1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2016, 2024 by Delphix. All rights reserved. 24 */ 25 26 #include <sys/spa.h> 27 #include <sys/spa_impl.h> 28 #include <sys/txg.h> 29 #include <sys/vdev_impl.h> 30 #include <sys/metaslab_impl.h> 31 #include <sys/dsl_synctask.h> 32 #include <sys/zap.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/vdev_initialize.h> 35 36 /* 37 * Value that is written to disk during initialization. 38 */ 39 static uint64_t zfs_initialize_value = 0xdeadbeefdeadbeeeULL; 40 41 /* maximum number of I/Os outstanding per leaf vdev */ 42 static const int zfs_initialize_limit = 1; 43 44 /* size of initializing writes; default 1MiB, see zfs_remove_max_segment */ 45 static uint64_t zfs_initialize_chunk_size = 1024 * 1024; 46 47 static boolean_t 48 vdev_initialize_should_stop(vdev_t *vd) 49 { 50 return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) || 51 vd->vdev_detached || vd->vdev_top->vdev_removing || 52 vd->vdev_top->vdev_rz_expanding); 53 } 54 55 static void 56 vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx) 57 { 58 /* 59 * We pass in the guid instead of the vdev_t since the vdev may 60 * have been freed prior to the sync task being processed. This 61 * happens when a vdev is detached as we call spa_config_vdev_exit(), 62 * stop the initializing thread, schedule the sync task, and free 63 * the vdev. Later when the scheduled sync task is invoked, it would 64 * find that the vdev has been freed. 65 */ 66 uint64_t guid = *(uint64_t *)arg; 67 uint64_t txg = dmu_tx_get_txg(tx); 68 kmem_free(arg, sizeof (uint64_t)); 69 70 vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE); 71 if (vd == NULL || vd->vdev_top->vdev_removing || 72 !vdev_is_concrete(vd) || vd->vdev_top->vdev_rz_expanding) 73 return; 74 75 uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK]; 76 vd->vdev_initialize_offset[txg & TXG_MASK] = 0; 77 78 VERIFY(vd->vdev_leaf_zap != 0); 79 80 objset_t *mos = vd->vdev_spa->spa_meta_objset; 81 82 if (last_offset > 0) { 83 vd->vdev_initialize_last_offset = last_offset; 84 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 85 VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET, 86 sizeof (last_offset), 1, &last_offset, tx)); 87 } 88 if (vd->vdev_initialize_action_time > 0) { 89 uint64_t val = (uint64_t)vd->vdev_initialize_action_time; 90 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 91 VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val), 92 1, &val, tx)); 93 } 94 95 uint64_t initialize_state = vd->vdev_initialize_state; 96 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 97 VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1, 98 &initialize_state, tx)); 99 } 100 101 static void 102 vdev_initialize_zap_remove_sync(void *arg, dmu_tx_t *tx) 103 { 104 uint64_t guid = *(uint64_t *)arg; 105 106 kmem_free(arg, sizeof (uint64_t)); 107 108 vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE); 109 if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd)) 110 return; 111 112 ASSERT3S(vd->vdev_initialize_state, ==, VDEV_INITIALIZE_NONE); 113 ASSERT3U(vd->vdev_leaf_zap, !=, 0); 114 115 vd->vdev_initialize_last_offset = 0; 116 vd->vdev_initialize_action_time = 0; 117 118 objset_t *mos = vd->vdev_spa->spa_meta_objset; 119 int error; 120 121 error = zap_remove(mos, vd->vdev_leaf_zap, 122 VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET, tx); 123 VERIFY(error == 0 || error == ENOENT); 124 125 error = zap_remove(mos, vd->vdev_leaf_zap, 126 VDEV_LEAF_ZAP_INITIALIZE_STATE, tx); 127 VERIFY(error == 0 || error == ENOENT); 128 129 error = zap_remove(mos, vd->vdev_leaf_zap, 130 VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, tx); 131 VERIFY(error == 0 || error == ENOENT); 132 } 133 134 static void 135 vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state) 136 { 137 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock)); 138 spa_t *spa = vd->vdev_spa; 139 140 if (new_state == vd->vdev_initialize_state) 141 return; 142 143 /* 144 * Copy the vd's guid, this will be freed by the sync task. 145 */ 146 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 147 *guid = vd->vdev_guid; 148 149 /* 150 * If we're suspending, then preserving the original start time. 151 */ 152 if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) { 153 vd->vdev_initialize_action_time = gethrestime_sec(); 154 } 155 156 vdev_initializing_state_t old_state = vd->vdev_initialize_state; 157 vd->vdev_initialize_state = new_state; 158 159 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 160 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 161 162 if (new_state != VDEV_INITIALIZE_NONE) { 163 dsl_sync_task_nowait(spa_get_dsl(spa), 164 vdev_initialize_zap_update_sync, guid, tx); 165 } else { 166 dsl_sync_task_nowait(spa_get_dsl(spa), 167 vdev_initialize_zap_remove_sync, guid, tx); 168 } 169 170 switch (new_state) { 171 case VDEV_INITIALIZE_ACTIVE: 172 spa_history_log_internal(spa, "initialize", tx, 173 "vdev=%s activated", vd->vdev_path); 174 break; 175 case VDEV_INITIALIZE_SUSPENDED: 176 spa_history_log_internal(spa, "initialize", tx, 177 "vdev=%s suspended", vd->vdev_path); 178 break; 179 case VDEV_INITIALIZE_CANCELED: 180 if (old_state == VDEV_INITIALIZE_ACTIVE || 181 old_state == VDEV_INITIALIZE_SUSPENDED) 182 spa_history_log_internal(spa, "initialize", tx, 183 "vdev=%s canceled", vd->vdev_path); 184 break; 185 case VDEV_INITIALIZE_COMPLETE: 186 spa_history_log_internal(spa, "initialize", tx, 187 "vdev=%s complete", vd->vdev_path); 188 break; 189 case VDEV_INITIALIZE_NONE: 190 spa_history_log_internal(spa, "uninitialize", tx, 191 "vdev=%s", vd->vdev_path); 192 break; 193 default: 194 panic("invalid state %llu", (unsigned long long)new_state); 195 } 196 197 dmu_tx_commit(tx); 198 199 if (new_state != VDEV_INITIALIZE_ACTIVE) 200 spa_notify_waiters(spa); 201 } 202 203 static void 204 vdev_initialize_cb(zio_t *zio) 205 { 206 vdev_t *vd = zio->io_vd; 207 mutex_enter(&vd->vdev_initialize_io_lock); 208 if (zio->io_error == ENXIO && !vdev_writeable(vd)) { 209 /* 210 * The I/O failed because the vdev was unavailable; roll the 211 * last offset back. (This works because spa_sync waits on 212 * spa_txg_zio before it runs sync tasks.) 213 */ 214 uint64_t *off = 215 &vd->vdev_initialize_offset[zio->io_txg & TXG_MASK]; 216 *off = MIN(*off, zio->io_offset); 217 } else { 218 /* 219 * Since initializing is best-effort, we ignore I/O errors and 220 * rely on vdev_probe to determine if the errors are more 221 * critical. 222 */ 223 if (zio->io_error != 0) 224 vd->vdev_stat.vs_initialize_errors++; 225 226 vd->vdev_initialize_bytes_done += zio->io_orig_size; 227 } 228 ASSERT3U(vd->vdev_initialize_inflight, >, 0); 229 vd->vdev_initialize_inflight--; 230 cv_broadcast(&vd->vdev_initialize_io_cv); 231 mutex_exit(&vd->vdev_initialize_io_lock); 232 233 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 234 } 235 236 /* Takes care of physical writing and limiting # of concurrent ZIOs. */ 237 static int 238 vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data) 239 { 240 spa_t *spa = vd->vdev_spa; 241 242 /* Limit inflight initializing I/Os */ 243 mutex_enter(&vd->vdev_initialize_io_lock); 244 while (vd->vdev_initialize_inflight >= zfs_initialize_limit) { 245 cv_wait(&vd->vdev_initialize_io_cv, 246 &vd->vdev_initialize_io_lock); 247 } 248 vd->vdev_initialize_inflight++; 249 mutex_exit(&vd->vdev_initialize_io_lock); 250 251 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 252 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 253 uint64_t txg = dmu_tx_get_txg(tx); 254 255 spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER); 256 mutex_enter(&vd->vdev_initialize_lock); 257 258 if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) { 259 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 260 *guid = vd->vdev_guid; 261 262 /* This is the first write of this txg. */ 263 dsl_sync_task_nowait(spa_get_dsl(spa), 264 vdev_initialize_zap_update_sync, guid, tx); 265 } 266 267 /* 268 * We know the vdev struct will still be around since all 269 * consumers of vdev_free must stop the initialization first. 270 */ 271 if (vdev_initialize_should_stop(vd)) { 272 mutex_enter(&vd->vdev_initialize_io_lock); 273 ASSERT3U(vd->vdev_initialize_inflight, >, 0); 274 vd->vdev_initialize_inflight--; 275 mutex_exit(&vd->vdev_initialize_io_lock); 276 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 277 mutex_exit(&vd->vdev_initialize_lock); 278 dmu_tx_commit(tx); 279 return (SET_ERROR(EINTR)); 280 } 281 mutex_exit(&vd->vdev_initialize_lock); 282 283 vd->vdev_initialize_offset[txg & TXG_MASK] = start + size; 284 zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start, 285 size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL, 286 ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE)); 287 /* vdev_initialize_cb releases SCL_STATE_ALL */ 288 289 dmu_tx_commit(tx); 290 291 return (0); 292 } 293 294 /* 295 * Callback to fill each ABD chunk with zfs_initialize_value. len must be 296 * divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD 297 * allocation will guarantee these for us. 298 */ 299 static int 300 vdev_initialize_block_fill(void *buf, size_t len, void *unused) 301 { 302 (void) unused; 303 304 ASSERT0(len % sizeof (uint64_t)); 305 for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) { 306 *(uint64_t *)((char *)(buf) + i) = zfs_initialize_value; 307 } 308 return (0); 309 } 310 311 static abd_t * 312 vdev_initialize_block_alloc(void) 313 { 314 /* Allocate ABD for filler data */ 315 abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE); 316 317 ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t)); 318 (void) abd_iterate_func(data, 0, zfs_initialize_chunk_size, 319 vdev_initialize_block_fill, NULL); 320 321 return (data); 322 } 323 324 static void 325 vdev_initialize_block_free(abd_t *data) 326 { 327 abd_free(data); 328 } 329 330 static int 331 vdev_initialize_ranges(vdev_t *vd, abd_t *data) 332 { 333 range_tree_t *rt = vd->vdev_initialize_tree; 334 zfs_btree_t *bt = &rt->rt_root; 335 zfs_btree_index_t where; 336 337 for (range_seg_t *rs = zfs_btree_first(bt, &where); rs != NULL; 338 rs = zfs_btree_next(bt, &where, &where)) { 339 uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt); 340 341 /* Split range into legally-sized physical chunks */ 342 uint64_t writes_required = 343 ((size - 1) / zfs_initialize_chunk_size) + 1; 344 345 for (uint64_t w = 0; w < writes_required; w++) { 346 int error; 347 348 error = vdev_initialize_write(vd, 349 VDEV_LABEL_START_SIZE + rs_get_start(rs, rt) + 350 (w * zfs_initialize_chunk_size), 351 MIN(size - (w * zfs_initialize_chunk_size), 352 zfs_initialize_chunk_size), data); 353 if (error != 0) 354 return (error); 355 } 356 } 357 return (0); 358 } 359 360 static void 361 vdev_initialize_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs) 362 { 363 uint64_t *last_rs_end = (uint64_t *)arg; 364 365 if (physical_rs->rs_end > *last_rs_end) 366 *last_rs_end = physical_rs->rs_end; 367 } 368 369 static void 370 vdev_initialize_xlate_progress(void *arg, range_seg64_t *physical_rs) 371 { 372 vdev_t *vd = (vdev_t *)arg; 373 374 uint64_t size = physical_rs->rs_end - physical_rs->rs_start; 375 vd->vdev_initialize_bytes_est += size; 376 377 if (vd->vdev_initialize_last_offset > physical_rs->rs_end) { 378 vd->vdev_initialize_bytes_done += size; 379 } else if (vd->vdev_initialize_last_offset > physical_rs->rs_start && 380 vd->vdev_initialize_last_offset < physical_rs->rs_end) { 381 vd->vdev_initialize_bytes_done += 382 vd->vdev_initialize_last_offset - physical_rs->rs_start; 383 } 384 } 385 386 static void 387 vdev_initialize_calculate_progress(vdev_t *vd) 388 { 389 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) || 390 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER)); 391 ASSERT(vd->vdev_leaf_zap != 0); 392 393 vd->vdev_initialize_bytes_est = 0; 394 vd->vdev_initialize_bytes_done = 0; 395 396 for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) { 397 metaslab_t *msp = vd->vdev_top->vdev_ms[i]; 398 mutex_enter(&msp->ms_lock); 399 400 uint64_t ms_free = (msp->ms_size - 401 metaslab_allocated_space(msp)) / 402 vdev_get_ndisks(vd->vdev_top); 403 404 /* 405 * Convert the metaslab range to a physical range 406 * on our vdev. We use this to determine if we are 407 * in the middle of this metaslab range. 408 */ 409 range_seg64_t logical_rs, physical_rs, remain_rs; 410 logical_rs.rs_start = msp->ms_start; 411 logical_rs.rs_end = msp->ms_start + msp->ms_size; 412 413 /* Metaslab space after this offset has not been initialized */ 414 vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs); 415 if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) { 416 vd->vdev_initialize_bytes_est += ms_free; 417 mutex_exit(&msp->ms_lock); 418 continue; 419 } 420 421 /* Metaslab space before this offset has been initialized */ 422 uint64_t last_rs_end = physical_rs.rs_end; 423 if (!vdev_xlate_is_empty(&remain_rs)) { 424 vdev_xlate_walk(vd, &remain_rs, 425 vdev_initialize_xlate_last_rs_end, &last_rs_end); 426 } 427 428 if (vd->vdev_initialize_last_offset > last_rs_end) { 429 vd->vdev_initialize_bytes_done += ms_free; 430 vd->vdev_initialize_bytes_est += ms_free; 431 mutex_exit(&msp->ms_lock); 432 continue; 433 } 434 435 /* 436 * If we get here, we're in the middle of initializing this 437 * metaslab. Load it and walk the free tree for more accurate 438 * progress estimation. 439 */ 440 VERIFY0(metaslab_load(msp)); 441 442 zfs_btree_index_t where; 443 range_tree_t *rt = msp->ms_allocatable; 444 for (range_seg_t *rs = 445 zfs_btree_first(&rt->rt_root, &where); rs; 446 rs = zfs_btree_next(&rt->rt_root, &where, 447 &where)) { 448 logical_rs.rs_start = rs_get_start(rs, rt); 449 logical_rs.rs_end = rs_get_end(rs, rt); 450 451 vdev_xlate_walk(vd, &logical_rs, 452 vdev_initialize_xlate_progress, vd); 453 } 454 mutex_exit(&msp->ms_lock); 455 } 456 } 457 458 static int 459 vdev_initialize_load(vdev_t *vd) 460 { 461 int err = 0; 462 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) || 463 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER)); 464 ASSERT(vd->vdev_leaf_zap != 0); 465 466 if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE || 467 vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) { 468 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 469 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET, 470 sizeof (vd->vdev_initialize_last_offset), 1, 471 &vd->vdev_initialize_last_offset); 472 if (err == ENOENT) { 473 vd->vdev_initialize_last_offset = 0; 474 err = 0; 475 } 476 } 477 478 vdev_initialize_calculate_progress(vd); 479 return (err); 480 } 481 482 static void 483 vdev_initialize_xlate_range_add(void *arg, range_seg64_t *physical_rs) 484 { 485 vdev_t *vd = arg; 486 487 /* Only add segments that we have not visited yet */ 488 if (physical_rs->rs_end <= vd->vdev_initialize_last_offset) 489 return; 490 491 /* Pick up where we left off mid-range. */ 492 if (vd->vdev_initialize_last_offset > physical_rs->rs_start) { 493 zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to " 494 "(%llu, %llu)", vd->vdev_path, 495 (u_longlong_t)physical_rs->rs_start, 496 (u_longlong_t)physical_rs->rs_end, 497 (u_longlong_t)vd->vdev_initialize_last_offset, 498 (u_longlong_t)physical_rs->rs_end); 499 ASSERT3U(physical_rs->rs_end, >, 500 vd->vdev_initialize_last_offset); 501 physical_rs->rs_start = vd->vdev_initialize_last_offset; 502 } 503 504 ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start); 505 506 range_tree_add(vd->vdev_initialize_tree, physical_rs->rs_start, 507 physical_rs->rs_end - physical_rs->rs_start); 508 } 509 510 /* 511 * Convert the logical range into a physical range and add it to our 512 * avl tree. 513 */ 514 static void 515 vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size) 516 { 517 vdev_t *vd = arg; 518 range_seg64_t logical_rs; 519 logical_rs.rs_start = start; 520 logical_rs.rs_end = start + size; 521 522 ASSERT(vd->vdev_ops->vdev_op_leaf); 523 vdev_xlate_walk(vd, &logical_rs, vdev_initialize_xlate_range_add, arg); 524 } 525 526 static __attribute__((noreturn)) void 527 vdev_initialize_thread(void *arg) 528 { 529 vdev_t *vd = arg; 530 spa_t *spa = vd->vdev_spa; 531 int error = 0; 532 uint64_t ms_count = 0; 533 534 ASSERT(vdev_is_concrete(vd)); 535 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 536 537 vd->vdev_initialize_last_offset = 0; 538 VERIFY0(vdev_initialize_load(vd)); 539 540 abd_t *deadbeef = vdev_initialize_block_alloc(); 541 542 vd->vdev_initialize_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 543 0, 0); 544 545 for (uint64_t i = 0; !vd->vdev_detached && 546 i < vd->vdev_top->vdev_ms_count; i++) { 547 metaslab_t *msp = vd->vdev_top->vdev_ms[i]; 548 boolean_t unload_when_done = B_FALSE; 549 550 /* 551 * If we've expanded the top-level vdev or it's our 552 * first pass, calculate our progress. 553 */ 554 if (vd->vdev_top->vdev_ms_count != ms_count) { 555 vdev_initialize_calculate_progress(vd); 556 ms_count = vd->vdev_top->vdev_ms_count; 557 } 558 559 spa_config_exit(spa, SCL_CONFIG, FTAG); 560 metaslab_disable(msp); 561 mutex_enter(&msp->ms_lock); 562 if (!msp->ms_loaded && !msp->ms_loading) 563 unload_when_done = B_TRUE; 564 VERIFY0(metaslab_load(msp)); 565 566 range_tree_walk(msp->ms_allocatable, vdev_initialize_range_add, 567 vd); 568 mutex_exit(&msp->ms_lock); 569 570 error = vdev_initialize_ranges(vd, deadbeef); 571 metaslab_enable(msp, B_TRUE, unload_when_done); 572 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 573 574 range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL); 575 if (error != 0) 576 break; 577 } 578 579 spa_config_exit(spa, SCL_CONFIG, FTAG); 580 mutex_enter(&vd->vdev_initialize_io_lock); 581 while (vd->vdev_initialize_inflight > 0) { 582 cv_wait(&vd->vdev_initialize_io_cv, 583 &vd->vdev_initialize_io_lock); 584 } 585 mutex_exit(&vd->vdev_initialize_io_lock); 586 587 range_tree_destroy(vd->vdev_initialize_tree); 588 vdev_initialize_block_free(deadbeef); 589 vd->vdev_initialize_tree = NULL; 590 591 mutex_enter(&vd->vdev_initialize_lock); 592 if (!vd->vdev_initialize_exit_wanted) { 593 if (vdev_writeable(vd)) { 594 vdev_initialize_change_state(vd, 595 VDEV_INITIALIZE_COMPLETE); 596 } else if (vd->vdev_faulted) { 597 vdev_initialize_change_state(vd, 598 VDEV_INITIALIZE_CANCELED); 599 } 600 } 601 ASSERT(vd->vdev_initialize_thread != NULL || 602 vd->vdev_initialize_inflight == 0); 603 604 /* 605 * Drop the vdev_initialize_lock while we sync out the 606 * txg since it's possible that a device might be trying to 607 * come online and must check to see if it needs to restart an 608 * initialization. That thread will be holding the spa_config_lock 609 * which would prevent the txg_wait_synced from completing. 610 */ 611 mutex_exit(&vd->vdev_initialize_lock); 612 txg_wait_synced(spa_get_dsl(spa), 0); 613 mutex_enter(&vd->vdev_initialize_lock); 614 615 vd->vdev_initialize_thread = NULL; 616 cv_broadcast(&vd->vdev_initialize_cv); 617 mutex_exit(&vd->vdev_initialize_lock); 618 619 thread_exit(); 620 } 621 622 /* 623 * Initiates a device. Caller must hold vdev_initialize_lock. 624 * Device must be a leaf and not already be initializing. 625 */ 626 void 627 vdev_initialize(vdev_t *vd) 628 { 629 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock)); 630 ASSERT(vd->vdev_ops->vdev_op_leaf); 631 ASSERT(vdev_is_concrete(vd)); 632 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 633 ASSERT(!vd->vdev_detached); 634 ASSERT(!vd->vdev_initialize_exit_wanted); 635 ASSERT(!vd->vdev_top->vdev_removing); 636 ASSERT(!vd->vdev_top->vdev_rz_expanding); 637 638 vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE); 639 vd->vdev_initialize_thread = thread_create(NULL, 0, 640 vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri); 641 } 642 643 /* 644 * Uninitializes a device. Caller must hold vdev_initialize_lock. 645 * Device must be a leaf and not already be initializing. 646 */ 647 void 648 vdev_uninitialize(vdev_t *vd) 649 { 650 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock)); 651 ASSERT(vd->vdev_ops->vdev_op_leaf); 652 ASSERT(vdev_is_concrete(vd)); 653 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 654 ASSERT(!vd->vdev_detached); 655 ASSERT(!vd->vdev_initialize_exit_wanted); 656 ASSERT(!vd->vdev_top->vdev_removing); 657 658 vdev_initialize_change_state(vd, VDEV_INITIALIZE_NONE); 659 } 660 661 /* 662 * Wait for the initialize thread to be terminated (cancelled or stopped). 663 */ 664 static void 665 vdev_initialize_stop_wait_impl(vdev_t *vd) 666 { 667 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock)); 668 669 while (vd->vdev_initialize_thread != NULL) 670 cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock); 671 672 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 673 vd->vdev_initialize_exit_wanted = B_FALSE; 674 } 675 676 /* 677 * Wait for vdev initialize threads which were either to cleanly exit. 678 */ 679 void 680 vdev_initialize_stop_wait(spa_t *spa, list_t *vd_list) 681 { 682 (void) spa; 683 vdev_t *vd; 684 685 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 686 687 while ((vd = list_remove_head(vd_list)) != NULL) { 688 mutex_enter(&vd->vdev_initialize_lock); 689 vdev_initialize_stop_wait_impl(vd); 690 mutex_exit(&vd->vdev_initialize_lock); 691 } 692 } 693 694 /* 695 * Stop initializing a device, with the resultant initializing state being 696 * tgt_state. For blocking behavior pass NULL for vd_list. Otherwise, when 697 * a list_t is provided the stopping vdev is inserted in to the list. Callers 698 * are then required to call vdev_initialize_stop_wait() to block for all the 699 * initialization threads to exit. The caller must hold vdev_initialize_lock 700 * and must not be writing to the spa config, as the initializing thread may 701 * try to enter the config as a reader before exiting. 702 */ 703 void 704 vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state, 705 list_t *vd_list) 706 { 707 ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER)); 708 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock)); 709 ASSERT(vd->vdev_ops->vdev_op_leaf); 710 ASSERT(vdev_is_concrete(vd)); 711 712 /* 713 * Allow cancel requests to proceed even if the initialize thread 714 * has stopped. 715 */ 716 if (vd->vdev_initialize_thread == NULL && 717 tgt_state != VDEV_INITIALIZE_CANCELED) { 718 return; 719 } 720 721 vdev_initialize_change_state(vd, tgt_state); 722 vd->vdev_initialize_exit_wanted = B_TRUE; 723 724 if (vd_list == NULL) { 725 vdev_initialize_stop_wait_impl(vd); 726 } else { 727 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 728 list_insert_tail(vd_list, vd); 729 } 730 } 731 732 static void 733 vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state, 734 list_t *vd_list) 735 { 736 if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) { 737 mutex_enter(&vd->vdev_initialize_lock); 738 vdev_initialize_stop(vd, tgt_state, vd_list); 739 mutex_exit(&vd->vdev_initialize_lock); 740 return; 741 } 742 743 for (uint64_t i = 0; i < vd->vdev_children; i++) { 744 vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state, 745 vd_list); 746 } 747 } 748 749 /* 750 * Convenience function to stop initializing of a vdev tree and set all 751 * initialize thread pointers to NULL. 752 */ 753 void 754 vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state) 755 { 756 spa_t *spa = vd->vdev_spa; 757 list_t vd_list; 758 759 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 760 761 list_create(&vd_list, sizeof (vdev_t), 762 offsetof(vdev_t, vdev_initialize_node)); 763 764 vdev_initialize_stop_all_impl(vd, tgt_state, &vd_list); 765 vdev_initialize_stop_wait(spa, &vd_list); 766 767 if (vd->vdev_spa->spa_sync_on) { 768 /* Make sure that our state has been synced to disk */ 769 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0); 770 } 771 772 list_destroy(&vd_list); 773 } 774 775 void 776 vdev_initialize_restart(vdev_t *vd) 777 { 778 ASSERT(MUTEX_HELD(&spa_namespace_lock) || 779 vd->vdev_spa->spa_load_thread == curthread); 780 ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 781 782 if (vd->vdev_leaf_zap != 0) { 783 mutex_enter(&vd->vdev_initialize_lock); 784 uint64_t initialize_state = VDEV_INITIALIZE_NONE; 785 int err = zap_lookup(vd->vdev_spa->spa_meta_objset, 786 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE, 787 sizeof (initialize_state), 1, &initialize_state); 788 ASSERT(err == 0 || err == ENOENT); 789 vd->vdev_initialize_state = initialize_state; 790 791 uint64_t timestamp = 0; 792 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 793 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, 794 sizeof (timestamp), 1, ×tamp); 795 ASSERT(err == 0 || err == ENOENT); 796 vd->vdev_initialize_action_time = timestamp; 797 798 if ((vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED || 799 vd->vdev_offline) && !vd->vdev_top->vdev_rz_expanding) { 800 /* load progress for reporting, but don't resume */ 801 VERIFY0(vdev_initialize_load(vd)); 802 } else if (vd->vdev_initialize_state == 803 VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd) && 804 !vd->vdev_top->vdev_removing && 805 !vd->vdev_top->vdev_rz_expanding && 806 vd->vdev_initialize_thread == NULL) { 807 vdev_initialize(vd); 808 } 809 810 mutex_exit(&vd->vdev_initialize_lock); 811 } 812 813 for (uint64_t i = 0; i < vd->vdev_children; i++) { 814 vdev_initialize_restart(vd->vdev_child[i]); 815 } 816 } 817 818 EXPORT_SYMBOL(vdev_initialize); 819 EXPORT_SYMBOL(vdev_uninitialize); 820 EXPORT_SYMBOL(vdev_initialize_stop); 821 EXPORT_SYMBOL(vdev_initialize_stop_all); 822 EXPORT_SYMBOL(vdev_initialize_stop_wait); 823 EXPORT_SYMBOL(vdev_initialize_restart); 824 825 ZFS_MODULE_PARAM(zfs, zfs_, initialize_value, U64, ZMOD_RW, 826 "Value written during zpool initialize"); 827 828 ZFS_MODULE_PARAM(zfs, zfs_, initialize_chunk_size, U64, ZMOD_RW, 829 "Size in bytes of writes by zpool initialize"); 830