1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright (c) 2016, 2024 by Delphix. All rights reserved. 25 */ 26 27 #include <sys/spa.h> 28 #include <sys/spa_impl.h> 29 #include <sys/txg.h> 30 #include <sys/vdev_impl.h> 31 #include <sys/metaslab_impl.h> 32 #include <sys/dsl_synctask.h> 33 #include <sys/zap.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/vdev_initialize.h> 36 37 /* 38 * Value that is written to disk during initialization. 39 */ 40 static uint64_t zfs_initialize_value = 0xdeadbeefdeadbeeeULL; 41 42 /* maximum number of I/Os outstanding per leaf vdev */ 43 static const int zfs_initialize_limit = 1; 44 45 /* size of initializing writes; default 1MiB, see zfs_remove_max_segment */ 46 static uint64_t zfs_initialize_chunk_size = 1024 * 1024; 47 48 static boolean_t 49 vdev_initialize_should_stop(vdev_t *vd) 50 { 51 return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) || 52 vd->vdev_detached || vd->vdev_top->vdev_removing || 53 vd->vdev_top->vdev_rz_expanding); 54 } 55 56 static void 57 vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx) 58 { 59 /* 60 * We pass in the guid instead of the vdev_t since the vdev may 61 * have been freed prior to the sync task being processed. This 62 * happens when a vdev is detached as we call spa_config_vdev_exit(), 63 * stop the initializing thread, schedule the sync task, and free 64 * the vdev. Later when the scheduled sync task is invoked, it would 65 * find that the vdev has been freed. 66 */ 67 uint64_t guid = *(uint64_t *)arg; 68 uint64_t txg = dmu_tx_get_txg(tx); 69 kmem_free(arg, sizeof (uint64_t)); 70 71 vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE); 72 if (vd == NULL || vd->vdev_top->vdev_removing || 73 !vdev_is_concrete(vd) || vd->vdev_top->vdev_rz_expanding) 74 return; 75 76 uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK]; 77 vd->vdev_initialize_offset[txg & TXG_MASK] = 0; 78 79 VERIFY(vd->vdev_leaf_zap != 0); 80 81 objset_t *mos = vd->vdev_spa->spa_meta_objset; 82 83 if (last_offset > 0) { 84 vd->vdev_initialize_last_offset = last_offset; 85 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 86 VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET, 87 sizeof (last_offset), 1, &last_offset, tx)); 88 } 89 if (vd->vdev_initialize_action_time > 0) { 90 uint64_t val = (uint64_t)vd->vdev_initialize_action_time; 91 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 92 VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val), 93 1, &val, tx)); 94 } 95 96 uint64_t initialize_state = vd->vdev_initialize_state; 97 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 98 VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1, 99 &initialize_state, tx)); 100 } 101 102 static void 103 vdev_initialize_zap_remove_sync(void *arg, dmu_tx_t *tx) 104 { 105 uint64_t guid = *(uint64_t *)arg; 106 107 kmem_free(arg, sizeof (uint64_t)); 108 109 vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE); 110 if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd)) 111 return; 112 113 ASSERT3S(vd->vdev_initialize_state, ==, VDEV_INITIALIZE_NONE); 114 ASSERT3U(vd->vdev_leaf_zap, !=, 0); 115 116 vd->vdev_initialize_last_offset = 0; 117 vd->vdev_initialize_action_time = 0; 118 119 objset_t *mos = vd->vdev_spa->spa_meta_objset; 120 int error; 121 122 error = zap_remove(mos, vd->vdev_leaf_zap, 123 VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET, tx); 124 VERIFY(error == 0 || error == ENOENT); 125 126 error = zap_remove(mos, vd->vdev_leaf_zap, 127 VDEV_LEAF_ZAP_INITIALIZE_STATE, tx); 128 VERIFY(error == 0 || error == ENOENT); 129 130 error = zap_remove(mos, vd->vdev_leaf_zap, 131 VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, tx); 132 VERIFY(error == 0 || error == ENOENT); 133 } 134 135 static void 136 vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state) 137 { 138 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock)); 139 spa_t *spa = vd->vdev_spa; 140 141 if (new_state == vd->vdev_initialize_state) 142 return; 143 144 /* 145 * Copy the vd's guid, this will be freed by the sync task. 146 */ 147 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 148 *guid = vd->vdev_guid; 149 150 /* 151 * If we're suspending, then preserving the original start time. 152 */ 153 if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) { 154 vd->vdev_initialize_action_time = gethrestime_sec(); 155 } 156 157 vdev_initializing_state_t old_state = vd->vdev_initialize_state; 158 vd->vdev_initialize_state = new_state; 159 160 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 161 VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT | DMU_TX_SUSPEND)); 162 163 if (new_state != VDEV_INITIALIZE_NONE) { 164 dsl_sync_task_nowait(spa_get_dsl(spa), 165 vdev_initialize_zap_update_sync, guid, tx); 166 } else { 167 dsl_sync_task_nowait(spa_get_dsl(spa), 168 vdev_initialize_zap_remove_sync, guid, tx); 169 } 170 171 switch (new_state) { 172 case VDEV_INITIALIZE_ACTIVE: 173 spa_history_log_internal(spa, "initialize", tx, 174 "vdev=%s activated", vd->vdev_path); 175 break; 176 case VDEV_INITIALIZE_SUSPENDED: 177 spa_history_log_internal(spa, "initialize", tx, 178 "vdev=%s suspended", vd->vdev_path); 179 break; 180 case VDEV_INITIALIZE_CANCELED: 181 if (old_state == VDEV_INITIALIZE_ACTIVE || 182 old_state == VDEV_INITIALIZE_SUSPENDED) 183 spa_history_log_internal(spa, "initialize", tx, 184 "vdev=%s canceled", vd->vdev_path); 185 break; 186 case VDEV_INITIALIZE_COMPLETE: 187 spa_history_log_internal(spa, "initialize", tx, 188 "vdev=%s complete", vd->vdev_path); 189 break; 190 case VDEV_INITIALIZE_NONE: 191 spa_history_log_internal(spa, "uninitialize", tx, 192 "vdev=%s", vd->vdev_path); 193 break; 194 default: 195 panic("invalid state %llu", (unsigned long long)new_state); 196 } 197 198 dmu_tx_commit(tx); 199 200 if (new_state != VDEV_INITIALIZE_ACTIVE) 201 spa_notify_waiters(spa); 202 } 203 204 static void 205 vdev_initialize_cb(zio_t *zio) 206 { 207 vdev_t *vd = zio->io_vd; 208 mutex_enter(&vd->vdev_initialize_io_lock); 209 if (zio->io_error == ENXIO && !vdev_writeable(vd)) { 210 /* 211 * The I/O failed because the vdev was unavailable; roll the 212 * last offset back. (This works because spa_sync waits on 213 * spa_txg_zio before it runs sync tasks.) 214 */ 215 uint64_t *off = 216 &vd->vdev_initialize_offset[zio->io_txg & TXG_MASK]; 217 *off = MIN(*off, zio->io_offset); 218 } else { 219 /* 220 * Since initializing is best-effort, we ignore I/O errors and 221 * rely on vdev_probe to determine if the errors are more 222 * critical. 223 */ 224 if (zio->io_error != 0) 225 vd->vdev_stat.vs_initialize_errors++; 226 227 vd->vdev_initialize_bytes_done += zio->io_orig_size; 228 } 229 ASSERT3U(vd->vdev_initialize_inflight, >, 0); 230 vd->vdev_initialize_inflight--; 231 cv_broadcast(&vd->vdev_initialize_io_cv); 232 mutex_exit(&vd->vdev_initialize_io_lock); 233 234 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 235 } 236 237 /* Takes care of physical writing and limiting # of concurrent ZIOs. */ 238 static int 239 vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data) 240 { 241 spa_t *spa = vd->vdev_spa; 242 243 /* Limit inflight initializing I/Os */ 244 mutex_enter(&vd->vdev_initialize_io_lock); 245 while (vd->vdev_initialize_inflight >= zfs_initialize_limit) { 246 cv_wait(&vd->vdev_initialize_io_cv, 247 &vd->vdev_initialize_io_lock); 248 } 249 vd->vdev_initialize_inflight++; 250 mutex_exit(&vd->vdev_initialize_io_lock); 251 252 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 253 VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT | DMU_TX_SUSPEND)); 254 uint64_t txg = dmu_tx_get_txg(tx); 255 256 spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER); 257 mutex_enter(&vd->vdev_initialize_lock); 258 259 if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) { 260 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 261 *guid = vd->vdev_guid; 262 263 /* This is the first write of this txg. */ 264 dsl_sync_task_nowait(spa_get_dsl(spa), 265 vdev_initialize_zap_update_sync, guid, tx); 266 } 267 268 /* 269 * We know the vdev struct will still be around since all 270 * consumers of vdev_free must stop the initialization first. 271 */ 272 if (vdev_initialize_should_stop(vd)) { 273 mutex_enter(&vd->vdev_initialize_io_lock); 274 ASSERT3U(vd->vdev_initialize_inflight, >, 0); 275 vd->vdev_initialize_inflight--; 276 mutex_exit(&vd->vdev_initialize_io_lock); 277 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 278 mutex_exit(&vd->vdev_initialize_lock); 279 dmu_tx_commit(tx); 280 return (SET_ERROR(EINTR)); 281 } 282 mutex_exit(&vd->vdev_initialize_lock); 283 284 vd->vdev_initialize_offset[txg & TXG_MASK] = start + size; 285 zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start, 286 size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL, 287 ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE)); 288 /* vdev_initialize_cb releases SCL_STATE_ALL */ 289 290 dmu_tx_commit(tx); 291 292 return (0); 293 } 294 295 /* 296 * Callback to fill each ABD chunk with zfs_initialize_value. len must be 297 * divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD 298 * allocation will guarantee these for us. 299 */ 300 static int 301 vdev_initialize_block_fill(void *buf, size_t len, void *unused) 302 { 303 (void) unused; 304 305 ASSERT0(len % sizeof (uint64_t)); 306 for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) { 307 *(uint64_t *)((char *)(buf) + i) = zfs_initialize_value; 308 } 309 return (0); 310 } 311 312 static abd_t * 313 vdev_initialize_block_alloc(void) 314 { 315 /* Allocate ABD for filler data */ 316 abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE); 317 318 ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t)); 319 (void) abd_iterate_func(data, 0, zfs_initialize_chunk_size, 320 vdev_initialize_block_fill, NULL); 321 322 return (data); 323 } 324 325 static void 326 vdev_initialize_block_free(abd_t *data) 327 { 328 abd_free(data); 329 } 330 331 static int 332 vdev_initialize_ranges(vdev_t *vd, abd_t *data) 333 { 334 zfs_range_tree_t *rt = vd->vdev_initialize_tree; 335 zfs_btree_t *bt = &rt->rt_root; 336 zfs_btree_index_t where; 337 338 for (zfs_range_seg_t *rs = zfs_btree_first(bt, &where); rs != NULL; 339 rs = zfs_btree_next(bt, &where, &where)) { 340 uint64_t size = zfs_rs_get_end(rs, rt) - 341 zfs_rs_get_start(rs, rt); 342 343 /* Split range into legally-sized physical chunks */ 344 uint64_t writes_required = 345 ((size - 1) / zfs_initialize_chunk_size) + 1; 346 347 for (uint64_t w = 0; w < writes_required; w++) { 348 int error; 349 350 error = vdev_initialize_write(vd, 351 VDEV_LABEL_START_SIZE + zfs_rs_get_start(rs, rt) + 352 (w * zfs_initialize_chunk_size), 353 MIN(size - (w * zfs_initialize_chunk_size), 354 zfs_initialize_chunk_size), data); 355 if (error != 0) 356 return (error); 357 } 358 } 359 return (0); 360 } 361 362 static void 363 vdev_initialize_xlate_last_rs_end(void *arg, zfs_range_seg64_t *physical_rs) 364 { 365 uint64_t *last_rs_end = (uint64_t *)arg; 366 367 if (physical_rs->rs_end > *last_rs_end) 368 *last_rs_end = physical_rs->rs_end; 369 } 370 371 static void 372 vdev_initialize_xlate_progress(void *arg, zfs_range_seg64_t *physical_rs) 373 { 374 vdev_t *vd = (vdev_t *)arg; 375 376 uint64_t size = physical_rs->rs_end - physical_rs->rs_start; 377 vd->vdev_initialize_bytes_est += size; 378 379 if (vd->vdev_initialize_last_offset > physical_rs->rs_end) { 380 vd->vdev_initialize_bytes_done += size; 381 } else if (vd->vdev_initialize_last_offset > physical_rs->rs_start && 382 vd->vdev_initialize_last_offset < physical_rs->rs_end) { 383 vd->vdev_initialize_bytes_done += 384 vd->vdev_initialize_last_offset - physical_rs->rs_start; 385 } 386 } 387 388 static void 389 vdev_initialize_calculate_progress(vdev_t *vd) 390 { 391 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) || 392 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER)); 393 ASSERT(vd->vdev_leaf_zap != 0); 394 395 vd->vdev_initialize_bytes_est = 0; 396 vd->vdev_initialize_bytes_done = 0; 397 398 for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) { 399 metaslab_t *msp = vd->vdev_top->vdev_ms[i]; 400 mutex_enter(&msp->ms_lock); 401 402 uint64_t ms_free = (msp->ms_size - 403 metaslab_allocated_space(msp)) / 404 vdev_get_ndisks(vd->vdev_top); 405 406 /* 407 * Convert the metaslab range to a physical range 408 * on our vdev. We use this to determine if we are 409 * in the middle of this metaslab range. 410 */ 411 zfs_range_seg64_t logical_rs, physical_rs, remain_rs; 412 logical_rs.rs_start = msp->ms_start; 413 logical_rs.rs_end = msp->ms_start + msp->ms_size; 414 415 /* Metaslab space after this offset has not been initialized */ 416 vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs); 417 if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) { 418 vd->vdev_initialize_bytes_est += ms_free; 419 mutex_exit(&msp->ms_lock); 420 continue; 421 } 422 423 /* Metaslab space before this offset has been initialized */ 424 uint64_t last_rs_end = physical_rs.rs_end; 425 if (!vdev_xlate_is_empty(&remain_rs)) { 426 vdev_xlate_walk(vd, &remain_rs, 427 vdev_initialize_xlate_last_rs_end, &last_rs_end); 428 } 429 430 if (vd->vdev_initialize_last_offset > last_rs_end) { 431 vd->vdev_initialize_bytes_done += ms_free; 432 vd->vdev_initialize_bytes_est += ms_free; 433 mutex_exit(&msp->ms_lock); 434 continue; 435 } 436 437 /* 438 * If we get here, we're in the middle of initializing this 439 * metaslab. Load it and walk the free tree for more accurate 440 * progress estimation. 441 */ 442 VERIFY0(metaslab_load(msp)); 443 444 zfs_btree_index_t where; 445 zfs_range_tree_t *rt = msp->ms_allocatable; 446 for (zfs_range_seg_t *rs = 447 zfs_btree_first(&rt->rt_root, &where); rs; 448 rs = zfs_btree_next(&rt->rt_root, &where, 449 &where)) { 450 logical_rs.rs_start = zfs_rs_get_start(rs, rt); 451 logical_rs.rs_end = zfs_rs_get_end(rs, rt); 452 453 vdev_xlate_walk(vd, &logical_rs, 454 vdev_initialize_xlate_progress, vd); 455 } 456 mutex_exit(&msp->ms_lock); 457 } 458 } 459 460 static int 461 vdev_initialize_load(vdev_t *vd) 462 { 463 int err = 0; 464 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) || 465 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER)); 466 ASSERT(vd->vdev_leaf_zap != 0); 467 468 if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE || 469 vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) { 470 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 471 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET, 472 sizeof (vd->vdev_initialize_last_offset), 1, 473 &vd->vdev_initialize_last_offset); 474 if (err == ENOENT) { 475 vd->vdev_initialize_last_offset = 0; 476 err = 0; 477 } 478 } 479 480 vdev_initialize_calculate_progress(vd); 481 return (err); 482 } 483 484 static void 485 vdev_initialize_xlate_range_add(void *arg, zfs_range_seg64_t *physical_rs) 486 { 487 vdev_t *vd = arg; 488 489 /* Only add segments that we have not visited yet */ 490 if (physical_rs->rs_end <= vd->vdev_initialize_last_offset) 491 return; 492 493 /* Pick up where we left off mid-range. */ 494 if (vd->vdev_initialize_last_offset > physical_rs->rs_start) { 495 zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to " 496 "(%llu, %llu)", vd->vdev_path, 497 (u_longlong_t)physical_rs->rs_start, 498 (u_longlong_t)physical_rs->rs_end, 499 (u_longlong_t)vd->vdev_initialize_last_offset, 500 (u_longlong_t)physical_rs->rs_end); 501 ASSERT3U(physical_rs->rs_end, >, 502 vd->vdev_initialize_last_offset); 503 physical_rs->rs_start = vd->vdev_initialize_last_offset; 504 } 505 506 ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start); 507 508 zfs_range_tree_add(vd->vdev_initialize_tree, physical_rs->rs_start, 509 physical_rs->rs_end - physical_rs->rs_start); 510 } 511 512 /* 513 * Convert the logical range into a physical range and add it to our 514 * avl tree. 515 */ 516 static void 517 vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size) 518 { 519 vdev_t *vd = arg; 520 zfs_range_seg64_t logical_rs; 521 logical_rs.rs_start = start; 522 logical_rs.rs_end = start + size; 523 524 ASSERT(vd->vdev_ops->vdev_op_leaf); 525 vdev_xlate_walk(vd, &logical_rs, vdev_initialize_xlate_range_add, arg); 526 } 527 528 static __attribute__((noreturn)) void 529 vdev_initialize_thread(void *arg) 530 { 531 vdev_t *vd = arg; 532 spa_t *spa = vd->vdev_spa; 533 int error = 0; 534 uint64_t ms_count = 0; 535 536 ASSERT(vdev_is_concrete(vd)); 537 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 538 539 vd->vdev_initialize_last_offset = 0; 540 VERIFY0(vdev_initialize_load(vd)); 541 542 abd_t *deadbeef = vdev_initialize_block_alloc(); 543 544 vd->vdev_initialize_tree = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64, 545 NULL, 0, 0); 546 547 for (uint64_t i = 0; !vd->vdev_detached && 548 i < vd->vdev_top->vdev_ms_count; i++) { 549 metaslab_t *msp = vd->vdev_top->vdev_ms[i]; 550 boolean_t unload_when_done = B_FALSE; 551 552 /* 553 * If we've expanded the top-level vdev or it's our 554 * first pass, calculate our progress. 555 */ 556 if (vd->vdev_top->vdev_ms_count != ms_count) { 557 vdev_initialize_calculate_progress(vd); 558 ms_count = vd->vdev_top->vdev_ms_count; 559 } 560 561 spa_config_exit(spa, SCL_CONFIG, FTAG); 562 metaslab_disable(msp); 563 mutex_enter(&msp->ms_lock); 564 if (!msp->ms_loaded && !msp->ms_loading) 565 unload_when_done = B_TRUE; 566 VERIFY0(metaslab_load(msp)); 567 568 zfs_range_tree_walk(msp->ms_allocatable, 569 vdev_initialize_range_add, vd); 570 mutex_exit(&msp->ms_lock); 571 572 error = vdev_initialize_ranges(vd, deadbeef); 573 metaslab_enable(msp, B_TRUE, unload_when_done); 574 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 575 576 zfs_range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL); 577 if (error != 0) 578 break; 579 } 580 581 spa_config_exit(spa, SCL_CONFIG, FTAG); 582 mutex_enter(&vd->vdev_initialize_io_lock); 583 while (vd->vdev_initialize_inflight > 0) { 584 cv_wait(&vd->vdev_initialize_io_cv, 585 &vd->vdev_initialize_io_lock); 586 } 587 mutex_exit(&vd->vdev_initialize_io_lock); 588 589 zfs_range_tree_destroy(vd->vdev_initialize_tree); 590 vdev_initialize_block_free(deadbeef); 591 vd->vdev_initialize_tree = NULL; 592 593 mutex_enter(&vd->vdev_initialize_lock); 594 if (!vd->vdev_initialize_exit_wanted) { 595 if (vdev_writeable(vd)) { 596 vdev_initialize_change_state(vd, 597 VDEV_INITIALIZE_COMPLETE); 598 } else if (vd->vdev_faulted) { 599 vdev_initialize_change_state(vd, 600 VDEV_INITIALIZE_CANCELED); 601 } 602 } 603 ASSERT(vd->vdev_initialize_thread != NULL || 604 vd->vdev_initialize_inflight == 0); 605 606 /* 607 * Drop the vdev_initialize_lock while we sync out the 608 * txg since it's possible that a device might be trying to 609 * come online and must check to see if it needs to restart an 610 * initialization. That thread will be holding the spa_config_lock 611 * which would prevent the txg_wait_synced from completing. 612 */ 613 mutex_exit(&vd->vdev_initialize_lock); 614 txg_wait_synced(spa_get_dsl(spa), 0); 615 mutex_enter(&vd->vdev_initialize_lock); 616 617 vd->vdev_initialize_thread = NULL; 618 cv_broadcast(&vd->vdev_initialize_cv); 619 mutex_exit(&vd->vdev_initialize_lock); 620 621 thread_exit(); 622 } 623 624 /* 625 * Initiates a device. Caller must hold vdev_initialize_lock. 626 * Device must be a leaf and not already be initializing. 627 */ 628 void 629 vdev_initialize(vdev_t *vd) 630 { 631 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock)); 632 ASSERT(vd->vdev_ops->vdev_op_leaf); 633 ASSERT(vdev_is_concrete(vd)); 634 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 635 ASSERT(!vd->vdev_detached); 636 ASSERT(!vd->vdev_initialize_exit_wanted); 637 ASSERT(!vd->vdev_top->vdev_removing); 638 ASSERT(!vd->vdev_top->vdev_rz_expanding); 639 640 vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE); 641 vd->vdev_initialize_thread = thread_create(NULL, 0, 642 vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri); 643 } 644 645 /* 646 * Uninitializes a device. Caller must hold vdev_initialize_lock. 647 * Device must be a leaf and not already be initializing. 648 */ 649 void 650 vdev_uninitialize(vdev_t *vd) 651 { 652 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock)); 653 ASSERT(vd->vdev_ops->vdev_op_leaf); 654 ASSERT(vdev_is_concrete(vd)); 655 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 656 ASSERT(!vd->vdev_detached); 657 ASSERT(!vd->vdev_initialize_exit_wanted); 658 ASSERT(!vd->vdev_top->vdev_removing); 659 660 vdev_initialize_change_state(vd, VDEV_INITIALIZE_NONE); 661 } 662 663 /* 664 * Wait for the initialize thread to be terminated (cancelled or stopped). 665 */ 666 static void 667 vdev_initialize_stop_wait_impl(vdev_t *vd) 668 { 669 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock)); 670 671 while (vd->vdev_initialize_thread != NULL) 672 cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock); 673 674 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 675 vd->vdev_initialize_exit_wanted = B_FALSE; 676 } 677 678 /* 679 * Wait for vdev initialize threads which were either to cleanly exit. 680 */ 681 void 682 vdev_initialize_stop_wait(spa_t *spa, list_t *vd_list) 683 { 684 (void) spa; 685 vdev_t *vd; 686 687 ASSERT(MUTEX_HELD(&spa_namespace_lock) || 688 spa->spa_export_thread == curthread); 689 690 while ((vd = list_remove_head(vd_list)) != NULL) { 691 mutex_enter(&vd->vdev_initialize_lock); 692 vdev_initialize_stop_wait_impl(vd); 693 mutex_exit(&vd->vdev_initialize_lock); 694 } 695 } 696 697 /* 698 * Stop initializing a device, with the resultant initializing state being 699 * tgt_state. For blocking behavior pass NULL for vd_list. Otherwise, when 700 * a list_t is provided the stopping vdev is inserted in to the list. Callers 701 * are then required to call vdev_initialize_stop_wait() to block for all the 702 * initialization threads to exit. The caller must hold vdev_initialize_lock 703 * and must not be writing to the spa config, as the initializing thread may 704 * try to enter the config as a reader before exiting. 705 */ 706 void 707 vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state, 708 list_t *vd_list) 709 { 710 ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER)); 711 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock)); 712 ASSERT(vd->vdev_ops->vdev_op_leaf); 713 ASSERT(vdev_is_concrete(vd)); 714 715 /* 716 * Allow cancel requests to proceed even if the initialize thread 717 * has stopped. 718 */ 719 if (vd->vdev_initialize_thread == NULL && 720 tgt_state != VDEV_INITIALIZE_CANCELED) { 721 return; 722 } 723 724 vdev_initialize_change_state(vd, tgt_state); 725 vd->vdev_initialize_exit_wanted = B_TRUE; 726 727 if (vd_list == NULL) { 728 vdev_initialize_stop_wait_impl(vd); 729 } else { 730 ASSERT(MUTEX_HELD(&spa_namespace_lock) || 731 vd->vdev_spa->spa_export_thread == curthread); 732 list_insert_tail(vd_list, vd); 733 } 734 } 735 736 static void 737 vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state, 738 list_t *vd_list) 739 { 740 if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) { 741 mutex_enter(&vd->vdev_initialize_lock); 742 vdev_initialize_stop(vd, tgt_state, vd_list); 743 mutex_exit(&vd->vdev_initialize_lock); 744 return; 745 } 746 747 for (uint64_t i = 0; i < vd->vdev_children; i++) { 748 vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state, 749 vd_list); 750 } 751 } 752 753 /* 754 * Convenience function to stop initializing of a vdev tree and set all 755 * initialize thread pointers to NULL. 756 */ 757 void 758 vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state) 759 { 760 spa_t *spa = vd->vdev_spa; 761 list_t vd_list; 762 763 ASSERT(MUTEX_HELD(&spa_namespace_lock) || 764 spa->spa_export_thread == curthread); 765 766 list_create(&vd_list, sizeof (vdev_t), 767 offsetof(vdev_t, vdev_initialize_node)); 768 769 vdev_initialize_stop_all_impl(vd, tgt_state, &vd_list); 770 vdev_initialize_stop_wait(spa, &vd_list); 771 772 if (vd->vdev_spa->spa_sync_on) { 773 /* Make sure that our state has been synced to disk */ 774 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0); 775 } 776 777 list_destroy(&vd_list); 778 } 779 780 void 781 vdev_initialize_restart(vdev_t *vd) 782 { 783 ASSERT(MUTEX_HELD(&spa_namespace_lock) || 784 vd->vdev_spa->spa_load_thread == curthread); 785 ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 786 787 if (vd->vdev_leaf_zap != 0) { 788 mutex_enter(&vd->vdev_initialize_lock); 789 uint64_t initialize_state = VDEV_INITIALIZE_NONE; 790 int err = zap_lookup(vd->vdev_spa->spa_meta_objset, 791 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE, 792 sizeof (initialize_state), 1, &initialize_state); 793 ASSERT(err == 0 || err == ENOENT); 794 vd->vdev_initialize_state = initialize_state; 795 796 uint64_t timestamp = 0; 797 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 798 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, 799 sizeof (timestamp), 1, ×tamp); 800 ASSERT(err == 0 || err == ENOENT); 801 vd->vdev_initialize_action_time = timestamp; 802 803 if ((vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED || 804 vd->vdev_offline) && !vd->vdev_top->vdev_rz_expanding) { 805 /* load progress for reporting, but don't resume */ 806 VERIFY0(vdev_initialize_load(vd)); 807 } else if (vd->vdev_initialize_state == 808 VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd) && 809 !vd->vdev_top->vdev_removing && 810 !vd->vdev_top->vdev_rz_expanding && 811 vd->vdev_initialize_thread == NULL) { 812 vdev_initialize(vd); 813 } 814 815 mutex_exit(&vd->vdev_initialize_lock); 816 } 817 818 for (uint64_t i = 0; i < vd->vdev_children; i++) { 819 vdev_initialize_restart(vd->vdev_child[i]); 820 } 821 } 822 823 EXPORT_SYMBOL(vdev_initialize); 824 EXPORT_SYMBOL(vdev_uninitialize); 825 EXPORT_SYMBOL(vdev_initialize_stop); 826 EXPORT_SYMBOL(vdev_initialize_stop_all); 827 EXPORT_SYMBOL(vdev_initialize_stop_wait); 828 EXPORT_SYMBOL(vdev_initialize_restart); 829 830 ZFS_MODULE_PARAM(zfs, zfs_, initialize_value, U64, ZMOD_RW, 831 "Value written during zpool initialize"); 832 833 ZFS_MODULE_PARAM(zfs, zfs_, initialize_chunk_size, U64, ZMOD_RW, 834 "Size in bytes of writes by zpool initialize"); 835