1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2014 by Chunwei Chen. All rights reserved.
23 * Copyright (c) 2019 by Delphix. All rights reserved.
24 * Copyright (c) 2023, 2024, Klara Inc.
25 */
26
27 /*
28 * See abd.c for a general overview of the arc buffered data (ABD).
29 *
30 * Linear buffers act exactly like normal buffers and are always mapped into the
31 * kernel's virtual memory space, while scattered ABD data chunks are allocated
32 * as physical pages and then mapped in only while they are actually being
33 * accessed through one of the abd_* library functions. Using scattered ABDs
34 * provides several benefits:
35 *
36 * (1) They avoid use of kmem_*, preventing performance problems where running
37 * kmem_reap on very large memory systems never finishes and causes
38 * constant TLB shootdowns.
39 *
40 * (2) Fragmentation is less of an issue since when we are at the limit of
41 * allocatable space, we won't have to search around for a long free
42 * hole in the VA space for large ARC allocations. Each chunk is mapped in
43 * individually, so even if we are using HIGHMEM (see next point) we
44 * wouldn't need to worry about finding a contiguous address range.
45 *
46 * (3) If we are not using HIGHMEM, then all physical memory is always
47 * mapped into the kernel's address space, so we also avoid the map /
48 * unmap costs on each ABD access.
49 *
50 * If we are not using HIGHMEM, scattered buffers which have only one chunk
51 * can be treated as linear buffers, because they are contiguous in the
52 * kernel's virtual address space. See abd_alloc_chunks() for details.
53 */
54
55 #include <sys/abd_impl.h>
56 #include <sys/param.h>
57 #include <sys/zio.h>
58 #include <sys/arc.h>
59 #include <sys/zfs_context.h>
60 #include <sys/zfs_znode.h>
61 #include <linux/kmap_compat.h>
62 #include <linux/mm_compat.h>
63 #include <linux/scatterlist.h>
64 #include <linux/version.h>
65
66 #if defined(MAX_ORDER)
67 #define ABD_MAX_ORDER (MAX_ORDER)
68 #elif defined(MAX_PAGE_ORDER)
69 #define ABD_MAX_ORDER (MAX_PAGE_ORDER)
70 #endif
71
72 typedef struct abd_stats {
73 kstat_named_t abdstat_struct_size;
74 kstat_named_t abdstat_linear_cnt;
75 kstat_named_t abdstat_linear_data_size;
76 kstat_named_t abdstat_scatter_cnt;
77 kstat_named_t abdstat_scatter_data_size;
78 kstat_named_t abdstat_scatter_chunk_waste;
79 kstat_named_t abdstat_scatter_orders[ABD_MAX_ORDER];
80 kstat_named_t abdstat_scatter_page_multi_chunk;
81 kstat_named_t abdstat_scatter_page_multi_zone;
82 kstat_named_t abdstat_scatter_page_alloc_retry;
83 kstat_named_t abdstat_scatter_sg_table_retry;
84 } abd_stats_t;
85
86 static abd_stats_t abd_stats = {
87 /* Amount of memory occupied by all of the abd_t struct allocations */
88 { "struct_size", KSTAT_DATA_UINT64 },
89 /*
90 * The number of linear ABDs which are currently allocated, excluding
91 * ABDs which don't own their data (for instance the ones which were
92 * allocated through abd_get_offset() and abd_get_from_buf()). If an
93 * ABD takes ownership of its buf then it will become tracked.
94 */
95 { "linear_cnt", KSTAT_DATA_UINT64 },
96 /* Amount of data stored in all linear ABDs tracked by linear_cnt */
97 { "linear_data_size", KSTAT_DATA_UINT64 },
98 /*
99 * The number of scatter ABDs which are currently allocated, excluding
100 * ABDs which don't own their data (for instance the ones which were
101 * allocated through abd_get_offset()).
102 */
103 { "scatter_cnt", KSTAT_DATA_UINT64 },
104 /* Amount of data stored in all scatter ABDs tracked by scatter_cnt */
105 { "scatter_data_size", KSTAT_DATA_UINT64 },
106 /*
107 * The amount of space wasted at the end of the last chunk across all
108 * scatter ABDs tracked by scatter_cnt.
109 */
110 { "scatter_chunk_waste", KSTAT_DATA_UINT64 },
111 /*
112 * The number of compound allocations of a given order. These
113 * allocations are spread over all currently allocated ABDs, and
114 * act as a measure of memory fragmentation.
115 */
116 { { "scatter_order_N", KSTAT_DATA_UINT64 } },
117 /*
118 * The number of scatter ABDs which contain multiple chunks.
119 * ABDs are preferentially allocated from the minimum number of
120 * contiguous multi-page chunks, a single chunk is optimal.
121 */
122 { "scatter_page_multi_chunk", KSTAT_DATA_UINT64 },
123 /*
124 * The number of scatter ABDs which are split across memory zones.
125 * ABDs are preferentially allocated using pages from a single zone.
126 */
127 { "scatter_page_multi_zone", KSTAT_DATA_UINT64 },
128 /*
129 * The total number of retries encountered when attempting to
130 * allocate the pages to populate the scatter ABD.
131 */
132 { "scatter_page_alloc_retry", KSTAT_DATA_UINT64 },
133 /*
134 * The total number of retries encountered when attempting to
135 * allocate the sg table for an ABD.
136 */
137 { "scatter_sg_table_retry", KSTAT_DATA_UINT64 },
138 };
139
140 static struct {
141 wmsum_t abdstat_struct_size;
142 wmsum_t abdstat_linear_cnt;
143 wmsum_t abdstat_linear_data_size;
144 wmsum_t abdstat_scatter_cnt;
145 wmsum_t abdstat_scatter_data_size;
146 wmsum_t abdstat_scatter_chunk_waste;
147 wmsum_t abdstat_scatter_orders[ABD_MAX_ORDER];
148 wmsum_t abdstat_scatter_page_multi_chunk;
149 wmsum_t abdstat_scatter_page_multi_zone;
150 wmsum_t abdstat_scatter_page_alloc_retry;
151 wmsum_t abdstat_scatter_sg_table_retry;
152 } abd_sums;
153
154 #define abd_for_each_sg(abd, sg, n, i) \
155 for_each_sg(ABD_SCATTER(abd).abd_sgl, sg, n, i)
156
157 /*
158 * zfs_abd_scatter_min_size is the minimum allocation size to use scatter
159 * ABD's. Smaller allocations will use linear ABD's which uses
160 * zio_[data_]buf_alloc().
161 *
162 * Scatter ABD's use at least one page each, so sub-page allocations waste
163 * some space when allocated as scatter (e.g. 2KB scatter allocation wastes
164 * half of each page). Using linear ABD's for small allocations means that
165 * they will be put on slabs which contain many allocations. This can
166 * improve memory efficiency, but it also makes it much harder for ARC
167 * evictions to actually free pages, because all the buffers on one slab need
168 * to be freed in order for the slab (and underlying pages) to be freed.
169 * Typically, 512B and 1KB kmem caches have 16 buffers per slab, so it's
170 * possible for them to actually waste more memory than scatter (one page per
171 * buf = wasting 3/4 or 7/8th; one buf per slab = wasting 15/16th).
172 *
173 * Spill blocks are typically 512B and are heavily used on systems running
174 * selinux with the default dnode size and the `xattr=sa` property set.
175 *
176 * By default we use linear allocations for 512B and 1KB, and scatter
177 * allocations for larger (1.5KB and up).
178 */
179 static int zfs_abd_scatter_min_size = 512 * 3;
180
181 /*
182 * We use a scattered SPA_MAXBLOCKSIZE sized ABD whose pages are
183 * just a single zero'd page. This allows us to conserve memory by
184 * only using a single zero page for the scatterlist.
185 */
186 abd_t *abd_zero_scatter = NULL;
187
188 struct page;
189
190 /*
191 * abd_zero_page is assigned to each of the pages of abd_zero_scatter. It will
192 * point to ZERO_PAGE if it is available or it will be an allocated zero'd
193 * PAGESIZE buffer.
194 */
195 static struct page *abd_zero_page = NULL;
196
197 static kmem_cache_t *abd_cache = NULL;
198 static kstat_t *abd_ksp;
199
200 static uint_t
abd_chunkcnt_for_bytes(size_t size)201 abd_chunkcnt_for_bytes(size_t size)
202 {
203 return (P2ROUNDUP(size, PAGESIZE) / PAGESIZE);
204 }
205
206 abd_t *
abd_alloc_struct_impl(size_t size)207 abd_alloc_struct_impl(size_t size)
208 {
209 /*
210 * In Linux we do not use the size passed in during ABD
211 * allocation, so we just ignore it.
212 */
213 (void) size;
214 abd_t *abd = kmem_cache_alloc(abd_cache, KM_PUSHPAGE);
215 ASSERT3P(abd, !=, NULL);
216 ABDSTAT_INCR(abdstat_struct_size, sizeof (abd_t));
217
218 return (abd);
219 }
220
221 void
abd_free_struct_impl(abd_t * abd)222 abd_free_struct_impl(abd_t *abd)
223 {
224 kmem_cache_free(abd_cache, abd);
225 ABDSTAT_INCR(abdstat_struct_size, -(int)sizeof (abd_t));
226 }
227
228 static unsigned zfs_abd_scatter_max_order = ABD_MAX_ORDER - 1;
229
230 /*
231 * Mark zfs data pages so they can be excluded from kernel crash dumps
232 */
233 #ifdef _LP64
234 #define ABD_FILE_CACHE_PAGE 0x2F5ABDF11ECAC4E
235
236 static inline void
abd_mark_zfs_page(struct page * page)237 abd_mark_zfs_page(struct page *page)
238 {
239 get_page(page);
240 SetPagePrivate(page);
241 set_page_private(page, ABD_FILE_CACHE_PAGE);
242 }
243
244 static inline void
abd_unmark_zfs_page(struct page * page)245 abd_unmark_zfs_page(struct page *page)
246 {
247 set_page_private(page, 0UL);
248 ClearPagePrivate(page);
249 put_page(page);
250 }
251 #else
252 #define abd_mark_zfs_page(page)
253 #define abd_unmark_zfs_page(page)
254 #endif /* _LP64 */
255
256 #ifndef CONFIG_HIGHMEM
257
258 #ifndef __GFP_RECLAIM
259 #define __GFP_RECLAIM __GFP_WAIT
260 #endif
261
262 /*
263 * The goal is to minimize fragmentation by preferentially populating ABDs
264 * with higher order compound pages from a single zone. Allocation size is
265 * progressively decreased until it can be satisfied without performing
266 * reclaim or compaction. When necessary this function will degenerate to
267 * allocating individual pages and allowing reclaim to satisfy allocations.
268 */
269 void
abd_alloc_chunks(abd_t * abd,size_t size)270 abd_alloc_chunks(abd_t *abd, size_t size)
271 {
272 struct list_head pages;
273 struct sg_table table;
274 struct scatterlist *sg;
275 struct page *page, *tmp_page = NULL;
276 gfp_t gfp = __GFP_RECLAIMABLE | __GFP_NOWARN | GFP_NOIO;
277 gfp_t gfp_comp = (gfp | __GFP_NORETRY | __GFP_COMP) & ~__GFP_RECLAIM;
278 unsigned int max_order = MIN(zfs_abd_scatter_max_order,
279 ABD_MAX_ORDER - 1);
280 unsigned int nr_pages = abd_chunkcnt_for_bytes(size);
281 unsigned int chunks = 0, zones = 0;
282 size_t remaining_size;
283 int nid = NUMA_NO_NODE;
284 unsigned int alloc_pages = 0;
285
286 INIT_LIST_HEAD(&pages);
287
288 ASSERT3U(alloc_pages, <, nr_pages);
289
290 while (alloc_pages < nr_pages) {
291 unsigned int chunk_pages;
292 unsigned int order;
293
294 order = MIN(highbit64(nr_pages - alloc_pages) - 1, max_order);
295 chunk_pages = (1U << order);
296
297 page = alloc_pages_node(nid, order ? gfp_comp : gfp, order);
298 if (page == NULL) {
299 if (order == 0) {
300 ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
301 schedule_timeout_interruptible(1);
302 } else {
303 max_order = MAX(0, order - 1);
304 }
305 continue;
306 }
307
308 list_add_tail(&page->lru, &pages);
309
310 if ((nid != NUMA_NO_NODE) && (page_to_nid(page) != nid))
311 zones++;
312
313 nid = page_to_nid(page);
314 ABDSTAT_BUMP(abdstat_scatter_orders[order]);
315 chunks++;
316 alloc_pages += chunk_pages;
317 }
318
319 ASSERT3S(alloc_pages, ==, nr_pages);
320
321 while (sg_alloc_table(&table, chunks, gfp)) {
322 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
323 schedule_timeout_interruptible(1);
324 }
325
326 sg = table.sgl;
327 remaining_size = size;
328 list_for_each_entry_safe(page, tmp_page, &pages, lru) {
329 size_t sg_size = MIN(PAGESIZE << compound_order(page),
330 remaining_size);
331 sg_set_page(sg, page, sg_size, 0);
332 abd_mark_zfs_page(page);
333 remaining_size -= sg_size;
334
335 sg = sg_next(sg);
336 list_del(&page->lru);
337 }
338
339 /*
340 * These conditions ensure that a possible transformation to a linear
341 * ABD would be valid.
342 */
343 ASSERT(!PageHighMem(sg_page(table.sgl)));
344 ASSERT0(ABD_SCATTER(abd).abd_offset);
345
346 if (table.nents == 1) {
347 /*
348 * Since there is only one entry, this ABD can be represented
349 * as a linear buffer. All single-page (4K) ABD's can be
350 * represented this way. Some multi-page ABD's can also be
351 * represented this way, if we were able to allocate a single
352 * "chunk" (higher-order "page" which represents a power-of-2
353 * series of physically-contiguous pages). This is often the
354 * case for 2-page (8K) ABD's.
355 *
356 * Representing a single-entry scatter ABD as a linear ABD
357 * has the performance advantage of avoiding the copy (and
358 * allocation) in abd_borrow_buf_copy / abd_return_buf_copy.
359 * A performance increase of around 5% has been observed for
360 * ARC-cached reads (of small blocks which can take advantage
361 * of this).
362 *
363 * Note that this optimization is only possible because the
364 * pages are always mapped into the kernel's address space.
365 * This is not the case for highmem pages, so the
366 * optimization can not be made there.
367 */
368 abd->abd_flags |= ABD_FLAG_LINEAR;
369 abd->abd_flags |= ABD_FLAG_LINEAR_PAGE;
370 abd->abd_u.abd_linear.abd_sgl = table.sgl;
371 ABD_LINEAR_BUF(abd) = page_address(sg_page(table.sgl));
372 } else if (table.nents > 1) {
373 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
374 abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
375
376 if (zones) {
377 ABDSTAT_BUMP(abdstat_scatter_page_multi_zone);
378 abd->abd_flags |= ABD_FLAG_MULTI_ZONE;
379 }
380
381 ABD_SCATTER(abd).abd_sgl = table.sgl;
382 ABD_SCATTER(abd).abd_nents = table.nents;
383 }
384 }
385 #else
386
387 /*
388 * Allocate N individual pages to construct a scatter ABD. This function
389 * makes no attempt to request contiguous pages and requires the minimal
390 * number of kernel interfaces. It's designed for maximum compatibility.
391 */
392 void
abd_alloc_chunks(abd_t * abd,size_t size)393 abd_alloc_chunks(abd_t *abd, size_t size)
394 {
395 struct scatterlist *sg = NULL;
396 struct sg_table table;
397 struct page *page;
398 gfp_t gfp = __GFP_RECLAIMABLE | __GFP_NOWARN | GFP_NOIO;
399 int nr_pages = abd_chunkcnt_for_bytes(size);
400 int i = 0;
401
402 while (sg_alloc_table(&table, nr_pages, gfp)) {
403 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
404 schedule_timeout_interruptible(1);
405 }
406
407 ASSERT3U(table.nents, ==, nr_pages);
408 ABD_SCATTER(abd).abd_sgl = table.sgl;
409 ABD_SCATTER(abd).abd_nents = nr_pages;
410
411 abd_for_each_sg(abd, sg, nr_pages, i) {
412 while ((page = __page_cache_alloc(gfp)) == NULL) {
413 ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
414 schedule_timeout_interruptible(1);
415 }
416
417 ABDSTAT_BUMP(abdstat_scatter_orders[0]);
418 sg_set_page(sg, page, PAGESIZE, 0);
419 abd_mark_zfs_page(page);
420 }
421
422 if (nr_pages > 1) {
423 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
424 abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
425 }
426 }
427 #endif /* !CONFIG_HIGHMEM */
428
429 /*
430 * This must be called if any of the sg_table allocation functions
431 * are called.
432 */
433 static void
abd_free_sg_table(abd_t * abd)434 abd_free_sg_table(abd_t *abd)
435 {
436 struct sg_table table;
437
438 table.sgl = ABD_SCATTER(abd).abd_sgl;
439 table.nents = table.orig_nents = ABD_SCATTER(abd).abd_nents;
440 sg_free_table(&table);
441 }
442
443 void
abd_free_chunks(abd_t * abd)444 abd_free_chunks(abd_t *abd)
445 {
446 struct scatterlist *sg = NULL;
447 struct page *page;
448 int nr_pages = ABD_SCATTER(abd).abd_nents;
449 int order, i = 0;
450
451 if (abd->abd_flags & ABD_FLAG_MULTI_ZONE)
452 ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_zone);
453
454 if (abd->abd_flags & ABD_FLAG_MULTI_CHUNK)
455 ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk);
456
457 /*
458 * Scatter ABDs may be constructed by abd_alloc_from_pages() from
459 * an array of pages. In which case they should not be freed.
460 */
461 if (!abd_is_from_pages(abd)) {
462 abd_for_each_sg(abd, sg, nr_pages, i) {
463 page = sg_page(sg);
464 abd_unmark_zfs_page(page);
465 order = compound_order(page);
466 __free_pages(page, order);
467 ASSERT3U(sg->length, <=, PAGE_SIZE << order);
468 ABDSTAT_BUMPDOWN(abdstat_scatter_orders[order]);
469 }
470 }
471
472 abd_free_sg_table(abd);
473 }
474
475 /*
476 * Allocate scatter ABD of size SPA_MAXBLOCKSIZE, where each page in
477 * the scatterlist will be set to the zero'd out buffer abd_zero_page.
478 */
479 static void
abd_alloc_zero_scatter(void)480 abd_alloc_zero_scatter(void)
481 {
482 struct scatterlist *sg = NULL;
483 struct sg_table table;
484 gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
485 int nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
486 int i = 0;
487
488 #if defined(HAVE_ZERO_PAGE_GPL_ONLY)
489 gfp_t gfp_zero_page = gfp | __GFP_ZERO;
490 while ((abd_zero_page = __page_cache_alloc(gfp_zero_page)) == NULL) {
491 ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
492 schedule_timeout_interruptible(1);
493 }
494 abd_mark_zfs_page(abd_zero_page);
495 #else
496 abd_zero_page = ZERO_PAGE(0);
497 #endif /* HAVE_ZERO_PAGE_GPL_ONLY */
498
499 while (sg_alloc_table(&table, nr_pages, gfp)) {
500 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
501 schedule_timeout_interruptible(1);
502 }
503 ASSERT3U(table.nents, ==, nr_pages);
504
505 abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
506 abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER;
507 ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
508 ABD_SCATTER(abd_zero_scatter).abd_sgl = table.sgl;
509 ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages;
510 abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
511 abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK;
512
513 abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) {
514 sg_set_page(sg, abd_zero_page, PAGESIZE, 0);
515 }
516
517 ABDSTAT_BUMP(abdstat_scatter_cnt);
518 ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE);
519 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
520 }
521
522 boolean_t
abd_size_alloc_linear(size_t size)523 abd_size_alloc_linear(size_t size)
524 {
525 return (!zfs_abd_scatter_enabled || size < zfs_abd_scatter_min_size);
526 }
527
528 void
abd_update_scatter_stats(abd_t * abd,abd_stats_op_t op)529 abd_update_scatter_stats(abd_t *abd, abd_stats_op_t op)
530 {
531 ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
532 int waste = P2ROUNDUP(abd->abd_size, PAGESIZE) - abd->abd_size;
533 if (op == ABDSTAT_INCR) {
534 ABDSTAT_BUMP(abdstat_scatter_cnt);
535 ABDSTAT_INCR(abdstat_scatter_data_size, abd->abd_size);
536 ABDSTAT_INCR(abdstat_scatter_chunk_waste, waste);
537 arc_space_consume(waste, ARC_SPACE_ABD_CHUNK_WASTE);
538 } else {
539 ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
540 ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size);
541 ABDSTAT_INCR(abdstat_scatter_chunk_waste, -waste);
542 arc_space_return(waste, ARC_SPACE_ABD_CHUNK_WASTE);
543 }
544 }
545
546 void
abd_update_linear_stats(abd_t * abd,abd_stats_op_t op)547 abd_update_linear_stats(abd_t *abd, abd_stats_op_t op)
548 {
549 ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
550 if (op == ABDSTAT_INCR) {
551 ABDSTAT_BUMP(abdstat_linear_cnt);
552 ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size);
553 } else {
554 ABDSTAT_BUMPDOWN(abdstat_linear_cnt);
555 ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size);
556 }
557 }
558
559 void
abd_verify_scatter(abd_t * abd)560 abd_verify_scatter(abd_t *abd)
561 {
562 ASSERT3U(ABD_SCATTER(abd).abd_nents, >, 0);
563 ASSERT3U(ABD_SCATTER(abd).abd_offset, <,
564 ABD_SCATTER(abd).abd_sgl->length);
565
566 #ifdef ZFS_DEBUG
567 struct scatterlist *sg = NULL;
568 size_t n = ABD_SCATTER(abd).abd_nents;
569 int i = 0;
570
571 abd_for_each_sg(abd, sg, n, i) {
572 ASSERT3P(sg_page(sg), !=, NULL);
573 }
574 #endif
575 }
576
577 static void
abd_free_zero_scatter(void)578 abd_free_zero_scatter(void)
579 {
580 ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
581 ABDSTAT_INCR(abdstat_scatter_data_size, -(int)PAGESIZE);
582 ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk);
583
584 abd_free_sg_table(abd_zero_scatter);
585 abd_free_struct(abd_zero_scatter);
586 abd_zero_scatter = NULL;
587 ASSERT3P(abd_zero_page, !=, NULL);
588 #if defined(HAVE_ZERO_PAGE_GPL_ONLY)
589 abd_unmark_zfs_page(abd_zero_page);
590 __free_page(abd_zero_page);
591 #endif /* HAVE_ZERO_PAGE_GPL_ONLY */
592 }
593
594 static int
abd_kstats_update(kstat_t * ksp,int rw)595 abd_kstats_update(kstat_t *ksp, int rw)
596 {
597 abd_stats_t *as = ksp->ks_data;
598
599 if (rw == KSTAT_WRITE)
600 return (EACCES);
601 as->abdstat_struct_size.value.ui64 =
602 wmsum_value(&abd_sums.abdstat_struct_size);
603 as->abdstat_linear_cnt.value.ui64 =
604 wmsum_value(&abd_sums.abdstat_linear_cnt);
605 as->abdstat_linear_data_size.value.ui64 =
606 wmsum_value(&abd_sums.abdstat_linear_data_size);
607 as->abdstat_scatter_cnt.value.ui64 =
608 wmsum_value(&abd_sums.abdstat_scatter_cnt);
609 as->abdstat_scatter_data_size.value.ui64 =
610 wmsum_value(&abd_sums.abdstat_scatter_data_size);
611 as->abdstat_scatter_chunk_waste.value.ui64 =
612 wmsum_value(&abd_sums.abdstat_scatter_chunk_waste);
613 for (int i = 0; i < ABD_MAX_ORDER; i++) {
614 as->abdstat_scatter_orders[i].value.ui64 =
615 wmsum_value(&abd_sums.abdstat_scatter_orders[i]);
616 }
617 as->abdstat_scatter_page_multi_chunk.value.ui64 =
618 wmsum_value(&abd_sums.abdstat_scatter_page_multi_chunk);
619 as->abdstat_scatter_page_multi_zone.value.ui64 =
620 wmsum_value(&abd_sums.abdstat_scatter_page_multi_zone);
621 as->abdstat_scatter_page_alloc_retry.value.ui64 =
622 wmsum_value(&abd_sums.abdstat_scatter_page_alloc_retry);
623 as->abdstat_scatter_sg_table_retry.value.ui64 =
624 wmsum_value(&abd_sums.abdstat_scatter_sg_table_retry);
625 return (0);
626 }
627
628 void
abd_init(void)629 abd_init(void)
630 {
631 int i;
632
633 abd_cache = kmem_cache_create("abd_t", sizeof (abd_t),
634 0, NULL, NULL, NULL, NULL, NULL, KMC_RECLAIMABLE);
635
636 wmsum_init(&abd_sums.abdstat_struct_size, 0);
637 wmsum_init(&abd_sums.abdstat_linear_cnt, 0);
638 wmsum_init(&abd_sums.abdstat_linear_data_size, 0);
639 wmsum_init(&abd_sums.abdstat_scatter_cnt, 0);
640 wmsum_init(&abd_sums.abdstat_scatter_data_size, 0);
641 wmsum_init(&abd_sums.abdstat_scatter_chunk_waste, 0);
642 for (i = 0; i < ABD_MAX_ORDER; i++)
643 wmsum_init(&abd_sums.abdstat_scatter_orders[i], 0);
644 wmsum_init(&abd_sums.abdstat_scatter_page_multi_chunk, 0);
645 wmsum_init(&abd_sums.abdstat_scatter_page_multi_zone, 0);
646 wmsum_init(&abd_sums.abdstat_scatter_page_alloc_retry, 0);
647 wmsum_init(&abd_sums.abdstat_scatter_sg_table_retry, 0);
648
649 abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED,
650 sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
651 if (abd_ksp != NULL) {
652 for (i = 0; i < ABD_MAX_ORDER; i++) {
653 snprintf(abd_stats.abdstat_scatter_orders[i].name,
654 KSTAT_STRLEN, "scatter_order_%d", i);
655 abd_stats.abdstat_scatter_orders[i].data_type =
656 KSTAT_DATA_UINT64;
657 }
658 abd_ksp->ks_data = &abd_stats;
659 abd_ksp->ks_update = abd_kstats_update;
660 kstat_install(abd_ksp);
661 }
662
663 abd_alloc_zero_scatter();
664 }
665
666 void
abd_fini(void)667 abd_fini(void)
668 {
669 abd_free_zero_scatter();
670
671 if (abd_ksp != NULL) {
672 kstat_delete(abd_ksp);
673 abd_ksp = NULL;
674 }
675
676 wmsum_fini(&abd_sums.abdstat_struct_size);
677 wmsum_fini(&abd_sums.abdstat_linear_cnt);
678 wmsum_fini(&abd_sums.abdstat_linear_data_size);
679 wmsum_fini(&abd_sums.abdstat_scatter_cnt);
680 wmsum_fini(&abd_sums.abdstat_scatter_data_size);
681 wmsum_fini(&abd_sums.abdstat_scatter_chunk_waste);
682 for (int i = 0; i < ABD_MAX_ORDER; i++)
683 wmsum_fini(&abd_sums.abdstat_scatter_orders[i]);
684 wmsum_fini(&abd_sums.abdstat_scatter_page_multi_chunk);
685 wmsum_fini(&abd_sums.abdstat_scatter_page_multi_zone);
686 wmsum_fini(&abd_sums.abdstat_scatter_page_alloc_retry);
687 wmsum_fini(&abd_sums.abdstat_scatter_sg_table_retry);
688
689 if (abd_cache) {
690 kmem_cache_destroy(abd_cache);
691 abd_cache = NULL;
692 }
693 }
694
695 void
abd_free_linear_page(abd_t * abd)696 abd_free_linear_page(abd_t *abd)
697 {
698 /* Transform it back into a scatter ABD for freeing */
699 struct scatterlist *sg = abd->abd_u.abd_linear.abd_sgl;
700
701 /* When backed by user page unmap it */
702 if (abd_is_from_pages(abd))
703 zfs_kunmap(sg_page(sg));
704 else
705 abd_update_scatter_stats(abd, ABDSTAT_DECR);
706
707 abd->abd_flags &= ~ABD_FLAG_LINEAR;
708 abd->abd_flags &= ~ABD_FLAG_LINEAR_PAGE;
709 ABD_SCATTER(abd).abd_nents = 1;
710 ABD_SCATTER(abd).abd_offset = 0;
711 ABD_SCATTER(abd).abd_sgl = sg;
712 abd_free_chunks(abd);
713 }
714
715 /*
716 * Allocate a scatter ABD structure from user pages. The pages must be
717 * pinned with get_user_pages, or similiar, but need not be mapped via
718 * the kmap interfaces.
719 */
720 abd_t *
abd_alloc_from_pages(struct page ** pages,unsigned long offset,uint64_t size)721 abd_alloc_from_pages(struct page **pages, unsigned long offset, uint64_t size)
722 {
723 uint_t npages = DIV_ROUND_UP(size, PAGE_SIZE);
724 struct sg_table table;
725
726 VERIFY3U(size, <=, DMU_MAX_ACCESS);
727 ASSERT3U(offset, <, PAGE_SIZE);
728 ASSERT3P(pages, !=, NULL);
729
730 /*
731 * Even if this buf is filesystem metadata, we only track that we
732 * own the underlying data buffer, which is not true in this case.
733 * Therefore, we don't ever use ABD_FLAG_META here.
734 */
735 abd_t *abd = abd_alloc_struct(0);
736 abd->abd_flags |= ABD_FLAG_FROM_PAGES | ABD_FLAG_OWNER;
737 abd->abd_size = size;
738
739 while (sg_alloc_table_from_pages(&table, pages, npages, offset,
740 size, __GFP_NOWARN | GFP_NOIO) != 0) {
741 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
742 schedule_timeout_interruptible(1);
743 }
744
745 if ((offset + size) <= PAGE_SIZE) {
746 /*
747 * Since there is only one entry, this ABD can be represented
748 * as a linear buffer. All single-page (4K) ABD's constructed
749 * from a user page can be represented this way as long as the
750 * page is mapped to a virtual address. This allows us to
751 * apply an offset in to the mapped page.
752 *
753 * Note that kmap() must be used, not kmap_atomic(), because
754 * the mapping needs to bet set up on all CPUs. Using kmap()
755 * also enables the user of highmem pages when required.
756 */
757 abd->abd_flags |= ABD_FLAG_LINEAR | ABD_FLAG_LINEAR_PAGE;
758 abd->abd_u.abd_linear.abd_sgl = table.sgl;
759 zfs_kmap(sg_page(table.sgl));
760 ABD_LINEAR_BUF(abd) = sg_virt(table.sgl);
761 } else {
762 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
763 abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
764
765 ABD_SCATTER(abd).abd_offset = offset;
766 ABD_SCATTER(abd).abd_sgl = table.sgl;
767 ABD_SCATTER(abd).abd_nents = table.nents;
768
769 ASSERT0(ABD_SCATTER(abd).abd_offset);
770 }
771
772 return (abd);
773 }
774
775 /*
776 * If we're going to use this ABD for doing I/O using the block layer, the
777 * consumer of the ABD data doesn't care if it's scattered or not, and we don't
778 * plan to store this ABD in memory for a long period of time, we should
779 * allocate the ABD type that requires the least data copying to do the I/O.
780 *
781 * On Linux the optimal thing to do would be to use abd_get_offset() and
782 * construct a new ABD which shares the original pages thereby eliminating
783 * the copy. But for the moment a new linear ABD is allocated until this
784 * performance optimization can be implemented.
785 */
786 abd_t *
abd_alloc_for_io(size_t size,boolean_t is_metadata)787 abd_alloc_for_io(size_t size, boolean_t is_metadata)
788 {
789 return (abd_alloc(size, is_metadata));
790 }
791
792 abd_t *
abd_get_offset_scatter(abd_t * abd,abd_t * sabd,size_t off,size_t size)793 abd_get_offset_scatter(abd_t *abd, abd_t *sabd, size_t off,
794 size_t size)
795 {
796 (void) size;
797 int i = 0;
798 struct scatterlist *sg = NULL;
799
800 abd_verify(sabd);
801 ASSERT3U(off, <=, sabd->abd_size);
802
803 size_t new_offset = ABD_SCATTER(sabd).abd_offset + off;
804
805 if (abd == NULL)
806 abd = abd_alloc_struct(0);
807
808 /*
809 * Even if this buf is filesystem metadata, we only track that
810 * if we own the underlying data buffer, which is not true in
811 * this case. Therefore, we don't ever use ABD_FLAG_META here.
812 */
813
814 abd_for_each_sg(sabd, sg, ABD_SCATTER(sabd).abd_nents, i) {
815 if (new_offset < sg->length)
816 break;
817 new_offset -= sg->length;
818 }
819
820 ABD_SCATTER(abd).abd_sgl = sg;
821 ABD_SCATTER(abd).abd_offset = new_offset;
822 ABD_SCATTER(abd).abd_nents = ABD_SCATTER(sabd).abd_nents - i;
823
824 if (abd_is_from_pages(sabd))
825 abd->abd_flags |= ABD_FLAG_FROM_PAGES;
826
827 return (abd);
828 }
829
830 /*
831 * Initialize the abd_iter.
832 */
833 void
abd_iter_init(struct abd_iter * aiter,abd_t * abd)834 abd_iter_init(struct abd_iter *aiter, abd_t *abd)
835 {
836 ASSERT(!abd_is_gang(abd));
837 abd_verify(abd);
838 memset(aiter, 0, sizeof (struct abd_iter));
839 aiter->iter_abd = abd;
840 if (!abd_is_linear(abd)) {
841 aiter->iter_offset = ABD_SCATTER(abd).abd_offset;
842 aiter->iter_sg = ABD_SCATTER(abd).abd_sgl;
843 }
844 }
845
846 /*
847 * This is just a helper function to see if we have exhausted the
848 * abd_iter and reached the end.
849 */
850 boolean_t
abd_iter_at_end(struct abd_iter * aiter)851 abd_iter_at_end(struct abd_iter *aiter)
852 {
853 ASSERT3U(aiter->iter_pos, <=, aiter->iter_abd->abd_size);
854 return (aiter->iter_pos == aiter->iter_abd->abd_size);
855 }
856
857 /*
858 * Advance the iterator by a certain amount. Cannot be called when a chunk is
859 * in use. This can be safely called when the aiter has already exhausted, in
860 * which case this does nothing.
861 */
862 void
abd_iter_advance(struct abd_iter * aiter,size_t amount)863 abd_iter_advance(struct abd_iter *aiter, size_t amount)
864 {
865 /*
866 * Ensure that last chunk is not in use. abd_iterate_*() must clear
867 * this state (directly or abd_iter_unmap()) before advancing.
868 */
869 ASSERT3P(aiter->iter_mapaddr, ==, NULL);
870 ASSERT0(aiter->iter_mapsize);
871 ASSERT3P(aiter->iter_page, ==, NULL);
872 ASSERT0(aiter->iter_page_doff);
873 ASSERT0(aiter->iter_page_dsize);
874
875 /* There's nothing left to advance to, so do nothing */
876 if (abd_iter_at_end(aiter))
877 return;
878
879 aiter->iter_pos += amount;
880 aiter->iter_offset += amount;
881 if (!abd_is_linear(aiter->iter_abd)) {
882 while (aiter->iter_offset >= aiter->iter_sg->length) {
883 aiter->iter_offset -= aiter->iter_sg->length;
884 aiter->iter_sg = sg_next(aiter->iter_sg);
885 if (aiter->iter_sg == NULL) {
886 ASSERT0(aiter->iter_offset);
887 break;
888 }
889 }
890 }
891 }
892
893 /*
894 * Map the current chunk into aiter. This can be safely called when the aiter
895 * has already exhausted, in which case this does nothing.
896 */
897 void
abd_iter_map(struct abd_iter * aiter)898 abd_iter_map(struct abd_iter *aiter)
899 {
900 void *paddr;
901 size_t offset = 0;
902
903 ASSERT3P(aiter->iter_mapaddr, ==, NULL);
904 ASSERT0(aiter->iter_mapsize);
905
906 /* There's nothing left to iterate over, so do nothing */
907 if (abd_iter_at_end(aiter))
908 return;
909
910 if (abd_is_linear(aiter->iter_abd)) {
911 ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset);
912 offset = aiter->iter_offset;
913 aiter->iter_mapsize = aiter->iter_abd->abd_size - offset;
914 paddr = ABD_LINEAR_BUF(aiter->iter_abd);
915 } else {
916 offset = aiter->iter_offset;
917 aiter->iter_mapsize = MIN(aiter->iter_sg->length - offset,
918 aiter->iter_abd->abd_size - aiter->iter_pos);
919
920 paddr = zfs_kmap_local(sg_page(aiter->iter_sg));
921 }
922
923 aiter->iter_mapaddr = (char *)paddr + offset;
924 }
925
926 /*
927 * Unmap the current chunk from aiter. This can be safely called when the aiter
928 * has already exhausted, in which case this does nothing.
929 */
930 void
abd_iter_unmap(struct abd_iter * aiter)931 abd_iter_unmap(struct abd_iter *aiter)
932 {
933 /* There's nothing left to unmap, so do nothing */
934 if (abd_iter_at_end(aiter))
935 return;
936
937 if (!abd_is_linear(aiter->iter_abd)) {
938 /* LINTED E_FUNC_SET_NOT_USED */
939 zfs_kunmap_local(aiter->iter_mapaddr - aiter->iter_offset);
940 }
941
942 ASSERT3P(aiter->iter_mapaddr, !=, NULL);
943 ASSERT3U(aiter->iter_mapsize, >, 0);
944
945 aiter->iter_mapaddr = NULL;
946 aiter->iter_mapsize = 0;
947 }
948
949 void
abd_cache_reap_now(void)950 abd_cache_reap_now(void)
951 {
952 }
953
954 /*
955 * Borrow a raw buffer from an ABD without copying the contents of the ABD
956 * into the buffer. If the ABD is scattered, this will allocate a raw buffer
957 * whose contents are undefined. To copy over the existing data in the ABD, use
958 * abd_borrow_buf_copy() instead.
959 */
960 void *
abd_borrow_buf(abd_t * abd,size_t n)961 abd_borrow_buf(abd_t *abd, size_t n)
962 {
963 void *buf;
964 abd_verify(abd);
965 ASSERT3U(abd->abd_size, >=, 0);
966 /*
967 * In the event the ABD is composed of a single user page from Direct
968 * I/O we can not direclty return the raw buffer. This is a consequence
969 * of not being able to write protect the page and the contents of the
970 * page can be changed at any time by the user.
971 */
972 if (abd_is_from_pages(abd)) {
973 buf = zio_buf_alloc(n);
974 } else if (abd_is_linear(abd)) {
975 buf = abd_to_buf(abd);
976 } else {
977 buf = zio_buf_alloc(n);
978 }
979
980 #ifdef ZFS_DEBUG
981 (void) zfs_refcount_add_many(&abd->abd_children, n, buf);
982 #endif
983 return (buf);
984 }
985
986 void *
abd_borrow_buf_copy(abd_t * abd,size_t n)987 abd_borrow_buf_copy(abd_t *abd, size_t n)
988 {
989 void *buf = abd_borrow_buf(abd, n);
990
991 /*
992 * In the event the ABD is composed of a single user page from Direct
993 * I/O we must make sure copy the data over into the newly allocated
994 * buffer. This is a consequence of the fact that we can not write
995 * protect the user page and there is a risk the contents of the page
996 * could be changed by the user at any moment.
997 */
998 if (!abd_is_linear(abd) || abd_is_from_pages(abd)) {
999 abd_copy_to_buf(buf, abd, n);
1000 }
1001 return (buf);
1002 }
1003
1004 /*
1005 * Return a borrowed raw buffer to an ABD. If the ABD is scatterd, this will
1006 * not change the contents of the ABD. If you want any changes you made to
1007 * buf to be copied back to abd, use abd_return_buf_copy() instead. If the
1008 * ABD is not constructed from user pages for Direct I/O then an ASSERT
1009 * checks to make sure the contents of buffer have not changed since it was
1010 * borrowed. We can not ASSERT that the contents of the buffer have not changed
1011 * if it is composed of user pages because the pages can not be placed under
1012 * write protection and the user could have possibly changed the contents in
1013 * the pages at any time. This is also an issue for Direct I/O reads. Checksum
1014 * verifications in the ZIO pipeline check for this issue and handle it by
1015 * returning an error on checksum verification failure.
1016 */
1017 void
abd_return_buf(abd_t * abd,void * buf,size_t n)1018 abd_return_buf(abd_t *abd, void *buf, size_t n)
1019 {
1020 abd_verify(abd);
1021 ASSERT3U(abd->abd_size, >=, n);
1022 #ifdef ZFS_DEBUG
1023 (void) zfs_refcount_remove_many(&abd->abd_children, n, buf);
1024 #endif
1025 if (abd_is_from_pages(abd)) {
1026 zio_buf_free(buf, n);
1027 } else if (abd_is_linear(abd)) {
1028 ASSERT3P(buf, ==, abd_to_buf(abd));
1029 } else if (abd_is_gang(abd)) {
1030 #ifdef ZFS_DEBUG
1031 /*
1032 * We have to be careful with gang ABD's that we do not ASSERT0
1033 * for any ABD's that contain user pages from Direct I/O. In
1034 * order to handle this, we just iterate through the gang ABD
1035 * and only verify ABDs that are not from user pages.
1036 */
1037 void *cmp_buf = buf;
1038
1039 for (abd_t *cabd = list_head(&ABD_GANG(abd).abd_gang_chain);
1040 cabd != NULL;
1041 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
1042 if (!abd_is_from_pages(cabd)) {
1043 ASSERT0(abd_cmp_buf(cabd, cmp_buf,
1044 cabd->abd_size));
1045 }
1046 cmp_buf = (char *)cmp_buf + cabd->abd_size;
1047 }
1048 #endif
1049 zio_buf_free(buf, n);
1050 } else {
1051 ASSERT0(abd_cmp_buf(abd, buf, n));
1052 zio_buf_free(buf, n);
1053 }
1054 }
1055
1056 void
abd_return_buf_copy(abd_t * abd,void * buf,size_t n)1057 abd_return_buf_copy(abd_t *abd, void *buf, size_t n)
1058 {
1059 if (!abd_is_linear(abd) || abd_is_from_pages(abd)) {
1060 abd_copy_from_buf(abd, buf, n);
1061 }
1062 abd_return_buf(abd, buf, n);
1063 }
1064
1065 /*
1066 * This is abd_iter_page(), the function underneath abd_iterate_page_func().
1067 * It yields the next page struct and data offset and size within it, without
1068 * mapping it into the address space.
1069 */
1070
1071 /*
1072 * "Compound pages" are a group of pages that can be referenced from a single
1073 * struct page *. Its organised as a "head" page, followed by a series of
1074 * "tail" pages.
1075 *
1076 * In OpenZFS, compound pages are allocated using the __GFP_COMP flag, which we
1077 * get from scatter ABDs and SPL vmalloc slabs (ie >16K allocations). So a
1078 * great many of the IO buffers we get are going to be of this type.
1079 *
1080 * The tail pages are just regular PAGESIZE pages, and can be safely used
1081 * as-is. However, the head page has length covering itself and all the tail
1082 * pages. If the ABD chunk spans multiple pages, then we can use the head page
1083 * and a >PAGESIZE length, which is far more efficient.
1084 *
1085 * Before kernel 4.5 however, compound page heads were refcounted separately
1086 * from tail pages, such that moving back to the head page would require us to
1087 * take a reference to it and releasing it once we're completely finished with
1088 * it. In practice, that meant when our caller is done with the ABD, which we
1089 * have no insight into from here. Rather than contort this API to track head
1090 * page references on such ancient kernels, we disabled this special compound
1091 * page handling on kernels before 4.5, instead just using treating each page
1092 * within it as a regular PAGESIZE page (which it is). This is slightly less
1093 * efficient, but makes everything far simpler.
1094 *
1095 * We no longer support kernels before 4.5, so in theory none of this is
1096 * necessary. However, this code is still relatively new in the grand scheme of
1097 * things, so I'm leaving the ability to compile this out for the moment.
1098 *
1099 * Setting/clearing ABD_ITER_COMPOUND_PAGES below enables/disables the special
1100 * handling, by defining the ABD_ITER_PAGE_SIZE(page) macro to understand
1101 * compound pages, or not, and compiling in/out the support to detect compound
1102 * tail pages and move back to the start.
1103 */
1104
1105 /* On by default */
1106 #define ABD_ITER_COMPOUND_PAGES
1107
1108 #ifdef ABD_ITER_COMPOUND_PAGES
1109 #define ABD_ITER_PAGE_SIZE(page) \
1110 (PageCompound(page) ? page_size(page) : PAGESIZE)
1111 #else
1112 #define ABD_ITER_PAGE_SIZE(page) (PAGESIZE)
1113 #endif
1114
1115 void
abd_iter_page(struct abd_iter * aiter)1116 abd_iter_page(struct abd_iter *aiter)
1117 {
1118 if (abd_iter_at_end(aiter)) {
1119 aiter->iter_page = NULL;
1120 aiter->iter_page_doff = 0;
1121 aiter->iter_page_dsize = 0;
1122 return;
1123 }
1124
1125 struct page *page;
1126 size_t doff, dsize;
1127
1128 /*
1129 * Find the page, and the start of the data within it. This is computed
1130 * differently for linear and scatter ABDs; linear is referenced by
1131 * virtual memory location, while scatter is referenced by page
1132 * pointer.
1133 */
1134 if (abd_is_linear(aiter->iter_abd)) {
1135 ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset);
1136
1137 /* memory address at iter_pos */
1138 void *paddr = ABD_LINEAR_BUF(aiter->iter_abd) + aiter->iter_pos;
1139
1140 /* struct page for address */
1141 page = is_vmalloc_addr(paddr) ?
1142 vmalloc_to_page(paddr) : virt_to_page(paddr);
1143
1144 /* offset of address within the page */
1145 doff = offset_in_page(paddr);
1146 } else {
1147 ASSERT(!abd_is_gang(aiter->iter_abd));
1148
1149 /* current scatter page */
1150 page = nth_page(sg_page(aiter->iter_sg),
1151 aiter->iter_offset >> PAGE_SHIFT);
1152
1153 /* position within page */
1154 doff = aiter->iter_offset & (PAGESIZE - 1);
1155 }
1156
1157 #ifdef ABD_ITER_COMPOUND_PAGES
1158 if (PageTail(page)) {
1159 /*
1160 * If this is a compound tail page, move back to the head, and
1161 * adjust the offset to match. This may let us yield a much
1162 * larger amount of data from a single logical page, and so
1163 * leave our caller with fewer pages to process.
1164 */
1165 struct page *head = compound_head(page);
1166 doff += ((page - head) * PAGESIZE);
1167 page = head;
1168 }
1169 #endif
1170
1171 ASSERT(page);
1172
1173 /*
1174 * Compute the maximum amount of data we can take from this page. This
1175 * is the smaller of:
1176 * - the remaining space in the page
1177 * - the remaining space in this scatterlist entry (which may not cover
1178 * the entire page)
1179 * - the remaining space in the abd (which may not cover the entire
1180 * scatterlist entry)
1181 */
1182 dsize = MIN(ABD_ITER_PAGE_SIZE(page) - doff,
1183 aiter->iter_abd->abd_size - aiter->iter_pos);
1184 if (!abd_is_linear(aiter->iter_abd))
1185 dsize = MIN(dsize, aiter->iter_sg->length - aiter->iter_offset);
1186 ASSERT3U(dsize, >, 0);
1187
1188 /* final iterator outputs */
1189 aiter->iter_page = page;
1190 aiter->iter_page_doff = doff;
1191 aiter->iter_page_dsize = dsize;
1192 }
1193
1194 /*
1195 * Note: ABD BIO functions only needed to support vdev_classic. See comments in
1196 * vdev_disk.c.
1197 */
1198
1199 /*
1200 * bio_nr_pages for ABD.
1201 * @off is the offset in @abd
1202 */
1203 unsigned long
abd_nr_pages_off(abd_t * abd,unsigned int size,size_t off)1204 abd_nr_pages_off(abd_t *abd, unsigned int size, size_t off)
1205 {
1206 unsigned long pos;
1207
1208 if (abd_is_gang(abd)) {
1209 unsigned long count = 0;
1210
1211 for (abd_t *cabd = abd_gang_get_offset(abd, &off);
1212 cabd != NULL && size != 0;
1213 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
1214 ASSERT3U(off, <, cabd->abd_size);
1215 int mysize = MIN(size, cabd->abd_size - off);
1216 count += abd_nr_pages_off(cabd, mysize, off);
1217 size -= mysize;
1218 off = 0;
1219 }
1220 return (count);
1221 }
1222
1223 if (abd_is_linear(abd))
1224 pos = (unsigned long)abd_to_buf(abd) + off;
1225 else
1226 pos = ABD_SCATTER(abd).abd_offset + off;
1227
1228 return (((pos + size + PAGESIZE - 1) >> PAGE_SHIFT) -
1229 (pos >> PAGE_SHIFT));
1230 }
1231
1232 static unsigned int
bio_map(struct bio * bio,void * buf_ptr,unsigned int bio_size)1233 bio_map(struct bio *bio, void *buf_ptr, unsigned int bio_size)
1234 {
1235 unsigned int offset, size, i;
1236 struct page *page;
1237
1238 offset = offset_in_page(buf_ptr);
1239 for (i = 0; i < bio->bi_max_vecs; i++) {
1240 size = PAGE_SIZE - offset;
1241
1242 if (bio_size <= 0)
1243 break;
1244
1245 if (size > bio_size)
1246 size = bio_size;
1247
1248 if (is_vmalloc_addr(buf_ptr))
1249 page = vmalloc_to_page(buf_ptr);
1250 else
1251 page = virt_to_page(buf_ptr);
1252
1253 /*
1254 * Some network related block device uses tcp_sendpage, which
1255 * doesn't behave well when using 0-count page, this is a
1256 * safety net to catch them.
1257 */
1258 ASSERT3S(page_count(page), >, 0);
1259
1260 if (bio_add_page(bio, page, size, offset) != size)
1261 break;
1262
1263 buf_ptr += size;
1264 bio_size -= size;
1265 offset = 0;
1266 }
1267
1268 return (bio_size);
1269 }
1270
1271 /*
1272 * bio_map for gang ABD.
1273 */
1274 static unsigned int
abd_gang_bio_map_off(struct bio * bio,abd_t * abd,unsigned int io_size,size_t off)1275 abd_gang_bio_map_off(struct bio *bio, abd_t *abd,
1276 unsigned int io_size, size_t off)
1277 {
1278 ASSERT(abd_is_gang(abd));
1279
1280 for (abd_t *cabd = abd_gang_get_offset(abd, &off);
1281 cabd != NULL;
1282 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
1283 ASSERT3U(off, <, cabd->abd_size);
1284 int size = MIN(io_size, cabd->abd_size - off);
1285 int remainder = abd_bio_map_off(bio, cabd, size, off);
1286 io_size -= (size - remainder);
1287 if (io_size == 0 || remainder > 0)
1288 return (io_size);
1289 off = 0;
1290 }
1291 ASSERT0(io_size);
1292 return (io_size);
1293 }
1294
1295 /*
1296 * bio_map for ABD.
1297 * @off is the offset in @abd
1298 * Remaining IO size is returned
1299 */
1300 unsigned int
abd_bio_map_off(struct bio * bio,abd_t * abd,unsigned int io_size,size_t off)1301 abd_bio_map_off(struct bio *bio, abd_t *abd,
1302 unsigned int io_size, size_t off)
1303 {
1304 struct abd_iter aiter;
1305
1306 ASSERT3U(io_size, <=, abd->abd_size - off);
1307 if (abd_is_linear(abd))
1308 return (bio_map(bio, ((char *)abd_to_buf(abd)) + off, io_size));
1309
1310 ASSERT(!abd_is_linear(abd));
1311 if (abd_is_gang(abd))
1312 return (abd_gang_bio_map_off(bio, abd, io_size, off));
1313
1314 abd_iter_init(&aiter, abd);
1315 abd_iter_advance(&aiter, off);
1316
1317 for (int i = 0; i < bio->bi_max_vecs; i++) {
1318 struct page *pg;
1319 size_t len, sgoff, pgoff;
1320 struct scatterlist *sg;
1321
1322 if (io_size <= 0)
1323 break;
1324
1325 sg = aiter.iter_sg;
1326 sgoff = aiter.iter_offset;
1327 pgoff = sgoff & (PAGESIZE - 1);
1328 len = MIN(io_size, PAGESIZE - pgoff);
1329 ASSERT(len > 0);
1330
1331 pg = nth_page(sg_page(sg), sgoff >> PAGE_SHIFT);
1332 if (bio_add_page(bio, pg, len, pgoff) != len)
1333 break;
1334
1335 io_size -= len;
1336 abd_iter_advance(&aiter, len);
1337 }
1338
1339 return (io_size);
1340 }
1341
1342 /* Tunable Parameters */
1343 module_param(zfs_abd_scatter_enabled, int, 0644);
1344 MODULE_PARM_DESC(zfs_abd_scatter_enabled,
1345 "Toggle whether ABD allocations must be linear.");
1346 module_param(zfs_abd_scatter_min_size, int, 0644);
1347 MODULE_PARM_DESC(zfs_abd_scatter_min_size,
1348 "Minimum size of scatter allocations.");
1349 /* CSTYLED */
1350 module_param(zfs_abd_scatter_max_order, uint, 0644);
1351 MODULE_PARM_DESC(zfs_abd_scatter_max_order,
1352 "Maximum order allocation used for a scatter ABD.");
1353