1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2016, 2019 by Delphix. All rights reserved. 24 */ 25 26 #include <sys/spa.h> 27 #include <sys/spa_impl.h> 28 #include <sys/txg.h> 29 #include <sys/vdev_impl.h> 30 #include <sys/metaslab_impl.h> 31 #include <sys/dsl_synctask.h> 32 #include <sys/zap.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/vdev_initialize.h> 35 36 /* 37 * Value that is written to disk during initialization. 38 */ 39 #ifdef _ILP32 40 unsigned long zfs_initialize_value = 0xdeadbeefUL; 41 #else 42 unsigned long zfs_initialize_value = 0xdeadbeefdeadbeeeULL; 43 #endif 44 45 /* maximum number of I/Os outstanding per leaf vdev */ 46 int zfs_initialize_limit = 1; 47 48 /* size of initializing writes; default 1MiB, see zfs_remove_max_segment */ 49 unsigned long zfs_initialize_chunk_size = 1024 * 1024; 50 51 static boolean_t 52 vdev_initialize_should_stop(vdev_t *vd) 53 { 54 return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) || 55 vd->vdev_detached || vd->vdev_top->vdev_removing); 56 } 57 58 static void 59 vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx) 60 { 61 /* 62 * We pass in the guid instead of the vdev_t since the vdev may 63 * have been freed prior to the sync task being processed. This 64 * happens when a vdev is detached as we call spa_config_vdev_exit(), 65 * stop the initializing thread, schedule the sync task, and free 66 * the vdev. Later when the scheduled sync task is invoked, it would 67 * find that the vdev has been freed. 68 */ 69 uint64_t guid = *(uint64_t *)arg; 70 uint64_t txg = dmu_tx_get_txg(tx); 71 kmem_free(arg, sizeof (uint64_t)); 72 73 vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE); 74 if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd)) 75 return; 76 77 uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK]; 78 vd->vdev_initialize_offset[txg & TXG_MASK] = 0; 79 80 VERIFY(vd->vdev_leaf_zap != 0); 81 82 objset_t *mos = vd->vdev_spa->spa_meta_objset; 83 84 if (last_offset > 0) { 85 vd->vdev_initialize_last_offset = last_offset; 86 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 87 VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET, 88 sizeof (last_offset), 1, &last_offset, tx)); 89 } 90 if (vd->vdev_initialize_action_time > 0) { 91 uint64_t val = (uint64_t)vd->vdev_initialize_action_time; 92 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 93 VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val), 94 1, &val, tx)); 95 } 96 97 uint64_t initialize_state = vd->vdev_initialize_state; 98 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 99 VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1, 100 &initialize_state, tx)); 101 } 102 103 static void 104 vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state) 105 { 106 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock)); 107 spa_t *spa = vd->vdev_spa; 108 109 if (new_state == vd->vdev_initialize_state) 110 return; 111 112 /* 113 * Copy the vd's guid, this will be freed by the sync task. 114 */ 115 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 116 *guid = vd->vdev_guid; 117 118 /* 119 * If we're suspending, then preserving the original start time. 120 */ 121 if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) { 122 vd->vdev_initialize_action_time = gethrestime_sec(); 123 } 124 vd->vdev_initialize_state = new_state; 125 126 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 127 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 128 dsl_sync_task_nowait(spa_get_dsl(spa), vdev_initialize_zap_update_sync, 129 guid, tx); 130 131 switch (new_state) { 132 case VDEV_INITIALIZE_ACTIVE: 133 spa_history_log_internal(spa, "initialize", tx, 134 "vdev=%s activated", vd->vdev_path); 135 break; 136 case VDEV_INITIALIZE_SUSPENDED: 137 spa_history_log_internal(spa, "initialize", tx, 138 "vdev=%s suspended", vd->vdev_path); 139 break; 140 case VDEV_INITIALIZE_CANCELED: 141 spa_history_log_internal(spa, "initialize", tx, 142 "vdev=%s canceled", vd->vdev_path); 143 break; 144 case VDEV_INITIALIZE_COMPLETE: 145 spa_history_log_internal(spa, "initialize", tx, 146 "vdev=%s complete", vd->vdev_path); 147 break; 148 default: 149 panic("invalid state %llu", (unsigned long long)new_state); 150 } 151 152 dmu_tx_commit(tx); 153 154 if (new_state != VDEV_INITIALIZE_ACTIVE) 155 spa_notify_waiters(spa); 156 } 157 158 static void 159 vdev_initialize_cb(zio_t *zio) 160 { 161 vdev_t *vd = zio->io_vd; 162 mutex_enter(&vd->vdev_initialize_io_lock); 163 if (zio->io_error == ENXIO && !vdev_writeable(vd)) { 164 /* 165 * The I/O failed because the vdev was unavailable; roll the 166 * last offset back. (This works because spa_sync waits on 167 * spa_txg_zio before it runs sync tasks.) 168 */ 169 uint64_t *off = 170 &vd->vdev_initialize_offset[zio->io_txg & TXG_MASK]; 171 *off = MIN(*off, zio->io_offset); 172 } else { 173 /* 174 * Since initializing is best-effort, we ignore I/O errors and 175 * rely on vdev_probe to determine if the errors are more 176 * critical. 177 */ 178 if (zio->io_error != 0) 179 vd->vdev_stat.vs_initialize_errors++; 180 181 vd->vdev_initialize_bytes_done += zio->io_orig_size; 182 } 183 ASSERT3U(vd->vdev_initialize_inflight, >, 0); 184 vd->vdev_initialize_inflight--; 185 cv_broadcast(&vd->vdev_initialize_io_cv); 186 mutex_exit(&vd->vdev_initialize_io_lock); 187 188 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 189 } 190 191 /* Takes care of physical writing and limiting # of concurrent ZIOs. */ 192 static int 193 vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data) 194 { 195 spa_t *spa = vd->vdev_spa; 196 197 /* Limit inflight initializing I/Os */ 198 mutex_enter(&vd->vdev_initialize_io_lock); 199 while (vd->vdev_initialize_inflight >= zfs_initialize_limit) { 200 cv_wait(&vd->vdev_initialize_io_cv, 201 &vd->vdev_initialize_io_lock); 202 } 203 vd->vdev_initialize_inflight++; 204 mutex_exit(&vd->vdev_initialize_io_lock); 205 206 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 207 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 208 uint64_t txg = dmu_tx_get_txg(tx); 209 210 spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER); 211 mutex_enter(&vd->vdev_initialize_lock); 212 213 if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) { 214 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 215 *guid = vd->vdev_guid; 216 217 /* This is the first write of this txg. */ 218 dsl_sync_task_nowait(spa_get_dsl(spa), 219 vdev_initialize_zap_update_sync, guid, tx); 220 } 221 222 /* 223 * We know the vdev struct will still be around since all 224 * consumers of vdev_free must stop the initialization first. 225 */ 226 if (vdev_initialize_should_stop(vd)) { 227 mutex_enter(&vd->vdev_initialize_io_lock); 228 ASSERT3U(vd->vdev_initialize_inflight, >, 0); 229 vd->vdev_initialize_inflight--; 230 mutex_exit(&vd->vdev_initialize_io_lock); 231 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 232 mutex_exit(&vd->vdev_initialize_lock); 233 dmu_tx_commit(tx); 234 return (SET_ERROR(EINTR)); 235 } 236 mutex_exit(&vd->vdev_initialize_lock); 237 238 vd->vdev_initialize_offset[txg & TXG_MASK] = start + size; 239 zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start, 240 size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL, 241 ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE)); 242 /* vdev_initialize_cb releases SCL_STATE_ALL */ 243 244 dmu_tx_commit(tx); 245 246 return (0); 247 } 248 249 /* 250 * Callback to fill each ABD chunk with zfs_initialize_value. len must be 251 * divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD 252 * allocation will guarantee these for us. 253 */ 254 /* ARGSUSED */ 255 static int 256 vdev_initialize_block_fill(void *buf, size_t len, void *unused) 257 { 258 ASSERT0(len % sizeof (uint64_t)); 259 #ifdef _ILP32 260 for (uint64_t i = 0; i < len; i += sizeof (uint32_t)) { 261 *(uint32_t *)((char *)(buf) + i) = zfs_initialize_value; 262 } 263 #else 264 for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) { 265 *(uint64_t *)((char *)(buf) + i) = zfs_initialize_value; 266 } 267 #endif 268 return (0); 269 } 270 271 static abd_t * 272 vdev_initialize_block_alloc(void) 273 { 274 /* Allocate ABD for filler data */ 275 abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE); 276 277 ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t)); 278 (void) abd_iterate_func(data, 0, zfs_initialize_chunk_size, 279 vdev_initialize_block_fill, NULL); 280 281 return (data); 282 } 283 284 static void 285 vdev_initialize_block_free(abd_t *data) 286 { 287 abd_free(data); 288 } 289 290 static int 291 vdev_initialize_ranges(vdev_t *vd, abd_t *data) 292 { 293 range_tree_t *rt = vd->vdev_initialize_tree; 294 zfs_btree_t *bt = &rt->rt_root; 295 zfs_btree_index_t where; 296 297 for (range_seg_t *rs = zfs_btree_first(bt, &where); rs != NULL; 298 rs = zfs_btree_next(bt, &where, &where)) { 299 uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt); 300 301 /* Split range into legally-sized physical chunks */ 302 uint64_t writes_required = 303 ((size - 1) / zfs_initialize_chunk_size) + 1; 304 305 for (uint64_t w = 0; w < writes_required; w++) { 306 int error; 307 308 error = vdev_initialize_write(vd, 309 VDEV_LABEL_START_SIZE + rs_get_start(rs, rt) + 310 (w * zfs_initialize_chunk_size), 311 MIN(size - (w * zfs_initialize_chunk_size), 312 zfs_initialize_chunk_size), data); 313 if (error != 0) 314 return (error); 315 } 316 } 317 return (0); 318 } 319 320 static void 321 vdev_initialize_calculate_progress(vdev_t *vd) 322 { 323 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) || 324 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER)); 325 ASSERT(vd->vdev_leaf_zap != 0); 326 327 vd->vdev_initialize_bytes_est = 0; 328 vd->vdev_initialize_bytes_done = 0; 329 330 for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) { 331 metaslab_t *msp = vd->vdev_top->vdev_ms[i]; 332 mutex_enter(&msp->ms_lock); 333 334 uint64_t ms_free = msp->ms_size - 335 metaslab_allocated_space(msp); 336 337 if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) 338 ms_free /= vd->vdev_top->vdev_children; 339 340 /* 341 * Convert the metaslab range to a physical range 342 * on our vdev. We use this to determine if we are 343 * in the middle of this metaslab range. 344 */ 345 range_seg64_t logical_rs, physical_rs; 346 logical_rs.rs_start = msp->ms_start; 347 logical_rs.rs_end = msp->ms_start + msp->ms_size; 348 vdev_xlate(vd, &logical_rs, &physical_rs); 349 350 if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) { 351 vd->vdev_initialize_bytes_est += ms_free; 352 mutex_exit(&msp->ms_lock); 353 continue; 354 } else if (vd->vdev_initialize_last_offset > 355 physical_rs.rs_end) { 356 vd->vdev_initialize_bytes_done += ms_free; 357 vd->vdev_initialize_bytes_est += ms_free; 358 mutex_exit(&msp->ms_lock); 359 continue; 360 } 361 362 /* 363 * If we get here, we're in the middle of initializing this 364 * metaslab. Load it and walk the free tree for more accurate 365 * progress estimation. 366 */ 367 VERIFY0(metaslab_load(msp)); 368 369 zfs_btree_index_t where; 370 range_tree_t *rt = msp->ms_allocatable; 371 for (range_seg_t *rs = 372 zfs_btree_first(&rt->rt_root, &where); rs; 373 rs = zfs_btree_next(&rt->rt_root, &where, 374 &where)) { 375 logical_rs.rs_start = rs_get_start(rs, rt); 376 logical_rs.rs_end = rs_get_end(rs, rt); 377 vdev_xlate(vd, &logical_rs, &physical_rs); 378 379 uint64_t size = physical_rs.rs_end - 380 physical_rs.rs_start; 381 vd->vdev_initialize_bytes_est += size; 382 if (vd->vdev_initialize_last_offset > 383 physical_rs.rs_end) { 384 vd->vdev_initialize_bytes_done += size; 385 } else if (vd->vdev_initialize_last_offset > 386 physical_rs.rs_start && 387 vd->vdev_initialize_last_offset < 388 physical_rs.rs_end) { 389 vd->vdev_initialize_bytes_done += 390 vd->vdev_initialize_last_offset - 391 physical_rs.rs_start; 392 } 393 } 394 mutex_exit(&msp->ms_lock); 395 } 396 } 397 398 static int 399 vdev_initialize_load(vdev_t *vd) 400 { 401 int err = 0; 402 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) || 403 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER)); 404 ASSERT(vd->vdev_leaf_zap != 0); 405 406 if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE || 407 vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) { 408 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 409 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET, 410 sizeof (vd->vdev_initialize_last_offset), 1, 411 &vd->vdev_initialize_last_offset); 412 if (err == ENOENT) { 413 vd->vdev_initialize_last_offset = 0; 414 err = 0; 415 } 416 } 417 418 vdev_initialize_calculate_progress(vd); 419 return (err); 420 } 421 422 /* 423 * Convert the logical range into a physical range and add it to our 424 * avl tree. 425 */ 426 static void 427 vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size) 428 { 429 vdev_t *vd = arg; 430 range_seg64_t logical_rs, physical_rs; 431 logical_rs.rs_start = start; 432 logical_rs.rs_end = start + size; 433 434 ASSERT(vd->vdev_ops->vdev_op_leaf); 435 vdev_xlate(vd, &logical_rs, &physical_rs); 436 437 IMPLY(vd->vdev_top == vd, 438 logical_rs.rs_start == physical_rs.rs_start); 439 IMPLY(vd->vdev_top == vd, 440 logical_rs.rs_end == physical_rs.rs_end); 441 442 /* Only add segments that we have not visited yet */ 443 if (physical_rs.rs_end <= vd->vdev_initialize_last_offset) 444 return; 445 446 /* Pick up where we left off mid-range. */ 447 if (vd->vdev_initialize_last_offset > physical_rs.rs_start) { 448 zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to " 449 "(%llu, %llu)", vd->vdev_path, 450 (u_longlong_t)physical_rs.rs_start, 451 (u_longlong_t)physical_rs.rs_end, 452 (u_longlong_t)vd->vdev_initialize_last_offset, 453 (u_longlong_t)physical_rs.rs_end); 454 ASSERT3U(physical_rs.rs_end, >, 455 vd->vdev_initialize_last_offset); 456 physical_rs.rs_start = vd->vdev_initialize_last_offset; 457 } 458 ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start); 459 460 /* 461 * With raidz, it's possible that the logical range does not live on 462 * this leaf vdev. We only add the physical range to this vdev's if it 463 * has a length greater than 0. 464 */ 465 if (physical_rs.rs_end > physical_rs.rs_start) { 466 range_tree_add(vd->vdev_initialize_tree, physical_rs.rs_start, 467 physical_rs.rs_end - physical_rs.rs_start); 468 } else { 469 ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start); 470 } 471 } 472 473 static void 474 vdev_initialize_thread(void *arg) 475 { 476 vdev_t *vd = arg; 477 spa_t *spa = vd->vdev_spa; 478 int error = 0; 479 uint64_t ms_count = 0; 480 481 ASSERT(vdev_is_concrete(vd)); 482 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 483 484 vd->vdev_initialize_last_offset = 0; 485 VERIFY0(vdev_initialize_load(vd)); 486 487 abd_t *deadbeef = vdev_initialize_block_alloc(); 488 489 vd->vdev_initialize_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 490 0, 0); 491 492 for (uint64_t i = 0; !vd->vdev_detached && 493 i < vd->vdev_top->vdev_ms_count; i++) { 494 metaslab_t *msp = vd->vdev_top->vdev_ms[i]; 495 boolean_t unload_when_done = B_FALSE; 496 497 /* 498 * If we've expanded the top-level vdev or it's our 499 * first pass, calculate our progress. 500 */ 501 if (vd->vdev_top->vdev_ms_count != ms_count) { 502 vdev_initialize_calculate_progress(vd); 503 ms_count = vd->vdev_top->vdev_ms_count; 504 } 505 506 spa_config_exit(spa, SCL_CONFIG, FTAG); 507 metaslab_disable(msp); 508 mutex_enter(&msp->ms_lock); 509 if (!msp->ms_loaded && !msp->ms_loading) 510 unload_when_done = B_TRUE; 511 VERIFY0(metaslab_load(msp)); 512 513 range_tree_walk(msp->ms_allocatable, vdev_initialize_range_add, 514 vd); 515 mutex_exit(&msp->ms_lock); 516 517 error = vdev_initialize_ranges(vd, deadbeef); 518 metaslab_enable(msp, B_TRUE, unload_when_done); 519 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 520 521 range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL); 522 if (error != 0) 523 break; 524 } 525 526 spa_config_exit(spa, SCL_CONFIG, FTAG); 527 mutex_enter(&vd->vdev_initialize_io_lock); 528 while (vd->vdev_initialize_inflight > 0) { 529 cv_wait(&vd->vdev_initialize_io_cv, 530 &vd->vdev_initialize_io_lock); 531 } 532 mutex_exit(&vd->vdev_initialize_io_lock); 533 534 range_tree_destroy(vd->vdev_initialize_tree); 535 vdev_initialize_block_free(deadbeef); 536 vd->vdev_initialize_tree = NULL; 537 538 mutex_enter(&vd->vdev_initialize_lock); 539 if (!vd->vdev_initialize_exit_wanted && vdev_writeable(vd)) { 540 vdev_initialize_change_state(vd, VDEV_INITIALIZE_COMPLETE); 541 } 542 ASSERT(vd->vdev_initialize_thread != NULL || 543 vd->vdev_initialize_inflight == 0); 544 545 /* 546 * Drop the vdev_initialize_lock while we sync out the 547 * txg since it's possible that a device might be trying to 548 * come online and must check to see if it needs to restart an 549 * initialization. That thread will be holding the spa_config_lock 550 * which would prevent the txg_wait_synced from completing. 551 */ 552 mutex_exit(&vd->vdev_initialize_lock); 553 txg_wait_synced(spa_get_dsl(spa), 0); 554 mutex_enter(&vd->vdev_initialize_lock); 555 556 vd->vdev_initialize_thread = NULL; 557 cv_broadcast(&vd->vdev_initialize_cv); 558 mutex_exit(&vd->vdev_initialize_lock); 559 560 thread_exit(); 561 } 562 563 /* 564 * Initiates a device. Caller must hold vdev_initialize_lock. 565 * Device must be a leaf and not already be initializing. 566 */ 567 void 568 vdev_initialize(vdev_t *vd) 569 { 570 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock)); 571 ASSERT(vd->vdev_ops->vdev_op_leaf); 572 ASSERT(vdev_is_concrete(vd)); 573 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 574 ASSERT(!vd->vdev_detached); 575 ASSERT(!vd->vdev_initialize_exit_wanted); 576 ASSERT(!vd->vdev_top->vdev_removing); 577 578 vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE); 579 vd->vdev_initialize_thread = thread_create(NULL, 0, 580 vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri); 581 } 582 583 /* 584 * Wait for the initialize thread to be terminated (cancelled or stopped). 585 */ 586 static void 587 vdev_initialize_stop_wait_impl(vdev_t *vd) 588 { 589 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock)); 590 591 while (vd->vdev_initialize_thread != NULL) 592 cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock); 593 594 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 595 vd->vdev_initialize_exit_wanted = B_FALSE; 596 } 597 598 /* 599 * Wait for vdev initialize threads which were either to cleanly exit. 600 */ 601 void 602 vdev_initialize_stop_wait(spa_t *spa, list_t *vd_list) 603 { 604 vdev_t *vd; 605 606 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 607 608 while ((vd = list_remove_head(vd_list)) != NULL) { 609 mutex_enter(&vd->vdev_initialize_lock); 610 vdev_initialize_stop_wait_impl(vd); 611 mutex_exit(&vd->vdev_initialize_lock); 612 } 613 } 614 615 /* 616 * Stop initializing a device, with the resultant initializing state being 617 * tgt_state. For blocking behavior pass NULL for vd_list. Otherwise, when 618 * a list_t is provided the stopping vdev is inserted in to the list. Callers 619 * are then required to call vdev_initialize_stop_wait() to block for all the 620 * initialization threads to exit. The caller must hold vdev_initialize_lock 621 * and must not be writing to the spa config, as the initializing thread may 622 * try to enter the config as a reader before exiting. 623 */ 624 void 625 vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state, 626 list_t *vd_list) 627 { 628 ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER)); 629 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock)); 630 ASSERT(vd->vdev_ops->vdev_op_leaf); 631 ASSERT(vdev_is_concrete(vd)); 632 633 /* 634 * Allow cancel requests to proceed even if the initialize thread 635 * has stopped. 636 */ 637 if (vd->vdev_initialize_thread == NULL && 638 tgt_state != VDEV_INITIALIZE_CANCELED) { 639 return; 640 } 641 642 vdev_initialize_change_state(vd, tgt_state); 643 vd->vdev_initialize_exit_wanted = B_TRUE; 644 645 if (vd_list == NULL) { 646 vdev_initialize_stop_wait_impl(vd); 647 } else { 648 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 649 list_insert_tail(vd_list, vd); 650 } 651 } 652 653 static void 654 vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state, 655 list_t *vd_list) 656 { 657 if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) { 658 mutex_enter(&vd->vdev_initialize_lock); 659 vdev_initialize_stop(vd, tgt_state, vd_list); 660 mutex_exit(&vd->vdev_initialize_lock); 661 return; 662 } 663 664 for (uint64_t i = 0; i < vd->vdev_children; i++) { 665 vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state, 666 vd_list); 667 } 668 } 669 670 /* 671 * Convenience function to stop initializing of a vdev tree and set all 672 * initialize thread pointers to NULL. 673 */ 674 void 675 vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state) 676 { 677 spa_t *spa = vd->vdev_spa; 678 list_t vd_list; 679 680 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 681 682 list_create(&vd_list, sizeof (vdev_t), 683 offsetof(vdev_t, vdev_initialize_node)); 684 685 vdev_initialize_stop_all_impl(vd, tgt_state, &vd_list); 686 vdev_initialize_stop_wait(spa, &vd_list); 687 688 if (vd->vdev_spa->spa_sync_on) { 689 /* Make sure that our state has been synced to disk */ 690 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0); 691 } 692 693 list_destroy(&vd_list); 694 } 695 696 void 697 vdev_initialize_restart(vdev_t *vd) 698 { 699 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 700 ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 701 702 if (vd->vdev_leaf_zap != 0) { 703 mutex_enter(&vd->vdev_initialize_lock); 704 uint64_t initialize_state = VDEV_INITIALIZE_NONE; 705 int err = zap_lookup(vd->vdev_spa->spa_meta_objset, 706 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE, 707 sizeof (initialize_state), 1, &initialize_state); 708 ASSERT(err == 0 || err == ENOENT); 709 vd->vdev_initialize_state = initialize_state; 710 711 uint64_t timestamp = 0; 712 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 713 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, 714 sizeof (timestamp), 1, ×tamp); 715 ASSERT(err == 0 || err == ENOENT); 716 vd->vdev_initialize_action_time = timestamp; 717 718 if (vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED || 719 vd->vdev_offline) { 720 /* load progress for reporting, but don't resume */ 721 VERIFY0(vdev_initialize_load(vd)); 722 } else if (vd->vdev_initialize_state == 723 VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd) && 724 !vd->vdev_top->vdev_removing && 725 vd->vdev_initialize_thread == NULL) { 726 vdev_initialize(vd); 727 } 728 729 mutex_exit(&vd->vdev_initialize_lock); 730 } 731 732 for (uint64_t i = 0; i < vd->vdev_children; i++) { 733 vdev_initialize_restart(vd->vdev_child[i]); 734 } 735 } 736 737 EXPORT_SYMBOL(vdev_initialize); 738 EXPORT_SYMBOL(vdev_initialize_stop); 739 EXPORT_SYMBOL(vdev_initialize_stop_all); 740 EXPORT_SYMBOL(vdev_initialize_stop_wait); 741 EXPORT_SYMBOL(vdev_initialize_restart); 742 743 /* BEGIN CSTYLED */ 744 ZFS_MODULE_PARAM(zfs, zfs_, initialize_value, ULONG, ZMOD_RW, 745 "Value written during zpool initialize"); 746 747 ZFS_MODULE_PARAM(zfs, zfs_, initialize_chunk_size, ULONG, ZMOD_RW, 748 "Size in bytes of writes by zpool initialize"); 749 /* END CSTYLED */ 750