1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2016, 2019 by Delphix. All rights reserved. 24 */ 25 26 #include <sys/spa.h> 27 #include <sys/spa_impl.h> 28 #include <sys/txg.h> 29 #include <sys/vdev_impl.h> 30 #include <sys/metaslab_impl.h> 31 #include <sys/dsl_synctask.h> 32 #include <sys/zap.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/vdev_initialize.h> 35 36 /* 37 * Value that is written to disk during initialization. 38 */ 39 #ifdef _ILP32 40 static unsigned long zfs_initialize_value = 0xdeadbeefUL; 41 #else 42 static unsigned long zfs_initialize_value = 0xdeadbeefdeadbeeeULL; 43 #endif 44 45 /* maximum number of I/Os outstanding per leaf vdev */ 46 static const int zfs_initialize_limit = 1; 47 48 /* size of initializing writes; default 1MiB, see zfs_remove_max_segment */ 49 static unsigned long zfs_initialize_chunk_size = 1024 * 1024; 50 51 static boolean_t 52 vdev_initialize_should_stop(vdev_t *vd) 53 { 54 return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) || 55 vd->vdev_detached || vd->vdev_top->vdev_removing); 56 } 57 58 static void 59 vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx) 60 { 61 /* 62 * We pass in the guid instead of the vdev_t since the vdev may 63 * have been freed prior to the sync task being processed. This 64 * happens when a vdev is detached as we call spa_config_vdev_exit(), 65 * stop the initializing thread, schedule the sync task, and free 66 * the vdev. Later when the scheduled sync task is invoked, it would 67 * find that the vdev has been freed. 68 */ 69 uint64_t guid = *(uint64_t *)arg; 70 uint64_t txg = dmu_tx_get_txg(tx); 71 kmem_free(arg, sizeof (uint64_t)); 72 73 vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE); 74 if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd)) 75 return; 76 77 uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK]; 78 vd->vdev_initialize_offset[txg & TXG_MASK] = 0; 79 80 VERIFY(vd->vdev_leaf_zap != 0); 81 82 objset_t *mos = vd->vdev_spa->spa_meta_objset; 83 84 if (last_offset > 0) { 85 vd->vdev_initialize_last_offset = last_offset; 86 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 87 VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET, 88 sizeof (last_offset), 1, &last_offset, tx)); 89 } 90 if (vd->vdev_initialize_action_time > 0) { 91 uint64_t val = (uint64_t)vd->vdev_initialize_action_time; 92 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 93 VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val), 94 1, &val, tx)); 95 } 96 97 uint64_t initialize_state = vd->vdev_initialize_state; 98 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 99 VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1, 100 &initialize_state, tx)); 101 } 102 103 static void 104 vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state) 105 { 106 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock)); 107 spa_t *spa = vd->vdev_spa; 108 109 if (new_state == vd->vdev_initialize_state) 110 return; 111 112 /* 113 * Copy the vd's guid, this will be freed by the sync task. 114 */ 115 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 116 *guid = vd->vdev_guid; 117 118 /* 119 * If we're suspending, then preserving the original start time. 120 */ 121 if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) { 122 vd->vdev_initialize_action_time = gethrestime_sec(); 123 } 124 125 vdev_initializing_state_t old_state = vd->vdev_initialize_state; 126 vd->vdev_initialize_state = new_state; 127 128 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 129 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 130 dsl_sync_task_nowait(spa_get_dsl(spa), vdev_initialize_zap_update_sync, 131 guid, tx); 132 133 switch (new_state) { 134 case VDEV_INITIALIZE_ACTIVE: 135 spa_history_log_internal(spa, "initialize", tx, 136 "vdev=%s activated", vd->vdev_path); 137 break; 138 case VDEV_INITIALIZE_SUSPENDED: 139 spa_history_log_internal(spa, "initialize", tx, 140 "vdev=%s suspended", vd->vdev_path); 141 break; 142 case VDEV_INITIALIZE_CANCELED: 143 if (old_state == VDEV_INITIALIZE_ACTIVE || 144 old_state == VDEV_INITIALIZE_SUSPENDED) 145 spa_history_log_internal(spa, "initialize", tx, 146 "vdev=%s canceled", vd->vdev_path); 147 break; 148 case VDEV_INITIALIZE_COMPLETE: 149 spa_history_log_internal(spa, "initialize", tx, 150 "vdev=%s complete", vd->vdev_path); 151 break; 152 default: 153 panic("invalid state %llu", (unsigned long long)new_state); 154 } 155 156 dmu_tx_commit(tx); 157 158 if (new_state != VDEV_INITIALIZE_ACTIVE) 159 spa_notify_waiters(spa); 160 } 161 162 static void 163 vdev_initialize_cb(zio_t *zio) 164 { 165 vdev_t *vd = zio->io_vd; 166 mutex_enter(&vd->vdev_initialize_io_lock); 167 if (zio->io_error == ENXIO && !vdev_writeable(vd)) { 168 /* 169 * The I/O failed because the vdev was unavailable; roll the 170 * last offset back. (This works because spa_sync waits on 171 * spa_txg_zio before it runs sync tasks.) 172 */ 173 uint64_t *off = 174 &vd->vdev_initialize_offset[zio->io_txg & TXG_MASK]; 175 *off = MIN(*off, zio->io_offset); 176 } else { 177 /* 178 * Since initializing is best-effort, we ignore I/O errors and 179 * rely on vdev_probe to determine if the errors are more 180 * critical. 181 */ 182 if (zio->io_error != 0) 183 vd->vdev_stat.vs_initialize_errors++; 184 185 vd->vdev_initialize_bytes_done += zio->io_orig_size; 186 } 187 ASSERT3U(vd->vdev_initialize_inflight, >, 0); 188 vd->vdev_initialize_inflight--; 189 cv_broadcast(&vd->vdev_initialize_io_cv); 190 mutex_exit(&vd->vdev_initialize_io_lock); 191 192 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 193 } 194 195 /* Takes care of physical writing and limiting # of concurrent ZIOs. */ 196 static int 197 vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data) 198 { 199 spa_t *spa = vd->vdev_spa; 200 201 /* Limit inflight initializing I/Os */ 202 mutex_enter(&vd->vdev_initialize_io_lock); 203 while (vd->vdev_initialize_inflight >= zfs_initialize_limit) { 204 cv_wait(&vd->vdev_initialize_io_cv, 205 &vd->vdev_initialize_io_lock); 206 } 207 vd->vdev_initialize_inflight++; 208 mutex_exit(&vd->vdev_initialize_io_lock); 209 210 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 211 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 212 uint64_t txg = dmu_tx_get_txg(tx); 213 214 spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER); 215 mutex_enter(&vd->vdev_initialize_lock); 216 217 if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) { 218 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 219 *guid = vd->vdev_guid; 220 221 /* This is the first write of this txg. */ 222 dsl_sync_task_nowait(spa_get_dsl(spa), 223 vdev_initialize_zap_update_sync, guid, tx); 224 } 225 226 /* 227 * We know the vdev struct will still be around since all 228 * consumers of vdev_free must stop the initialization first. 229 */ 230 if (vdev_initialize_should_stop(vd)) { 231 mutex_enter(&vd->vdev_initialize_io_lock); 232 ASSERT3U(vd->vdev_initialize_inflight, >, 0); 233 vd->vdev_initialize_inflight--; 234 mutex_exit(&vd->vdev_initialize_io_lock); 235 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 236 mutex_exit(&vd->vdev_initialize_lock); 237 dmu_tx_commit(tx); 238 return (SET_ERROR(EINTR)); 239 } 240 mutex_exit(&vd->vdev_initialize_lock); 241 242 vd->vdev_initialize_offset[txg & TXG_MASK] = start + size; 243 zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start, 244 size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL, 245 ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE)); 246 /* vdev_initialize_cb releases SCL_STATE_ALL */ 247 248 dmu_tx_commit(tx); 249 250 return (0); 251 } 252 253 /* 254 * Callback to fill each ABD chunk with zfs_initialize_value. len must be 255 * divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD 256 * allocation will guarantee these for us. 257 */ 258 static int 259 vdev_initialize_block_fill(void *buf, size_t len, void *unused) 260 { 261 (void) unused; 262 263 ASSERT0(len % sizeof (uint64_t)); 264 #ifdef _ILP32 265 for (uint64_t i = 0; i < len; i += sizeof (uint32_t)) { 266 *(uint32_t *)((char *)(buf) + i) = zfs_initialize_value; 267 } 268 #else 269 for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) { 270 *(uint64_t *)((char *)(buf) + i) = zfs_initialize_value; 271 } 272 #endif 273 return (0); 274 } 275 276 static abd_t * 277 vdev_initialize_block_alloc(void) 278 { 279 /* Allocate ABD for filler data */ 280 abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE); 281 282 ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t)); 283 (void) abd_iterate_func(data, 0, zfs_initialize_chunk_size, 284 vdev_initialize_block_fill, NULL); 285 286 return (data); 287 } 288 289 static void 290 vdev_initialize_block_free(abd_t *data) 291 { 292 abd_free(data); 293 } 294 295 static int 296 vdev_initialize_ranges(vdev_t *vd, abd_t *data) 297 { 298 range_tree_t *rt = vd->vdev_initialize_tree; 299 zfs_btree_t *bt = &rt->rt_root; 300 zfs_btree_index_t where; 301 302 for (range_seg_t *rs = zfs_btree_first(bt, &where); rs != NULL; 303 rs = zfs_btree_next(bt, &where, &where)) { 304 uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt); 305 306 /* Split range into legally-sized physical chunks */ 307 uint64_t writes_required = 308 ((size - 1) / zfs_initialize_chunk_size) + 1; 309 310 for (uint64_t w = 0; w < writes_required; w++) { 311 int error; 312 313 error = vdev_initialize_write(vd, 314 VDEV_LABEL_START_SIZE + rs_get_start(rs, rt) + 315 (w * zfs_initialize_chunk_size), 316 MIN(size - (w * zfs_initialize_chunk_size), 317 zfs_initialize_chunk_size), data); 318 if (error != 0) 319 return (error); 320 } 321 } 322 return (0); 323 } 324 325 static void 326 vdev_initialize_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs) 327 { 328 uint64_t *last_rs_end = (uint64_t *)arg; 329 330 if (physical_rs->rs_end > *last_rs_end) 331 *last_rs_end = physical_rs->rs_end; 332 } 333 334 static void 335 vdev_initialize_xlate_progress(void *arg, range_seg64_t *physical_rs) 336 { 337 vdev_t *vd = (vdev_t *)arg; 338 339 uint64_t size = physical_rs->rs_end - physical_rs->rs_start; 340 vd->vdev_initialize_bytes_est += size; 341 342 if (vd->vdev_initialize_last_offset > physical_rs->rs_end) { 343 vd->vdev_initialize_bytes_done += size; 344 } else if (vd->vdev_initialize_last_offset > physical_rs->rs_start && 345 vd->vdev_initialize_last_offset < physical_rs->rs_end) { 346 vd->vdev_initialize_bytes_done += 347 vd->vdev_initialize_last_offset - physical_rs->rs_start; 348 } 349 } 350 351 static void 352 vdev_initialize_calculate_progress(vdev_t *vd) 353 { 354 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) || 355 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER)); 356 ASSERT(vd->vdev_leaf_zap != 0); 357 358 vd->vdev_initialize_bytes_est = 0; 359 vd->vdev_initialize_bytes_done = 0; 360 361 for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) { 362 metaslab_t *msp = vd->vdev_top->vdev_ms[i]; 363 mutex_enter(&msp->ms_lock); 364 365 uint64_t ms_free = (msp->ms_size - 366 metaslab_allocated_space(msp)) / 367 vdev_get_ndisks(vd->vdev_top); 368 369 /* 370 * Convert the metaslab range to a physical range 371 * on our vdev. We use this to determine if we are 372 * in the middle of this metaslab range. 373 */ 374 range_seg64_t logical_rs, physical_rs, remain_rs; 375 logical_rs.rs_start = msp->ms_start; 376 logical_rs.rs_end = msp->ms_start + msp->ms_size; 377 378 /* Metaslab space after this offset has not been initialized */ 379 vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs); 380 if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) { 381 vd->vdev_initialize_bytes_est += ms_free; 382 mutex_exit(&msp->ms_lock); 383 continue; 384 } 385 386 /* Metaslab space before this offset has been initialized */ 387 uint64_t last_rs_end = physical_rs.rs_end; 388 if (!vdev_xlate_is_empty(&remain_rs)) { 389 vdev_xlate_walk(vd, &remain_rs, 390 vdev_initialize_xlate_last_rs_end, &last_rs_end); 391 } 392 393 if (vd->vdev_initialize_last_offset > last_rs_end) { 394 vd->vdev_initialize_bytes_done += ms_free; 395 vd->vdev_initialize_bytes_est += ms_free; 396 mutex_exit(&msp->ms_lock); 397 continue; 398 } 399 400 /* 401 * If we get here, we're in the middle of initializing this 402 * metaslab. Load it and walk the free tree for more accurate 403 * progress estimation. 404 */ 405 VERIFY0(metaslab_load(msp)); 406 407 zfs_btree_index_t where; 408 range_tree_t *rt = msp->ms_allocatable; 409 for (range_seg_t *rs = 410 zfs_btree_first(&rt->rt_root, &where); rs; 411 rs = zfs_btree_next(&rt->rt_root, &where, 412 &where)) { 413 logical_rs.rs_start = rs_get_start(rs, rt); 414 logical_rs.rs_end = rs_get_end(rs, rt); 415 416 vdev_xlate_walk(vd, &logical_rs, 417 vdev_initialize_xlate_progress, vd); 418 } 419 mutex_exit(&msp->ms_lock); 420 } 421 } 422 423 static int 424 vdev_initialize_load(vdev_t *vd) 425 { 426 int err = 0; 427 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) || 428 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER)); 429 ASSERT(vd->vdev_leaf_zap != 0); 430 431 if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE || 432 vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) { 433 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 434 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET, 435 sizeof (vd->vdev_initialize_last_offset), 1, 436 &vd->vdev_initialize_last_offset); 437 if (err == ENOENT) { 438 vd->vdev_initialize_last_offset = 0; 439 err = 0; 440 } 441 } 442 443 vdev_initialize_calculate_progress(vd); 444 return (err); 445 } 446 447 static void 448 vdev_initialize_xlate_range_add(void *arg, range_seg64_t *physical_rs) 449 { 450 vdev_t *vd = arg; 451 452 /* Only add segments that we have not visited yet */ 453 if (physical_rs->rs_end <= vd->vdev_initialize_last_offset) 454 return; 455 456 /* Pick up where we left off mid-range. */ 457 if (vd->vdev_initialize_last_offset > physical_rs->rs_start) { 458 zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to " 459 "(%llu, %llu)", vd->vdev_path, 460 (u_longlong_t)physical_rs->rs_start, 461 (u_longlong_t)physical_rs->rs_end, 462 (u_longlong_t)vd->vdev_initialize_last_offset, 463 (u_longlong_t)physical_rs->rs_end); 464 ASSERT3U(physical_rs->rs_end, >, 465 vd->vdev_initialize_last_offset); 466 physical_rs->rs_start = vd->vdev_initialize_last_offset; 467 } 468 469 ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start); 470 471 range_tree_add(vd->vdev_initialize_tree, physical_rs->rs_start, 472 physical_rs->rs_end - physical_rs->rs_start); 473 } 474 475 /* 476 * Convert the logical range into a physical range and add it to our 477 * avl tree. 478 */ 479 static void 480 vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size) 481 { 482 vdev_t *vd = arg; 483 range_seg64_t logical_rs; 484 logical_rs.rs_start = start; 485 logical_rs.rs_end = start + size; 486 487 ASSERT(vd->vdev_ops->vdev_op_leaf); 488 vdev_xlate_walk(vd, &logical_rs, vdev_initialize_xlate_range_add, arg); 489 } 490 491 static __attribute__((noreturn)) void 492 vdev_initialize_thread(void *arg) 493 { 494 vdev_t *vd = arg; 495 spa_t *spa = vd->vdev_spa; 496 int error = 0; 497 uint64_t ms_count = 0; 498 499 ASSERT(vdev_is_concrete(vd)); 500 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 501 502 vd->vdev_initialize_last_offset = 0; 503 VERIFY0(vdev_initialize_load(vd)); 504 505 abd_t *deadbeef = vdev_initialize_block_alloc(); 506 507 vd->vdev_initialize_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 508 0, 0); 509 510 for (uint64_t i = 0; !vd->vdev_detached && 511 i < vd->vdev_top->vdev_ms_count; i++) { 512 metaslab_t *msp = vd->vdev_top->vdev_ms[i]; 513 boolean_t unload_when_done = B_FALSE; 514 515 /* 516 * If we've expanded the top-level vdev or it's our 517 * first pass, calculate our progress. 518 */ 519 if (vd->vdev_top->vdev_ms_count != ms_count) { 520 vdev_initialize_calculate_progress(vd); 521 ms_count = vd->vdev_top->vdev_ms_count; 522 } 523 524 spa_config_exit(spa, SCL_CONFIG, FTAG); 525 metaslab_disable(msp); 526 mutex_enter(&msp->ms_lock); 527 if (!msp->ms_loaded && !msp->ms_loading) 528 unload_when_done = B_TRUE; 529 VERIFY0(metaslab_load(msp)); 530 531 range_tree_walk(msp->ms_allocatable, vdev_initialize_range_add, 532 vd); 533 mutex_exit(&msp->ms_lock); 534 535 error = vdev_initialize_ranges(vd, deadbeef); 536 metaslab_enable(msp, B_TRUE, unload_when_done); 537 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 538 539 range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL); 540 if (error != 0) 541 break; 542 } 543 544 spa_config_exit(spa, SCL_CONFIG, FTAG); 545 mutex_enter(&vd->vdev_initialize_io_lock); 546 while (vd->vdev_initialize_inflight > 0) { 547 cv_wait(&vd->vdev_initialize_io_cv, 548 &vd->vdev_initialize_io_lock); 549 } 550 mutex_exit(&vd->vdev_initialize_io_lock); 551 552 range_tree_destroy(vd->vdev_initialize_tree); 553 vdev_initialize_block_free(deadbeef); 554 vd->vdev_initialize_tree = NULL; 555 556 mutex_enter(&vd->vdev_initialize_lock); 557 if (!vd->vdev_initialize_exit_wanted) { 558 if (vdev_writeable(vd)) { 559 vdev_initialize_change_state(vd, 560 VDEV_INITIALIZE_COMPLETE); 561 } else if (vd->vdev_faulted) { 562 vdev_initialize_change_state(vd, 563 VDEV_INITIALIZE_CANCELED); 564 } 565 } 566 ASSERT(vd->vdev_initialize_thread != NULL || 567 vd->vdev_initialize_inflight == 0); 568 569 /* 570 * Drop the vdev_initialize_lock while we sync out the 571 * txg since it's possible that a device might be trying to 572 * come online and must check to see if it needs to restart an 573 * initialization. That thread will be holding the spa_config_lock 574 * which would prevent the txg_wait_synced from completing. 575 */ 576 mutex_exit(&vd->vdev_initialize_lock); 577 txg_wait_synced(spa_get_dsl(spa), 0); 578 mutex_enter(&vd->vdev_initialize_lock); 579 580 vd->vdev_initialize_thread = NULL; 581 cv_broadcast(&vd->vdev_initialize_cv); 582 mutex_exit(&vd->vdev_initialize_lock); 583 584 thread_exit(); 585 } 586 587 /* 588 * Initiates a device. Caller must hold vdev_initialize_lock. 589 * Device must be a leaf and not already be initializing. 590 */ 591 void 592 vdev_initialize(vdev_t *vd) 593 { 594 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock)); 595 ASSERT(vd->vdev_ops->vdev_op_leaf); 596 ASSERT(vdev_is_concrete(vd)); 597 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 598 ASSERT(!vd->vdev_detached); 599 ASSERT(!vd->vdev_initialize_exit_wanted); 600 ASSERT(!vd->vdev_top->vdev_removing); 601 602 vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE); 603 vd->vdev_initialize_thread = thread_create(NULL, 0, 604 vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri); 605 } 606 607 /* 608 * Wait for the initialize thread to be terminated (cancelled or stopped). 609 */ 610 static void 611 vdev_initialize_stop_wait_impl(vdev_t *vd) 612 { 613 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock)); 614 615 while (vd->vdev_initialize_thread != NULL) 616 cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock); 617 618 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 619 vd->vdev_initialize_exit_wanted = B_FALSE; 620 } 621 622 /* 623 * Wait for vdev initialize threads which were either to cleanly exit. 624 */ 625 void 626 vdev_initialize_stop_wait(spa_t *spa, list_t *vd_list) 627 { 628 (void) spa; 629 vdev_t *vd; 630 631 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 632 633 while ((vd = list_remove_head(vd_list)) != NULL) { 634 mutex_enter(&vd->vdev_initialize_lock); 635 vdev_initialize_stop_wait_impl(vd); 636 mutex_exit(&vd->vdev_initialize_lock); 637 } 638 } 639 640 /* 641 * Stop initializing a device, with the resultant initializing state being 642 * tgt_state. For blocking behavior pass NULL for vd_list. Otherwise, when 643 * a list_t is provided the stopping vdev is inserted in to the list. Callers 644 * are then required to call vdev_initialize_stop_wait() to block for all the 645 * initialization threads to exit. The caller must hold vdev_initialize_lock 646 * and must not be writing to the spa config, as the initializing thread may 647 * try to enter the config as a reader before exiting. 648 */ 649 void 650 vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state, 651 list_t *vd_list) 652 { 653 ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER)); 654 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock)); 655 ASSERT(vd->vdev_ops->vdev_op_leaf); 656 ASSERT(vdev_is_concrete(vd)); 657 658 /* 659 * Allow cancel requests to proceed even if the initialize thread 660 * has stopped. 661 */ 662 if (vd->vdev_initialize_thread == NULL && 663 tgt_state != VDEV_INITIALIZE_CANCELED) { 664 return; 665 } 666 667 vdev_initialize_change_state(vd, tgt_state); 668 vd->vdev_initialize_exit_wanted = B_TRUE; 669 670 if (vd_list == NULL) { 671 vdev_initialize_stop_wait_impl(vd); 672 } else { 673 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 674 list_insert_tail(vd_list, vd); 675 } 676 } 677 678 static void 679 vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state, 680 list_t *vd_list) 681 { 682 if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) { 683 mutex_enter(&vd->vdev_initialize_lock); 684 vdev_initialize_stop(vd, tgt_state, vd_list); 685 mutex_exit(&vd->vdev_initialize_lock); 686 return; 687 } 688 689 for (uint64_t i = 0; i < vd->vdev_children; i++) { 690 vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state, 691 vd_list); 692 } 693 } 694 695 /* 696 * Convenience function to stop initializing of a vdev tree and set all 697 * initialize thread pointers to NULL. 698 */ 699 void 700 vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state) 701 { 702 spa_t *spa = vd->vdev_spa; 703 list_t vd_list; 704 705 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 706 707 list_create(&vd_list, sizeof (vdev_t), 708 offsetof(vdev_t, vdev_initialize_node)); 709 710 vdev_initialize_stop_all_impl(vd, tgt_state, &vd_list); 711 vdev_initialize_stop_wait(spa, &vd_list); 712 713 if (vd->vdev_spa->spa_sync_on) { 714 /* Make sure that our state has been synced to disk */ 715 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0); 716 } 717 718 list_destroy(&vd_list); 719 } 720 721 void 722 vdev_initialize_restart(vdev_t *vd) 723 { 724 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 725 ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 726 727 if (vd->vdev_leaf_zap != 0) { 728 mutex_enter(&vd->vdev_initialize_lock); 729 uint64_t initialize_state = VDEV_INITIALIZE_NONE; 730 int err = zap_lookup(vd->vdev_spa->spa_meta_objset, 731 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE, 732 sizeof (initialize_state), 1, &initialize_state); 733 ASSERT(err == 0 || err == ENOENT); 734 vd->vdev_initialize_state = initialize_state; 735 736 uint64_t timestamp = 0; 737 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 738 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, 739 sizeof (timestamp), 1, ×tamp); 740 ASSERT(err == 0 || err == ENOENT); 741 vd->vdev_initialize_action_time = timestamp; 742 743 if (vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED || 744 vd->vdev_offline) { 745 /* load progress for reporting, but don't resume */ 746 VERIFY0(vdev_initialize_load(vd)); 747 } else if (vd->vdev_initialize_state == 748 VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd) && 749 !vd->vdev_top->vdev_removing && 750 vd->vdev_initialize_thread == NULL) { 751 vdev_initialize(vd); 752 } 753 754 mutex_exit(&vd->vdev_initialize_lock); 755 } 756 757 for (uint64_t i = 0; i < vd->vdev_children; i++) { 758 vdev_initialize_restart(vd->vdev_child[i]); 759 } 760 } 761 762 EXPORT_SYMBOL(vdev_initialize); 763 EXPORT_SYMBOL(vdev_initialize_stop); 764 EXPORT_SYMBOL(vdev_initialize_stop_all); 765 EXPORT_SYMBOL(vdev_initialize_stop_wait); 766 EXPORT_SYMBOL(vdev_initialize_restart); 767 768 ZFS_MODULE_PARAM(zfs, zfs_, initialize_value, ULONG, ZMOD_RW, 769 "Value written during zpool initialize"); 770 771 ZFS_MODULE_PARAM(zfs, zfs_, initialize_chunk_size, ULONG, ZMOD_RW, 772 "Size in bytes of writes by zpool initialize"); 773