1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2016, 2019 by Delphix. All rights reserved. 24 */ 25 26 #include <sys/spa.h> 27 #include <sys/spa_impl.h> 28 #include <sys/txg.h> 29 #include <sys/vdev_impl.h> 30 #include <sys/metaslab_impl.h> 31 #include <sys/dsl_synctask.h> 32 #include <sys/zap.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/vdev_initialize.h> 35 36 /* 37 * Value that is written to disk during initialization. 38 */ 39 static uint64_t zfs_initialize_value = 0xdeadbeefdeadbeeeULL; 40 41 /* maximum number of I/Os outstanding per leaf vdev */ 42 static const int zfs_initialize_limit = 1; 43 44 /* size of initializing writes; default 1MiB, see zfs_remove_max_segment */ 45 static uint64_t zfs_initialize_chunk_size = 1024 * 1024; 46 47 static boolean_t 48 vdev_initialize_should_stop(vdev_t *vd) 49 { 50 return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) || 51 vd->vdev_detached || vd->vdev_top->vdev_removing); 52 } 53 54 static void 55 vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx) 56 { 57 /* 58 * We pass in the guid instead of the vdev_t since the vdev may 59 * have been freed prior to the sync task being processed. This 60 * happens when a vdev is detached as we call spa_config_vdev_exit(), 61 * stop the initializing thread, schedule the sync task, and free 62 * the vdev. Later when the scheduled sync task is invoked, it would 63 * find that the vdev has been freed. 64 */ 65 uint64_t guid = *(uint64_t *)arg; 66 uint64_t txg = dmu_tx_get_txg(tx); 67 kmem_free(arg, sizeof (uint64_t)); 68 69 vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE); 70 if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd)) 71 return; 72 73 uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK]; 74 vd->vdev_initialize_offset[txg & TXG_MASK] = 0; 75 76 VERIFY(vd->vdev_leaf_zap != 0); 77 78 objset_t *mos = vd->vdev_spa->spa_meta_objset; 79 80 if (last_offset > 0) { 81 vd->vdev_initialize_last_offset = last_offset; 82 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 83 VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET, 84 sizeof (last_offset), 1, &last_offset, tx)); 85 } 86 if (vd->vdev_initialize_action_time > 0) { 87 uint64_t val = (uint64_t)vd->vdev_initialize_action_time; 88 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 89 VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val), 90 1, &val, tx)); 91 } 92 93 uint64_t initialize_state = vd->vdev_initialize_state; 94 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 95 VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1, 96 &initialize_state, tx)); 97 } 98 99 static void 100 vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state) 101 { 102 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock)); 103 spa_t *spa = vd->vdev_spa; 104 105 if (new_state == vd->vdev_initialize_state) 106 return; 107 108 /* 109 * Copy the vd's guid, this will be freed by the sync task. 110 */ 111 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 112 *guid = vd->vdev_guid; 113 114 /* 115 * If we're suspending, then preserving the original start time. 116 */ 117 if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) { 118 vd->vdev_initialize_action_time = gethrestime_sec(); 119 } 120 121 vdev_initializing_state_t old_state = vd->vdev_initialize_state; 122 vd->vdev_initialize_state = new_state; 123 124 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 125 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 126 dsl_sync_task_nowait(spa_get_dsl(spa), vdev_initialize_zap_update_sync, 127 guid, tx); 128 129 switch (new_state) { 130 case VDEV_INITIALIZE_ACTIVE: 131 spa_history_log_internal(spa, "initialize", tx, 132 "vdev=%s activated", vd->vdev_path); 133 break; 134 case VDEV_INITIALIZE_SUSPENDED: 135 spa_history_log_internal(spa, "initialize", tx, 136 "vdev=%s suspended", vd->vdev_path); 137 break; 138 case VDEV_INITIALIZE_CANCELED: 139 if (old_state == VDEV_INITIALIZE_ACTIVE || 140 old_state == VDEV_INITIALIZE_SUSPENDED) 141 spa_history_log_internal(spa, "initialize", tx, 142 "vdev=%s canceled", vd->vdev_path); 143 break; 144 case VDEV_INITIALIZE_COMPLETE: 145 spa_history_log_internal(spa, "initialize", tx, 146 "vdev=%s complete", vd->vdev_path); 147 break; 148 default: 149 panic("invalid state %llu", (unsigned long long)new_state); 150 } 151 152 dmu_tx_commit(tx); 153 154 if (new_state != VDEV_INITIALIZE_ACTIVE) 155 spa_notify_waiters(spa); 156 } 157 158 static void 159 vdev_initialize_cb(zio_t *zio) 160 { 161 vdev_t *vd = zio->io_vd; 162 mutex_enter(&vd->vdev_initialize_io_lock); 163 if (zio->io_error == ENXIO && !vdev_writeable(vd)) { 164 /* 165 * The I/O failed because the vdev was unavailable; roll the 166 * last offset back. (This works because spa_sync waits on 167 * spa_txg_zio before it runs sync tasks.) 168 */ 169 uint64_t *off = 170 &vd->vdev_initialize_offset[zio->io_txg & TXG_MASK]; 171 *off = MIN(*off, zio->io_offset); 172 } else { 173 /* 174 * Since initializing is best-effort, we ignore I/O errors and 175 * rely on vdev_probe to determine if the errors are more 176 * critical. 177 */ 178 if (zio->io_error != 0) 179 vd->vdev_stat.vs_initialize_errors++; 180 181 vd->vdev_initialize_bytes_done += zio->io_orig_size; 182 } 183 ASSERT3U(vd->vdev_initialize_inflight, >, 0); 184 vd->vdev_initialize_inflight--; 185 cv_broadcast(&vd->vdev_initialize_io_cv); 186 mutex_exit(&vd->vdev_initialize_io_lock); 187 188 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 189 } 190 191 /* Takes care of physical writing and limiting # of concurrent ZIOs. */ 192 static int 193 vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data) 194 { 195 spa_t *spa = vd->vdev_spa; 196 197 /* Limit inflight initializing I/Os */ 198 mutex_enter(&vd->vdev_initialize_io_lock); 199 while (vd->vdev_initialize_inflight >= zfs_initialize_limit) { 200 cv_wait(&vd->vdev_initialize_io_cv, 201 &vd->vdev_initialize_io_lock); 202 } 203 vd->vdev_initialize_inflight++; 204 mutex_exit(&vd->vdev_initialize_io_lock); 205 206 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 207 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 208 uint64_t txg = dmu_tx_get_txg(tx); 209 210 spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER); 211 mutex_enter(&vd->vdev_initialize_lock); 212 213 if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) { 214 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 215 *guid = vd->vdev_guid; 216 217 /* This is the first write of this txg. */ 218 dsl_sync_task_nowait(spa_get_dsl(spa), 219 vdev_initialize_zap_update_sync, guid, tx); 220 } 221 222 /* 223 * We know the vdev struct will still be around since all 224 * consumers of vdev_free must stop the initialization first. 225 */ 226 if (vdev_initialize_should_stop(vd)) { 227 mutex_enter(&vd->vdev_initialize_io_lock); 228 ASSERT3U(vd->vdev_initialize_inflight, >, 0); 229 vd->vdev_initialize_inflight--; 230 mutex_exit(&vd->vdev_initialize_io_lock); 231 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 232 mutex_exit(&vd->vdev_initialize_lock); 233 dmu_tx_commit(tx); 234 return (SET_ERROR(EINTR)); 235 } 236 mutex_exit(&vd->vdev_initialize_lock); 237 238 vd->vdev_initialize_offset[txg & TXG_MASK] = start + size; 239 zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start, 240 size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL, 241 ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE)); 242 /* vdev_initialize_cb releases SCL_STATE_ALL */ 243 244 dmu_tx_commit(tx); 245 246 return (0); 247 } 248 249 /* 250 * Callback to fill each ABD chunk with zfs_initialize_value. len must be 251 * divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD 252 * allocation will guarantee these for us. 253 */ 254 static int 255 vdev_initialize_block_fill(void *buf, size_t len, void *unused) 256 { 257 (void) unused; 258 259 ASSERT0(len % sizeof (uint64_t)); 260 for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) { 261 *(uint64_t *)((char *)(buf) + i) = zfs_initialize_value; 262 } 263 return (0); 264 } 265 266 static abd_t * 267 vdev_initialize_block_alloc(void) 268 { 269 /* Allocate ABD for filler data */ 270 abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE); 271 272 ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t)); 273 (void) abd_iterate_func(data, 0, zfs_initialize_chunk_size, 274 vdev_initialize_block_fill, NULL); 275 276 return (data); 277 } 278 279 static void 280 vdev_initialize_block_free(abd_t *data) 281 { 282 abd_free(data); 283 } 284 285 static int 286 vdev_initialize_ranges(vdev_t *vd, abd_t *data) 287 { 288 range_tree_t *rt = vd->vdev_initialize_tree; 289 zfs_btree_t *bt = &rt->rt_root; 290 zfs_btree_index_t where; 291 292 for (range_seg_t *rs = zfs_btree_first(bt, &where); rs != NULL; 293 rs = zfs_btree_next(bt, &where, &where)) { 294 uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt); 295 296 /* Split range into legally-sized physical chunks */ 297 uint64_t writes_required = 298 ((size - 1) / zfs_initialize_chunk_size) + 1; 299 300 for (uint64_t w = 0; w < writes_required; w++) { 301 int error; 302 303 error = vdev_initialize_write(vd, 304 VDEV_LABEL_START_SIZE + rs_get_start(rs, rt) + 305 (w * zfs_initialize_chunk_size), 306 MIN(size - (w * zfs_initialize_chunk_size), 307 zfs_initialize_chunk_size), data); 308 if (error != 0) 309 return (error); 310 } 311 } 312 return (0); 313 } 314 315 static void 316 vdev_initialize_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs) 317 { 318 uint64_t *last_rs_end = (uint64_t *)arg; 319 320 if (physical_rs->rs_end > *last_rs_end) 321 *last_rs_end = physical_rs->rs_end; 322 } 323 324 static void 325 vdev_initialize_xlate_progress(void *arg, range_seg64_t *physical_rs) 326 { 327 vdev_t *vd = (vdev_t *)arg; 328 329 uint64_t size = physical_rs->rs_end - physical_rs->rs_start; 330 vd->vdev_initialize_bytes_est += size; 331 332 if (vd->vdev_initialize_last_offset > physical_rs->rs_end) { 333 vd->vdev_initialize_bytes_done += size; 334 } else if (vd->vdev_initialize_last_offset > physical_rs->rs_start && 335 vd->vdev_initialize_last_offset < physical_rs->rs_end) { 336 vd->vdev_initialize_bytes_done += 337 vd->vdev_initialize_last_offset - physical_rs->rs_start; 338 } 339 } 340 341 static void 342 vdev_initialize_calculate_progress(vdev_t *vd) 343 { 344 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) || 345 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER)); 346 ASSERT(vd->vdev_leaf_zap != 0); 347 348 vd->vdev_initialize_bytes_est = 0; 349 vd->vdev_initialize_bytes_done = 0; 350 351 for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) { 352 metaslab_t *msp = vd->vdev_top->vdev_ms[i]; 353 mutex_enter(&msp->ms_lock); 354 355 uint64_t ms_free = (msp->ms_size - 356 metaslab_allocated_space(msp)) / 357 vdev_get_ndisks(vd->vdev_top); 358 359 /* 360 * Convert the metaslab range to a physical range 361 * on our vdev. We use this to determine if we are 362 * in the middle of this metaslab range. 363 */ 364 range_seg64_t logical_rs, physical_rs, remain_rs; 365 logical_rs.rs_start = msp->ms_start; 366 logical_rs.rs_end = msp->ms_start + msp->ms_size; 367 368 /* Metaslab space after this offset has not been initialized */ 369 vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs); 370 if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) { 371 vd->vdev_initialize_bytes_est += ms_free; 372 mutex_exit(&msp->ms_lock); 373 continue; 374 } 375 376 /* Metaslab space before this offset has been initialized */ 377 uint64_t last_rs_end = physical_rs.rs_end; 378 if (!vdev_xlate_is_empty(&remain_rs)) { 379 vdev_xlate_walk(vd, &remain_rs, 380 vdev_initialize_xlate_last_rs_end, &last_rs_end); 381 } 382 383 if (vd->vdev_initialize_last_offset > last_rs_end) { 384 vd->vdev_initialize_bytes_done += ms_free; 385 vd->vdev_initialize_bytes_est += ms_free; 386 mutex_exit(&msp->ms_lock); 387 continue; 388 } 389 390 /* 391 * If we get here, we're in the middle of initializing this 392 * metaslab. Load it and walk the free tree for more accurate 393 * progress estimation. 394 */ 395 VERIFY0(metaslab_load(msp)); 396 397 zfs_btree_index_t where; 398 range_tree_t *rt = msp->ms_allocatable; 399 for (range_seg_t *rs = 400 zfs_btree_first(&rt->rt_root, &where); rs; 401 rs = zfs_btree_next(&rt->rt_root, &where, 402 &where)) { 403 logical_rs.rs_start = rs_get_start(rs, rt); 404 logical_rs.rs_end = rs_get_end(rs, rt); 405 406 vdev_xlate_walk(vd, &logical_rs, 407 vdev_initialize_xlate_progress, vd); 408 } 409 mutex_exit(&msp->ms_lock); 410 } 411 } 412 413 static int 414 vdev_initialize_load(vdev_t *vd) 415 { 416 int err = 0; 417 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) || 418 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER)); 419 ASSERT(vd->vdev_leaf_zap != 0); 420 421 if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE || 422 vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) { 423 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 424 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET, 425 sizeof (vd->vdev_initialize_last_offset), 1, 426 &vd->vdev_initialize_last_offset); 427 if (err == ENOENT) { 428 vd->vdev_initialize_last_offset = 0; 429 err = 0; 430 } 431 } 432 433 vdev_initialize_calculate_progress(vd); 434 return (err); 435 } 436 437 static void 438 vdev_initialize_xlate_range_add(void *arg, range_seg64_t *physical_rs) 439 { 440 vdev_t *vd = arg; 441 442 /* Only add segments that we have not visited yet */ 443 if (physical_rs->rs_end <= vd->vdev_initialize_last_offset) 444 return; 445 446 /* Pick up where we left off mid-range. */ 447 if (vd->vdev_initialize_last_offset > physical_rs->rs_start) { 448 zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to " 449 "(%llu, %llu)", vd->vdev_path, 450 (u_longlong_t)physical_rs->rs_start, 451 (u_longlong_t)physical_rs->rs_end, 452 (u_longlong_t)vd->vdev_initialize_last_offset, 453 (u_longlong_t)physical_rs->rs_end); 454 ASSERT3U(physical_rs->rs_end, >, 455 vd->vdev_initialize_last_offset); 456 physical_rs->rs_start = vd->vdev_initialize_last_offset; 457 } 458 459 ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start); 460 461 range_tree_add(vd->vdev_initialize_tree, physical_rs->rs_start, 462 physical_rs->rs_end - physical_rs->rs_start); 463 } 464 465 /* 466 * Convert the logical range into a physical range and add it to our 467 * avl tree. 468 */ 469 static void 470 vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size) 471 { 472 vdev_t *vd = arg; 473 range_seg64_t logical_rs; 474 logical_rs.rs_start = start; 475 logical_rs.rs_end = start + size; 476 477 ASSERT(vd->vdev_ops->vdev_op_leaf); 478 vdev_xlate_walk(vd, &logical_rs, vdev_initialize_xlate_range_add, arg); 479 } 480 481 static __attribute__((noreturn)) void 482 vdev_initialize_thread(void *arg) 483 { 484 vdev_t *vd = arg; 485 spa_t *spa = vd->vdev_spa; 486 int error = 0; 487 uint64_t ms_count = 0; 488 489 ASSERT(vdev_is_concrete(vd)); 490 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 491 492 vd->vdev_initialize_last_offset = 0; 493 VERIFY0(vdev_initialize_load(vd)); 494 495 abd_t *deadbeef = vdev_initialize_block_alloc(); 496 497 vd->vdev_initialize_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 498 0, 0); 499 500 for (uint64_t i = 0; !vd->vdev_detached && 501 i < vd->vdev_top->vdev_ms_count; i++) { 502 metaslab_t *msp = vd->vdev_top->vdev_ms[i]; 503 boolean_t unload_when_done = B_FALSE; 504 505 /* 506 * If we've expanded the top-level vdev or it's our 507 * first pass, calculate our progress. 508 */ 509 if (vd->vdev_top->vdev_ms_count != ms_count) { 510 vdev_initialize_calculate_progress(vd); 511 ms_count = vd->vdev_top->vdev_ms_count; 512 } 513 514 spa_config_exit(spa, SCL_CONFIG, FTAG); 515 metaslab_disable(msp); 516 mutex_enter(&msp->ms_lock); 517 if (!msp->ms_loaded && !msp->ms_loading) 518 unload_when_done = B_TRUE; 519 VERIFY0(metaslab_load(msp)); 520 521 range_tree_walk(msp->ms_allocatable, vdev_initialize_range_add, 522 vd); 523 mutex_exit(&msp->ms_lock); 524 525 error = vdev_initialize_ranges(vd, deadbeef); 526 metaslab_enable(msp, B_TRUE, unload_when_done); 527 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 528 529 range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL); 530 if (error != 0) 531 break; 532 } 533 534 spa_config_exit(spa, SCL_CONFIG, FTAG); 535 mutex_enter(&vd->vdev_initialize_io_lock); 536 while (vd->vdev_initialize_inflight > 0) { 537 cv_wait(&vd->vdev_initialize_io_cv, 538 &vd->vdev_initialize_io_lock); 539 } 540 mutex_exit(&vd->vdev_initialize_io_lock); 541 542 range_tree_destroy(vd->vdev_initialize_tree); 543 vdev_initialize_block_free(deadbeef); 544 vd->vdev_initialize_tree = NULL; 545 546 mutex_enter(&vd->vdev_initialize_lock); 547 if (!vd->vdev_initialize_exit_wanted) { 548 if (vdev_writeable(vd)) { 549 vdev_initialize_change_state(vd, 550 VDEV_INITIALIZE_COMPLETE); 551 } else if (vd->vdev_faulted) { 552 vdev_initialize_change_state(vd, 553 VDEV_INITIALIZE_CANCELED); 554 } 555 } 556 ASSERT(vd->vdev_initialize_thread != NULL || 557 vd->vdev_initialize_inflight == 0); 558 559 /* 560 * Drop the vdev_initialize_lock while we sync out the 561 * txg since it's possible that a device might be trying to 562 * come online and must check to see if it needs to restart an 563 * initialization. That thread will be holding the spa_config_lock 564 * which would prevent the txg_wait_synced from completing. 565 */ 566 mutex_exit(&vd->vdev_initialize_lock); 567 txg_wait_synced(spa_get_dsl(spa), 0); 568 mutex_enter(&vd->vdev_initialize_lock); 569 570 vd->vdev_initialize_thread = NULL; 571 cv_broadcast(&vd->vdev_initialize_cv); 572 mutex_exit(&vd->vdev_initialize_lock); 573 574 thread_exit(); 575 } 576 577 /* 578 * Initiates a device. Caller must hold vdev_initialize_lock. 579 * Device must be a leaf and not already be initializing. 580 */ 581 void 582 vdev_initialize(vdev_t *vd) 583 { 584 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock)); 585 ASSERT(vd->vdev_ops->vdev_op_leaf); 586 ASSERT(vdev_is_concrete(vd)); 587 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 588 ASSERT(!vd->vdev_detached); 589 ASSERT(!vd->vdev_initialize_exit_wanted); 590 ASSERT(!vd->vdev_top->vdev_removing); 591 592 vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE); 593 vd->vdev_initialize_thread = thread_create(NULL, 0, 594 vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri); 595 } 596 597 /* 598 * Wait for the initialize thread to be terminated (cancelled or stopped). 599 */ 600 static void 601 vdev_initialize_stop_wait_impl(vdev_t *vd) 602 { 603 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock)); 604 605 while (vd->vdev_initialize_thread != NULL) 606 cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock); 607 608 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 609 vd->vdev_initialize_exit_wanted = B_FALSE; 610 } 611 612 /* 613 * Wait for vdev initialize threads which were either to cleanly exit. 614 */ 615 void 616 vdev_initialize_stop_wait(spa_t *spa, list_t *vd_list) 617 { 618 (void) spa; 619 vdev_t *vd; 620 621 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 622 623 while ((vd = list_remove_head(vd_list)) != NULL) { 624 mutex_enter(&vd->vdev_initialize_lock); 625 vdev_initialize_stop_wait_impl(vd); 626 mutex_exit(&vd->vdev_initialize_lock); 627 } 628 } 629 630 /* 631 * Stop initializing a device, with the resultant initializing state being 632 * tgt_state. For blocking behavior pass NULL for vd_list. Otherwise, when 633 * a list_t is provided the stopping vdev is inserted in to the list. Callers 634 * are then required to call vdev_initialize_stop_wait() to block for all the 635 * initialization threads to exit. The caller must hold vdev_initialize_lock 636 * and must not be writing to the spa config, as the initializing thread may 637 * try to enter the config as a reader before exiting. 638 */ 639 void 640 vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state, 641 list_t *vd_list) 642 { 643 ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER)); 644 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock)); 645 ASSERT(vd->vdev_ops->vdev_op_leaf); 646 ASSERT(vdev_is_concrete(vd)); 647 648 /* 649 * Allow cancel requests to proceed even if the initialize thread 650 * has stopped. 651 */ 652 if (vd->vdev_initialize_thread == NULL && 653 tgt_state != VDEV_INITIALIZE_CANCELED) { 654 return; 655 } 656 657 vdev_initialize_change_state(vd, tgt_state); 658 vd->vdev_initialize_exit_wanted = B_TRUE; 659 660 if (vd_list == NULL) { 661 vdev_initialize_stop_wait_impl(vd); 662 } else { 663 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 664 list_insert_tail(vd_list, vd); 665 } 666 } 667 668 static void 669 vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state, 670 list_t *vd_list) 671 { 672 if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) { 673 mutex_enter(&vd->vdev_initialize_lock); 674 vdev_initialize_stop(vd, tgt_state, vd_list); 675 mutex_exit(&vd->vdev_initialize_lock); 676 return; 677 } 678 679 for (uint64_t i = 0; i < vd->vdev_children; i++) { 680 vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state, 681 vd_list); 682 } 683 } 684 685 /* 686 * Convenience function to stop initializing of a vdev tree and set all 687 * initialize thread pointers to NULL. 688 */ 689 void 690 vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state) 691 { 692 spa_t *spa = vd->vdev_spa; 693 list_t vd_list; 694 695 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 696 697 list_create(&vd_list, sizeof (vdev_t), 698 offsetof(vdev_t, vdev_initialize_node)); 699 700 vdev_initialize_stop_all_impl(vd, tgt_state, &vd_list); 701 vdev_initialize_stop_wait(spa, &vd_list); 702 703 if (vd->vdev_spa->spa_sync_on) { 704 /* Make sure that our state has been synced to disk */ 705 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0); 706 } 707 708 list_destroy(&vd_list); 709 } 710 711 void 712 vdev_initialize_restart(vdev_t *vd) 713 { 714 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 715 ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 716 717 if (vd->vdev_leaf_zap != 0) { 718 mutex_enter(&vd->vdev_initialize_lock); 719 uint64_t initialize_state = VDEV_INITIALIZE_NONE; 720 int err = zap_lookup(vd->vdev_spa->spa_meta_objset, 721 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE, 722 sizeof (initialize_state), 1, &initialize_state); 723 ASSERT(err == 0 || err == ENOENT); 724 vd->vdev_initialize_state = initialize_state; 725 726 uint64_t timestamp = 0; 727 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 728 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, 729 sizeof (timestamp), 1, ×tamp); 730 ASSERT(err == 0 || err == ENOENT); 731 vd->vdev_initialize_action_time = timestamp; 732 733 if (vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED || 734 vd->vdev_offline) { 735 /* load progress for reporting, but don't resume */ 736 VERIFY0(vdev_initialize_load(vd)); 737 } else if (vd->vdev_initialize_state == 738 VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd) && 739 !vd->vdev_top->vdev_removing && 740 vd->vdev_initialize_thread == NULL) { 741 vdev_initialize(vd); 742 } 743 744 mutex_exit(&vd->vdev_initialize_lock); 745 } 746 747 for (uint64_t i = 0; i < vd->vdev_children; i++) { 748 vdev_initialize_restart(vd->vdev_child[i]); 749 } 750 } 751 752 EXPORT_SYMBOL(vdev_initialize); 753 EXPORT_SYMBOL(vdev_initialize_stop); 754 EXPORT_SYMBOL(vdev_initialize_stop_all); 755 EXPORT_SYMBOL(vdev_initialize_stop_wait); 756 EXPORT_SYMBOL(vdev_initialize_restart); 757 758 ZFS_MODULE_PARAM(zfs, zfs_, initialize_value, U64, ZMOD_RW, 759 "Value written during zpool initialize"); 760 761 ZFS_MODULE_PARAM(zfs, zfs_, initialize_chunk_size, U64, ZMOD_RW, 762 "Size in bytes of writes by zpool initialize"); 763