1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (c) 2014 by Chunwei Chen. All rights reserved. 24 * Copyright (c) 2019 by Delphix. All rights reserved. 25 * Copyright (c) 2023, 2024, Klara Inc. 26 */ 27 28 /* 29 * See abd.c for a general overview of the arc buffered data (ABD). 30 * 31 * Linear buffers act exactly like normal buffers and are always mapped into the 32 * kernel's virtual memory space, while scattered ABD data chunks are allocated 33 * as physical pages and then mapped in only while they are actually being 34 * accessed through one of the abd_* library functions. Using scattered ABDs 35 * provides several benefits: 36 * 37 * (1) They avoid use of kmem_*, preventing performance problems where running 38 * kmem_reap on very large memory systems never finishes and causes 39 * constant TLB shootdowns. 40 * 41 * (2) Fragmentation is less of an issue since when we are at the limit of 42 * allocatable space, we won't have to search around for a long free 43 * hole in the VA space for large ARC allocations. Each chunk is mapped in 44 * individually, so even if we are using HIGHMEM (see next point) we 45 * wouldn't need to worry about finding a contiguous address range. 46 * 47 * (3) If we are not using HIGHMEM, then all physical memory is always 48 * mapped into the kernel's address space, so we also avoid the map / 49 * unmap costs on each ABD access. 50 * 51 * If we are not using HIGHMEM, scattered buffers which have only one chunk 52 * can be treated as linear buffers, because they are contiguous in the 53 * kernel's virtual address space. See abd_alloc_chunks() for details. 54 */ 55 56 #include <sys/abd_impl.h> 57 #include <sys/param.h> 58 #include <sys/zio.h> 59 #include <sys/arc.h> 60 #include <sys/zfs_context.h> 61 #include <sys/zfs_znode.h> 62 #include <linux/kmap_compat.h> 63 #include <linux/mm_compat.h> 64 #include <linux/scatterlist.h> 65 #include <linux/version.h> 66 67 #if defined(MAX_ORDER) 68 #define ABD_MAX_ORDER (MAX_ORDER) 69 #elif defined(MAX_PAGE_ORDER) 70 #define ABD_MAX_ORDER (MAX_PAGE_ORDER) 71 #endif 72 73 typedef struct abd_stats { 74 kstat_named_t abdstat_struct_size; 75 kstat_named_t abdstat_linear_cnt; 76 kstat_named_t abdstat_linear_data_size; 77 kstat_named_t abdstat_scatter_cnt; 78 kstat_named_t abdstat_scatter_data_size; 79 kstat_named_t abdstat_scatter_chunk_waste; 80 kstat_named_t abdstat_scatter_orders[ABD_MAX_ORDER]; 81 kstat_named_t abdstat_scatter_page_multi_chunk; 82 kstat_named_t abdstat_scatter_page_multi_zone; 83 kstat_named_t abdstat_scatter_page_alloc_retry; 84 kstat_named_t abdstat_scatter_sg_table_retry; 85 } abd_stats_t; 86 87 static abd_stats_t abd_stats = { 88 /* Amount of memory occupied by all of the abd_t struct allocations */ 89 { "struct_size", KSTAT_DATA_UINT64 }, 90 /* 91 * The number of linear ABDs which are currently allocated, excluding 92 * ABDs which don't own their data (for instance the ones which were 93 * allocated through abd_get_offset() and abd_get_from_buf()). If an 94 * ABD takes ownership of its buf then it will become tracked. 95 */ 96 { "linear_cnt", KSTAT_DATA_UINT64 }, 97 /* Amount of data stored in all linear ABDs tracked by linear_cnt */ 98 { "linear_data_size", KSTAT_DATA_UINT64 }, 99 /* 100 * The number of scatter ABDs which are currently allocated, excluding 101 * ABDs which don't own their data (for instance the ones which were 102 * allocated through abd_get_offset()). 103 */ 104 { "scatter_cnt", KSTAT_DATA_UINT64 }, 105 /* Amount of data stored in all scatter ABDs tracked by scatter_cnt */ 106 { "scatter_data_size", KSTAT_DATA_UINT64 }, 107 /* 108 * The amount of space wasted at the end of the last chunk across all 109 * scatter ABDs tracked by scatter_cnt. 110 */ 111 { "scatter_chunk_waste", KSTAT_DATA_UINT64 }, 112 /* 113 * The number of compound allocations of a given order. These 114 * allocations are spread over all currently allocated ABDs, and 115 * act as a measure of memory fragmentation. 116 */ 117 { { "scatter_order_N", KSTAT_DATA_UINT64 } }, 118 /* 119 * The number of scatter ABDs which contain multiple chunks. 120 * ABDs are preferentially allocated from the minimum number of 121 * contiguous multi-page chunks, a single chunk is optimal. 122 */ 123 { "scatter_page_multi_chunk", KSTAT_DATA_UINT64 }, 124 /* 125 * The number of scatter ABDs which are split across memory zones. 126 * ABDs are preferentially allocated using pages from a single zone. 127 */ 128 { "scatter_page_multi_zone", KSTAT_DATA_UINT64 }, 129 /* 130 * The total number of retries encountered when attempting to 131 * allocate the pages to populate the scatter ABD. 132 */ 133 { "scatter_page_alloc_retry", KSTAT_DATA_UINT64 }, 134 /* 135 * The total number of retries encountered when attempting to 136 * allocate the sg table for an ABD. 137 */ 138 { "scatter_sg_table_retry", KSTAT_DATA_UINT64 }, 139 }; 140 141 static struct { 142 wmsum_t abdstat_struct_size; 143 wmsum_t abdstat_linear_cnt; 144 wmsum_t abdstat_linear_data_size; 145 wmsum_t abdstat_scatter_cnt; 146 wmsum_t abdstat_scatter_data_size; 147 wmsum_t abdstat_scatter_chunk_waste; 148 wmsum_t abdstat_scatter_orders[ABD_MAX_ORDER]; 149 wmsum_t abdstat_scatter_page_multi_chunk; 150 wmsum_t abdstat_scatter_page_multi_zone; 151 wmsum_t abdstat_scatter_page_alloc_retry; 152 wmsum_t abdstat_scatter_sg_table_retry; 153 } abd_sums; 154 155 #define abd_for_each_sg(abd, sg, n, i) \ 156 for_each_sg(ABD_SCATTER(abd).abd_sgl, sg, n, i) 157 158 /* 159 * zfs_abd_scatter_min_size is the minimum allocation size to use scatter 160 * ABD's. Smaller allocations will use linear ABD's which uses 161 * zio_[data_]buf_alloc(). 162 * 163 * Scatter ABD's use at least one page each, so sub-page allocations waste 164 * some space when allocated as scatter (e.g. 2KB scatter allocation wastes 165 * half of each page). Using linear ABD's for small allocations means that 166 * they will be put on slabs which contain many allocations. This can 167 * improve memory efficiency, but it also makes it much harder for ARC 168 * evictions to actually free pages, because all the buffers on one slab need 169 * to be freed in order for the slab (and underlying pages) to be freed. 170 * Typically, 512B and 1KB kmem caches have 16 buffers per slab, so it's 171 * possible for them to actually waste more memory than scatter (one page per 172 * buf = wasting 3/4 or 7/8th; one buf per slab = wasting 15/16th). 173 * 174 * Spill blocks are typically 512B and are heavily used on systems running 175 * selinux with the default dnode size and the `xattr=sa` property set. 176 * 177 * By default we use linear allocations for 512B and 1KB, and scatter 178 * allocations for larger (1.5KB and up). 179 */ 180 static int zfs_abd_scatter_min_size = 512 * 3; 181 182 /* 183 * We use a scattered SPA_MAXBLOCKSIZE sized ABD whose pages are 184 * just a single zero'd page. This allows us to conserve memory by 185 * only using a single zero page for the scatterlist. 186 */ 187 abd_t *abd_zero_scatter = NULL; 188 189 struct page; 190 191 /* 192 * abd_zero_page is assigned to each of the pages of abd_zero_scatter. It will 193 * point to ZERO_PAGE if it is available or it will be an allocated zero'd 194 * PAGESIZE buffer. 195 */ 196 static struct page *abd_zero_page = NULL; 197 198 static kmem_cache_t *abd_cache = NULL; 199 static kstat_t *abd_ksp; 200 201 static uint_t 202 abd_chunkcnt_for_bytes(size_t size) 203 { 204 return (P2ROUNDUP(size, PAGESIZE) / PAGESIZE); 205 } 206 207 abd_t * 208 abd_alloc_struct_impl(size_t size) 209 { 210 /* 211 * In Linux we do not use the size passed in during ABD 212 * allocation, so we just ignore it. 213 */ 214 (void) size; 215 abd_t *abd = kmem_cache_alloc(abd_cache, KM_PUSHPAGE); 216 ASSERT3P(abd, !=, NULL); 217 ABDSTAT_INCR(abdstat_struct_size, sizeof (abd_t)); 218 219 return (abd); 220 } 221 222 void 223 abd_free_struct_impl(abd_t *abd) 224 { 225 kmem_cache_free(abd_cache, abd); 226 ABDSTAT_INCR(abdstat_struct_size, -(int)sizeof (abd_t)); 227 } 228 229 static unsigned zfs_abd_scatter_max_order = ABD_MAX_ORDER - 1; 230 231 /* 232 * Mark zfs data pages so they can be excluded from kernel crash dumps 233 */ 234 #ifdef _LP64 235 #define ABD_FILE_CACHE_PAGE 0x2F5ABDF11ECAC4E 236 237 static inline void 238 abd_mark_zfs_page(struct page *page) 239 { 240 get_page(page); 241 SetPagePrivate(page); 242 set_page_private(page, ABD_FILE_CACHE_PAGE); 243 } 244 245 static inline void 246 abd_unmark_zfs_page(struct page *page) 247 { 248 set_page_private(page, 0UL); 249 ClearPagePrivate(page); 250 put_page(page); 251 } 252 #else 253 #define abd_mark_zfs_page(page) 254 #define abd_unmark_zfs_page(page) 255 #endif /* _LP64 */ 256 257 #ifndef CONFIG_HIGHMEM 258 259 /* 260 * The goal is to minimize fragmentation by preferentially populating ABDs 261 * with higher order compound pages from a single zone. Allocation size is 262 * progressively decreased until it can be satisfied without performing 263 * reclaim or compaction. When necessary this function will degenerate to 264 * allocating individual pages and allowing reclaim to satisfy allocations. 265 */ 266 void 267 abd_alloc_chunks(abd_t *abd, size_t size) 268 { 269 struct list_head pages; 270 struct sg_table table; 271 struct scatterlist *sg; 272 struct page *page, *tmp_page = NULL; 273 gfp_t gfp = __GFP_RECLAIMABLE | __GFP_NOWARN | GFP_NOIO; 274 gfp_t gfp_comp = (gfp | __GFP_NORETRY | __GFP_COMP) & ~__GFP_RECLAIM; 275 unsigned int max_order = MIN(zfs_abd_scatter_max_order, 276 ABD_MAX_ORDER - 1); 277 unsigned int nr_pages = abd_chunkcnt_for_bytes(size); 278 unsigned int chunks = 0, zones = 0; 279 size_t remaining_size; 280 int nid = NUMA_NO_NODE; 281 unsigned int alloc_pages = 0; 282 283 INIT_LIST_HEAD(&pages); 284 285 ASSERT3U(alloc_pages, <, nr_pages); 286 287 while (alloc_pages < nr_pages) { 288 unsigned int chunk_pages; 289 unsigned int order; 290 291 order = MIN(highbit64(nr_pages - alloc_pages) - 1, max_order); 292 chunk_pages = (1U << order); 293 294 page = alloc_pages_node(nid, order ? gfp_comp : gfp, order); 295 if (page == NULL) { 296 if (order == 0) { 297 ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry); 298 schedule_timeout_interruptible(1); 299 } else { 300 max_order = MAX(0, order - 1); 301 } 302 continue; 303 } 304 305 list_add_tail(&page->lru, &pages); 306 307 if ((nid != NUMA_NO_NODE) && (page_to_nid(page) != nid)) 308 zones++; 309 310 nid = page_to_nid(page); 311 ABDSTAT_BUMP(abdstat_scatter_orders[order]); 312 chunks++; 313 alloc_pages += chunk_pages; 314 } 315 316 ASSERT3S(alloc_pages, ==, nr_pages); 317 318 while (sg_alloc_table(&table, chunks, gfp)) { 319 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry); 320 schedule_timeout_interruptible(1); 321 } 322 323 sg = table.sgl; 324 remaining_size = size; 325 list_for_each_entry_safe(page, tmp_page, &pages, lru) { 326 size_t sg_size = MIN(PAGESIZE << compound_order(page), 327 remaining_size); 328 sg_set_page(sg, page, sg_size, 0); 329 abd_mark_zfs_page(page); 330 remaining_size -= sg_size; 331 332 sg = sg_next(sg); 333 list_del(&page->lru); 334 } 335 336 /* 337 * These conditions ensure that a possible transformation to a linear 338 * ABD would be valid. 339 */ 340 ASSERT(!PageHighMem(sg_page(table.sgl))); 341 ASSERT0(ABD_SCATTER(abd).abd_offset); 342 343 if (table.nents == 1) { 344 /* 345 * Since there is only one entry, this ABD can be represented 346 * as a linear buffer. All single-page (4K) ABD's can be 347 * represented this way. Some multi-page ABD's can also be 348 * represented this way, if we were able to allocate a single 349 * "chunk" (higher-order "page" which represents a power-of-2 350 * series of physically-contiguous pages). This is often the 351 * case for 2-page (8K) ABD's. 352 * 353 * Representing a single-entry scatter ABD as a linear ABD 354 * has the performance advantage of avoiding the copy (and 355 * allocation) in abd_borrow_buf_copy / abd_return_buf_copy. 356 * A performance increase of around 5% has been observed for 357 * ARC-cached reads (of small blocks which can take advantage 358 * of this). 359 * 360 * Note that this optimization is only possible because the 361 * pages are always mapped into the kernel's address space. 362 * This is not the case for highmem pages, so the 363 * optimization can not be made there. 364 */ 365 abd->abd_flags |= ABD_FLAG_LINEAR; 366 abd->abd_flags |= ABD_FLAG_LINEAR_PAGE; 367 abd->abd_u.abd_linear.abd_sgl = table.sgl; 368 ABD_LINEAR_BUF(abd) = page_address(sg_page(table.sgl)); 369 } else if (table.nents > 1) { 370 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); 371 abd->abd_flags |= ABD_FLAG_MULTI_CHUNK; 372 373 if (zones) { 374 ABDSTAT_BUMP(abdstat_scatter_page_multi_zone); 375 abd->abd_flags |= ABD_FLAG_MULTI_ZONE; 376 } 377 378 ABD_SCATTER(abd).abd_sgl = table.sgl; 379 ABD_SCATTER(abd).abd_nents = table.nents; 380 } 381 } 382 #else 383 384 /* 385 * Allocate N individual pages to construct a scatter ABD. This function 386 * makes no attempt to request contiguous pages and requires the minimal 387 * number of kernel interfaces. It's designed for maximum compatibility. 388 */ 389 void 390 abd_alloc_chunks(abd_t *abd, size_t size) 391 { 392 struct scatterlist *sg = NULL; 393 struct sg_table table; 394 struct page *page; 395 gfp_t gfp = __GFP_RECLAIMABLE | __GFP_NOWARN | GFP_NOIO; 396 int nr_pages = abd_chunkcnt_for_bytes(size); 397 int i = 0; 398 399 while (sg_alloc_table(&table, nr_pages, gfp)) { 400 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry); 401 schedule_timeout_interruptible(1); 402 } 403 404 ASSERT3U(table.nents, ==, nr_pages); 405 ABD_SCATTER(abd).abd_sgl = table.sgl; 406 ABD_SCATTER(abd).abd_nents = nr_pages; 407 408 abd_for_each_sg(abd, sg, nr_pages, i) { 409 while ((page = __page_cache_alloc(gfp)) == NULL) { 410 ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry); 411 schedule_timeout_interruptible(1); 412 } 413 414 ABDSTAT_BUMP(abdstat_scatter_orders[0]); 415 sg_set_page(sg, page, PAGESIZE, 0); 416 abd_mark_zfs_page(page); 417 } 418 419 if (nr_pages > 1) { 420 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); 421 abd->abd_flags |= ABD_FLAG_MULTI_CHUNK; 422 } 423 } 424 #endif /* !CONFIG_HIGHMEM */ 425 426 /* 427 * This must be called if any of the sg_table allocation functions 428 * are called. 429 */ 430 static void 431 abd_free_sg_table(abd_t *abd) 432 { 433 struct sg_table table; 434 435 table.sgl = ABD_SCATTER(abd).abd_sgl; 436 table.nents = table.orig_nents = ABD_SCATTER(abd).abd_nents; 437 sg_free_table(&table); 438 } 439 440 void 441 abd_free_chunks(abd_t *abd) 442 { 443 struct scatterlist *sg = NULL; 444 struct page *page; 445 int nr_pages = ABD_SCATTER(abd).abd_nents; 446 int order, i = 0; 447 448 if (abd->abd_flags & ABD_FLAG_MULTI_ZONE) 449 ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_zone); 450 451 if (abd->abd_flags & ABD_FLAG_MULTI_CHUNK) 452 ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk); 453 454 /* 455 * Scatter ABDs may be constructed by abd_alloc_from_pages() from 456 * an array of pages. In which case they should not be freed. 457 */ 458 if (!abd_is_from_pages(abd)) { 459 abd_for_each_sg(abd, sg, nr_pages, i) { 460 page = sg_page(sg); 461 abd_unmark_zfs_page(page); 462 order = compound_order(page); 463 __free_pages(page, order); 464 ASSERT3U(sg->length, <=, PAGE_SIZE << order); 465 ABDSTAT_BUMPDOWN(abdstat_scatter_orders[order]); 466 } 467 } 468 469 abd_free_sg_table(abd); 470 } 471 472 /* 473 * Allocate scatter ABD of size SPA_MAXBLOCKSIZE, where each page in 474 * the scatterlist will be set to the zero'd out buffer abd_zero_page. 475 */ 476 static void 477 abd_alloc_zero_scatter(void) 478 { 479 struct scatterlist *sg = NULL; 480 struct sg_table table; 481 gfp_t gfp = __GFP_NOWARN | GFP_NOIO; 482 int nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE); 483 int i = 0; 484 485 #if defined(HAVE_ZERO_PAGE_GPL_ONLY) 486 gfp_t gfp_zero_page = gfp | __GFP_ZERO; 487 while ((abd_zero_page = __page_cache_alloc(gfp_zero_page)) == NULL) { 488 ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry); 489 schedule_timeout_interruptible(1); 490 } 491 abd_mark_zfs_page(abd_zero_page); 492 #else 493 abd_zero_page = ZERO_PAGE(0); 494 #endif /* HAVE_ZERO_PAGE_GPL_ONLY */ 495 496 while (sg_alloc_table(&table, nr_pages, gfp)) { 497 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry); 498 schedule_timeout_interruptible(1); 499 } 500 ASSERT3U(table.nents, ==, nr_pages); 501 502 abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE); 503 abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER; 504 ABD_SCATTER(abd_zero_scatter).abd_offset = 0; 505 ABD_SCATTER(abd_zero_scatter).abd_sgl = table.sgl; 506 ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages; 507 abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE; 508 abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK; 509 510 abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) { 511 sg_set_page(sg, abd_zero_page, PAGESIZE, 0); 512 } 513 514 ABDSTAT_BUMP(abdstat_scatter_cnt); 515 ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE); 516 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); 517 } 518 519 boolean_t 520 abd_size_alloc_linear(size_t size) 521 { 522 return (!zfs_abd_scatter_enabled || size < zfs_abd_scatter_min_size); 523 } 524 525 void 526 abd_update_scatter_stats(abd_t *abd, abd_stats_op_t op) 527 { 528 ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR); 529 int waste = P2ROUNDUP(abd->abd_size, PAGESIZE) - abd->abd_size; 530 if (op == ABDSTAT_INCR) { 531 ABDSTAT_BUMP(abdstat_scatter_cnt); 532 ABDSTAT_INCR(abdstat_scatter_data_size, abd->abd_size); 533 ABDSTAT_INCR(abdstat_scatter_chunk_waste, waste); 534 arc_space_consume(waste, ARC_SPACE_ABD_CHUNK_WASTE); 535 } else { 536 ABDSTAT_BUMPDOWN(abdstat_scatter_cnt); 537 ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size); 538 ABDSTAT_INCR(abdstat_scatter_chunk_waste, -waste); 539 arc_space_return(waste, ARC_SPACE_ABD_CHUNK_WASTE); 540 } 541 } 542 543 void 544 abd_update_linear_stats(abd_t *abd, abd_stats_op_t op) 545 { 546 ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR); 547 if (op == ABDSTAT_INCR) { 548 ABDSTAT_BUMP(abdstat_linear_cnt); 549 ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size); 550 } else { 551 ABDSTAT_BUMPDOWN(abdstat_linear_cnt); 552 ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size); 553 } 554 } 555 556 void 557 abd_verify_scatter(abd_t *abd) 558 { 559 ASSERT3U(ABD_SCATTER(abd).abd_nents, >, 0); 560 ASSERT3U(ABD_SCATTER(abd).abd_offset, <, 561 ABD_SCATTER(abd).abd_sgl->length); 562 563 #ifdef ZFS_DEBUG 564 struct scatterlist *sg = NULL; 565 size_t n = ABD_SCATTER(abd).abd_nents; 566 int i = 0; 567 568 abd_for_each_sg(abd, sg, n, i) { 569 ASSERT3P(sg_page(sg), !=, NULL); 570 } 571 #endif 572 } 573 574 static void 575 abd_free_zero_scatter(void) 576 { 577 ABDSTAT_BUMPDOWN(abdstat_scatter_cnt); 578 ABDSTAT_INCR(abdstat_scatter_data_size, -(int)PAGESIZE); 579 ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk); 580 581 abd_free_sg_table(abd_zero_scatter); 582 abd_free_struct(abd_zero_scatter); 583 abd_zero_scatter = NULL; 584 ASSERT3P(abd_zero_page, !=, NULL); 585 #if defined(HAVE_ZERO_PAGE_GPL_ONLY) 586 abd_unmark_zfs_page(abd_zero_page); 587 __free_page(abd_zero_page); 588 #endif /* HAVE_ZERO_PAGE_GPL_ONLY */ 589 } 590 591 static int 592 abd_kstats_update(kstat_t *ksp, int rw) 593 { 594 abd_stats_t *as = ksp->ks_data; 595 596 if (rw == KSTAT_WRITE) 597 return (EACCES); 598 as->abdstat_struct_size.value.ui64 = 599 wmsum_value(&abd_sums.abdstat_struct_size); 600 as->abdstat_linear_cnt.value.ui64 = 601 wmsum_value(&abd_sums.abdstat_linear_cnt); 602 as->abdstat_linear_data_size.value.ui64 = 603 wmsum_value(&abd_sums.abdstat_linear_data_size); 604 as->abdstat_scatter_cnt.value.ui64 = 605 wmsum_value(&abd_sums.abdstat_scatter_cnt); 606 as->abdstat_scatter_data_size.value.ui64 = 607 wmsum_value(&abd_sums.abdstat_scatter_data_size); 608 as->abdstat_scatter_chunk_waste.value.ui64 = 609 wmsum_value(&abd_sums.abdstat_scatter_chunk_waste); 610 for (int i = 0; i < ABD_MAX_ORDER; i++) { 611 as->abdstat_scatter_orders[i].value.ui64 = 612 wmsum_value(&abd_sums.abdstat_scatter_orders[i]); 613 } 614 as->abdstat_scatter_page_multi_chunk.value.ui64 = 615 wmsum_value(&abd_sums.abdstat_scatter_page_multi_chunk); 616 as->abdstat_scatter_page_multi_zone.value.ui64 = 617 wmsum_value(&abd_sums.abdstat_scatter_page_multi_zone); 618 as->abdstat_scatter_page_alloc_retry.value.ui64 = 619 wmsum_value(&abd_sums.abdstat_scatter_page_alloc_retry); 620 as->abdstat_scatter_sg_table_retry.value.ui64 = 621 wmsum_value(&abd_sums.abdstat_scatter_sg_table_retry); 622 return (0); 623 } 624 625 void 626 abd_init(void) 627 { 628 int i; 629 630 abd_cache = kmem_cache_create("abd_t", sizeof (abd_t), 631 0, NULL, NULL, NULL, NULL, NULL, KMC_RECLAIMABLE); 632 633 wmsum_init(&abd_sums.abdstat_struct_size, 0); 634 wmsum_init(&abd_sums.abdstat_linear_cnt, 0); 635 wmsum_init(&abd_sums.abdstat_linear_data_size, 0); 636 wmsum_init(&abd_sums.abdstat_scatter_cnt, 0); 637 wmsum_init(&abd_sums.abdstat_scatter_data_size, 0); 638 wmsum_init(&abd_sums.abdstat_scatter_chunk_waste, 0); 639 for (i = 0; i < ABD_MAX_ORDER; i++) 640 wmsum_init(&abd_sums.abdstat_scatter_orders[i], 0); 641 wmsum_init(&abd_sums.abdstat_scatter_page_multi_chunk, 0); 642 wmsum_init(&abd_sums.abdstat_scatter_page_multi_zone, 0); 643 wmsum_init(&abd_sums.abdstat_scatter_page_alloc_retry, 0); 644 wmsum_init(&abd_sums.abdstat_scatter_sg_table_retry, 0); 645 646 abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED, 647 sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 648 if (abd_ksp != NULL) { 649 for (i = 0; i < ABD_MAX_ORDER; i++) { 650 snprintf(abd_stats.abdstat_scatter_orders[i].name, 651 KSTAT_STRLEN, "scatter_order_%d", i); 652 abd_stats.abdstat_scatter_orders[i].data_type = 653 KSTAT_DATA_UINT64; 654 } 655 abd_ksp->ks_data = &abd_stats; 656 abd_ksp->ks_update = abd_kstats_update; 657 kstat_install(abd_ksp); 658 } 659 660 abd_alloc_zero_scatter(); 661 } 662 663 void 664 abd_fini(void) 665 { 666 abd_free_zero_scatter(); 667 668 if (abd_ksp != NULL) { 669 kstat_delete(abd_ksp); 670 abd_ksp = NULL; 671 } 672 673 wmsum_fini(&abd_sums.abdstat_struct_size); 674 wmsum_fini(&abd_sums.abdstat_linear_cnt); 675 wmsum_fini(&abd_sums.abdstat_linear_data_size); 676 wmsum_fini(&abd_sums.abdstat_scatter_cnt); 677 wmsum_fini(&abd_sums.abdstat_scatter_data_size); 678 wmsum_fini(&abd_sums.abdstat_scatter_chunk_waste); 679 for (int i = 0; i < ABD_MAX_ORDER; i++) 680 wmsum_fini(&abd_sums.abdstat_scatter_orders[i]); 681 wmsum_fini(&abd_sums.abdstat_scatter_page_multi_chunk); 682 wmsum_fini(&abd_sums.abdstat_scatter_page_multi_zone); 683 wmsum_fini(&abd_sums.abdstat_scatter_page_alloc_retry); 684 wmsum_fini(&abd_sums.abdstat_scatter_sg_table_retry); 685 686 if (abd_cache) { 687 kmem_cache_destroy(abd_cache); 688 abd_cache = NULL; 689 } 690 } 691 692 void 693 abd_free_linear_page(abd_t *abd) 694 { 695 /* Transform it back into a scatter ABD for freeing */ 696 struct scatterlist *sg = abd->abd_u.abd_linear.abd_sgl; 697 698 /* When backed by user page unmap it */ 699 if (abd_is_from_pages(abd)) 700 zfs_kunmap(sg_page(sg)); 701 else 702 abd_update_scatter_stats(abd, ABDSTAT_DECR); 703 704 abd->abd_flags &= ~ABD_FLAG_LINEAR; 705 abd->abd_flags &= ~ABD_FLAG_LINEAR_PAGE; 706 ABD_SCATTER(abd).abd_nents = 1; 707 ABD_SCATTER(abd).abd_offset = 0; 708 ABD_SCATTER(abd).abd_sgl = sg; 709 abd_free_chunks(abd); 710 } 711 712 /* 713 * Allocate a scatter ABD structure from user pages. The pages must be 714 * pinned with get_user_pages, or similiar, but need not be mapped via 715 * the kmap interfaces. 716 */ 717 abd_t * 718 abd_alloc_from_pages(struct page **pages, unsigned long offset, uint64_t size) 719 { 720 uint_t npages = DIV_ROUND_UP(size, PAGE_SIZE); 721 struct sg_table table; 722 723 VERIFY3U(size, <=, DMU_MAX_ACCESS); 724 ASSERT3U(offset, <, PAGE_SIZE); 725 ASSERT3P(pages, !=, NULL); 726 727 /* 728 * Even if this buf is filesystem metadata, we only track that we 729 * own the underlying data buffer, which is not true in this case. 730 * Therefore, we don't ever use ABD_FLAG_META here. 731 */ 732 abd_t *abd = abd_alloc_struct(0); 733 abd->abd_flags |= ABD_FLAG_FROM_PAGES | ABD_FLAG_OWNER; 734 abd->abd_size = size; 735 736 while (sg_alloc_table_from_pages(&table, pages, npages, offset, 737 size, __GFP_NOWARN | GFP_NOIO) != 0) { 738 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry); 739 schedule_timeout_interruptible(1); 740 } 741 742 if ((offset + size) <= PAGE_SIZE) { 743 /* 744 * Since there is only one entry, this ABD can be represented 745 * as a linear buffer. All single-page (4K) ABD's constructed 746 * from a user page can be represented this way as long as the 747 * page is mapped to a virtual address. This allows us to 748 * apply an offset in to the mapped page. 749 * 750 * Note that kmap() must be used, not kmap_atomic(), because 751 * the mapping needs to bet set up on all CPUs. Using kmap() 752 * also enables the user of highmem pages when required. 753 */ 754 abd->abd_flags |= ABD_FLAG_LINEAR | ABD_FLAG_LINEAR_PAGE; 755 abd->abd_u.abd_linear.abd_sgl = table.sgl; 756 zfs_kmap(sg_page(table.sgl)); 757 ABD_LINEAR_BUF(abd) = sg_virt(table.sgl); 758 } else { 759 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); 760 abd->abd_flags |= ABD_FLAG_MULTI_CHUNK; 761 762 ABD_SCATTER(abd).abd_offset = offset; 763 ABD_SCATTER(abd).abd_sgl = table.sgl; 764 ABD_SCATTER(abd).abd_nents = table.nents; 765 766 ASSERT0(ABD_SCATTER(abd).abd_offset); 767 } 768 769 return (abd); 770 } 771 772 /* 773 * If we're going to use this ABD for doing I/O using the block layer, the 774 * consumer of the ABD data doesn't care if it's scattered or not, and we don't 775 * plan to store this ABD in memory for a long period of time, we should 776 * allocate the ABD type that requires the least data copying to do the I/O. 777 * 778 * On Linux the optimal thing to do would be to use abd_get_offset() and 779 * construct a new ABD which shares the original pages thereby eliminating 780 * the copy. But for the moment a new linear ABD is allocated until this 781 * performance optimization can be implemented. 782 */ 783 abd_t * 784 abd_alloc_for_io(size_t size, boolean_t is_metadata) 785 { 786 return (abd_alloc(size, is_metadata)); 787 } 788 789 abd_t * 790 abd_get_offset_scatter(abd_t *abd, abd_t *sabd, size_t off, 791 size_t size) 792 { 793 (void) size; 794 int i = 0; 795 struct scatterlist *sg = NULL; 796 797 abd_verify(sabd); 798 ASSERT3U(off, <=, sabd->abd_size); 799 800 size_t new_offset = ABD_SCATTER(sabd).abd_offset + off; 801 802 if (abd == NULL) 803 abd = abd_alloc_struct(0); 804 805 /* 806 * Even if this buf is filesystem metadata, we only track that 807 * if we own the underlying data buffer, which is not true in 808 * this case. Therefore, we don't ever use ABD_FLAG_META here. 809 */ 810 811 abd_for_each_sg(sabd, sg, ABD_SCATTER(sabd).abd_nents, i) { 812 if (new_offset < sg->length) 813 break; 814 new_offset -= sg->length; 815 } 816 817 ABD_SCATTER(abd).abd_sgl = sg; 818 ABD_SCATTER(abd).abd_offset = new_offset; 819 ABD_SCATTER(abd).abd_nents = ABD_SCATTER(sabd).abd_nents - i; 820 821 if (abd_is_from_pages(sabd)) 822 abd->abd_flags |= ABD_FLAG_FROM_PAGES; 823 824 return (abd); 825 } 826 827 /* 828 * Initialize the abd_iter. 829 */ 830 void 831 abd_iter_init(struct abd_iter *aiter, abd_t *abd) 832 { 833 ASSERT(!abd_is_gang(abd)); 834 abd_verify(abd); 835 memset(aiter, 0, sizeof (struct abd_iter)); 836 aiter->iter_abd = abd; 837 if (!abd_is_linear(abd)) { 838 aiter->iter_offset = ABD_SCATTER(abd).abd_offset; 839 aiter->iter_sg = ABD_SCATTER(abd).abd_sgl; 840 } 841 } 842 843 /* 844 * This is just a helper function to see if we have exhausted the 845 * abd_iter and reached the end. 846 */ 847 boolean_t 848 abd_iter_at_end(struct abd_iter *aiter) 849 { 850 ASSERT3U(aiter->iter_pos, <=, aiter->iter_abd->abd_size); 851 return (aiter->iter_pos == aiter->iter_abd->abd_size); 852 } 853 854 /* 855 * Advance the iterator by a certain amount. Cannot be called when a chunk is 856 * in use. This can be safely called when the aiter has already exhausted, in 857 * which case this does nothing. 858 */ 859 void 860 abd_iter_advance(struct abd_iter *aiter, size_t amount) 861 { 862 /* 863 * Ensure that last chunk is not in use. abd_iterate_*() must clear 864 * this state (directly or abd_iter_unmap()) before advancing. 865 */ 866 ASSERT3P(aiter->iter_mapaddr, ==, NULL); 867 ASSERT0(aiter->iter_mapsize); 868 ASSERT3P(aiter->iter_page, ==, NULL); 869 ASSERT0(aiter->iter_page_doff); 870 ASSERT0(aiter->iter_page_dsize); 871 872 /* There's nothing left to advance to, so do nothing */ 873 if (abd_iter_at_end(aiter)) 874 return; 875 876 aiter->iter_pos += amount; 877 aiter->iter_offset += amount; 878 if (!abd_is_linear(aiter->iter_abd)) { 879 while (aiter->iter_offset >= aiter->iter_sg->length) { 880 aiter->iter_offset -= aiter->iter_sg->length; 881 aiter->iter_sg = sg_next(aiter->iter_sg); 882 if (aiter->iter_sg == NULL) { 883 ASSERT0(aiter->iter_offset); 884 break; 885 } 886 } 887 } 888 } 889 890 /* 891 * Map the current chunk into aiter. This can be safely called when the aiter 892 * has already exhausted, in which case this does nothing. 893 */ 894 void 895 abd_iter_map(struct abd_iter *aiter) 896 { 897 void *paddr; 898 size_t offset = 0; 899 900 ASSERT3P(aiter->iter_mapaddr, ==, NULL); 901 ASSERT0(aiter->iter_mapsize); 902 903 /* There's nothing left to iterate over, so do nothing */ 904 if (abd_iter_at_end(aiter)) 905 return; 906 907 if (abd_is_linear(aiter->iter_abd)) { 908 ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset); 909 offset = aiter->iter_offset; 910 aiter->iter_mapsize = aiter->iter_abd->abd_size - offset; 911 paddr = ABD_LINEAR_BUF(aiter->iter_abd); 912 } else { 913 offset = aiter->iter_offset; 914 aiter->iter_mapsize = MIN(aiter->iter_sg->length - offset, 915 aiter->iter_abd->abd_size - aiter->iter_pos); 916 917 paddr = zfs_kmap_local(sg_page(aiter->iter_sg)); 918 } 919 920 aiter->iter_mapaddr = (char *)paddr + offset; 921 } 922 923 /* 924 * Unmap the current chunk from aiter. This can be safely called when the aiter 925 * has already exhausted, in which case this does nothing. 926 */ 927 void 928 abd_iter_unmap(struct abd_iter *aiter) 929 { 930 /* There's nothing left to unmap, so do nothing */ 931 if (abd_iter_at_end(aiter)) 932 return; 933 934 if (!abd_is_linear(aiter->iter_abd)) { 935 /* LINTED E_FUNC_SET_NOT_USED */ 936 zfs_kunmap_local(aiter->iter_mapaddr - aiter->iter_offset); 937 } 938 939 ASSERT3P(aiter->iter_mapaddr, !=, NULL); 940 ASSERT3U(aiter->iter_mapsize, >, 0); 941 942 aiter->iter_mapaddr = NULL; 943 aiter->iter_mapsize = 0; 944 } 945 946 void 947 abd_cache_reap_now(void) 948 { 949 } 950 951 /* 952 * Borrow a raw buffer from an ABD without copying the contents of the ABD 953 * into the buffer. If the ABD is scattered, this will allocate a raw buffer 954 * whose contents are undefined. To copy over the existing data in the ABD, use 955 * abd_borrow_buf_copy() instead. 956 */ 957 void * 958 abd_borrow_buf(abd_t *abd, size_t n) 959 { 960 void *buf; 961 abd_verify(abd); 962 ASSERT3U(abd->abd_size, >=, 0); 963 /* 964 * In the event the ABD is composed of a single user page from Direct 965 * I/O we can not direclty return the raw buffer. This is a consequence 966 * of not being able to write protect the page and the contents of the 967 * page can be changed at any time by the user. 968 */ 969 if (abd_is_from_pages(abd)) { 970 buf = zio_buf_alloc(n); 971 } else if (abd_is_linear(abd)) { 972 buf = abd_to_buf(abd); 973 } else { 974 buf = zio_buf_alloc(n); 975 } 976 977 #ifdef ZFS_DEBUG 978 (void) zfs_refcount_add_many(&abd->abd_children, n, buf); 979 #endif 980 return (buf); 981 } 982 983 void * 984 abd_borrow_buf_copy(abd_t *abd, size_t n) 985 { 986 void *buf = abd_borrow_buf(abd, n); 987 988 /* 989 * In the event the ABD is composed of a single user page from Direct 990 * I/O we must make sure copy the data over into the newly allocated 991 * buffer. This is a consequence of the fact that we can not write 992 * protect the user page and there is a risk the contents of the page 993 * could be changed by the user at any moment. 994 */ 995 if (!abd_is_linear(abd) || abd_is_from_pages(abd)) { 996 abd_copy_to_buf(buf, abd, n); 997 } 998 return (buf); 999 } 1000 1001 /* 1002 * Return a borrowed raw buffer to an ABD. If the ABD is scatterd, this will 1003 * not change the contents of the ABD. If you want any changes you made to 1004 * buf to be copied back to abd, use abd_return_buf_copy() instead. If the 1005 * ABD is not constructed from user pages for Direct I/O then an ASSERT 1006 * checks to make sure the contents of buffer have not changed since it was 1007 * borrowed. We can not ASSERT that the contents of the buffer have not changed 1008 * if it is composed of user pages because the pages can not be placed under 1009 * write protection and the user could have possibly changed the contents in 1010 * the pages at any time. This is also an issue for Direct I/O reads. Checksum 1011 * verifications in the ZIO pipeline check for this issue and handle it by 1012 * returning an error on checksum verification failure. 1013 */ 1014 void 1015 abd_return_buf(abd_t *abd, void *buf, size_t n) 1016 { 1017 abd_verify(abd); 1018 ASSERT3U(abd->abd_size, >=, n); 1019 #ifdef ZFS_DEBUG 1020 (void) zfs_refcount_remove_many(&abd->abd_children, n, buf); 1021 #endif 1022 if (abd_is_from_pages(abd)) { 1023 zio_buf_free(buf, n); 1024 } else if (abd_is_linear(abd)) { 1025 ASSERT3P(buf, ==, abd_to_buf(abd)); 1026 } else if (abd_is_gang(abd)) { 1027 #ifdef ZFS_DEBUG 1028 /* 1029 * We have to be careful with gang ABD's that we do not ASSERT0 1030 * for any ABD's that contain user pages from Direct I/O. In 1031 * order to handle this, we just iterate through the gang ABD 1032 * and only verify ABDs that are not from user pages. 1033 */ 1034 void *cmp_buf = buf; 1035 1036 for (abd_t *cabd = list_head(&ABD_GANG(abd).abd_gang_chain); 1037 cabd != NULL; 1038 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) { 1039 if (!abd_is_from_pages(cabd)) { 1040 ASSERT0(abd_cmp_buf(cabd, cmp_buf, 1041 cabd->abd_size)); 1042 } 1043 cmp_buf = (char *)cmp_buf + cabd->abd_size; 1044 } 1045 #endif 1046 zio_buf_free(buf, n); 1047 } else { 1048 ASSERT0(abd_cmp_buf(abd, buf, n)); 1049 zio_buf_free(buf, n); 1050 } 1051 } 1052 1053 void 1054 abd_return_buf_copy(abd_t *abd, void *buf, size_t n) 1055 { 1056 if (!abd_is_linear(abd) || abd_is_from_pages(abd)) { 1057 abd_copy_from_buf(abd, buf, n); 1058 } 1059 abd_return_buf(abd, buf, n); 1060 } 1061 1062 /* 1063 * This is abd_iter_page(), the function underneath abd_iterate_page_func(). 1064 * It yields the next page struct and data offset and size within it, without 1065 * mapping it into the address space. 1066 */ 1067 1068 /* 1069 * "Compound pages" are a group of pages that can be referenced from a single 1070 * struct page *. Its organised as a "head" page, followed by a series of 1071 * "tail" pages. 1072 * 1073 * In OpenZFS, compound pages are allocated using the __GFP_COMP flag, which we 1074 * get from scatter ABDs and SPL vmalloc slabs (ie >16K allocations). So a 1075 * great many of the IO buffers we get are going to be of this type. 1076 * 1077 * The tail pages are just regular PAGESIZE pages, and can be safely used 1078 * as-is. However, the head page has length covering itself and all the tail 1079 * pages. If the ABD chunk spans multiple pages, then we can use the head page 1080 * and a >PAGESIZE length, which is far more efficient. 1081 * 1082 * Before kernel 4.5 however, compound page heads were refcounted separately 1083 * from tail pages, such that moving back to the head page would require us to 1084 * take a reference to it and releasing it once we're completely finished with 1085 * it. In practice, that meant when our caller is done with the ABD, which we 1086 * have no insight into from here. Rather than contort this API to track head 1087 * page references on such ancient kernels, we disabled this special compound 1088 * page handling on kernels before 4.5, instead just using treating each page 1089 * within it as a regular PAGESIZE page (which it is). This is slightly less 1090 * efficient, but makes everything far simpler. 1091 * 1092 * We no longer support kernels before 4.5, so in theory none of this is 1093 * necessary. However, this code is still relatively new in the grand scheme of 1094 * things, so I'm leaving the ability to compile this out for the moment. 1095 * 1096 * Setting/clearing ABD_ITER_COMPOUND_PAGES below enables/disables the special 1097 * handling, by defining the ABD_ITER_PAGE_SIZE(page) macro to understand 1098 * compound pages, or not, and compiling in/out the support to detect compound 1099 * tail pages and move back to the start. 1100 */ 1101 1102 /* On by default */ 1103 #define ABD_ITER_COMPOUND_PAGES 1104 1105 #ifdef ABD_ITER_COMPOUND_PAGES 1106 #define ABD_ITER_PAGE_SIZE(page) \ 1107 (PageCompound(page) ? page_size(page) : PAGESIZE) 1108 #else 1109 #define ABD_ITER_PAGE_SIZE(page) (PAGESIZE) 1110 #endif 1111 1112 void 1113 abd_iter_page(struct abd_iter *aiter) 1114 { 1115 if (abd_iter_at_end(aiter)) { 1116 aiter->iter_page = NULL; 1117 aiter->iter_page_doff = 0; 1118 aiter->iter_page_dsize = 0; 1119 return; 1120 } 1121 1122 struct page *page; 1123 size_t doff, dsize; 1124 1125 /* 1126 * Find the page, and the start of the data within it. This is computed 1127 * differently for linear and scatter ABDs; linear is referenced by 1128 * virtual memory location, while scatter is referenced by page 1129 * pointer. 1130 */ 1131 if (abd_is_linear(aiter->iter_abd)) { 1132 ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset); 1133 1134 /* memory address at iter_pos */ 1135 void *paddr = ABD_LINEAR_BUF(aiter->iter_abd) + aiter->iter_pos; 1136 1137 /* struct page for address */ 1138 page = is_vmalloc_addr(paddr) ? 1139 vmalloc_to_page(paddr) : virt_to_page(paddr); 1140 1141 /* offset of address within the page */ 1142 doff = offset_in_page(paddr); 1143 } else { 1144 ASSERT(!abd_is_gang(aiter->iter_abd)); 1145 1146 /* current scatter page */ 1147 page = nth_page(sg_page(aiter->iter_sg), 1148 aiter->iter_offset >> PAGE_SHIFT); 1149 1150 /* position within page */ 1151 doff = aiter->iter_offset & (PAGESIZE - 1); 1152 } 1153 1154 #ifdef ABD_ITER_COMPOUND_PAGES 1155 if (PageTail(page)) { 1156 /* 1157 * If this is a compound tail page, move back to the head, and 1158 * adjust the offset to match. This may let us yield a much 1159 * larger amount of data from a single logical page, and so 1160 * leave our caller with fewer pages to process. 1161 */ 1162 struct page *head = compound_head(page); 1163 doff += ((page - head) * PAGESIZE); 1164 page = head; 1165 } 1166 #endif 1167 1168 ASSERT(page); 1169 1170 /* 1171 * Compute the maximum amount of data we can take from this page. This 1172 * is the smaller of: 1173 * - the remaining space in the page 1174 * - the remaining space in this scatterlist entry (which may not cover 1175 * the entire page) 1176 * - the remaining space in the abd (which may not cover the entire 1177 * scatterlist entry) 1178 */ 1179 dsize = MIN(ABD_ITER_PAGE_SIZE(page) - doff, 1180 aiter->iter_abd->abd_size - aiter->iter_pos); 1181 if (!abd_is_linear(aiter->iter_abd)) 1182 dsize = MIN(dsize, aiter->iter_sg->length - aiter->iter_offset); 1183 ASSERT3U(dsize, >, 0); 1184 1185 /* final iterator outputs */ 1186 aiter->iter_page = page; 1187 aiter->iter_page_doff = doff; 1188 aiter->iter_page_dsize = dsize; 1189 } 1190 1191 /* 1192 * Note: ABD BIO functions only needed to support vdev_classic. See comments in 1193 * vdev_disk.c. 1194 */ 1195 1196 /* 1197 * bio_nr_pages for ABD. 1198 * @off is the offset in @abd 1199 */ 1200 unsigned long 1201 abd_nr_pages_off(abd_t *abd, unsigned int size, size_t off) 1202 { 1203 unsigned long pos; 1204 1205 if (abd_is_gang(abd)) { 1206 unsigned long count = 0; 1207 1208 for (abd_t *cabd = abd_gang_get_offset(abd, &off); 1209 cabd != NULL && size != 0; 1210 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) { 1211 ASSERT3U(off, <, cabd->abd_size); 1212 int mysize = MIN(size, cabd->abd_size - off); 1213 count += abd_nr_pages_off(cabd, mysize, off); 1214 size -= mysize; 1215 off = 0; 1216 } 1217 return (count); 1218 } 1219 1220 if (abd_is_linear(abd)) 1221 pos = (unsigned long)abd_to_buf(abd) + off; 1222 else 1223 pos = ABD_SCATTER(abd).abd_offset + off; 1224 1225 return (((pos + size + PAGESIZE - 1) >> PAGE_SHIFT) - 1226 (pos >> PAGE_SHIFT)); 1227 } 1228 1229 static unsigned int 1230 bio_map(struct bio *bio, void *buf_ptr, unsigned int bio_size) 1231 { 1232 unsigned int offset, size, i; 1233 struct page *page; 1234 1235 offset = offset_in_page(buf_ptr); 1236 for (i = 0; i < bio->bi_max_vecs; i++) { 1237 size = PAGE_SIZE - offset; 1238 1239 if (bio_size <= 0) 1240 break; 1241 1242 if (size > bio_size) 1243 size = bio_size; 1244 1245 if (is_vmalloc_addr(buf_ptr)) 1246 page = vmalloc_to_page(buf_ptr); 1247 else 1248 page = virt_to_page(buf_ptr); 1249 1250 /* 1251 * Some network related block device uses tcp_sendpage, which 1252 * doesn't behave well when using 0-count page, this is a 1253 * safety net to catch them. 1254 */ 1255 ASSERT3S(page_count(page), >, 0); 1256 1257 if (bio_add_page(bio, page, size, offset) != size) 1258 break; 1259 1260 buf_ptr += size; 1261 bio_size -= size; 1262 offset = 0; 1263 } 1264 1265 return (bio_size); 1266 } 1267 1268 /* 1269 * bio_map for gang ABD. 1270 */ 1271 static unsigned int 1272 abd_gang_bio_map_off(struct bio *bio, abd_t *abd, 1273 unsigned int io_size, size_t off) 1274 { 1275 ASSERT(abd_is_gang(abd)); 1276 1277 for (abd_t *cabd = abd_gang_get_offset(abd, &off); 1278 cabd != NULL; 1279 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) { 1280 ASSERT3U(off, <, cabd->abd_size); 1281 int size = MIN(io_size, cabd->abd_size - off); 1282 int remainder = abd_bio_map_off(bio, cabd, size, off); 1283 io_size -= (size - remainder); 1284 if (io_size == 0 || remainder > 0) 1285 return (io_size); 1286 off = 0; 1287 } 1288 ASSERT0(io_size); 1289 return (io_size); 1290 } 1291 1292 /* 1293 * bio_map for ABD. 1294 * @off is the offset in @abd 1295 * Remaining IO size is returned 1296 */ 1297 unsigned int 1298 abd_bio_map_off(struct bio *bio, abd_t *abd, 1299 unsigned int io_size, size_t off) 1300 { 1301 struct abd_iter aiter; 1302 1303 ASSERT3U(io_size, <=, abd->abd_size - off); 1304 if (abd_is_linear(abd)) 1305 return (bio_map(bio, ((char *)abd_to_buf(abd)) + off, io_size)); 1306 1307 ASSERT(!abd_is_linear(abd)); 1308 if (abd_is_gang(abd)) 1309 return (abd_gang_bio_map_off(bio, abd, io_size, off)); 1310 1311 abd_iter_init(&aiter, abd); 1312 abd_iter_advance(&aiter, off); 1313 1314 for (int i = 0; i < bio->bi_max_vecs; i++) { 1315 struct page *pg; 1316 size_t len, sgoff, pgoff; 1317 struct scatterlist *sg; 1318 1319 if (io_size <= 0) 1320 break; 1321 1322 sg = aiter.iter_sg; 1323 sgoff = aiter.iter_offset; 1324 pgoff = sgoff & (PAGESIZE - 1); 1325 len = MIN(io_size, PAGESIZE - pgoff); 1326 ASSERT(len > 0); 1327 1328 pg = nth_page(sg_page(sg), sgoff >> PAGE_SHIFT); 1329 if (bio_add_page(bio, pg, len, pgoff) != len) 1330 break; 1331 1332 io_size -= len; 1333 abd_iter_advance(&aiter, len); 1334 } 1335 1336 return (io_size); 1337 } 1338 1339 EXPORT_SYMBOL(abd_alloc_from_pages); 1340 1341 /* Tunable Parameters */ 1342 module_param(zfs_abd_scatter_enabled, int, 0644); 1343 MODULE_PARM_DESC(zfs_abd_scatter_enabled, 1344 "Toggle whether ABD allocations must be linear."); 1345 module_param(zfs_abd_scatter_min_size, int, 0644); 1346 MODULE_PARM_DESC(zfs_abd_scatter_min_size, 1347 "Minimum size of scatter allocations."); 1348 module_param(zfs_abd_scatter_max_order, uint, 0644); 1349 MODULE_PARM_DESC(zfs_abd_scatter_max_order, 1350 "Maximum order allocation used for a scatter ABD."); 1351