd)459 vdev_initialize_load(vdev_t *vd)
460 {
461 int err = 0;
462 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
463 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
464 ASSERT(vd->vdev_leaf_zap != 0);
465
466 if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE ||
467 vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) {
468 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
469 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
470 sizeof (vd->vdev_initialize_last_offset), 1,
471 &vd->vdev_initialize_last_offset);
472 if (err == ENOENT) {
473 vd->vdev_initialize_last_offset = 0;
474 err = 0;
475 }
476 }
477
478 vdev_initialize_calculate_progress(vd);
479 return (err);
480 }
481
482 static void
vdev_initialize_xlate_range_add(void * arg,range_seg64_t * physical_rs)483 vdev_initialize_xlate_range_add(void *arg, range_seg64_t *physical_rs)
484 {
485 vdev_t *vd = arg;
486
487 /* Only add segments that we have not visited yet */
488 if (physical_rs->rs_end <= vd->vdev_initialize_last_offset)
489 return;
490
491 /* Pick up where we left off mid-range. */
492 if (vd->vdev_initialize_last_offset > physical_rs->rs_start) {
493 zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to "
494 "(%llu, %llu)", vd->vdev_path,
495 (u_longlong_t)physical_rs->rs_start,
496 (u_longlong_t)physical_rs->rs_end,
497 (u_longlong_t)vd->vdev_initialize_last_offset,
498 (u_longlong_t)physical_rs->rs_end);
499 ASSERT3U(physical_rs->rs_end, >,
500 vd->vdev_initialize_last_offset);
501 physical_rs->rs_start = vd->vdev_initialize_last_offset;
502 }
503
504 ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start);
505
506 range_tree_add(vd->vdev_initialize_tree, physical_rs->rs_start,
507 physical_rs->rs_end - physical_rs->rs_start);
508 }
509
510 /*
511 * Convert the logical range into a physical range and add it to our
512 * avl tree.
513 */
514 static void
vdev_initialize_range_add(void * arg,uint64_t start,uint64_t size)515 vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size)
516 {
517 vdev_t *vd = arg;
518 range_seg64_t logical_rs;
519 logical_rs.rs_start = start;
520 logical_rs.rs_end = start + size;
521
522 ASSERT(vd->vdev_ops->vdev_op_leaf);
523 vdev_xlate_walk(vd, &logical_rs, vdev_initialize_xlate_range_add, arg);
524 }
525
526 static __attribute__((noreturn)) void
vdev_initialize_thread(void * arg)527 vdev_initialize_thread(void *arg)
528 {
529 vdev_t *vd = arg;
530 spa_t *spa = vd->vdev_spa;
531 int error = 0;
532 uint64_t ms_count = 0;
533
534 ASSERT(vdev_is_concrete(vd));
535 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
536
537 vd->vdev_initialize_last_offset = 0;
538 VERIFY0(vdev_initialize_load(vd));
539
540 abd_t *deadbeef = vdev_initialize_block_alloc();
541
542 vd->vdev_initialize_tree = range_tree_create(NULL, RANGE_SEG64, NULL,
543 0, 0);
544
545 for (uint64_t i = 0; !vd->vdev_detached &&
546 i < vd->vdev_top->vdev_ms_count; i++) {
547 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
548 boolean_t unload_when_done = B_FALSE;
549
550 /*
551 * If we've expanded the top-level vdev or it's our
552 * first pass, calculate our progress.
553 */
554 if (vd->vdev_top->vdev_ms_count != ms_count) {
555 vdev_initialize_calculate_progress(vd);
556 ms_count = vd->vdev_top->vdev_ms_count;
557 }
558
559 spa_config_exit(spa, SCL_CONFIG, FTAG);
560 metaslab_disable(msp);
561 mutex_enter(&msp->ms_lock);
562 if (!msp->ms_loaded && !msp->ms_loading)
563 unload_when_done = B_TRUE;
564 VERIFY0(metaslab_load(msp));
565
566 range_tree_walk(msp->ms_allocatable, vdev_initialize_range_add,
567 vd);
568 mutex_exit(&msp->ms_lock);
569
570 error = vdev_initialize_ranges(vd, deadbeef);
571 metaslab_enable(msp, B_TRUE, unload_when_done);
572 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
573
574 range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL);
575 if (error != 0)
576 break;
577 }
578
579 spa_config_exit(spa, SCL_CONFIG, FTAG);
580 mutex_enter(&vd->vdev_initialize_io_lock);
581 while (vd->vdev_initialize_inflight > 0) {
582 cv_wait(&vd->vdev_initialize_io_cv,
583 &vd->vdev_initialize_io_lock);
584 }
585 mutex_exit(&vd->vdev_initialize_io_lock);
586
587 range_tree_destroy(vd->vdev_initialize_tree);
588 vdev_initialize_block_free(deadbeef);
589 vd->vdev_initialize_tree = NULL;
590
591 mutex_enter(&vd->vdev_initialize_lock);
592 if (!vd->vdev_initialize_exit_wanted) {
593 if (vdev_writeable(vd)) {
594 vdev_initialize_change_state(vd,
595 VDEV_INITIALIZE_COMPLETE);
596 } else if (vd->vdev_faulted) {
597 vdev_initialize_change_state(vd,
598 VDEV_INITIALIZE_CANCELED);
599 }
600 }
601 ASSERT(vd->vdev_initialize_thread != NULL ||
602 vd->vdev_initialize_inflight == 0);
603
604 /*
605 * Drop the vdev_initialize_lock while we sync out the
606 * txg since it's possible that a device might be trying to
607 * come online and must check to see if it needs to restart an
608 * initialization. That thread will be holding the spa_config_lock
609 * which would prevent the txg_wait_synced from completing.
610 */
611 mutex_exit(&vd->vdev_initialize_lock);
612 txg_wait_synced(spa_get_dsl(spa), 0);
613 mutex_enter(&vd->vdev_initialize_lock);
614
615 vd->vdev_initialize_thread = NULL;
616 cv_broadcast(&vd->vdev_initialize_cv);
617 mutex_exit(&vd->vdev_initialize_lock);
618
619 thread_exit();
620 }
621
622 /*
623 * Initiates a device. Caller must hold vdev_initialize_lock.
624 * Device must be a leaf and not already be initializing.
625 */
626 void
vdev_initialize(vdev_t * vd)627 vdev_initialize(vdev_t *vd)
628 {
629 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
630 ASSERT(vd->vdev_ops->vdev_op_leaf);
631 ASSERT(vdev_is_concrete(vd));
632 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
633 ASSERT(!vd->vdev_detached);
634 ASSERT(!vd->vdev_initialize_exit_wanted);
635 ASSERT(!vd->vdev_top->vdev_removing);
636 ASSERT(!vd->vdev_top->vdev_rz_expanding);
637
638 vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE);
639 vd->vdev_initialize_thread = thread_create(NULL, 0,
640 vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
641 }
642
643 /*
644 * Uninitializes a device. Caller must hold vdev_initialize_lock.
645 * Device must be a leaf and not already be initializing.
646 */
647 void
vdev_uninitialize(vdev_t * vd)648 vdev_uninitialize(vdev_t *vd)
649 {
650 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
651 ASSERT(vd->vdev_ops->vdev_op_leaf);
652 ASSERT(vdev_is_concrete(vd));
653 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
654 ASSERT(!vd->vdev_detached);
655 ASSERT(!vd->vdev_initialize_exit_wanted);
656 ASSERT(!vd->vdev_top->vdev_removing);
657
658 vdev_initialize_change_state(vd, VDEV_INITIALIZE_NONE);
659 }
660
661 /*
662 * Wait for the initialize thread to be terminated (cancelled or stopped).
663 */
664 static void
vdev_initialize_stop_wait_impl(vdev_t * vd)665 vdev_initialize_stop_wait_impl(vdev_t *vd)
666 {
667 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
668
669 while (vd->vdev_initialize_thread != NULL)
670 cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock);
671
672 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
673 vd->vdev_initialize_exit_wanted = B_FALSE;
674 }
675
676 /*
677 * Wait for vdev initialize threads which were either to cleanly exit.
678 */
679 void
vdev_initialize_stop_wait(spa_t * spa,list_t * vd_list)680 vdev_initialize_stop_wait(spa_t *spa, list_t *vd_list)
681 {
682 (void) spa;
683 vdev_t *vd;
684
685 ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
686 spa->spa_export_thread == curthread);
687
688 while ((vd = list_remove_head(vd_list)) != NULL) {
689 mutex_enter(&vd->vdev_initialize_lock);
690 vdev_initialize_stop_wait_impl(vd);
691 mutex_exit(&vd->vdev_initialize_lock);
692 }
693 }
694
695 /*
696 * Stop initializing a device, with the resultant initializing state being
697 * tgt_state. For blocking behavior pass NULL for vd_list. Otherwise, when
698 * a list_t is provided the stopping vdev is inserted in to the list. Callers
699 * are then required to call vdev_initialize_stop_wait() to block for all the
700 * initialization threads to exit. The caller must hold vdev_initialize_lock
701 * and must not be writing to the spa config, as the initializing thread may
702 * try to enter the config as a reader before exiting.
703 */
704 void
vdev_initialize_stop(vdev_t * vd,vdev_initializing_state_t tgt_state,list_t * vd_list)705 vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state,
706 list_t *vd_list)
707 {
708 ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
709 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
710 ASSERT(vd->vdev_ops->vdev_op_leaf);
711 ASSERT(vdev_is_concrete(vd));
712
713 /*
714 * Allow cancel requests to proceed even if the initialize thread
715 * has stopped.
716 */
717 if (vd->vdev_initialize_thread == NULL &&
718 tgt_state != VDEV_INITIALIZE_CANCELED) {
719 return;
720 }
721
722 vdev_initialize_change_state(vd, tgt_state);
723 vd->vdev_initialize_exit_wanted = B_TRUE;
724
725 if (vd_list == NULL) {
726 vdev_initialize_stop_wait_impl(vd);
727 } else {
728 ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
729 vd->vdev_spa->spa_export_thread == curthread);
730 list_insert_tail(vd_list, vd);
731 }
732 }
733
734 static void
vdev_initialize_stop_all_impl(vdev_t * vd,vdev_initializing_state_t tgt_state,list_t * vd_list)735 vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state,
736 list_t *vd_list)
737 {
738 if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
739 mutex_enter(&vd->vdev_initialize_lock);
740 vdev_initialize_stop(vd, tgt_state, vd_list);
741 mutex_exit(&vd->vdev_initialize_lock);
742 return;
743 }
744
745 for (uint64_t i = 0; i < vd->vdev_children; i++) {
746 vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state,
747 vd_list);
748 }
749 }
750
751 /*
752 * Convenience function to stop initializing of a vdev tree and set all
753 * initialize thread pointers to NULL.
754 */
755 void
vdev_initialize_stop_all(vdev_t * vd,vdev_initializing_state_t tgt_state)756 vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state)
757 {
758 spa_t *spa = vd->vdev_spa;
759 list_t vd_list;
760
761 ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
762 spa->spa_export_thread == curthread);
763
764 list_create(&vd_list, sizeof (vdev_t),
765 offsetof(vdev_t, vdev_initialize_node));
766
767 vdev_initialize_stop_all_impl(vd, tgt_state, &vd_list);
768 vdev_initialize_stop_wait(spa, &vd_list);
769
770 if (vd->vdev_spa->spa_sync_on) {
771 /* Make sure that our state has been synced to disk */
772 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
773 }
774
775 list_destroy(&vd_list);
776 }
777
778 void
vdev_initialize_restart(vdev_t * vd)779 vdev_initialize_restart(vdev_t *vd)
780 {
781 ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
782 vd->vdev_spa->spa_load_thread == curthread);
783 ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
784
785 if (vd->vdev_leaf_zap != 0) {
786 mutex_enter(&vd->vdev_initialize_lock);
787 uint64_t initialize_state = VDEV_INITIALIZE_NONE;
788 int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
789 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE,
790 sizeof (initialize_state), 1, &initialize_state);
791 ASSERT(err == 0 || err == ENOENT);
792 vd->vdev_initialize_state = initialize_state;
793
794 uint64_t timestamp = 0;
795 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
796 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME,
797 sizeof (timestamp), 1, ×tamp);
798 ASSERT(err == 0 || err == ENOENT);
799 vd->vdev_initialize_action_time = timestamp;
800
801 if ((vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED ||
802 vd->vdev_offline) && !vd->vdev_top->vdev_rz_expanding) {
803 /* load progress for reporting, but don't resume */
804 VERIFY0(vdev_initialize_load(vd));
805 } else if (vd->vdev_initialize_state ==
806 VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd) &&
807 !vd->vdev_top->vdev_removing &&
808 !vd->vdev_top->vdev_rz_expanding &&
809 vd->vdev_initialize_thread == NULL) {
810 vdev_initialize(vd);
811 }
812
813 mutex_exit(&vd->vdev_initialize_lock);
814 }
815
816 for (uint64_t i = 0; i < vd->vdev_children; i++) {
817 vdev_initialize_restart(vd->vdev_child[i]);
818 }
819 }
820
821 EXPORT_SYMBOL(vdev_initialize);
822 EXPORT_SYMBOL(vdev_uninitialize);
823 EXPORT_SYMBOL(vdev_initialize_stop);
824 EXPORT_SYMBOL(vdev_initialize_stop_all);
825 EXPORT_SYMBOL(vdev_initialize_stop_wait);
826 EXPORT_SYMBOL(vdev_initialize_restart);
827
828 ZFS_MODULE_PARAM(zfs, zfs_, initialize_value, U64, ZMOD_RW,
829 "Value written during zpool initialize");
830
831 ZFS_MODULE_PARAM(zfs, zfs_, initialize_chunk_size, U64, ZMOD_RW,
832 "Size in bytes of writes by zpool initialize");
833