xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/abd_os.c (revision 5c65a0a9163cc00389d8527ee12c4e69df07ea42)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2014 by Chunwei Chen. All rights reserved.
23  * Copyright (c) 2019 by Delphix. All rights reserved.
24  * Copyright (c) 2023, 2024, Klara Inc.
25  */
26 
27 /*
28  * See abd.c for a general overview of the arc buffered data (ABD).
29  *
30  * Linear buffers act exactly like normal buffers and are always mapped into the
31  * kernel's virtual memory space, while scattered ABD data chunks are allocated
32  * as physical pages and then mapped in only while they are actually being
33  * accessed through one of the abd_* library functions. Using scattered ABDs
34  * provides several benefits:
35  *
36  *  (1) They avoid use of kmem_*, preventing performance problems where running
37  *      kmem_reap on very large memory systems never finishes and causes
38  *      constant TLB shootdowns.
39  *
40  *  (2) Fragmentation is less of an issue since when we are at the limit of
41  *      allocatable space, we won't have to search around for a long free
42  *      hole in the VA space for large ARC allocations. Each chunk is mapped in
43  *      individually, so even if we are using HIGHMEM (see next point) we
44  *      wouldn't need to worry about finding a contiguous address range.
45  *
46  *  (3) If we are not using HIGHMEM, then all physical memory is always
47  *      mapped into the kernel's address space, so we also avoid the map /
48  *      unmap costs on each ABD access.
49  *
50  * If we are not using HIGHMEM, scattered buffers which have only one chunk
51  * can be treated as linear buffers, because they are contiguous in the
52  * kernel's virtual address space.  See abd_alloc_chunks() for details.
53  */
54 
55 #include <sys/abd_impl.h>
56 #include <sys/param.h>
57 #include <sys/zio.h>
58 #include <sys/arc.h>
59 #include <sys/zfs_context.h>
60 #include <sys/zfs_znode.h>
61 #include <linux/kmap_compat.h>
62 #include <linux/mm_compat.h>
63 #include <linux/scatterlist.h>
64 #include <linux/version.h>
65 
66 #if defined(MAX_ORDER)
67 #define	ABD_MAX_ORDER	(MAX_ORDER)
68 #elif defined(MAX_PAGE_ORDER)
69 #define	ABD_MAX_ORDER	(MAX_PAGE_ORDER)
70 #endif
71 
72 typedef struct abd_stats {
73 	kstat_named_t abdstat_struct_size;
74 	kstat_named_t abdstat_linear_cnt;
75 	kstat_named_t abdstat_linear_data_size;
76 	kstat_named_t abdstat_scatter_cnt;
77 	kstat_named_t abdstat_scatter_data_size;
78 	kstat_named_t abdstat_scatter_chunk_waste;
79 	kstat_named_t abdstat_scatter_orders[ABD_MAX_ORDER];
80 	kstat_named_t abdstat_scatter_page_multi_chunk;
81 	kstat_named_t abdstat_scatter_page_multi_zone;
82 	kstat_named_t abdstat_scatter_page_alloc_retry;
83 	kstat_named_t abdstat_scatter_sg_table_retry;
84 } abd_stats_t;
85 
86 static abd_stats_t abd_stats = {
87 	/* Amount of memory occupied by all of the abd_t struct allocations */
88 	{ "struct_size",			KSTAT_DATA_UINT64 },
89 	/*
90 	 * The number of linear ABDs which are currently allocated, excluding
91 	 * ABDs which don't own their data (for instance the ones which were
92 	 * allocated through abd_get_offset() and abd_get_from_buf()). If an
93 	 * ABD takes ownership of its buf then it will become tracked.
94 	 */
95 	{ "linear_cnt",				KSTAT_DATA_UINT64 },
96 	/* Amount of data stored in all linear ABDs tracked by linear_cnt */
97 	{ "linear_data_size",			KSTAT_DATA_UINT64 },
98 	/*
99 	 * The number of scatter ABDs which are currently allocated, excluding
100 	 * ABDs which don't own their data (for instance the ones which were
101 	 * allocated through abd_get_offset()).
102 	 */
103 	{ "scatter_cnt",			KSTAT_DATA_UINT64 },
104 	/* Amount of data stored in all scatter ABDs tracked by scatter_cnt */
105 	{ "scatter_data_size",			KSTAT_DATA_UINT64 },
106 	/*
107 	 * The amount of space wasted at the end of the last chunk across all
108 	 * scatter ABDs tracked by scatter_cnt.
109 	 */
110 	{ "scatter_chunk_waste",		KSTAT_DATA_UINT64 },
111 	/*
112 	 * The number of compound allocations of a given order.  These
113 	 * allocations are spread over all currently allocated ABDs, and
114 	 * act as a measure of memory fragmentation.
115 	 */
116 	{ { "scatter_order_N",			KSTAT_DATA_UINT64 } },
117 	/*
118 	 * The number of scatter ABDs which contain multiple chunks.
119 	 * ABDs are preferentially allocated from the minimum number of
120 	 * contiguous multi-page chunks, a single chunk is optimal.
121 	 */
122 	{ "scatter_page_multi_chunk",		KSTAT_DATA_UINT64 },
123 	/*
124 	 * The number of scatter ABDs which are split across memory zones.
125 	 * ABDs are preferentially allocated using pages from a single zone.
126 	 */
127 	{ "scatter_page_multi_zone",		KSTAT_DATA_UINT64 },
128 	/*
129 	 *  The total number of retries encountered when attempting to
130 	 *  allocate the pages to populate the scatter ABD.
131 	 */
132 	{ "scatter_page_alloc_retry",		KSTAT_DATA_UINT64 },
133 	/*
134 	 *  The total number of retries encountered when attempting to
135 	 *  allocate the sg table for an ABD.
136 	 */
137 	{ "scatter_sg_table_retry",		KSTAT_DATA_UINT64 },
138 };
139 
140 static struct {
141 	wmsum_t abdstat_struct_size;
142 	wmsum_t abdstat_linear_cnt;
143 	wmsum_t abdstat_linear_data_size;
144 	wmsum_t abdstat_scatter_cnt;
145 	wmsum_t abdstat_scatter_data_size;
146 	wmsum_t abdstat_scatter_chunk_waste;
147 	wmsum_t abdstat_scatter_orders[ABD_MAX_ORDER];
148 	wmsum_t abdstat_scatter_page_multi_chunk;
149 	wmsum_t abdstat_scatter_page_multi_zone;
150 	wmsum_t abdstat_scatter_page_alloc_retry;
151 	wmsum_t abdstat_scatter_sg_table_retry;
152 } abd_sums;
153 
154 #define	abd_for_each_sg(abd, sg, n, i)	\
155 	for_each_sg(ABD_SCATTER(abd).abd_sgl, sg, n, i)
156 
157 /*
158  * zfs_abd_scatter_min_size is the minimum allocation size to use scatter
159  * ABD's.  Smaller allocations will use linear ABD's which uses
160  * zio_[data_]buf_alloc().
161  *
162  * Scatter ABD's use at least one page each, so sub-page allocations waste
163  * some space when allocated as scatter (e.g. 2KB scatter allocation wastes
164  * half of each page).  Using linear ABD's for small allocations means that
165  * they will be put on slabs which contain many allocations.  This can
166  * improve memory efficiency, but it also makes it much harder for ARC
167  * evictions to actually free pages, because all the buffers on one slab need
168  * to be freed in order for the slab (and underlying pages) to be freed.
169  * Typically, 512B and 1KB kmem caches have 16 buffers per slab, so it's
170  * possible for them to actually waste more memory than scatter (one page per
171  * buf = wasting 3/4 or 7/8th; one buf per slab = wasting 15/16th).
172  *
173  * Spill blocks are typically 512B and are heavily used on systems running
174  * selinux with the default dnode size and the `xattr=sa` property set.
175  *
176  * By default we use linear allocations for 512B and 1KB, and scatter
177  * allocations for larger (1.5KB and up).
178  */
179 static int zfs_abd_scatter_min_size = 512 * 3;
180 
181 /*
182  * We use a scattered SPA_MAXBLOCKSIZE sized ABD whose pages are
183  * just a single zero'd page. This allows us to conserve memory by
184  * only using a single zero page for the scatterlist.
185  */
186 abd_t *abd_zero_scatter = NULL;
187 
188 struct page;
189 
190 /*
191  * abd_zero_page is assigned to each of the pages of abd_zero_scatter. It will
192  * point to ZERO_PAGE if it is available or it will be an allocated zero'd
193  * PAGESIZE buffer.
194  */
195 static struct page *abd_zero_page = NULL;
196 
197 static kmem_cache_t *abd_cache = NULL;
198 static kstat_t *abd_ksp;
199 
200 static uint_t
abd_chunkcnt_for_bytes(size_t size)201 abd_chunkcnt_for_bytes(size_t size)
202 {
203 	return (P2ROUNDUP(size, PAGESIZE) / PAGESIZE);
204 }
205 
206 abd_t *
abd_alloc_struct_impl(size_t size)207 abd_alloc_struct_impl(size_t size)
208 {
209 	/*
210 	 * In Linux we do not use the size passed in during ABD
211 	 * allocation, so we just ignore it.
212 	 */
213 	(void) size;
214 	abd_t *abd = kmem_cache_alloc(abd_cache, KM_PUSHPAGE);
215 	ASSERT3P(abd, !=, NULL);
216 	ABDSTAT_INCR(abdstat_struct_size, sizeof (abd_t));
217 
218 	return (abd);
219 }
220 
221 void
abd_free_struct_impl(abd_t * abd)222 abd_free_struct_impl(abd_t *abd)
223 {
224 	kmem_cache_free(abd_cache, abd);
225 	ABDSTAT_INCR(abdstat_struct_size, -(int)sizeof (abd_t));
226 }
227 
228 static unsigned zfs_abd_scatter_max_order = ABD_MAX_ORDER - 1;
229 
230 /*
231  * Mark zfs data pages so they can be excluded from kernel crash dumps
232  */
233 #ifdef _LP64
234 #define	ABD_FILE_CACHE_PAGE	0x2F5ABDF11ECAC4E
235 
236 static inline void
abd_mark_zfs_page(struct page * page)237 abd_mark_zfs_page(struct page *page)
238 {
239 	get_page(page);
240 	SetPagePrivate(page);
241 	set_page_private(page, ABD_FILE_CACHE_PAGE);
242 }
243 
244 static inline void
abd_unmark_zfs_page(struct page * page)245 abd_unmark_zfs_page(struct page *page)
246 {
247 	set_page_private(page, 0UL);
248 	ClearPagePrivate(page);
249 	put_page(page);
250 }
251 #else
252 #define	abd_mark_zfs_page(page)
253 #define	abd_unmark_zfs_page(page)
254 #endif /* _LP64 */
255 
256 #ifndef CONFIG_HIGHMEM
257 
258 #ifndef __GFP_RECLAIM
259 #define	__GFP_RECLAIM		__GFP_WAIT
260 #endif
261 
262 /*
263  * The goal is to minimize fragmentation by preferentially populating ABDs
264  * with higher order compound pages from a single zone.  Allocation size is
265  * progressively decreased until it can be satisfied without performing
266  * reclaim or compaction.  When necessary this function will degenerate to
267  * allocating individual pages and allowing reclaim to satisfy allocations.
268  */
269 void
abd_alloc_chunks(abd_t * abd,size_t size)270 abd_alloc_chunks(abd_t *abd, size_t size)
271 {
272 	struct list_head pages;
273 	struct sg_table table;
274 	struct scatterlist *sg;
275 	struct page *page, *tmp_page = NULL;
276 	gfp_t gfp = __GFP_RECLAIMABLE | __GFP_NOWARN | GFP_NOIO;
277 	gfp_t gfp_comp = (gfp | __GFP_NORETRY | __GFP_COMP) & ~__GFP_RECLAIM;
278 	unsigned int max_order = MIN(zfs_abd_scatter_max_order,
279 	    ABD_MAX_ORDER - 1);
280 	unsigned int nr_pages = abd_chunkcnt_for_bytes(size);
281 	unsigned int chunks = 0, zones = 0;
282 	size_t remaining_size;
283 	int nid = NUMA_NO_NODE;
284 	unsigned int alloc_pages = 0;
285 
286 	INIT_LIST_HEAD(&pages);
287 
288 	ASSERT3U(alloc_pages, <, nr_pages);
289 
290 	while (alloc_pages < nr_pages) {
291 		unsigned int chunk_pages;
292 		unsigned int order;
293 
294 		order = MIN(highbit64(nr_pages - alloc_pages) - 1, max_order);
295 		chunk_pages = (1U << order);
296 
297 		page = alloc_pages_node(nid, order ? gfp_comp : gfp, order);
298 		if (page == NULL) {
299 			if (order == 0) {
300 				ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
301 				schedule_timeout_interruptible(1);
302 			} else {
303 				max_order = MAX(0, order - 1);
304 			}
305 			continue;
306 		}
307 
308 		list_add_tail(&page->lru, &pages);
309 
310 		if ((nid != NUMA_NO_NODE) && (page_to_nid(page) != nid))
311 			zones++;
312 
313 		nid = page_to_nid(page);
314 		ABDSTAT_BUMP(abdstat_scatter_orders[order]);
315 		chunks++;
316 		alloc_pages += chunk_pages;
317 	}
318 
319 	ASSERT3S(alloc_pages, ==, nr_pages);
320 
321 	while (sg_alloc_table(&table, chunks, gfp)) {
322 		ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
323 		schedule_timeout_interruptible(1);
324 	}
325 
326 	sg = table.sgl;
327 	remaining_size = size;
328 	list_for_each_entry_safe(page, tmp_page, &pages, lru) {
329 		size_t sg_size = MIN(PAGESIZE << compound_order(page),
330 		    remaining_size);
331 		sg_set_page(sg, page, sg_size, 0);
332 		abd_mark_zfs_page(page);
333 		remaining_size -= sg_size;
334 
335 		sg = sg_next(sg);
336 		list_del(&page->lru);
337 	}
338 
339 	/*
340 	 * These conditions ensure that a possible transformation to a linear
341 	 * ABD would be valid.
342 	 */
343 	ASSERT(!PageHighMem(sg_page(table.sgl)));
344 	ASSERT0(ABD_SCATTER(abd).abd_offset);
345 
346 	if (table.nents == 1) {
347 		/*
348 		 * Since there is only one entry, this ABD can be represented
349 		 * as a linear buffer.  All single-page (4K) ABD's can be
350 		 * represented this way.  Some multi-page ABD's can also be
351 		 * represented this way, if we were able to allocate a single
352 		 * "chunk" (higher-order "page" which represents a power-of-2
353 		 * series of physically-contiguous pages).  This is often the
354 		 * case for 2-page (8K) ABD's.
355 		 *
356 		 * Representing a single-entry scatter ABD as a linear ABD
357 		 * has the performance advantage of avoiding the copy (and
358 		 * allocation) in abd_borrow_buf_copy / abd_return_buf_copy.
359 		 * A performance increase of around 5% has been observed for
360 		 * ARC-cached reads (of small blocks which can take advantage
361 		 * of this).
362 		 *
363 		 * Note that this optimization is only possible because the
364 		 * pages are always mapped into the kernel's address space.
365 		 * This is not the case for highmem pages, so the
366 		 * optimization can not be made there.
367 		 */
368 		abd->abd_flags |= ABD_FLAG_LINEAR;
369 		abd->abd_flags |= ABD_FLAG_LINEAR_PAGE;
370 		abd->abd_u.abd_linear.abd_sgl = table.sgl;
371 		ABD_LINEAR_BUF(abd) = page_address(sg_page(table.sgl));
372 	} else if (table.nents > 1) {
373 		ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
374 		abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
375 
376 		if (zones) {
377 			ABDSTAT_BUMP(abdstat_scatter_page_multi_zone);
378 			abd->abd_flags |= ABD_FLAG_MULTI_ZONE;
379 		}
380 
381 		ABD_SCATTER(abd).abd_sgl = table.sgl;
382 		ABD_SCATTER(abd).abd_nents = table.nents;
383 	}
384 }
385 #else
386 
387 /*
388  * Allocate N individual pages to construct a scatter ABD.  This function
389  * makes no attempt to request contiguous pages and requires the minimal
390  * number of kernel interfaces.  It's designed for maximum compatibility.
391  */
392 void
abd_alloc_chunks(abd_t * abd,size_t size)393 abd_alloc_chunks(abd_t *abd, size_t size)
394 {
395 	struct scatterlist *sg = NULL;
396 	struct sg_table table;
397 	struct page *page;
398 	gfp_t gfp = __GFP_RECLAIMABLE | __GFP_NOWARN | GFP_NOIO;
399 	int nr_pages = abd_chunkcnt_for_bytes(size);
400 	int i = 0;
401 
402 	while (sg_alloc_table(&table, nr_pages, gfp)) {
403 		ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
404 		schedule_timeout_interruptible(1);
405 	}
406 
407 	ASSERT3U(table.nents, ==, nr_pages);
408 	ABD_SCATTER(abd).abd_sgl = table.sgl;
409 	ABD_SCATTER(abd).abd_nents = nr_pages;
410 
411 	abd_for_each_sg(abd, sg, nr_pages, i) {
412 		while ((page = __page_cache_alloc(gfp)) == NULL) {
413 			ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
414 			schedule_timeout_interruptible(1);
415 		}
416 
417 		ABDSTAT_BUMP(abdstat_scatter_orders[0]);
418 		sg_set_page(sg, page, PAGESIZE, 0);
419 		abd_mark_zfs_page(page);
420 	}
421 
422 	if (nr_pages > 1) {
423 		ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
424 		abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
425 	}
426 }
427 #endif /* !CONFIG_HIGHMEM */
428 
429 /*
430  * This must be called if any of the sg_table allocation functions
431  * are called.
432  */
433 static void
abd_free_sg_table(abd_t * abd)434 abd_free_sg_table(abd_t *abd)
435 {
436 	struct sg_table table;
437 
438 	table.sgl = ABD_SCATTER(abd).abd_sgl;
439 	table.nents = table.orig_nents = ABD_SCATTER(abd).abd_nents;
440 	sg_free_table(&table);
441 }
442 
443 void
abd_free_chunks(abd_t * abd)444 abd_free_chunks(abd_t *abd)
445 {
446 	struct scatterlist *sg = NULL;
447 	struct page *page;
448 	int nr_pages = ABD_SCATTER(abd).abd_nents;
449 	int order, i = 0;
450 
451 	if (abd->abd_flags & ABD_FLAG_MULTI_ZONE)
452 		ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_zone);
453 
454 	if (abd->abd_flags & ABD_FLAG_MULTI_CHUNK)
455 		ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk);
456 
457 	/*
458 	 * Scatter ABDs may be constructed by abd_alloc_from_pages() from
459 	 * an array of pages. In which case they should not be freed.
460 	 */
461 	if (!abd_is_from_pages(abd)) {
462 		abd_for_each_sg(abd, sg, nr_pages, i) {
463 			page = sg_page(sg);
464 			abd_unmark_zfs_page(page);
465 			order = compound_order(page);
466 			__free_pages(page, order);
467 			ASSERT3U(sg->length, <=, PAGE_SIZE << order);
468 			ABDSTAT_BUMPDOWN(abdstat_scatter_orders[order]);
469 		}
470 	}
471 
472 	abd_free_sg_table(abd);
473 }
474 
475 /*
476  * Allocate scatter ABD of size SPA_MAXBLOCKSIZE, where each page in
477  * the scatterlist will be set to the zero'd out buffer abd_zero_page.
478  */
479 static void
abd_alloc_zero_scatter(void)480 abd_alloc_zero_scatter(void)
481 {
482 	struct scatterlist *sg = NULL;
483 	struct sg_table table;
484 	gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
485 	int nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
486 	int i = 0;
487 
488 #if defined(HAVE_ZERO_PAGE_GPL_ONLY)
489 	gfp_t gfp_zero_page = gfp | __GFP_ZERO;
490 	while ((abd_zero_page = __page_cache_alloc(gfp_zero_page)) == NULL) {
491 		ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
492 		schedule_timeout_interruptible(1);
493 	}
494 	abd_mark_zfs_page(abd_zero_page);
495 #else
496 	abd_zero_page = ZERO_PAGE(0);
497 #endif /* HAVE_ZERO_PAGE_GPL_ONLY */
498 
499 	while (sg_alloc_table(&table, nr_pages, gfp)) {
500 		ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
501 		schedule_timeout_interruptible(1);
502 	}
503 	ASSERT3U(table.nents, ==, nr_pages);
504 
505 	abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
506 	abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER;
507 	ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
508 	ABD_SCATTER(abd_zero_scatter).abd_sgl = table.sgl;
509 	ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages;
510 	abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
511 	abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK;
512 
513 	abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) {
514 		sg_set_page(sg, abd_zero_page, PAGESIZE, 0);
515 	}
516 
517 	ABDSTAT_BUMP(abdstat_scatter_cnt);
518 	ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE);
519 	ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
520 }
521 
522 boolean_t
abd_size_alloc_linear(size_t size)523 abd_size_alloc_linear(size_t size)
524 {
525 	return (!zfs_abd_scatter_enabled || size < zfs_abd_scatter_min_size);
526 }
527 
528 void
abd_update_scatter_stats(abd_t * abd,abd_stats_op_t op)529 abd_update_scatter_stats(abd_t *abd, abd_stats_op_t op)
530 {
531 	ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
532 	int waste = P2ROUNDUP(abd->abd_size, PAGESIZE) - abd->abd_size;
533 	if (op == ABDSTAT_INCR) {
534 		ABDSTAT_BUMP(abdstat_scatter_cnt);
535 		ABDSTAT_INCR(abdstat_scatter_data_size, abd->abd_size);
536 		ABDSTAT_INCR(abdstat_scatter_chunk_waste, waste);
537 		arc_space_consume(waste, ARC_SPACE_ABD_CHUNK_WASTE);
538 	} else {
539 		ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
540 		ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size);
541 		ABDSTAT_INCR(abdstat_scatter_chunk_waste, -waste);
542 		arc_space_return(waste, ARC_SPACE_ABD_CHUNK_WASTE);
543 	}
544 }
545 
546 void
abd_update_linear_stats(abd_t * abd,abd_stats_op_t op)547 abd_update_linear_stats(abd_t *abd, abd_stats_op_t op)
548 {
549 	ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
550 	if (op == ABDSTAT_INCR) {
551 		ABDSTAT_BUMP(abdstat_linear_cnt);
552 		ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size);
553 	} else {
554 		ABDSTAT_BUMPDOWN(abdstat_linear_cnt);
555 		ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size);
556 	}
557 }
558 
559 void
abd_verify_scatter(abd_t * abd)560 abd_verify_scatter(abd_t *abd)
561 {
562 	ASSERT3U(ABD_SCATTER(abd).abd_nents, >, 0);
563 	ASSERT3U(ABD_SCATTER(abd).abd_offset, <,
564 	    ABD_SCATTER(abd).abd_sgl->length);
565 
566 #ifdef ZFS_DEBUG
567 	struct scatterlist *sg = NULL;
568 	size_t n = ABD_SCATTER(abd).abd_nents;
569 	int i = 0;
570 
571 	abd_for_each_sg(abd, sg, n, i) {
572 		ASSERT3P(sg_page(sg), !=, NULL);
573 	}
574 #endif
575 }
576 
577 static void
abd_free_zero_scatter(void)578 abd_free_zero_scatter(void)
579 {
580 	ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
581 	ABDSTAT_INCR(abdstat_scatter_data_size, -(int)PAGESIZE);
582 	ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk);
583 
584 	abd_free_sg_table(abd_zero_scatter);
585 	abd_free_struct(abd_zero_scatter);
586 	abd_zero_scatter = NULL;
587 	ASSERT3P(abd_zero_page, !=, NULL);
588 #if defined(HAVE_ZERO_PAGE_GPL_ONLY)
589 	abd_unmark_zfs_page(abd_zero_page);
590 	__free_page(abd_zero_page);
591 #endif /* HAVE_ZERO_PAGE_GPL_ONLY */
592 }
593 
594 static int
abd_kstats_update(kstat_t * ksp,int rw)595 abd_kstats_update(kstat_t *ksp, int rw)
596 {
597 	abd_stats_t *as = ksp->ks_data;
598 
599 	if (rw == KSTAT_WRITE)
600 		return (EACCES);
601 	as->abdstat_struct_size.value.ui64 =
602 	    wmsum_value(&abd_sums.abdstat_struct_size);
603 	as->abdstat_linear_cnt.value.ui64 =
604 	    wmsum_value(&abd_sums.abdstat_linear_cnt);
605 	as->abdstat_linear_data_size.value.ui64 =
606 	    wmsum_value(&abd_sums.abdstat_linear_data_size);
607 	as->abdstat_scatter_cnt.value.ui64 =
608 	    wmsum_value(&abd_sums.abdstat_scatter_cnt);
609 	as->abdstat_scatter_data_size.value.ui64 =
610 	    wmsum_value(&abd_sums.abdstat_scatter_data_size);
611 	as->abdstat_scatter_chunk_waste.value.ui64 =
612 	    wmsum_value(&abd_sums.abdstat_scatter_chunk_waste);
613 	for (int i = 0; i < ABD_MAX_ORDER; i++) {
614 		as->abdstat_scatter_orders[i].value.ui64 =
615 		    wmsum_value(&abd_sums.abdstat_scatter_orders[i]);
616 	}
617 	as->abdstat_scatter_page_multi_chunk.value.ui64 =
618 	    wmsum_value(&abd_sums.abdstat_scatter_page_multi_chunk);
619 	as->abdstat_scatter_page_multi_zone.value.ui64 =
620 	    wmsum_value(&abd_sums.abdstat_scatter_page_multi_zone);
621 	as->abdstat_scatter_page_alloc_retry.value.ui64 =
622 	    wmsum_value(&abd_sums.abdstat_scatter_page_alloc_retry);
623 	as->abdstat_scatter_sg_table_retry.value.ui64 =
624 	    wmsum_value(&abd_sums.abdstat_scatter_sg_table_retry);
625 	return (0);
626 }
627 
628 void
abd_init(void)629 abd_init(void)
630 {
631 	int i;
632 
633 	abd_cache = kmem_cache_create("abd_t", sizeof (abd_t),
634 	    0, NULL, NULL, NULL, NULL, NULL, KMC_RECLAIMABLE);
635 
636 	wmsum_init(&abd_sums.abdstat_struct_size, 0);
637 	wmsum_init(&abd_sums.abdstat_linear_cnt, 0);
638 	wmsum_init(&abd_sums.abdstat_linear_data_size, 0);
639 	wmsum_init(&abd_sums.abdstat_scatter_cnt, 0);
640 	wmsum_init(&abd_sums.abdstat_scatter_data_size, 0);
641 	wmsum_init(&abd_sums.abdstat_scatter_chunk_waste, 0);
642 	for (i = 0; i < ABD_MAX_ORDER; i++)
643 		wmsum_init(&abd_sums.abdstat_scatter_orders[i], 0);
644 	wmsum_init(&abd_sums.abdstat_scatter_page_multi_chunk, 0);
645 	wmsum_init(&abd_sums.abdstat_scatter_page_multi_zone, 0);
646 	wmsum_init(&abd_sums.abdstat_scatter_page_alloc_retry, 0);
647 	wmsum_init(&abd_sums.abdstat_scatter_sg_table_retry, 0);
648 
649 	abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED,
650 	    sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
651 	if (abd_ksp != NULL) {
652 		for (i = 0; i < ABD_MAX_ORDER; i++) {
653 			snprintf(abd_stats.abdstat_scatter_orders[i].name,
654 			    KSTAT_STRLEN, "scatter_order_%d", i);
655 			abd_stats.abdstat_scatter_orders[i].data_type =
656 			    KSTAT_DATA_UINT64;
657 		}
658 		abd_ksp->ks_data = &abd_stats;
659 		abd_ksp->ks_update = abd_kstats_update;
660 		kstat_install(abd_ksp);
661 	}
662 
663 	abd_alloc_zero_scatter();
664 }
665 
666 void
abd_fini(void)667 abd_fini(void)
668 {
669 	abd_free_zero_scatter();
670 
671 	if (abd_ksp != NULL) {
672 		kstat_delete(abd_ksp);
673 		abd_ksp = NULL;
674 	}
675 
676 	wmsum_fini(&abd_sums.abdstat_struct_size);
677 	wmsum_fini(&abd_sums.abdstat_linear_cnt);
678 	wmsum_fini(&abd_sums.abdstat_linear_data_size);
679 	wmsum_fini(&abd_sums.abdstat_scatter_cnt);
680 	wmsum_fini(&abd_sums.abdstat_scatter_data_size);
681 	wmsum_fini(&abd_sums.abdstat_scatter_chunk_waste);
682 	for (int i = 0; i < ABD_MAX_ORDER; i++)
683 		wmsum_fini(&abd_sums.abdstat_scatter_orders[i]);
684 	wmsum_fini(&abd_sums.abdstat_scatter_page_multi_chunk);
685 	wmsum_fini(&abd_sums.abdstat_scatter_page_multi_zone);
686 	wmsum_fini(&abd_sums.abdstat_scatter_page_alloc_retry);
687 	wmsum_fini(&abd_sums.abdstat_scatter_sg_table_retry);
688 
689 	if (abd_cache) {
690 		kmem_cache_destroy(abd_cache);
691 		abd_cache = NULL;
692 	}
693 }
694 
695 void
abd_free_linear_page(abd_t * abd)696 abd_free_linear_page(abd_t *abd)
697 {
698 	/* Transform it back into a scatter ABD for freeing */
699 	struct scatterlist *sg = abd->abd_u.abd_linear.abd_sgl;
700 
701 	/* When backed by user page unmap it */
702 	if (abd_is_from_pages(abd))
703 		zfs_kunmap(sg_page(sg));
704 	else
705 		abd_update_scatter_stats(abd, ABDSTAT_DECR);
706 
707 	abd->abd_flags &= ~ABD_FLAG_LINEAR;
708 	abd->abd_flags &= ~ABD_FLAG_LINEAR_PAGE;
709 	ABD_SCATTER(abd).abd_nents = 1;
710 	ABD_SCATTER(abd).abd_offset = 0;
711 	ABD_SCATTER(abd).abd_sgl = sg;
712 	abd_free_chunks(abd);
713 }
714 
715 /*
716  * Allocate a scatter ABD structure from user pages. The pages must be
717  * pinned with get_user_pages, or similiar, but need not be mapped via
718  * the kmap interfaces.
719  */
720 abd_t *
abd_alloc_from_pages(struct page ** pages,unsigned long offset,uint64_t size)721 abd_alloc_from_pages(struct page **pages, unsigned long offset, uint64_t size)
722 {
723 	uint_t npages = DIV_ROUND_UP(size, PAGE_SIZE);
724 	struct sg_table table;
725 
726 	VERIFY3U(size, <=, DMU_MAX_ACCESS);
727 	ASSERT3U(offset, <, PAGE_SIZE);
728 	ASSERT3P(pages, !=, NULL);
729 
730 	/*
731 	 * Even if this buf is filesystem metadata, we only track that we
732 	 * own the underlying data buffer, which is not true in this case.
733 	 * Therefore, we don't ever use ABD_FLAG_META here.
734 	 */
735 	abd_t *abd = abd_alloc_struct(0);
736 	abd->abd_flags |= ABD_FLAG_FROM_PAGES | ABD_FLAG_OWNER;
737 	abd->abd_size = size;
738 
739 	while (sg_alloc_table_from_pages(&table, pages, npages, offset,
740 	    size, __GFP_NOWARN | GFP_NOIO) != 0) {
741 		ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
742 		schedule_timeout_interruptible(1);
743 	}
744 
745 	if ((offset + size) <= PAGE_SIZE) {
746 		/*
747 		 * Since there is only one entry, this ABD can be represented
748 		 * as a linear buffer. All single-page (4K) ABD's constructed
749 		 * from a user page can be represented this way as long as the
750 		 * page is mapped to a virtual address. This allows us to
751 		 * apply an offset in to the mapped page.
752 		 *
753 		 * Note that kmap() must be used, not kmap_atomic(), because
754 		 * the mapping needs to bet set up on all CPUs. Using kmap()
755 		 * also enables the user of highmem pages when required.
756 		 */
757 		abd->abd_flags |= ABD_FLAG_LINEAR | ABD_FLAG_LINEAR_PAGE;
758 		abd->abd_u.abd_linear.abd_sgl = table.sgl;
759 		zfs_kmap(sg_page(table.sgl));
760 		ABD_LINEAR_BUF(abd) = sg_virt(table.sgl);
761 	} else {
762 		ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
763 		abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
764 
765 		ABD_SCATTER(abd).abd_offset = offset;
766 		ABD_SCATTER(abd).abd_sgl = table.sgl;
767 		ABD_SCATTER(abd).abd_nents = table.nents;
768 
769 		ASSERT0(ABD_SCATTER(abd).abd_offset);
770 	}
771 
772 	return (abd);
773 }
774 
775 /*
776  * If we're going to use this ABD for doing I/O using the block layer, the
777  * consumer of the ABD data doesn't care if it's scattered or not, and we don't
778  * plan to store this ABD in memory for a long period of time, we should
779  * allocate the ABD type that requires the least data copying to do the I/O.
780  *
781  * On Linux the optimal thing to do would be to use abd_get_offset() and
782  * construct a new ABD which shares the original pages thereby eliminating
783  * the copy.  But for the moment a new linear ABD is allocated until this
784  * performance optimization can be implemented.
785  */
786 abd_t *
abd_alloc_for_io(size_t size,boolean_t is_metadata)787 abd_alloc_for_io(size_t size, boolean_t is_metadata)
788 {
789 	return (abd_alloc(size, is_metadata));
790 }
791 
792 abd_t *
abd_get_offset_scatter(abd_t * abd,abd_t * sabd,size_t off,size_t size)793 abd_get_offset_scatter(abd_t *abd, abd_t *sabd, size_t off,
794     size_t size)
795 {
796 	(void) size;
797 	int i = 0;
798 	struct scatterlist *sg = NULL;
799 
800 	abd_verify(sabd);
801 	ASSERT3U(off, <=, sabd->abd_size);
802 
803 	size_t new_offset = ABD_SCATTER(sabd).abd_offset + off;
804 
805 	if (abd == NULL)
806 		abd = abd_alloc_struct(0);
807 
808 	/*
809 	 * Even if this buf is filesystem metadata, we only track that
810 	 * if we own the underlying data buffer, which is not true in
811 	 * this case. Therefore, we don't ever use ABD_FLAG_META here.
812 	 */
813 
814 	abd_for_each_sg(sabd, sg, ABD_SCATTER(sabd).abd_nents, i) {
815 		if (new_offset < sg->length)
816 			break;
817 		new_offset -= sg->length;
818 	}
819 
820 	ABD_SCATTER(abd).abd_sgl = sg;
821 	ABD_SCATTER(abd).abd_offset = new_offset;
822 	ABD_SCATTER(abd).abd_nents = ABD_SCATTER(sabd).abd_nents - i;
823 
824 	if (abd_is_from_pages(sabd))
825 		abd->abd_flags |= ABD_FLAG_FROM_PAGES;
826 
827 	return (abd);
828 }
829 
830 /*
831  * Initialize the abd_iter.
832  */
833 void
abd_iter_init(struct abd_iter * aiter,abd_t * abd)834 abd_iter_init(struct abd_iter *aiter, abd_t *abd)
835 {
836 	ASSERT(!abd_is_gang(abd));
837 	abd_verify(abd);
838 	memset(aiter, 0, sizeof (struct abd_iter));
839 	aiter->iter_abd = abd;
840 	if (!abd_is_linear(abd)) {
841 		aiter->iter_offset = ABD_SCATTER(abd).abd_offset;
842 		aiter->iter_sg = ABD_SCATTER(abd).abd_sgl;
843 	}
844 }
845 
846 /*
847  * This is just a helper function to see if we have exhausted the
848  * abd_iter and reached the end.
849  */
850 boolean_t
abd_iter_at_end(struct abd_iter * aiter)851 abd_iter_at_end(struct abd_iter *aiter)
852 {
853 	ASSERT3U(aiter->iter_pos, <=, aiter->iter_abd->abd_size);
854 	return (aiter->iter_pos == aiter->iter_abd->abd_size);
855 }
856 
857 /*
858  * Advance the iterator by a certain amount. Cannot be called when a chunk is
859  * in use. This can be safely called when the aiter has already exhausted, in
860  * which case this does nothing.
861  */
862 void
abd_iter_advance(struct abd_iter * aiter,size_t amount)863 abd_iter_advance(struct abd_iter *aiter, size_t amount)
864 {
865 	/*
866 	 * Ensure that last chunk is not in use. abd_iterate_*() must clear
867 	 * this state (directly or abd_iter_unmap()) before advancing.
868 	 */
869 	ASSERT3P(aiter->iter_mapaddr, ==, NULL);
870 	ASSERT0(aiter->iter_mapsize);
871 	ASSERT3P(aiter->iter_page, ==, NULL);
872 	ASSERT0(aiter->iter_page_doff);
873 	ASSERT0(aiter->iter_page_dsize);
874 
875 	/* There's nothing left to advance to, so do nothing */
876 	if (abd_iter_at_end(aiter))
877 		return;
878 
879 	aiter->iter_pos += amount;
880 	aiter->iter_offset += amount;
881 	if (!abd_is_linear(aiter->iter_abd)) {
882 		while (aiter->iter_offset >= aiter->iter_sg->length) {
883 			aiter->iter_offset -= aiter->iter_sg->length;
884 			aiter->iter_sg = sg_next(aiter->iter_sg);
885 			if (aiter->iter_sg == NULL) {
886 				ASSERT0(aiter->iter_offset);
887 				break;
888 			}
889 		}
890 	}
891 }
892 
893 /*
894  * Map the current chunk into aiter. This can be safely called when the aiter
895  * has already exhausted, in which case this does nothing.
896  */
897 void
abd_iter_map(struct abd_iter * aiter)898 abd_iter_map(struct abd_iter *aiter)
899 {
900 	void *paddr;
901 	size_t offset = 0;
902 
903 	ASSERT3P(aiter->iter_mapaddr, ==, NULL);
904 	ASSERT0(aiter->iter_mapsize);
905 
906 	/* There's nothing left to iterate over, so do nothing */
907 	if (abd_iter_at_end(aiter))
908 		return;
909 
910 	if (abd_is_linear(aiter->iter_abd)) {
911 		ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset);
912 		offset = aiter->iter_offset;
913 		aiter->iter_mapsize = aiter->iter_abd->abd_size - offset;
914 		paddr = ABD_LINEAR_BUF(aiter->iter_abd);
915 	} else {
916 		offset = aiter->iter_offset;
917 		aiter->iter_mapsize = MIN(aiter->iter_sg->length - offset,
918 		    aiter->iter_abd->abd_size - aiter->iter_pos);
919 
920 		paddr = zfs_kmap_local(sg_page(aiter->iter_sg));
921 	}
922 
923 	aiter->iter_mapaddr = (char *)paddr + offset;
924 }
925 
926 /*
927  * Unmap the current chunk from aiter. This can be safely called when the aiter
928  * has already exhausted, in which case this does nothing.
929  */
930 void
abd_iter_unmap(struct abd_iter * aiter)931 abd_iter_unmap(struct abd_iter *aiter)
932 {
933 	/* There's nothing left to unmap, so do nothing */
934 	if (abd_iter_at_end(aiter))
935 		return;
936 
937 	if (!abd_is_linear(aiter->iter_abd)) {
938 		/* LINTED E_FUNC_SET_NOT_USED */
939 		zfs_kunmap_local(aiter->iter_mapaddr - aiter->iter_offset);
940 	}
941 
942 	ASSERT3P(aiter->iter_mapaddr, !=, NULL);
943 	ASSERT3U(aiter->iter_mapsize, >, 0);
944 
945 	aiter->iter_mapaddr = NULL;
946 	aiter->iter_mapsize = 0;
947 }
948 
949 void
abd_cache_reap_now(void)950 abd_cache_reap_now(void)
951 {
952 }
953 
954 /*
955  * Borrow a raw buffer from an ABD without copying the contents of the ABD
956  * into the buffer. If the ABD is scattered, this will allocate a raw buffer
957  * whose contents are undefined. To copy over the existing data in the ABD, use
958  * abd_borrow_buf_copy() instead.
959  */
960 void *
abd_borrow_buf(abd_t * abd,size_t n)961 abd_borrow_buf(abd_t *abd, size_t n)
962 {
963 	void *buf;
964 	abd_verify(abd);
965 	ASSERT3U(abd->abd_size, >=, 0);
966 	/*
967 	 * In the event the ABD is composed of a single user page from Direct
968 	 * I/O we can not direclty return the raw buffer. This is a consequence
969 	 * of not being able to write protect the page and the contents of the
970 	 * page can be changed at any time by the user.
971 	 */
972 	if (abd_is_from_pages(abd)) {
973 		buf = zio_buf_alloc(n);
974 	} else if (abd_is_linear(abd)) {
975 		buf = abd_to_buf(abd);
976 	} else {
977 		buf = zio_buf_alloc(n);
978 	}
979 
980 #ifdef ZFS_DEBUG
981 	(void) zfs_refcount_add_many(&abd->abd_children, n, buf);
982 #endif
983 	return (buf);
984 }
985 
986 void *
abd_borrow_buf_copy(abd_t * abd,size_t n)987 abd_borrow_buf_copy(abd_t *abd, size_t n)
988 {
989 	void *buf = abd_borrow_buf(abd, n);
990 
991 	/*
992 	 * In the event the ABD is composed of a single user page from Direct
993 	 * I/O we must make sure copy the data over into the newly allocated
994 	 * buffer. This is a consequence of the fact that we can not write
995 	 * protect the user page and there is a risk the contents of the page
996 	 * could be changed by the user at any moment.
997 	 */
998 	if (!abd_is_linear(abd) || abd_is_from_pages(abd)) {
999 		abd_copy_to_buf(buf, abd, n);
1000 	}
1001 	return (buf);
1002 }
1003 
1004 /*
1005  * Return a borrowed raw buffer to an ABD. If the ABD is scatterd, this will
1006  * not change the contents of the ABD. If you want any changes you made to
1007  * buf to be copied back to abd, use abd_return_buf_copy() instead. If the
1008  * ABD is not constructed from user pages for Direct I/O then an ASSERT
1009  * checks to make sure the contents of buffer have not changed since it was
1010  * borrowed. We can not ASSERT that the contents of the buffer have not changed
1011  * if it is composed of user pages because the pages can not be placed under
1012  * write protection and the user could have possibly changed the contents in
1013  * the pages at any time. This is also an issue for Direct I/O reads. Checksum
1014  * verifications in the ZIO pipeline check for this issue and handle it by
1015  * returning an error on checksum verification failure.
1016  */
1017 void
abd_return_buf(abd_t * abd,void * buf,size_t n)1018 abd_return_buf(abd_t *abd, void *buf, size_t n)
1019 {
1020 	abd_verify(abd);
1021 	ASSERT3U(abd->abd_size, >=, n);
1022 #ifdef ZFS_DEBUG
1023 	(void) zfs_refcount_remove_many(&abd->abd_children, n, buf);
1024 #endif
1025 	if (abd_is_from_pages(abd)) {
1026 		zio_buf_free(buf, n);
1027 	} else if (abd_is_linear(abd)) {
1028 		ASSERT3P(buf, ==, abd_to_buf(abd));
1029 	} else if (abd_is_gang(abd)) {
1030 #ifdef ZFS_DEBUG
1031 		/*
1032 		 * We have to be careful with gang ABD's that we do not ASSERT0
1033 		 * for any ABD's that contain user pages from Direct I/O. In
1034 		 * order to handle this, we just iterate through the gang ABD
1035 		 * and only verify ABDs that are not from user pages.
1036 		 */
1037 		void *cmp_buf = buf;
1038 
1039 		for (abd_t *cabd = list_head(&ABD_GANG(abd).abd_gang_chain);
1040 		    cabd != NULL;
1041 		    cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
1042 			if (!abd_is_from_pages(cabd)) {
1043 				ASSERT0(abd_cmp_buf(cabd, cmp_buf,
1044 				    cabd->abd_size));
1045 			}
1046 			cmp_buf = (char *)cmp_buf + cabd->abd_size;
1047 		}
1048 #endif
1049 		zio_buf_free(buf, n);
1050 	} else {
1051 		ASSERT0(abd_cmp_buf(abd, buf, n));
1052 		zio_buf_free(buf, n);
1053 	}
1054 }
1055 
1056 void
abd_return_buf_copy(abd_t * abd,void * buf,size_t n)1057 abd_return_buf_copy(abd_t *abd, void *buf, size_t n)
1058 {
1059 	if (!abd_is_linear(abd) || abd_is_from_pages(abd)) {
1060 		abd_copy_from_buf(abd, buf, n);
1061 	}
1062 	abd_return_buf(abd, buf, n);
1063 }
1064 
1065 /*
1066  * This is abd_iter_page(), the function underneath abd_iterate_page_func().
1067  * It yields the next page struct and data offset and size within it, without
1068  * mapping it into the address space.
1069  */
1070 
1071 /*
1072  * "Compound pages" are a group of pages that can be referenced from a single
1073  * struct page *. Its organised as a "head" page, followed by a series of
1074  * "tail" pages.
1075  *
1076  * In OpenZFS, compound pages are allocated using the __GFP_COMP flag, which we
1077  * get from scatter ABDs and SPL vmalloc slabs (ie >16K allocations). So a
1078  * great many of the IO buffers we get are going to be of this type.
1079  *
1080  * The tail pages are just regular PAGESIZE pages, and can be safely used
1081  * as-is. However, the head page has length covering itself and all the tail
1082  * pages. If the ABD chunk spans multiple pages, then we can use the head page
1083  * and a >PAGESIZE length, which is far more efficient.
1084  *
1085  * Before kernel 4.5 however, compound page heads were refcounted separately
1086  * from tail pages, such that moving back to the head page would require us to
1087  * take a reference to it and releasing it once we're completely finished with
1088  * it. In practice, that meant when our caller is done with the ABD, which we
1089  * have no insight into from here. Rather than contort this API to track head
1090  * page references on such ancient kernels, we disabled this special compound
1091  * page handling on kernels before 4.5, instead just using treating each page
1092  * within it as a regular PAGESIZE page (which it is). This is slightly less
1093  * efficient, but makes everything far simpler.
1094  *
1095  * We no longer support kernels before 4.5, so in theory none of this is
1096  * necessary. However, this code is still relatively new in the grand scheme of
1097  * things, so I'm leaving the ability to compile this out for the moment.
1098  *
1099  * Setting/clearing ABD_ITER_COMPOUND_PAGES below enables/disables the special
1100  * handling, by defining the ABD_ITER_PAGE_SIZE(page) macro to understand
1101  * compound pages, or not, and compiling in/out the support to detect compound
1102  * tail pages and move back to the start.
1103  */
1104 
1105 /* On by default */
1106 #define	ABD_ITER_COMPOUND_PAGES
1107 
1108 #ifdef ABD_ITER_COMPOUND_PAGES
1109 #define	ABD_ITER_PAGE_SIZE(page)	\
1110 	(PageCompound(page) ? page_size(page) : PAGESIZE)
1111 #else
1112 #define	ABD_ITER_PAGE_SIZE(page)	(PAGESIZE)
1113 #endif
1114 
1115 void
abd_iter_page(struct abd_iter * aiter)1116 abd_iter_page(struct abd_iter *aiter)
1117 {
1118 	if (abd_iter_at_end(aiter)) {
1119 		aiter->iter_page = NULL;
1120 		aiter->iter_page_doff = 0;
1121 		aiter->iter_page_dsize = 0;
1122 		return;
1123 	}
1124 
1125 	struct page *page;
1126 	size_t doff, dsize;
1127 
1128 	/*
1129 	 * Find the page, and the start of the data within it. This is computed
1130 	 * differently for linear and scatter ABDs; linear is referenced by
1131 	 * virtual memory location, while scatter is referenced by page
1132 	 * pointer.
1133 	 */
1134 	if (abd_is_linear(aiter->iter_abd)) {
1135 		ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset);
1136 
1137 		/* memory address at iter_pos */
1138 		void *paddr = ABD_LINEAR_BUF(aiter->iter_abd) + aiter->iter_pos;
1139 
1140 		/* struct page for address */
1141 		page = is_vmalloc_addr(paddr) ?
1142 		    vmalloc_to_page(paddr) : virt_to_page(paddr);
1143 
1144 		/* offset of address within the page */
1145 		doff = offset_in_page(paddr);
1146 	} else {
1147 		ASSERT(!abd_is_gang(aiter->iter_abd));
1148 
1149 		/* current scatter page */
1150 		page = nth_page(sg_page(aiter->iter_sg),
1151 		    aiter->iter_offset >> PAGE_SHIFT);
1152 
1153 		/* position within page */
1154 		doff = aiter->iter_offset & (PAGESIZE - 1);
1155 	}
1156 
1157 #ifdef ABD_ITER_COMPOUND_PAGES
1158 	if (PageTail(page)) {
1159 		/*
1160 		 * If this is a compound tail page, move back to the head, and
1161 		 * adjust the offset to match. This may let us yield a much
1162 		 * larger amount of data from a single logical page, and so
1163 		 * leave our caller with fewer pages to process.
1164 		 */
1165 		struct page *head = compound_head(page);
1166 		doff += ((page - head) * PAGESIZE);
1167 		page = head;
1168 	}
1169 #endif
1170 
1171 	ASSERT(page);
1172 
1173 	/*
1174 	 * Compute the maximum amount of data we can take from this page. This
1175 	 * is the smaller of:
1176 	 * - the remaining space in the page
1177 	 * - the remaining space in this scatterlist entry (which may not cover
1178 	 *   the entire page)
1179 	 * - the remaining space in the abd (which may not cover the entire
1180 	 *   scatterlist entry)
1181 	 */
1182 	dsize = MIN(ABD_ITER_PAGE_SIZE(page) - doff,
1183 	    aiter->iter_abd->abd_size - aiter->iter_pos);
1184 	if (!abd_is_linear(aiter->iter_abd))
1185 		dsize = MIN(dsize, aiter->iter_sg->length - aiter->iter_offset);
1186 	ASSERT3U(dsize, >, 0);
1187 
1188 	/* final iterator outputs */
1189 	aiter->iter_page = page;
1190 	aiter->iter_page_doff = doff;
1191 	aiter->iter_page_dsize = dsize;
1192 }
1193 
1194 /*
1195  * Note: ABD BIO functions only needed to support vdev_classic. See comments in
1196  * vdev_disk.c.
1197  */
1198 
1199 /*
1200  * bio_nr_pages for ABD.
1201  * @off is the offset in @abd
1202  */
1203 unsigned long
abd_nr_pages_off(abd_t * abd,unsigned int size,size_t off)1204 abd_nr_pages_off(abd_t *abd, unsigned int size, size_t off)
1205 {
1206 	unsigned long pos;
1207 
1208 	if (abd_is_gang(abd)) {
1209 		unsigned long count = 0;
1210 
1211 		for (abd_t *cabd = abd_gang_get_offset(abd, &off);
1212 		    cabd != NULL && size != 0;
1213 		    cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
1214 			ASSERT3U(off, <, cabd->abd_size);
1215 			int mysize = MIN(size, cabd->abd_size - off);
1216 			count += abd_nr_pages_off(cabd, mysize, off);
1217 			size -= mysize;
1218 			off = 0;
1219 		}
1220 		return (count);
1221 	}
1222 
1223 	if (abd_is_linear(abd))
1224 		pos = (unsigned long)abd_to_buf(abd) + off;
1225 	else
1226 		pos = ABD_SCATTER(abd).abd_offset + off;
1227 
1228 	return (((pos + size + PAGESIZE - 1) >> PAGE_SHIFT) -
1229 	    (pos >> PAGE_SHIFT));
1230 }
1231 
1232 static unsigned int
bio_map(struct bio * bio,void * buf_ptr,unsigned int bio_size)1233 bio_map(struct bio *bio, void *buf_ptr, unsigned int bio_size)
1234 {
1235 	unsigned int offset, size, i;
1236 	struct page *page;
1237 
1238 	offset = offset_in_page(buf_ptr);
1239 	for (i = 0; i < bio->bi_max_vecs; i++) {
1240 		size = PAGE_SIZE - offset;
1241 
1242 		if (bio_size <= 0)
1243 			break;
1244 
1245 		if (size > bio_size)
1246 			size = bio_size;
1247 
1248 		if (is_vmalloc_addr(buf_ptr))
1249 			page = vmalloc_to_page(buf_ptr);
1250 		else
1251 			page = virt_to_page(buf_ptr);
1252 
1253 		/*
1254 		 * Some network related block device uses tcp_sendpage, which
1255 		 * doesn't behave well when using 0-count page, this is a
1256 		 * safety net to catch them.
1257 		 */
1258 		ASSERT3S(page_count(page), >, 0);
1259 
1260 		if (bio_add_page(bio, page, size, offset) != size)
1261 			break;
1262 
1263 		buf_ptr += size;
1264 		bio_size -= size;
1265 		offset = 0;
1266 	}
1267 
1268 	return (bio_size);
1269 }
1270 
1271 /*
1272  * bio_map for gang ABD.
1273  */
1274 static unsigned int
abd_gang_bio_map_off(struct bio * bio,abd_t * abd,unsigned int io_size,size_t off)1275 abd_gang_bio_map_off(struct bio *bio, abd_t *abd,
1276     unsigned int io_size, size_t off)
1277 {
1278 	ASSERT(abd_is_gang(abd));
1279 
1280 	for (abd_t *cabd = abd_gang_get_offset(abd, &off);
1281 	    cabd != NULL;
1282 	    cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
1283 		ASSERT3U(off, <, cabd->abd_size);
1284 		int size = MIN(io_size, cabd->abd_size - off);
1285 		int remainder = abd_bio_map_off(bio, cabd, size, off);
1286 		io_size -= (size - remainder);
1287 		if (io_size == 0 || remainder > 0)
1288 			return (io_size);
1289 		off = 0;
1290 	}
1291 	ASSERT0(io_size);
1292 	return (io_size);
1293 }
1294 
1295 /*
1296  * bio_map for ABD.
1297  * @off is the offset in @abd
1298  * Remaining IO size is returned
1299  */
1300 unsigned int
abd_bio_map_off(struct bio * bio,abd_t * abd,unsigned int io_size,size_t off)1301 abd_bio_map_off(struct bio *bio, abd_t *abd,
1302     unsigned int io_size, size_t off)
1303 {
1304 	struct abd_iter aiter;
1305 
1306 	ASSERT3U(io_size, <=, abd->abd_size - off);
1307 	if (abd_is_linear(abd))
1308 		return (bio_map(bio, ((char *)abd_to_buf(abd)) + off, io_size));
1309 
1310 	ASSERT(!abd_is_linear(abd));
1311 	if (abd_is_gang(abd))
1312 		return (abd_gang_bio_map_off(bio, abd, io_size, off));
1313 
1314 	abd_iter_init(&aiter, abd);
1315 	abd_iter_advance(&aiter, off);
1316 
1317 	for (int i = 0; i < bio->bi_max_vecs; i++) {
1318 		struct page *pg;
1319 		size_t len, sgoff, pgoff;
1320 		struct scatterlist *sg;
1321 
1322 		if (io_size <= 0)
1323 			break;
1324 
1325 		sg = aiter.iter_sg;
1326 		sgoff = aiter.iter_offset;
1327 		pgoff = sgoff & (PAGESIZE - 1);
1328 		len = MIN(io_size, PAGESIZE - pgoff);
1329 		ASSERT(len > 0);
1330 
1331 		pg = nth_page(sg_page(sg), sgoff >> PAGE_SHIFT);
1332 		if (bio_add_page(bio, pg, len, pgoff) != len)
1333 			break;
1334 
1335 		io_size -= len;
1336 		abd_iter_advance(&aiter, len);
1337 	}
1338 
1339 	return (io_size);
1340 }
1341 
1342 /* Tunable Parameters */
1343 module_param(zfs_abd_scatter_enabled, int, 0644);
1344 MODULE_PARM_DESC(zfs_abd_scatter_enabled,
1345 	"Toggle whether ABD allocations must be linear.");
1346 module_param(zfs_abd_scatter_min_size, int, 0644);
1347 MODULE_PARM_DESC(zfs_abd_scatter_min_size,
1348 	"Minimum size of scatter allocations.");
1349 /* CSTYLED */
1350 module_param(zfs_abd_scatter_max_order, uint, 0644);
1351 MODULE_PARM_DESC(zfs_abd_scatter_max_order,
1352 	"Maximum order allocation used for a scatter ABD.");
1353