1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2014 by Chunwei Chen. All rights reserved. 23 * Copyright (c) 2019 by Delphix. All rights reserved. 24 */ 25 26 /* 27 * See abd.c for a general overview of the arc buffered data (ABD). 28 * 29 * Linear buffers act exactly like normal buffers and are always mapped into the 30 * kernel's virtual memory space, while scattered ABD data chunks are allocated 31 * as physical pages and then mapped in only while they are actually being 32 * accessed through one of the abd_* library functions. Using scattered ABDs 33 * provides several benefits: 34 * 35 * (1) They avoid use of kmem_*, preventing performance problems where running 36 * kmem_reap on very large memory systems never finishes and causes 37 * constant TLB shootdowns. 38 * 39 * (2) Fragmentation is less of an issue since when we are at the limit of 40 * allocatable space, we won't have to search around for a long free 41 * hole in the VA space for large ARC allocations. Each chunk is mapped in 42 * individually, so even if we are using HIGHMEM (see next point) we 43 * wouldn't need to worry about finding a contiguous address range. 44 * 45 * (3) If we are not using HIGHMEM, then all physical memory is always 46 * mapped into the kernel's address space, so we also avoid the map / 47 * unmap costs on each ABD access. 48 * 49 * If we are not using HIGHMEM, scattered buffers which have only one chunk 50 * can be treated as linear buffers, because they are contiguous in the 51 * kernel's virtual address space. See abd_alloc_chunks() for details. 52 */ 53 54 #include <sys/abd_impl.h> 55 #include <sys/param.h> 56 #include <sys/zio.h> 57 #include <sys/arc.h> 58 #include <sys/zfs_context.h> 59 #include <sys/zfs_znode.h> 60 #ifdef _KERNEL 61 #include <linux/kmap_compat.h> 62 #include <linux/scatterlist.h> 63 #else 64 #define MAX_ORDER 1 65 #endif 66 67 typedef struct abd_stats { 68 kstat_named_t abdstat_struct_size; 69 kstat_named_t abdstat_linear_cnt; 70 kstat_named_t abdstat_linear_data_size; 71 kstat_named_t abdstat_scatter_cnt; 72 kstat_named_t abdstat_scatter_data_size; 73 kstat_named_t abdstat_scatter_chunk_waste; 74 kstat_named_t abdstat_scatter_orders[MAX_ORDER]; 75 kstat_named_t abdstat_scatter_page_multi_chunk; 76 kstat_named_t abdstat_scatter_page_multi_zone; 77 kstat_named_t abdstat_scatter_page_alloc_retry; 78 kstat_named_t abdstat_scatter_sg_table_retry; 79 } abd_stats_t; 80 81 static abd_stats_t abd_stats = { 82 /* Amount of memory occupied by all of the abd_t struct allocations */ 83 { "struct_size", KSTAT_DATA_UINT64 }, 84 /* 85 * The number of linear ABDs which are currently allocated, excluding 86 * ABDs which don't own their data (for instance the ones which were 87 * allocated through abd_get_offset() and abd_get_from_buf()). If an 88 * ABD takes ownership of its buf then it will become tracked. 89 */ 90 { "linear_cnt", KSTAT_DATA_UINT64 }, 91 /* Amount of data stored in all linear ABDs tracked by linear_cnt */ 92 { "linear_data_size", KSTAT_DATA_UINT64 }, 93 /* 94 * The number of scatter ABDs which are currently allocated, excluding 95 * ABDs which don't own their data (for instance the ones which were 96 * allocated through abd_get_offset()). 97 */ 98 { "scatter_cnt", KSTAT_DATA_UINT64 }, 99 /* Amount of data stored in all scatter ABDs tracked by scatter_cnt */ 100 { "scatter_data_size", KSTAT_DATA_UINT64 }, 101 /* 102 * The amount of space wasted at the end of the last chunk across all 103 * scatter ABDs tracked by scatter_cnt. 104 */ 105 { "scatter_chunk_waste", KSTAT_DATA_UINT64 }, 106 /* 107 * The number of compound allocations of a given order. These 108 * allocations are spread over all currently allocated ABDs, and 109 * act as a measure of memory fragmentation. 110 */ 111 { { "scatter_order_N", KSTAT_DATA_UINT64 } }, 112 /* 113 * The number of scatter ABDs which contain multiple chunks. 114 * ABDs are preferentially allocated from the minimum number of 115 * contiguous multi-page chunks, a single chunk is optimal. 116 */ 117 { "scatter_page_multi_chunk", KSTAT_DATA_UINT64 }, 118 /* 119 * The number of scatter ABDs which are split across memory zones. 120 * ABDs are preferentially allocated using pages from a single zone. 121 */ 122 { "scatter_page_multi_zone", KSTAT_DATA_UINT64 }, 123 /* 124 * The total number of retries encountered when attempting to 125 * allocate the pages to populate the scatter ABD. 126 */ 127 { "scatter_page_alloc_retry", KSTAT_DATA_UINT64 }, 128 /* 129 * The total number of retries encountered when attempting to 130 * allocate the sg table for an ABD. 131 */ 132 { "scatter_sg_table_retry", KSTAT_DATA_UINT64 }, 133 }; 134 135 #define abd_for_each_sg(abd, sg, n, i) \ 136 for_each_sg(ABD_SCATTER(abd).abd_sgl, sg, n, i) 137 138 unsigned zfs_abd_scatter_max_order = MAX_ORDER - 1; 139 140 /* 141 * zfs_abd_scatter_min_size is the minimum allocation size to use scatter 142 * ABD's. Smaller allocations will use linear ABD's which uses 143 * zio_[data_]buf_alloc(). 144 * 145 * Scatter ABD's use at least one page each, so sub-page allocations waste 146 * some space when allocated as scatter (e.g. 2KB scatter allocation wastes 147 * half of each page). Using linear ABD's for small allocations means that 148 * they will be put on slabs which contain many allocations. This can 149 * improve memory efficiency, but it also makes it much harder for ARC 150 * evictions to actually free pages, because all the buffers on one slab need 151 * to be freed in order for the slab (and underlying pages) to be freed. 152 * Typically, 512B and 1KB kmem caches have 16 buffers per slab, so it's 153 * possible for them to actually waste more memory than scatter (one page per 154 * buf = wasting 3/4 or 7/8th; one buf per slab = wasting 15/16th). 155 * 156 * Spill blocks are typically 512B and are heavily used on systems running 157 * selinux with the default dnode size and the `xattr=sa` property set. 158 * 159 * By default we use linear allocations for 512B and 1KB, and scatter 160 * allocations for larger (1.5KB and up). 161 */ 162 int zfs_abd_scatter_min_size = 512 * 3; 163 164 /* 165 * We use a scattered SPA_MAXBLOCKSIZE sized ABD whose pages are 166 * just a single zero'd page. This allows us to conserve memory by 167 * only using a single zero page for the scatterlist. 168 */ 169 abd_t *abd_zero_scatter = NULL; 170 171 struct page; 172 /* 173 * abd_zero_page we will be an allocated zero'd PAGESIZE buffer, which is 174 * assigned to set each of the pages of abd_zero_scatter. 175 */ 176 static struct page *abd_zero_page = NULL; 177 178 static kmem_cache_t *abd_cache = NULL; 179 static kstat_t *abd_ksp; 180 181 static uint_t 182 abd_chunkcnt_for_bytes(size_t size) 183 { 184 return (P2ROUNDUP(size, PAGESIZE) / PAGESIZE); 185 } 186 187 abd_t * 188 abd_alloc_struct(size_t size) 189 { 190 /* 191 * In Linux we do not use the size passed in during ABD 192 * allocation, so we just ignore it. 193 */ 194 abd_t *abd = kmem_cache_alloc(abd_cache, KM_PUSHPAGE); 195 ASSERT3P(abd, !=, NULL); 196 list_link_init(&abd->abd_gang_link); 197 mutex_init(&abd->abd_mtx, NULL, MUTEX_DEFAULT, NULL); 198 ABDSTAT_INCR(abdstat_struct_size, sizeof (abd_t)); 199 200 return (abd); 201 } 202 203 void 204 abd_free_struct(abd_t *abd) 205 { 206 mutex_destroy(&abd->abd_mtx); 207 ASSERT(!list_link_active(&abd->abd_gang_link)); 208 kmem_cache_free(abd_cache, abd); 209 ABDSTAT_INCR(abdstat_struct_size, -(int)sizeof (abd_t)); 210 } 211 212 #ifdef _KERNEL 213 /* 214 * Mark zfs data pages so they can be excluded from kernel crash dumps 215 */ 216 #ifdef _LP64 217 #define ABD_FILE_CACHE_PAGE 0x2F5ABDF11ECAC4E 218 219 static inline void 220 abd_mark_zfs_page(struct page *page) 221 { 222 get_page(page); 223 SetPagePrivate(page); 224 set_page_private(page, ABD_FILE_CACHE_PAGE); 225 } 226 227 static inline void 228 abd_unmark_zfs_page(struct page *page) 229 { 230 set_page_private(page, 0UL); 231 ClearPagePrivate(page); 232 put_page(page); 233 } 234 #else 235 #define abd_mark_zfs_page(page) 236 #define abd_unmark_zfs_page(page) 237 #endif /* _LP64 */ 238 239 #ifndef CONFIG_HIGHMEM 240 241 #ifndef __GFP_RECLAIM 242 #define __GFP_RECLAIM __GFP_WAIT 243 #endif 244 245 /* 246 * The goal is to minimize fragmentation by preferentially populating ABDs 247 * with higher order compound pages from a single zone. Allocation size is 248 * progressively decreased until it can be satisfied without performing 249 * reclaim or compaction. When necessary this function will degenerate to 250 * allocating individual pages and allowing reclaim to satisfy allocations. 251 */ 252 void 253 abd_alloc_chunks(abd_t *abd, size_t size) 254 { 255 struct list_head pages; 256 struct sg_table table; 257 struct scatterlist *sg; 258 struct page *page, *tmp_page = NULL; 259 gfp_t gfp = __GFP_NOWARN | GFP_NOIO; 260 gfp_t gfp_comp = (gfp | __GFP_NORETRY | __GFP_COMP) & ~__GFP_RECLAIM; 261 int max_order = MIN(zfs_abd_scatter_max_order, MAX_ORDER - 1); 262 int nr_pages = abd_chunkcnt_for_bytes(size); 263 int chunks = 0, zones = 0; 264 size_t remaining_size; 265 int nid = NUMA_NO_NODE; 266 int alloc_pages = 0; 267 268 INIT_LIST_HEAD(&pages); 269 270 while (alloc_pages < nr_pages) { 271 unsigned chunk_pages; 272 int order; 273 274 order = MIN(highbit64(nr_pages - alloc_pages) - 1, max_order); 275 chunk_pages = (1U << order); 276 277 page = alloc_pages_node(nid, order ? gfp_comp : gfp, order); 278 if (page == NULL) { 279 if (order == 0) { 280 ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry); 281 schedule_timeout_interruptible(1); 282 } else { 283 max_order = MAX(0, order - 1); 284 } 285 continue; 286 } 287 288 list_add_tail(&page->lru, &pages); 289 290 if ((nid != NUMA_NO_NODE) && (page_to_nid(page) != nid)) 291 zones++; 292 293 nid = page_to_nid(page); 294 ABDSTAT_BUMP(abdstat_scatter_orders[order]); 295 chunks++; 296 alloc_pages += chunk_pages; 297 } 298 299 ASSERT3S(alloc_pages, ==, nr_pages); 300 301 while (sg_alloc_table(&table, chunks, gfp)) { 302 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry); 303 schedule_timeout_interruptible(1); 304 } 305 306 sg = table.sgl; 307 remaining_size = size; 308 list_for_each_entry_safe(page, tmp_page, &pages, lru) { 309 size_t sg_size = MIN(PAGESIZE << compound_order(page), 310 remaining_size); 311 sg_set_page(sg, page, sg_size, 0); 312 abd_mark_zfs_page(page); 313 remaining_size -= sg_size; 314 315 sg = sg_next(sg); 316 list_del(&page->lru); 317 } 318 319 /* 320 * These conditions ensure that a possible transformation to a linear 321 * ABD would be valid. 322 */ 323 ASSERT(!PageHighMem(sg_page(table.sgl))); 324 ASSERT0(ABD_SCATTER(abd).abd_offset); 325 326 if (table.nents == 1) { 327 /* 328 * Since there is only one entry, this ABD can be represented 329 * as a linear buffer. All single-page (4K) ABD's can be 330 * represented this way. Some multi-page ABD's can also be 331 * represented this way, if we were able to allocate a single 332 * "chunk" (higher-order "page" which represents a power-of-2 333 * series of physically-contiguous pages). This is often the 334 * case for 2-page (8K) ABD's. 335 * 336 * Representing a single-entry scatter ABD as a linear ABD 337 * has the performance advantage of avoiding the copy (and 338 * allocation) in abd_borrow_buf_copy / abd_return_buf_copy. 339 * A performance increase of around 5% has been observed for 340 * ARC-cached reads (of small blocks which can take advantage 341 * of this). 342 * 343 * Note that this optimization is only possible because the 344 * pages are always mapped into the kernel's address space. 345 * This is not the case for highmem pages, so the 346 * optimization can not be made there. 347 */ 348 abd->abd_flags |= ABD_FLAG_LINEAR; 349 abd->abd_flags |= ABD_FLAG_LINEAR_PAGE; 350 abd->abd_u.abd_linear.abd_sgl = table.sgl; 351 ABD_LINEAR_BUF(abd) = page_address(sg_page(table.sgl)); 352 } else if (table.nents > 1) { 353 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); 354 abd->abd_flags |= ABD_FLAG_MULTI_CHUNK; 355 356 if (zones) { 357 ABDSTAT_BUMP(abdstat_scatter_page_multi_zone); 358 abd->abd_flags |= ABD_FLAG_MULTI_ZONE; 359 } 360 361 ABD_SCATTER(abd).abd_sgl = table.sgl; 362 ABD_SCATTER(abd).abd_nents = table.nents; 363 } 364 } 365 #else 366 367 /* 368 * Allocate N individual pages to construct a scatter ABD. This function 369 * makes no attempt to request contiguous pages and requires the minimal 370 * number of kernel interfaces. It's designed for maximum compatibility. 371 */ 372 void 373 abd_alloc_chunks(abd_t *abd, size_t size) 374 { 375 struct scatterlist *sg = NULL; 376 struct sg_table table; 377 struct page *page; 378 gfp_t gfp = __GFP_NOWARN | GFP_NOIO; 379 int nr_pages = abd_chunkcnt_for_bytes(size); 380 int i = 0; 381 382 while (sg_alloc_table(&table, nr_pages, gfp)) { 383 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry); 384 schedule_timeout_interruptible(1); 385 } 386 387 ASSERT3U(table.nents, ==, nr_pages); 388 ABD_SCATTER(abd).abd_sgl = table.sgl; 389 ABD_SCATTER(abd).abd_nents = nr_pages; 390 391 abd_for_each_sg(abd, sg, nr_pages, i) { 392 while ((page = __page_cache_alloc(gfp)) == NULL) { 393 ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry); 394 schedule_timeout_interruptible(1); 395 } 396 397 ABDSTAT_BUMP(abdstat_scatter_orders[0]); 398 sg_set_page(sg, page, PAGESIZE, 0); 399 abd_mark_zfs_page(page); 400 } 401 402 if (nr_pages > 1) { 403 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); 404 abd->abd_flags |= ABD_FLAG_MULTI_CHUNK; 405 } 406 } 407 #endif /* !CONFIG_HIGHMEM */ 408 409 /* 410 * This must be called if any of the sg_table allocation functions 411 * are called. 412 */ 413 static void 414 abd_free_sg_table(abd_t *abd) 415 { 416 struct sg_table table; 417 418 table.sgl = ABD_SCATTER(abd).abd_sgl; 419 table.nents = table.orig_nents = ABD_SCATTER(abd).abd_nents; 420 sg_free_table(&table); 421 } 422 423 void 424 abd_free_chunks(abd_t *abd) 425 { 426 struct scatterlist *sg = NULL; 427 struct page *page; 428 int nr_pages = ABD_SCATTER(abd).abd_nents; 429 int order, i = 0; 430 431 if (abd->abd_flags & ABD_FLAG_MULTI_ZONE) 432 ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_zone); 433 434 if (abd->abd_flags & ABD_FLAG_MULTI_CHUNK) 435 ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk); 436 437 abd_for_each_sg(abd, sg, nr_pages, i) { 438 page = sg_page(sg); 439 abd_unmark_zfs_page(page); 440 order = compound_order(page); 441 __free_pages(page, order); 442 ASSERT3U(sg->length, <=, PAGE_SIZE << order); 443 ABDSTAT_BUMPDOWN(abdstat_scatter_orders[order]); 444 } 445 abd_free_sg_table(abd); 446 } 447 448 /* 449 * Allocate scatter ABD of size SPA_MAXBLOCKSIZE, where each page in 450 * the scatterlist will be set to the zero'd out buffer abd_zero_page. 451 */ 452 static void 453 abd_alloc_zero_scatter(void) 454 { 455 struct scatterlist *sg = NULL; 456 struct sg_table table; 457 gfp_t gfp = __GFP_NOWARN | GFP_NOIO; 458 gfp_t gfp_zero_page = gfp | __GFP_ZERO; 459 int nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE); 460 int i = 0; 461 462 while ((abd_zero_page = __page_cache_alloc(gfp_zero_page)) == NULL) { 463 ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry); 464 schedule_timeout_interruptible(1); 465 } 466 abd_mark_zfs_page(abd_zero_page); 467 468 while (sg_alloc_table(&table, nr_pages, gfp)) { 469 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry); 470 schedule_timeout_interruptible(1); 471 } 472 ASSERT3U(table.nents, ==, nr_pages); 473 474 abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE); 475 abd_zero_scatter->abd_flags = ABD_FLAG_OWNER; 476 ABD_SCATTER(abd_zero_scatter).abd_offset = 0; 477 ABD_SCATTER(abd_zero_scatter).abd_sgl = table.sgl; 478 ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages; 479 abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE; 480 abd_zero_scatter->abd_parent = NULL; 481 abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS; 482 zfs_refcount_create(&abd_zero_scatter->abd_children); 483 484 abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) { 485 sg_set_page(sg, abd_zero_page, PAGESIZE, 0); 486 } 487 488 ABDSTAT_BUMP(abdstat_scatter_cnt); 489 ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE); 490 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); 491 } 492 493 #else /* _KERNEL */ 494 495 #ifndef PAGE_SHIFT 496 #define PAGE_SHIFT (highbit64(PAGESIZE)-1) 497 #endif 498 499 #define zfs_kmap_atomic(chunk, km) ((void *)chunk) 500 #define zfs_kunmap_atomic(addr, km) do { (void)(addr); } while (0) 501 #define local_irq_save(flags) do { (void)(flags); } while (0) 502 #define local_irq_restore(flags) do { (void)(flags); } while (0) 503 #define nth_page(pg, i) \ 504 ((struct page *)((void *)(pg) + (i) * PAGESIZE)) 505 506 struct scatterlist { 507 struct page *page; 508 int length; 509 int end; 510 }; 511 512 static void 513 sg_init_table(struct scatterlist *sg, int nr) 514 { 515 memset(sg, 0, nr * sizeof (struct scatterlist)); 516 sg[nr - 1].end = 1; 517 } 518 519 /* 520 * This must be called if any of the sg_table allocation functions 521 * are called. 522 */ 523 static void 524 abd_free_sg_table(abd_t *abd) 525 { 526 int nents = ABD_SCATTER(abd).abd_nents; 527 vmem_free(ABD_SCATTER(abd).abd_sgl, 528 nents * sizeof (struct scatterlist)); 529 } 530 531 #define for_each_sg(sgl, sg, nr, i) \ 532 for ((i) = 0, (sg) = (sgl); (i) < (nr); (i)++, (sg) = sg_next(sg)) 533 534 static inline void 535 sg_set_page(struct scatterlist *sg, struct page *page, unsigned int len, 536 unsigned int offset) 537 { 538 /* currently we don't use offset */ 539 ASSERT(offset == 0); 540 sg->page = page; 541 sg->length = len; 542 } 543 544 static inline struct page * 545 sg_page(struct scatterlist *sg) 546 { 547 return (sg->page); 548 } 549 550 static inline struct scatterlist * 551 sg_next(struct scatterlist *sg) 552 { 553 if (sg->end) 554 return (NULL); 555 556 return (sg + 1); 557 } 558 559 void 560 abd_alloc_chunks(abd_t *abd, size_t size) 561 { 562 unsigned nr_pages = abd_chunkcnt_for_bytes(size); 563 struct scatterlist *sg; 564 int i; 565 566 ABD_SCATTER(abd).abd_sgl = vmem_alloc(nr_pages * 567 sizeof (struct scatterlist), KM_SLEEP); 568 sg_init_table(ABD_SCATTER(abd).abd_sgl, nr_pages); 569 570 abd_for_each_sg(abd, sg, nr_pages, i) { 571 struct page *p = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP); 572 sg_set_page(sg, p, PAGESIZE, 0); 573 } 574 ABD_SCATTER(abd).abd_nents = nr_pages; 575 } 576 577 void 578 abd_free_chunks(abd_t *abd) 579 { 580 int i, n = ABD_SCATTER(abd).abd_nents; 581 struct scatterlist *sg; 582 583 abd_for_each_sg(abd, sg, n, i) { 584 for (int j = 0; j < sg->length; j += PAGESIZE) { 585 struct page *p = nth_page(sg_page(sg), j >> PAGE_SHIFT); 586 umem_free(p, PAGESIZE); 587 } 588 } 589 abd_free_sg_table(abd); 590 } 591 592 static void 593 abd_alloc_zero_scatter(void) 594 { 595 unsigned nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE); 596 struct scatterlist *sg; 597 int i; 598 599 abd_zero_page = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP); 600 memset(abd_zero_page, 0, PAGESIZE); 601 abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE); 602 abd_zero_scatter->abd_flags = ABD_FLAG_OWNER; 603 abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS; 604 ABD_SCATTER(abd_zero_scatter).abd_offset = 0; 605 ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages; 606 abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE; 607 abd_zero_scatter->abd_parent = NULL; 608 zfs_refcount_create(&abd_zero_scatter->abd_children); 609 ABD_SCATTER(abd_zero_scatter).abd_sgl = vmem_alloc(nr_pages * 610 sizeof (struct scatterlist), KM_SLEEP); 611 612 sg_init_table(ABD_SCATTER(abd_zero_scatter).abd_sgl, nr_pages); 613 614 abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) { 615 sg_set_page(sg, abd_zero_page, PAGESIZE, 0); 616 } 617 618 ABDSTAT_BUMP(abdstat_scatter_cnt); 619 ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE); 620 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); 621 } 622 623 #endif /* _KERNEL */ 624 625 boolean_t 626 abd_size_alloc_linear(size_t size) 627 { 628 return (size < zfs_abd_scatter_min_size ? B_TRUE : B_FALSE); 629 } 630 631 void 632 abd_update_scatter_stats(abd_t *abd, abd_stats_op_t op) 633 { 634 ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR); 635 int waste = P2ROUNDUP(abd->abd_size, PAGESIZE) - abd->abd_size; 636 if (op == ABDSTAT_INCR) { 637 ABDSTAT_BUMP(abdstat_scatter_cnt); 638 ABDSTAT_INCR(abdstat_scatter_data_size, abd->abd_size); 639 ABDSTAT_INCR(abdstat_scatter_chunk_waste, waste); 640 arc_space_consume(waste, ARC_SPACE_ABD_CHUNK_WASTE); 641 } else { 642 ABDSTAT_BUMPDOWN(abdstat_scatter_cnt); 643 ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size); 644 ABDSTAT_INCR(abdstat_scatter_chunk_waste, -waste); 645 arc_space_return(waste, ARC_SPACE_ABD_CHUNK_WASTE); 646 } 647 } 648 649 void 650 abd_update_linear_stats(abd_t *abd, abd_stats_op_t op) 651 { 652 ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR); 653 if (op == ABDSTAT_INCR) { 654 ABDSTAT_BUMP(abdstat_linear_cnt); 655 ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size); 656 } else { 657 ABDSTAT_BUMPDOWN(abdstat_linear_cnt); 658 ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size); 659 } 660 } 661 662 void 663 abd_verify_scatter(abd_t *abd) 664 { 665 size_t n; 666 int i = 0; 667 struct scatterlist *sg = NULL; 668 669 ASSERT3U(ABD_SCATTER(abd).abd_nents, >, 0); 670 ASSERT3U(ABD_SCATTER(abd).abd_offset, <, 671 ABD_SCATTER(abd).abd_sgl->length); 672 n = ABD_SCATTER(abd).abd_nents; 673 abd_for_each_sg(abd, sg, n, i) { 674 ASSERT3P(sg_page(sg), !=, NULL); 675 } 676 } 677 678 static void 679 abd_free_zero_scatter(void) 680 { 681 zfs_refcount_destroy(&abd_zero_scatter->abd_children); 682 ABDSTAT_BUMPDOWN(abdstat_scatter_cnt); 683 ABDSTAT_INCR(abdstat_scatter_data_size, -(int)PAGESIZE); 684 ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk); 685 686 abd_free_sg_table(abd_zero_scatter); 687 abd_free_struct(abd_zero_scatter); 688 abd_zero_scatter = NULL; 689 ASSERT3P(abd_zero_page, !=, NULL); 690 #if defined(_KERNEL) 691 abd_unmark_zfs_page(abd_zero_page); 692 __free_page(abd_zero_page); 693 #else 694 umem_free(abd_zero_page, PAGESIZE); 695 #endif /* _KERNEL */ 696 } 697 698 void 699 abd_init(void) 700 { 701 int i; 702 703 abd_cache = kmem_cache_create("abd_t", sizeof (abd_t), 704 0, NULL, NULL, NULL, NULL, NULL, 0); 705 706 abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED, 707 sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 708 if (abd_ksp != NULL) { 709 for (i = 0; i < MAX_ORDER; i++) { 710 snprintf(abd_stats.abdstat_scatter_orders[i].name, 711 KSTAT_STRLEN, "scatter_order_%d", i); 712 abd_stats.abdstat_scatter_orders[i].data_type = 713 KSTAT_DATA_UINT64; 714 } 715 abd_ksp->ks_data = &abd_stats; 716 kstat_install(abd_ksp); 717 } 718 719 abd_alloc_zero_scatter(); 720 } 721 722 void 723 abd_fini(void) 724 { 725 abd_free_zero_scatter(); 726 727 if (abd_ksp != NULL) { 728 kstat_delete(abd_ksp); 729 abd_ksp = NULL; 730 } 731 732 if (abd_cache) { 733 kmem_cache_destroy(abd_cache); 734 abd_cache = NULL; 735 } 736 } 737 738 void 739 abd_free_linear_page(abd_t *abd) 740 { 741 /* Transform it back into a scatter ABD for freeing */ 742 struct scatterlist *sg = abd->abd_u.abd_linear.abd_sgl; 743 abd->abd_flags &= ~ABD_FLAG_LINEAR; 744 abd->abd_flags &= ~ABD_FLAG_LINEAR_PAGE; 745 ABD_SCATTER(abd).abd_nents = 1; 746 ABD_SCATTER(abd).abd_offset = 0; 747 ABD_SCATTER(abd).abd_sgl = sg; 748 abd_free_chunks(abd); 749 750 zfs_refcount_destroy(&abd->abd_children); 751 abd_update_scatter_stats(abd, ABDSTAT_DECR); 752 abd_free_struct(abd); 753 } 754 755 /* 756 * If we're going to use this ABD for doing I/O using the block layer, the 757 * consumer of the ABD data doesn't care if it's scattered or not, and we don't 758 * plan to store this ABD in memory for a long period of time, we should 759 * allocate the ABD type that requires the least data copying to do the I/O. 760 * 761 * On Linux the optimal thing to do would be to use abd_get_offset() and 762 * construct a new ABD which shares the original pages thereby eliminating 763 * the copy. But for the moment a new linear ABD is allocated until this 764 * performance optimization can be implemented. 765 */ 766 abd_t * 767 abd_alloc_for_io(size_t size, boolean_t is_metadata) 768 { 769 return (abd_alloc(size, is_metadata)); 770 } 771 772 abd_t * 773 abd_get_offset_scatter(abd_t *sabd, size_t off) 774 { 775 abd_t *abd = NULL; 776 int i = 0; 777 struct scatterlist *sg = NULL; 778 779 abd_verify(sabd); 780 ASSERT3U(off, <=, sabd->abd_size); 781 782 size_t new_offset = ABD_SCATTER(sabd).abd_offset + off; 783 784 abd = abd_alloc_struct(0); 785 786 /* 787 * Even if this buf is filesystem metadata, we only track that 788 * if we own the underlying data buffer, which is not true in 789 * this case. Therefore, we don't ever use ABD_FLAG_META here. 790 */ 791 abd->abd_flags = 0; 792 793 abd_for_each_sg(sabd, sg, ABD_SCATTER(sabd).abd_nents, i) { 794 if (new_offset < sg->length) 795 break; 796 new_offset -= sg->length; 797 } 798 799 ABD_SCATTER(abd).abd_sgl = sg; 800 ABD_SCATTER(abd).abd_offset = new_offset; 801 ABD_SCATTER(abd).abd_nents = ABD_SCATTER(sabd).abd_nents - i; 802 803 return (abd); 804 } 805 806 /* 807 * Initialize the abd_iter. 808 */ 809 void 810 abd_iter_init(struct abd_iter *aiter, abd_t *abd) 811 { 812 ASSERT(!abd_is_gang(abd)); 813 abd_verify(abd); 814 aiter->iter_abd = abd; 815 aiter->iter_mapaddr = NULL; 816 aiter->iter_mapsize = 0; 817 aiter->iter_pos = 0; 818 if (abd_is_linear(abd)) { 819 aiter->iter_offset = 0; 820 aiter->iter_sg = NULL; 821 } else { 822 aiter->iter_offset = ABD_SCATTER(abd).abd_offset; 823 aiter->iter_sg = ABD_SCATTER(abd).abd_sgl; 824 } 825 } 826 827 /* 828 * This is just a helper function to see if we have exhausted the 829 * abd_iter and reached the end. 830 */ 831 boolean_t 832 abd_iter_at_end(struct abd_iter *aiter) 833 { 834 return (aiter->iter_pos == aiter->iter_abd->abd_size); 835 } 836 837 /* 838 * Advance the iterator by a certain amount. Cannot be called when a chunk is 839 * in use. This can be safely called when the aiter has already exhausted, in 840 * which case this does nothing. 841 */ 842 void 843 abd_iter_advance(struct abd_iter *aiter, size_t amount) 844 { 845 ASSERT3P(aiter->iter_mapaddr, ==, NULL); 846 ASSERT0(aiter->iter_mapsize); 847 848 /* There's nothing left to advance to, so do nothing */ 849 if (abd_iter_at_end(aiter)) 850 return; 851 852 aiter->iter_pos += amount; 853 aiter->iter_offset += amount; 854 if (!abd_is_linear(aiter->iter_abd)) { 855 while (aiter->iter_offset >= aiter->iter_sg->length) { 856 aiter->iter_offset -= aiter->iter_sg->length; 857 aiter->iter_sg = sg_next(aiter->iter_sg); 858 if (aiter->iter_sg == NULL) { 859 ASSERT0(aiter->iter_offset); 860 break; 861 } 862 } 863 } 864 } 865 866 /* 867 * Map the current chunk into aiter. This can be safely called when the aiter 868 * has already exhausted, in which case this does nothing. 869 */ 870 void 871 abd_iter_map(struct abd_iter *aiter) 872 { 873 void *paddr; 874 size_t offset = 0; 875 876 ASSERT3P(aiter->iter_mapaddr, ==, NULL); 877 ASSERT0(aiter->iter_mapsize); 878 879 /* There's nothing left to iterate over, so do nothing */ 880 if (abd_iter_at_end(aiter)) 881 return; 882 883 if (abd_is_linear(aiter->iter_abd)) { 884 ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset); 885 offset = aiter->iter_offset; 886 aiter->iter_mapsize = aiter->iter_abd->abd_size - offset; 887 paddr = ABD_LINEAR_BUF(aiter->iter_abd); 888 } else { 889 offset = aiter->iter_offset; 890 aiter->iter_mapsize = MIN(aiter->iter_sg->length - offset, 891 aiter->iter_abd->abd_size - aiter->iter_pos); 892 893 paddr = zfs_kmap_atomic(sg_page(aiter->iter_sg), 894 km_table[aiter->iter_km]); 895 } 896 897 aiter->iter_mapaddr = (char *)paddr + offset; 898 } 899 900 /* 901 * Unmap the current chunk from aiter. This can be safely called when the aiter 902 * has already exhausted, in which case this does nothing. 903 */ 904 void 905 abd_iter_unmap(struct abd_iter *aiter) 906 { 907 /* There's nothing left to unmap, so do nothing */ 908 if (abd_iter_at_end(aiter)) 909 return; 910 911 if (!abd_is_linear(aiter->iter_abd)) { 912 /* LINTED E_FUNC_SET_NOT_USED */ 913 zfs_kunmap_atomic(aiter->iter_mapaddr - aiter->iter_offset, 914 km_table[aiter->iter_km]); 915 } 916 917 ASSERT3P(aiter->iter_mapaddr, !=, NULL); 918 ASSERT3U(aiter->iter_mapsize, >, 0); 919 920 aiter->iter_mapaddr = NULL; 921 aiter->iter_mapsize = 0; 922 } 923 924 void 925 abd_cache_reap_now(void) 926 { 927 } 928 929 #if defined(_KERNEL) 930 /* 931 * bio_nr_pages for ABD. 932 * @off is the offset in @abd 933 */ 934 unsigned long 935 abd_nr_pages_off(abd_t *abd, unsigned int size, size_t off) 936 { 937 unsigned long pos; 938 939 while (abd_is_gang(abd)) 940 abd = abd_gang_get_offset(abd, &off); 941 942 ASSERT(!abd_is_gang(abd)); 943 if (abd_is_linear(abd)) 944 pos = (unsigned long)abd_to_buf(abd) + off; 945 else 946 pos = ABD_SCATTER(abd).abd_offset + off; 947 948 return ((pos + size + PAGESIZE - 1) >> PAGE_SHIFT) - 949 (pos >> PAGE_SHIFT); 950 } 951 952 static unsigned int 953 bio_map(struct bio *bio, void *buf_ptr, unsigned int bio_size) 954 { 955 unsigned int offset, size, i; 956 struct page *page; 957 958 offset = offset_in_page(buf_ptr); 959 for (i = 0; i < bio->bi_max_vecs; i++) { 960 size = PAGE_SIZE - offset; 961 962 if (bio_size <= 0) 963 break; 964 965 if (size > bio_size) 966 size = bio_size; 967 968 if (is_vmalloc_addr(buf_ptr)) 969 page = vmalloc_to_page(buf_ptr); 970 else 971 page = virt_to_page(buf_ptr); 972 973 /* 974 * Some network related block device uses tcp_sendpage, which 975 * doesn't behave well when using 0-count page, this is a 976 * safety net to catch them. 977 */ 978 ASSERT3S(page_count(page), >, 0); 979 980 if (bio_add_page(bio, page, size, offset) != size) 981 break; 982 983 buf_ptr += size; 984 bio_size -= size; 985 offset = 0; 986 } 987 988 return (bio_size); 989 } 990 991 /* 992 * bio_map for gang ABD. 993 */ 994 static unsigned int 995 abd_gang_bio_map_off(struct bio *bio, abd_t *abd, 996 unsigned int io_size, size_t off) 997 { 998 ASSERT(abd_is_gang(abd)); 999 1000 for (abd_t *cabd = abd_gang_get_offset(abd, &off); 1001 cabd != NULL; 1002 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) { 1003 ASSERT3U(off, <, cabd->abd_size); 1004 int size = MIN(io_size, cabd->abd_size - off); 1005 int remainder = abd_bio_map_off(bio, cabd, size, off); 1006 io_size -= (size - remainder); 1007 if (io_size == 0 || remainder > 0) 1008 return (io_size); 1009 off = 0; 1010 } 1011 ASSERT0(io_size); 1012 return (io_size); 1013 } 1014 1015 /* 1016 * bio_map for ABD. 1017 * @off is the offset in @abd 1018 * Remaining IO size is returned 1019 */ 1020 unsigned int 1021 abd_bio_map_off(struct bio *bio, abd_t *abd, 1022 unsigned int io_size, size_t off) 1023 { 1024 int i; 1025 struct abd_iter aiter; 1026 1027 ASSERT3U(io_size, <=, abd->abd_size - off); 1028 if (abd_is_linear(abd)) 1029 return (bio_map(bio, ((char *)abd_to_buf(abd)) + off, io_size)); 1030 1031 ASSERT(!abd_is_linear(abd)); 1032 if (abd_is_gang(abd)) 1033 return (abd_gang_bio_map_off(bio, abd, io_size, off)); 1034 1035 abd_iter_init(&aiter, abd); 1036 abd_iter_advance(&aiter, off); 1037 1038 for (i = 0; i < bio->bi_max_vecs; i++) { 1039 struct page *pg; 1040 size_t len, sgoff, pgoff; 1041 struct scatterlist *sg; 1042 1043 if (io_size <= 0) 1044 break; 1045 1046 sg = aiter.iter_sg; 1047 sgoff = aiter.iter_offset; 1048 pgoff = sgoff & (PAGESIZE - 1); 1049 len = MIN(io_size, PAGESIZE - pgoff); 1050 ASSERT(len > 0); 1051 1052 pg = nth_page(sg_page(sg), sgoff >> PAGE_SHIFT); 1053 if (bio_add_page(bio, pg, len, pgoff) != len) 1054 break; 1055 1056 io_size -= len; 1057 abd_iter_advance(&aiter, len); 1058 } 1059 1060 return (io_size); 1061 } 1062 1063 /* Tunable Parameters */ 1064 module_param(zfs_abd_scatter_enabled, int, 0644); 1065 MODULE_PARM_DESC(zfs_abd_scatter_enabled, 1066 "Toggle whether ABD allocations must be linear."); 1067 module_param(zfs_abd_scatter_min_size, int, 0644); 1068 MODULE_PARM_DESC(zfs_abd_scatter_min_size, 1069 "Minimum size of scatter allocations."); 1070 /* CSTYLED */ 1071 module_param(zfs_abd_scatter_max_order, uint, 0644); 1072 MODULE_PARM_DESC(zfs_abd_scatter_max_order, 1073 "Maximum order allocation used for a scatter ABD."); 1074 #endif 1075