xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev_initialize.c (revision 6580f5c38dd5b01aeeaed16b370f1a12423437f0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2016, 2024 by Delphix. All rights reserved.
24  */
25 
26 #include <sys/spa.h>
27 #include <sys/spa_impl.h>
28 #include <sys/txg.h>
29 #include <sys/vdev_impl.h>
30 #include <sys/metaslab_impl.h>
31 #include <sys/dsl_synctask.h>
32 #include <sys/zap.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_initialize.h>
35 
36 /*
37  * Value that is written to disk during initialization.
38  */
39 static uint64_t zfs_initialize_value = 0xdeadbeefdeadbeeeULL;
40 
41 /* maximum number of I/Os outstanding per leaf vdev */
42 static const int zfs_initialize_limit = 1;
43 
44 /* size of initializing writes; default 1MiB, see zfs_remove_max_segment */
45 static uint64_t zfs_initialize_chunk_size = 1024 * 1024;
46 
47 static boolean_t
48 vdev_initialize_should_stop(vdev_t *vd)
49 {
50 	return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) ||
51 	    vd->vdev_detached || vd->vdev_top->vdev_removing ||
52 	    vd->vdev_top->vdev_rz_expanding);
53 }
54 
55 static void
56 vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx)
57 {
58 	/*
59 	 * We pass in the guid instead of the vdev_t since the vdev may
60 	 * have been freed prior to the sync task being processed. This
61 	 * happens when a vdev is detached as we call spa_config_vdev_exit(),
62 	 * stop the initializing thread, schedule the sync task, and free
63 	 * the vdev. Later when the scheduled sync task is invoked, it would
64 	 * find that the vdev has been freed.
65 	 */
66 	uint64_t guid = *(uint64_t *)arg;
67 	uint64_t txg = dmu_tx_get_txg(tx);
68 	kmem_free(arg, sizeof (uint64_t));
69 
70 	vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
71 	if (vd == NULL || vd->vdev_top->vdev_removing ||
72 	    !vdev_is_concrete(vd) || vd->vdev_top->vdev_rz_expanding)
73 		return;
74 
75 	uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK];
76 	vd->vdev_initialize_offset[txg & TXG_MASK] = 0;
77 
78 	VERIFY(vd->vdev_leaf_zap != 0);
79 
80 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
81 
82 	if (last_offset > 0) {
83 		vd->vdev_initialize_last_offset = last_offset;
84 		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
85 		    VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
86 		    sizeof (last_offset), 1, &last_offset, tx));
87 	}
88 	if (vd->vdev_initialize_action_time > 0) {
89 		uint64_t val = (uint64_t)vd->vdev_initialize_action_time;
90 		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
91 		    VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val),
92 		    1, &val, tx));
93 	}
94 
95 	uint64_t initialize_state = vd->vdev_initialize_state;
96 	VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
97 	    VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1,
98 	    &initialize_state, tx));
99 }
100 
101 static void
102 vdev_initialize_zap_remove_sync(void *arg, dmu_tx_t *tx)
103 {
104 	uint64_t guid = *(uint64_t *)arg;
105 
106 	kmem_free(arg, sizeof (uint64_t));
107 
108 	vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
109 	if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
110 		return;
111 
112 	ASSERT3S(vd->vdev_initialize_state, ==, VDEV_INITIALIZE_NONE);
113 	ASSERT3U(vd->vdev_leaf_zap, !=, 0);
114 
115 	vd->vdev_initialize_last_offset = 0;
116 	vd->vdev_initialize_action_time = 0;
117 
118 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
119 	int error;
120 
121 	error = zap_remove(mos, vd->vdev_leaf_zap,
122 	    VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET, tx);
123 	VERIFY(error == 0 || error == ENOENT);
124 
125 	error = zap_remove(mos, vd->vdev_leaf_zap,
126 	    VDEV_LEAF_ZAP_INITIALIZE_STATE, tx);
127 	VERIFY(error == 0 || error == ENOENT);
128 
129 	error = zap_remove(mos, vd->vdev_leaf_zap,
130 	    VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, tx);
131 	VERIFY(error == 0 || error == ENOENT);
132 }
133 
134 static void
135 vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state)
136 {
137 	ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
138 	spa_t *spa = vd->vdev_spa;
139 
140 	if (new_state == vd->vdev_initialize_state)
141 		return;
142 
143 	/*
144 	 * Copy the vd's guid, this will be freed by the sync task.
145 	 */
146 	uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
147 	*guid = vd->vdev_guid;
148 
149 	/*
150 	 * If we're suspending, then preserving the original start time.
151 	 */
152 	if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) {
153 		vd->vdev_initialize_action_time = gethrestime_sec();
154 	}
155 
156 	vdev_initializing_state_t old_state = vd->vdev_initialize_state;
157 	vd->vdev_initialize_state = new_state;
158 
159 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
160 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
161 
162 	if (new_state != VDEV_INITIALIZE_NONE) {
163 		dsl_sync_task_nowait(spa_get_dsl(spa),
164 		    vdev_initialize_zap_update_sync, guid, tx);
165 	} else {
166 		dsl_sync_task_nowait(spa_get_dsl(spa),
167 		    vdev_initialize_zap_remove_sync, guid, tx);
168 	}
169 
170 	switch (new_state) {
171 	case VDEV_INITIALIZE_ACTIVE:
172 		spa_history_log_internal(spa, "initialize", tx,
173 		    "vdev=%s activated", vd->vdev_path);
174 		break;
175 	case VDEV_INITIALIZE_SUSPENDED:
176 		spa_history_log_internal(spa, "initialize", tx,
177 		    "vdev=%s suspended", vd->vdev_path);
178 		break;
179 	case VDEV_INITIALIZE_CANCELED:
180 		if (old_state == VDEV_INITIALIZE_ACTIVE ||
181 		    old_state == VDEV_INITIALIZE_SUSPENDED)
182 			spa_history_log_internal(spa, "initialize", tx,
183 			    "vdev=%s canceled", vd->vdev_path);
184 		break;
185 	case VDEV_INITIALIZE_COMPLETE:
186 		spa_history_log_internal(spa, "initialize", tx,
187 		    "vdev=%s complete", vd->vdev_path);
188 		break;
189 	case VDEV_INITIALIZE_NONE:
190 		spa_history_log_internal(spa, "uninitialize", tx,
191 		    "vdev=%s", vd->vdev_path);
192 		break;
193 	default:
194 		panic("invalid state %llu", (unsigned long long)new_state);
195 	}
196 
197 	dmu_tx_commit(tx);
198 
199 	if (new_state != VDEV_INITIALIZE_ACTIVE)
200 		spa_notify_waiters(spa);
201 }
202 
203 static void
204 vdev_initialize_cb(zio_t *zio)
205 {
206 	vdev_t *vd = zio->io_vd;
207 	mutex_enter(&vd->vdev_initialize_io_lock);
208 	if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
209 		/*
210 		 * The I/O failed because the vdev was unavailable; roll the
211 		 * last offset back. (This works because spa_sync waits on
212 		 * spa_txg_zio before it runs sync tasks.)
213 		 */
214 		uint64_t *off =
215 		    &vd->vdev_initialize_offset[zio->io_txg & TXG_MASK];
216 		*off = MIN(*off, zio->io_offset);
217 	} else {
218 		/*
219 		 * Since initializing is best-effort, we ignore I/O errors and
220 		 * rely on vdev_probe to determine if the errors are more
221 		 * critical.
222 		 */
223 		if (zio->io_error != 0)
224 			vd->vdev_stat.vs_initialize_errors++;
225 
226 		vd->vdev_initialize_bytes_done += zio->io_orig_size;
227 	}
228 	ASSERT3U(vd->vdev_initialize_inflight, >, 0);
229 	vd->vdev_initialize_inflight--;
230 	cv_broadcast(&vd->vdev_initialize_io_cv);
231 	mutex_exit(&vd->vdev_initialize_io_lock);
232 
233 	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
234 }
235 
236 /* Takes care of physical writing and limiting # of concurrent ZIOs. */
237 static int
238 vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data)
239 {
240 	spa_t *spa = vd->vdev_spa;
241 
242 	/* Limit inflight initializing I/Os */
243 	mutex_enter(&vd->vdev_initialize_io_lock);
244 	while (vd->vdev_initialize_inflight >= zfs_initialize_limit) {
245 		cv_wait(&vd->vdev_initialize_io_cv,
246 		    &vd->vdev_initialize_io_lock);
247 	}
248 	vd->vdev_initialize_inflight++;
249 	mutex_exit(&vd->vdev_initialize_io_lock);
250 
251 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
252 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
253 	uint64_t txg = dmu_tx_get_txg(tx);
254 
255 	spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
256 	mutex_enter(&vd->vdev_initialize_lock);
257 
258 	if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) {
259 		uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
260 		*guid = vd->vdev_guid;
261 
262 		/* This is the first write of this txg. */
263 		dsl_sync_task_nowait(spa_get_dsl(spa),
264 		    vdev_initialize_zap_update_sync, guid, tx);
265 	}
266 
267 	/*
268 	 * We know the vdev struct will still be around since all
269 	 * consumers of vdev_free must stop the initialization first.
270 	 */
271 	if (vdev_initialize_should_stop(vd)) {
272 		mutex_enter(&vd->vdev_initialize_io_lock);
273 		ASSERT3U(vd->vdev_initialize_inflight, >, 0);
274 		vd->vdev_initialize_inflight--;
275 		mutex_exit(&vd->vdev_initialize_io_lock);
276 		spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
277 		mutex_exit(&vd->vdev_initialize_lock);
278 		dmu_tx_commit(tx);
279 		return (SET_ERROR(EINTR));
280 	}
281 	mutex_exit(&vd->vdev_initialize_lock);
282 
283 	vd->vdev_initialize_offset[txg & TXG_MASK] = start + size;
284 	zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start,
285 	    size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL,
286 	    ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE));
287 	/* vdev_initialize_cb releases SCL_STATE_ALL */
288 
289 	dmu_tx_commit(tx);
290 
291 	return (0);
292 }
293 
294 /*
295  * Callback to fill each ABD chunk with zfs_initialize_value. len must be
296  * divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD
297  * allocation will guarantee these for us.
298  */
299 static int
300 vdev_initialize_block_fill(void *buf, size_t len, void *unused)
301 {
302 	(void) unused;
303 
304 	ASSERT0(len % sizeof (uint64_t));
305 	for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) {
306 		*(uint64_t *)((char *)(buf) + i) = zfs_initialize_value;
307 	}
308 	return (0);
309 }
310 
311 static abd_t *
312 vdev_initialize_block_alloc(void)
313 {
314 	/* Allocate ABD for filler data */
315 	abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE);
316 
317 	ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t));
318 	(void) abd_iterate_func(data, 0, zfs_initialize_chunk_size,
319 	    vdev_initialize_block_fill, NULL);
320 
321 	return (data);
322 }
323 
324 static void
325 vdev_initialize_block_free(abd_t *data)
326 {
327 	abd_free(data);
328 }
329 
330 static int
331 vdev_initialize_ranges(vdev_t *vd, abd_t *data)
332 {
333 	range_tree_t *rt = vd->vdev_initialize_tree;
334 	zfs_btree_t *bt = &rt->rt_root;
335 	zfs_btree_index_t where;
336 
337 	for (range_seg_t *rs = zfs_btree_first(bt, &where); rs != NULL;
338 	    rs = zfs_btree_next(bt, &where, &where)) {
339 		uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
340 
341 		/* Split range into legally-sized physical chunks */
342 		uint64_t writes_required =
343 		    ((size - 1) / zfs_initialize_chunk_size) + 1;
344 
345 		for (uint64_t w = 0; w < writes_required; w++) {
346 			int error;
347 
348 			error = vdev_initialize_write(vd,
349 			    VDEV_LABEL_START_SIZE + rs_get_start(rs, rt) +
350 			    (w * zfs_initialize_chunk_size),
351 			    MIN(size - (w * zfs_initialize_chunk_size),
352 			    zfs_initialize_chunk_size), data);
353 			if (error != 0)
354 				return (error);
355 		}
356 	}
357 	return (0);
358 }
359 
360 static void
361 vdev_initialize_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs)
362 {
363 	uint64_t *last_rs_end = (uint64_t *)arg;
364 
365 	if (physical_rs->rs_end > *last_rs_end)
366 		*last_rs_end = physical_rs->rs_end;
367 }
368 
369 static void
370 vdev_initialize_xlate_progress(void *arg, range_seg64_t *physical_rs)
371 {
372 	vdev_t *vd = (vdev_t *)arg;
373 
374 	uint64_t size = physical_rs->rs_end - physical_rs->rs_start;
375 	vd->vdev_initialize_bytes_est += size;
376 
377 	if (vd->vdev_initialize_last_offset > physical_rs->rs_end) {
378 		vd->vdev_initialize_bytes_done += size;
379 	} else if (vd->vdev_initialize_last_offset > physical_rs->rs_start &&
380 	    vd->vdev_initialize_last_offset < physical_rs->rs_end) {
381 		vd->vdev_initialize_bytes_done +=
382 		    vd->vdev_initialize_last_offset - physical_rs->rs_start;
383 	}
384 }
385 
386 static void
387 vdev_initialize_calculate_progress(vdev_t *vd)
388 {
389 	ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
390 	    spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
391 	ASSERT(vd->vdev_leaf_zap != 0);
392 
393 	vd->vdev_initialize_bytes_est = 0;
394 	vd->vdev_initialize_bytes_done = 0;
395 
396 	for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
397 		metaslab_t *msp = vd->vdev_top->vdev_ms[i];
398 		mutex_enter(&msp->ms_lock);
399 
400 		uint64_t ms_free = (msp->ms_size -
401 		    metaslab_allocated_space(msp)) /
402 		    vdev_get_ndisks(vd->vdev_top);
403 
404 		/*
405 		 * Convert the metaslab range to a physical range
406 		 * on our vdev. We use this to determine if we are
407 		 * in the middle of this metaslab range.
408 		 */
409 		range_seg64_t logical_rs, physical_rs, remain_rs;
410 		logical_rs.rs_start = msp->ms_start;
411 		logical_rs.rs_end = msp->ms_start + msp->ms_size;
412 
413 		/* Metaslab space after this offset has not been initialized */
414 		vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs);
415 		if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) {
416 			vd->vdev_initialize_bytes_est += ms_free;
417 			mutex_exit(&msp->ms_lock);
418 			continue;
419 		}
420 
421 		/* Metaslab space before this offset has been initialized */
422 		uint64_t last_rs_end = physical_rs.rs_end;
423 		if (!vdev_xlate_is_empty(&remain_rs)) {
424 			vdev_xlate_walk(vd, &remain_rs,
425 			    vdev_initialize_xlate_last_rs_end, &last_rs_end);
426 		}
427 
428 		if (vd->vdev_initialize_last_offset > last_rs_end) {
429 			vd->vdev_initialize_bytes_done += ms_free;
430 			vd->vdev_initialize_bytes_est += ms_free;
431 			mutex_exit(&msp->ms_lock);
432 			continue;
433 		}
434 
435 		/*
436 		 * If we get here, we're in the middle of initializing this
437 		 * metaslab. Load it and walk the free tree for more accurate
438 		 * progress estimation.
439 		 */
440 		VERIFY0(metaslab_load(msp));
441 
442 		zfs_btree_index_t where;
443 		range_tree_t *rt = msp->ms_allocatable;
444 		for (range_seg_t *rs =
445 		    zfs_btree_first(&rt->rt_root, &where); rs;
446 		    rs = zfs_btree_next(&rt->rt_root, &where,
447 		    &where)) {
448 			logical_rs.rs_start = rs_get_start(rs, rt);
449 			logical_rs.rs_end = rs_get_end(rs, rt);
450 
451 			vdev_xlate_walk(vd, &logical_rs,
452 			    vdev_initialize_xlate_progress, vd);
453 		}
454 		mutex_exit(&msp->ms_lock);
455 	}
456 }
457 
458 static int
459 vdev_initialize_load(vdev_t *vd)
460 {
461 	int err = 0;
462 	ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
463 	    spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
464 	ASSERT(vd->vdev_leaf_zap != 0);
465 
466 	if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE ||
467 	    vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) {
468 		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
469 		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
470 		    sizeof (vd->vdev_initialize_last_offset), 1,
471 		    &vd->vdev_initialize_last_offset);
472 		if (err == ENOENT) {
473 			vd->vdev_initialize_last_offset = 0;
474 			err = 0;
475 		}
476 	}
477 
478 	vdev_initialize_calculate_progress(vd);
479 	return (err);
480 }
481 
482 static void
483 vdev_initialize_xlate_range_add(void *arg, range_seg64_t *physical_rs)
484 {
485 	vdev_t *vd = arg;
486 
487 	/* Only add segments that we have not visited yet */
488 	if (physical_rs->rs_end <= vd->vdev_initialize_last_offset)
489 		return;
490 
491 	/* Pick up where we left off mid-range. */
492 	if (vd->vdev_initialize_last_offset > physical_rs->rs_start) {
493 		zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to "
494 		    "(%llu, %llu)", vd->vdev_path,
495 		    (u_longlong_t)physical_rs->rs_start,
496 		    (u_longlong_t)physical_rs->rs_end,
497 		    (u_longlong_t)vd->vdev_initialize_last_offset,
498 		    (u_longlong_t)physical_rs->rs_end);
499 		ASSERT3U(physical_rs->rs_end, >,
500 		    vd->vdev_initialize_last_offset);
501 		physical_rs->rs_start = vd->vdev_initialize_last_offset;
502 	}
503 
504 	ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start);
505 
506 	range_tree_add(vd->vdev_initialize_tree, physical_rs->rs_start,
507 	    physical_rs->rs_end - physical_rs->rs_start);
508 }
509 
510 /*
511  * Convert the logical range into a physical range and add it to our
512  * avl tree.
513  */
514 static void
515 vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size)
516 {
517 	vdev_t *vd = arg;
518 	range_seg64_t logical_rs;
519 	logical_rs.rs_start = start;
520 	logical_rs.rs_end = start + size;
521 
522 	ASSERT(vd->vdev_ops->vdev_op_leaf);
523 	vdev_xlate_walk(vd, &logical_rs, vdev_initialize_xlate_range_add, arg);
524 }
525 
526 static __attribute__((noreturn)) void
527 vdev_initialize_thread(void *arg)
528 {
529 	vdev_t *vd = arg;
530 	spa_t *spa = vd->vdev_spa;
531 	int error = 0;
532 	uint64_t ms_count = 0;
533 
534 	ASSERT(vdev_is_concrete(vd));
535 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
536 
537 	vd->vdev_initialize_last_offset = 0;
538 	VERIFY0(vdev_initialize_load(vd));
539 
540 	abd_t *deadbeef = vdev_initialize_block_alloc();
541 
542 	vd->vdev_initialize_tree = range_tree_create(NULL, RANGE_SEG64, NULL,
543 	    0, 0);
544 
545 	for (uint64_t i = 0; !vd->vdev_detached &&
546 	    i < vd->vdev_top->vdev_ms_count; i++) {
547 		metaslab_t *msp = vd->vdev_top->vdev_ms[i];
548 		boolean_t unload_when_done = B_FALSE;
549 
550 		/*
551 		 * If we've expanded the top-level vdev or it's our
552 		 * first pass, calculate our progress.
553 		 */
554 		if (vd->vdev_top->vdev_ms_count != ms_count) {
555 			vdev_initialize_calculate_progress(vd);
556 			ms_count = vd->vdev_top->vdev_ms_count;
557 		}
558 
559 		spa_config_exit(spa, SCL_CONFIG, FTAG);
560 		metaslab_disable(msp);
561 		mutex_enter(&msp->ms_lock);
562 		if (!msp->ms_loaded && !msp->ms_loading)
563 			unload_when_done = B_TRUE;
564 		VERIFY0(metaslab_load(msp));
565 
566 		range_tree_walk(msp->ms_allocatable, vdev_initialize_range_add,
567 		    vd);
568 		mutex_exit(&msp->ms_lock);
569 
570 		error = vdev_initialize_ranges(vd, deadbeef);
571 		metaslab_enable(msp, B_TRUE, unload_when_done);
572 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
573 
574 		range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL);
575 		if (error != 0)
576 			break;
577 	}
578 
579 	spa_config_exit(spa, SCL_CONFIG, FTAG);
580 	mutex_enter(&vd->vdev_initialize_io_lock);
581 	while (vd->vdev_initialize_inflight > 0) {
582 		cv_wait(&vd->vdev_initialize_io_cv,
583 		    &vd->vdev_initialize_io_lock);
584 	}
585 	mutex_exit(&vd->vdev_initialize_io_lock);
586 
587 	range_tree_destroy(vd->vdev_initialize_tree);
588 	vdev_initialize_block_free(deadbeef);
589 	vd->vdev_initialize_tree = NULL;
590 
591 	mutex_enter(&vd->vdev_initialize_lock);
592 	if (!vd->vdev_initialize_exit_wanted) {
593 		if (vdev_writeable(vd)) {
594 			vdev_initialize_change_state(vd,
595 			    VDEV_INITIALIZE_COMPLETE);
596 		} else if (vd->vdev_faulted) {
597 			vdev_initialize_change_state(vd,
598 			    VDEV_INITIALIZE_CANCELED);
599 		}
600 	}
601 	ASSERT(vd->vdev_initialize_thread != NULL ||
602 	    vd->vdev_initialize_inflight == 0);
603 
604 	/*
605 	 * Drop the vdev_initialize_lock while we sync out the
606 	 * txg since it's possible that a device might be trying to
607 	 * come online and must check to see if it needs to restart an
608 	 * initialization. That thread will be holding the spa_config_lock
609 	 * which would prevent the txg_wait_synced from completing.
610 	 */
611 	mutex_exit(&vd->vdev_initialize_lock);
612 	txg_wait_synced(spa_get_dsl(spa), 0);
613 	mutex_enter(&vd->vdev_initialize_lock);
614 
615 	vd->vdev_initialize_thread = NULL;
616 	cv_broadcast(&vd->vdev_initialize_cv);
617 	mutex_exit(&vd->vdev_initialize_lock);
618 
619 	thread_exit();
620 }
621 
622 /*
623  * Initiates a device. Caller must hold vdev_initialize_lock.
624  * Device must be a leaf and not already be initializing.
625  */
626 void
627 vdev_initialize(vdev_t *vd)
628 {
629 	ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
630 	ASSERT(vd->vdev_ops->vdev_op_leaf);
631 	ASSERT(vdev_is_concrete(vd));
632 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
633 	ASSERT(!vd->vdev_detached);
634 	ASSERT(!vd->vdev_initialize_exit_wanted);
635 	ASSERT(!vd->vdev_top->vdev_removing);
636 	ASSERT(!vd->vdev_top->vdev_rz_expanding);
637 
638 	vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE);
639 	vd->vdev_initialize_thread = thread_create(NULL, 0,
640 	    vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
641 }
642 
643 /*
644  * Uninitializes a device. Caller must hold vdev_initialize_lock.
645  * Device must be a leaf and not already be initializing.
646  */
647 void
648 vdev_uninitialize(vdev_t *vd)
649 {
650 	ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
651 	ASSERT(vd->vdev_ops->vdev_op_leaf);
652 	ASSERT(vdev_is_concrete(vd));
653 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
654 	ASSERT(!vd->vdev_detached);
655 	ASSERT(!vd->vdev_initialize_exit_wanted);
656 	ASSERT(!vd->vdev_top->vdev_removing);
657 
658 	vdev_initialize_change_state(vd, VDEV_INITIALIZE_NONE);
659 }
660 
661 /*
662  * Wait for the initialize thread to be terminated (cancelled or stopped).
663  */
664 static void
665 vdev_initialize_stop_wait_impl(vdev_t *vd)
666 {
667 	ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
668 
669 	while (vd->vdev_initialize_thread != NULL)
670 		cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock);
671 
672 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
673 	vd->vdev_initialize_exit_wanted = B_FALSE;
674 }
675 
676 /*
677  * Wait for vdev initialize threads which were either to cleanly exit.
678  */
679 void
680 vdev_initialize_stop_wait(spa_t *spa, list_t *vd_list)
681 {
682 	(void) spa;
683 	vdev_t *vd;
684 
685 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
686 
687 	while ((vd = list_remove_head(vd_list)) != NULL) {
688 		mutex_enter(&vd->vdev_initialize_lock);
689 		vdev_initialize_stop_wait_impl(vd);
690 		mutex_exit(&vd->vdev_initialize_lock);
691 	}
692 }
693 
694 /*
695  * Stop initializing a device, with the resultant initializing state being
696  * tgt_state.  For blocking behavior pass NULL for vd_list.  Otherwise, when
697  * a list_t is provided the stopping vdev is inserted in to the list.  Callers
698  * are then required to call vdev_initialize_stop_wait() to block for all the
699  * initialization threads to exit.  The caller must hold vdev_initialize_lock
700  * and must not be writing to the spa config, as the initializing thread may
701  * try to enter the config as a reader before exiting.
702  */
703 void
704 vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state,
705     list_t *vd_list)
706 {
707 	ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
708 	ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
709 	ASSERT(vd->vdev_ops->vdev_op_leaf);
710 	ASSERT(vdev_is_concrete(vd));
711 
712 	/*
713 	 * Allow cancel requests to proceed even if the initialize thread
714 	 * has stopped.
715 	 */
716 	if (vd->vdev_initialize_thread == NULL &&
717 	    tgt_state != VDEV_INITIALIZE_CANCELED) {
718 		return;
719 	}
720 
721 	vdev_initialize_change_state(vd, tgt_state);
722 	vd->vdev_initialize_exit_wanted = B_TRUE;
723 
724 	if (vd_list == NULL) {
725 		vdev_initialize_stop_wait_impl(vd);
726 	} else {
727 		ASSERT(MUTEX_HELD(&spa_namespace_lock));
728 		list_insert_tail(vd_list, vd);
729 	}
730 }
731 
732 static void
733 vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state,
734     list_t *vd_list)
735 {
736 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
737 		mutex_enter(&vd->vdev_initialize_lock);
738 		vdev_initialize_stop(vd, tgt_state, vd_list);
739 		mutex_exit(&vd->vdev_initialize_lock);
740 		return;
741 	}
742 
743 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
744 		vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state,
745 		    vd_list);
746 	}
747 }
748 
749 /*
750  * Convenience function to stop initializing of a vdev tree and set all
751  * initialize thread pointers to NULL.
752  */
753 void
754 vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state)
755 {
756 	spa_t *spa = vd->vdev_spa;
757 	list_t vd_list;
758 
759 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
760 
761 	list_create(&vd_list, sizeof (vdev_t),
762 	    offsetof(vdev_t, vdev_initialize_node));
763 
764 	vdev_initialize_stop_all_impl(vd, tgt_state, &vd_list);
765 	vdev_initialize_stop_wait(spa, &vd_list);
766 
767 	if (vd->vdev_spa->spa_sync_on) {
768 		/* Make sure that our state has been synced to disk */
769 		txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
770 	}
771 
772 	list_destroy(&vd_list);
773 }
774 
775 void
776 vdev_initialize_restart(vdev_t *vd)
777 {
778 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
779 	    vd->vdev_spa->spa_load_thread == curthread);
780 	ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
781 
782 	if (vd->vdev_leaf_zap != 0) {
783 		mutex_enter(&vd->vdev_initialize_lock);
784 		uint64_t initialize_state = VDEV_INITIALIZE_NONE;
785 		int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
786 		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE,
787 		    sizeof (initialize_state), 1, &initialize_state);
788 		ASSERT(err == 0 || err == ENOENT);
789 		vd->vdev_initialize_state = initialize_state;
790 
791 		uint64_t timestamp = 0;
792 		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
793 		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME,
794 		    sizeof (timestamp), 1, &timestamp);
795 		ASSERT(err == 0 || err == ENOENT);
796 		vd->vdev_initialize_action_time = timestamp;
797 
798 		if ((vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED ||
799 		    vd->vdev_offline) && !vd->vdev_top->vdev_rz_expanding) {
800 			/* load progress for reporting, but don't resume */
801 			VERIFY0(vdev_initialize_load(vd));
802 		} else if (vd->vdev_initialize_state ==
803 		    VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd) &&
804 		    !vd->vdev_top->vdev_removing &&
805 		    !vd->vdev_top->vdev_rz_expanding &&
806 		    vd->vdev_initialize_thread == NULL) {
807 			vdev_initialize(vd);
808 		}
809 
810 		mutex_exit(&vd->vdev_initialize_lock);
811 	}
812 
813 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
814 		vdev_initialize_restart(vd->vdev_child[i]);
815 	}
816 }
817 
818 EXPORT_SYMBOL(vdev_initialize);
819 EXPORT_SYMBOL(vdev_uninitialize);
820 EXPORT_SYMBOL(vdev_initialize_stop);
821 EXPORT_SYMBOL(vdev_initialize_stop_all);
822 EXPORT_SYMBOL(vdev_initialize_stop_wait);
823 EXPORT_SYMBOL(vdev_initialize_restart);
824 
825 ZFS_MODULE_PARAM(zfs, zfs_, initialize_value, U64, ZMOD_RW,
826 	"Value written during zpool initialize");
827 
828 ZFS_MODULE_PARAM(zfs, zfs_, initialize_chunk_size, U64, ZMOD_RW,
829 	"Size in bytes of writes by zpool initialize");
830