xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/abd_os.c (revision 7be9a3b45356747f9fcb6d69a722c1c95f8060bf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2014 by Chunwei Chen. All rights reserved.
23  * Copyright (c) 2019 by Delphix. All rights reserved.
24  */
25 
26 /*
27  * See abd.c for a general overview of the arc buffered data (ABD).
28  *
29  * Linear buffers act exactly like normal buffers and are always mapped into the
30  * kernel's virtual memory space, while scattered ABD data chunks are allocated
31  * as physical pages and then mapped in only while they are actually being
32  * accessed through one of the abd_* library functions. Using scattered ABDs
33  * provides several benefits:
34  *
35  *  (1) They avoid use of kmem_*, preventing performance problems where running
36  *      kmem_reap on very large memory systems never finishes and causes
37  *      constant TLB shootdowns.
38  *
39  *  (2) Fragmentation is less of an issue since when we are at the limit of
40  *      allocatable space, we won't have to search around for a long free
41  *      hole in the VA space for large ARC allocations. Each chunk is mapped in
42  *      individually, so even if we are using HIGHMEM (see next point) we
43  *      wouldn't need to worry about finding a contiguous address range.
44  *
45  *  (3) If we are not using HIGHMEM, then all physical memory is always
46  *      mapped into the kernel's address space, so we also avoid the map /
47  *      unmap costs on each ABD access.
48  *
49  * If we are not using HIGHMEM, scattered buffers which have only one chunk
50  * can be treated as linear buffers, because they are contiguous in the
51  * kernel's virtual address space.  See abd_alloc_chunks() for details.
52  */
53 
54 #include <sys/abd_impl.h>
55 #include <sys/param.h>
56 #include <sys/zio.h>
57 #include <sys/arc.h>
58 #include <sys/zfs_context.h>
59 #include <sys/zfs_znode.h>
60 #ifdef _KERNEL
61 #include <linux/kmap_compat.h>
62 #include <linux/scatterlist.h>
63 #else
64 #define	MAX_ORDER	1
65 #endif
66 
67 typedef struct abd_stats {
68 	kstat_named_t abdstat_struct_size;
69 	kstat_named_t abdstat_linear_cnt;
70 	kstat_named_t abdstat_linear_data_size;
71 	kstat_named_t abdstat_scatter_cnt;
72 	kstat_named_t abdstat_scatter_data_size;
73 	kstat_named_t abdstat_scatter_chunk_waste;
74 	kstat_named_t abdstat_scatter_orders[MAX_ORDER];
75 	kstat_named_t abdstat_scatter_page_multi_chunk;
76 	kstat_named_t abdstat_scatter_page_multi_zone;
77 	kstat_named_t abdstat_scatter_page_alloc_retry;
78 	kstat_named_t abdstat_scatter_sg_table_retry;
79 } abd_stats_t;
80 
81 static abd_stats_t abd_stats = {
82 	/* Amount of memory occupied by all of the abd_t struct allocations */
83 	{ "struct_size",			KSTAT_DATA_UINT64 },
84 	/*
85 	 * The number of linear ABDs which are currently allocated, excluding
86 	 * ABDs which don't own their data (for instance the ones which were
87 	 * allocated through abd_get_offset() and abd_get_from_buf()). If an
88 	 * ABD takes ownership of its buf then it will become tracked.
89 	 */
90 	{ "linear_cnt",				KSTAT_DATA_UINT64 },
91 	/* Amount of data stored in all linear ABDs tracked by linear_cnt */
92 	{ "linear_data_size",			KSTAT_DATA_UINT64 },
93 	/*
94 	 * The number of scatter ABDs which are currently allocated, excluding
95 	 * ABDs which don't own their data (for instance the ones which were
96 	 * allocated through abd_get_offset()).
97 	 */
98 	{ "scatter_cnt",			KSTAT_DATA_UINT64 },
99 	/* Amount of data stored in all scatter ABDs tracked by scatter_cnt */
100 	{ "scatter_data_size",			KSTAT_DATA_UINT64 },
101 	/*
102 	 * The amount of space wasted at the end of the last chunk across all
103 	 * scatter ABDs tracked by scatter_cnt.
104 	 */
105 	{ "scatter_chunk_waste",		KSTAT_DATA_UINT64 },
106 	/*
107 	 * The number of compound allocations of a given order.  These
108 	 * allocations are spread over all currently allocated ABDs, and
109 	 * act as a measure of memory fragmentation.
110 	 */
111 	{ { "scatter_order_N",			KSTAT_DATA_UINT64 } },
112 	/*
113 	 * The number of scatter ABDs which contain multiple chunks.
114 	 * ABDs are preferentially allocated from the minimum number of
115 	 * contiguous multi-page chunks, a single chunk is optimal.
116 	 */
117 	{ "scatter_page_multi_chunk",		KSTAT_DATA_UINT64 },
118 	/*
119 	 * The number of scatter ABDs which are split across memory zones.
120 	 * ABDs are preferentially allocated using pages from a single zone.
121 	 */
122 	{ "scatter_page_multi_zone",		KSTAT_DATA_UINT64 },
123 	/*
124 	 *  The total number of retries encountered when attempting to
125 	 *  allocate the pages to populate the scatter ABD.
126 	 */
127 	{ "scatter_page_alloc_retry",		KSTAT_DATA_UINT64 },
128 	/*
129 	 *  The total number of retries encountered when attempting to
130 	 *  allocate the sg table for an ABD.
131 	 */
132 	{ "scatter_sg_table_retry",		KSTAT_DATA_UINT64 },
133 };
134 
135 struct {
136 	wmsum_t abdstat_struct_size;
137 	wmsum_t abdstat_linear_cnt;
138 	wmsum_t abdstat_linear_data_size;
139 	wmsum_t abdstat_scatter_cnt;
140 	wmsum_t abdstat_scatter_data_size;
141 	wmsum_t abdstat_scatter_chunk_waste;
142 	wmsum_t abdstat_scatter_orders[MAX_ORDER];
143 	wmsum_t abdstat_scatter_page_multi_chunk;
144 	wmsum_t abdstat_scatter_page_multi_zone;
145 	wmsum_t abdstat_scatter_page_alloc_retry;
146 	wmsum_t abdstat_scatter_sg_table_retry;
147 } abd_sums;
148 
149 #define	abd_for_each_sg(abd, sg, n, i)	\
150 	for_each_sg(ABD_SCATTER(abd).abd_sgl, sg, n, i)
151 
152 /*
153  * zfs_abd_scatter_min_size is the minimum allocation size to use scatter
154  * ABD's.  Smaller allocations will use linear ABD's which uses
155  * zio_[data_]buf_alloc().
156  *
157  * Scatter ABD's use at least one page each, so sub-page allocations waste
158  * some space when allocated as scatter (e.g. 2KB scatter allocation wastes
159  * half of each page).  Using linear ABD's for small allocations means that
160  * they will be put on slabs which contain many allocations.  This can
161  * improve memory efficiency, but it also makes it much harder for ARC
162  * evictions to actually free pages, because all the buffers on one slab need
163  * to be freed in order for the slab (and underlying pages) to be freed.
164  * Typically, 512B and 1KB kmem caches have 16 buffers per slab, so it's
165  * possible for them to actually waste more memory than scatter (one page per
166  * buf = wasting 3/4 or 7/8th; one buf per slab = wasting 15/16th).
167  *
168  * Spill blocks are typically 512B and are heavily used on systems running
169  * selinux with the default dnode size and the `xattr=sa` property set.
170  *
171  * By default we use linear allocations for 512B and 1KB, and scatter
172  * allocations for larger (1.5KB and up).
173  */
174 static int zfs_abd_scatter_min_size = 512 * 3;
175 
176 /*
177  * We use a scattered SPA_MAXBLOCKSIZE sized ABD whose pages are
178  * just a single zero'd page. This allows us to conserve memory by
179  * only using a single zero page for the scatterlist.
180  */
181 abd_t *abd_zero_scatter = NULL;
182 
183 struct page;
184 /*
185  * abd_zero_page we will be an allocated zero'd PAGESIZE buffer, which is
186  * assigned to set each of the pages of abd_zero_scatter.
187  */
188 static struct page *abd_zero_page = NULL;
189 
190 static kmem_cache_t *abd_cache = NULL;
191 static kstat_t *abd_ksp;
192 
193 static uint_t
194 abd_chunkcnt_for_bytes(size_t size)
195 {
196 	return (P2ROUNDUP(size, PAGESIZE) / PAGESIZE);
197 }
198 
199 abd_t *
200 abd_alloc_struct_impl(size_t size)
201 {
202 	/*
203 	 * In Linux we do not use the size passed in during ABD
204 	 * allocation, so we just ignore it.
205 	 */
206 	(void) size;
207 	abd_t *abd = kmem_cache_alloc(abd_cache, KM_PUSHPAGE);
208 	ASSERT3P(abd, !=, NULL);
209 	ABDSTAT_INCR(abdstat_struct_size, sizeof (abd_t));
210 
211 	return (abd);
212 }
213 
214 void
215 abd_free_struct_impl(abd_t *abd)
216 {
217 	kmem_cache_free(abd_cache, abd);
218 	ABDSTAT_INCR(abdstat_struct_size, -(int)sizeof (abd_t));
219 }
220 
221 #ifdef _KERNEL
222 static unsigned zfs_abd_scatter_max_order = MAX_ORDER - 1;
223 
224 /*
225  * Mark zfs data pages so they can be excluded from kernel crash dumps
226  */
227 #ifdef _LP64
228 #define	ABD_FILE_CACHE_PAGE	0x2F5ABDF11ECAC4E
229 
230 static inline void
231 abd_mark_zfs_page(struct page *page)
232 {
233 	get_page(page);
234 	SetPagePrivate(page);
235 	set_page_private(page, ABD_FILE_CACHE_PAGE);
236 }
237 
238 static inline void
239 abd_unmark_zfs_page(struct page *page)
240 {
241 	set_page_private(page, 0UL);
242 	ClearPagePrivate(page);
243 	put_page(page);
244 }
245 #else
246 #define	abd_mark_zfs_page(page)
247 #define	abd_unmark_zfs_page(page)
248 #endif /* _LP64 */
249 
250 #ifndef CONFIG_HIGHMEM
251 
252 #ifndef __GFP_RECLAIM
253 #define	__GFP_RECLAIM		__GFP_WAIT
254 #endif
255 
256 /*
257  * The goal is to minimize fragmentation by preferentially populating ABDs
258  * with higher order compound pages from a single zone.  Allocation size is
259  * progressively decreased until it can be satisfied without performing
260  * reclaim or compaction.  When necessary this function will degenerate to
261  * allocating individual pages and allowing reclaim to satisfy allocations.
262  */
263 void
264 abd_alloc_chunks(abd_t *abd, size_t size)
265 {
266 	struct list_head pages;
267 	struct sg_table table;
268 	struct scatterlist *sg;
269 	struct page *page, *tmp_page = NULL;
270 	gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
271 	gfp_t gfp_comp = (gfp | __GFP_NORETRY | __GFP_COMP) & ~__GFP_RECLAIM;
272 	int max_order = MIN(zfs_abd_scatter_max_order, MAX_ORDER - 1);
273 	int nr_pages = abd_chunkcnt_for_bytes(size);
274 	int chunks = 0, zones = 0;
275 	size_t remaining_size;
276 	int nid = NUMA_NO_NODE;
277 	int alloc_pages = 0;
278 
279 	INIT_LIST_HEAD(&pages);
280 
281 	while (alloc_pages < nr_pages) {
282 		unsigned chunk_pages;
283 		int order;
284 
285 		order = MIN(highbit64(nr_pages - alloc_pages) - 1, max_order);
286 		chunk_pages = (1U << order);
287 
288 		page = alloc_pages_node(nid, order ? gfp_comp : gfp, order);
289 		if (page == NULL) {
290 			if (order == 0) {
291 				ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
292 				schedule_timeout_interruptible(1);
293 			} else {
294 				max_order = MAX(0, order - 1);
295 			}
296 			continue;
297 		}
298 
299 		list_add_tail(&page->lru, &pages);
300 
301 		if ((nid != NUMA_NO_NODE) && (page_to_nid(page) != nid))
302 			zones++;
303 
304 		nid = page_to_nid(page);
305 		ABDSTAT_BUMP(abdstat_scatter_orders[order]);
306 		chunks++;
307 		alloc_pages += chunk_pages;
308 	}
309 
310 	ASSERT3S(alloc_pages, ==, nr_pages);
311 
312 	while (sg_alloc_table(&table, chunks, gfp)) {
313 		ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
314 		schedule_timeout_interruptible(1);
315 	}
316 
317 	sg = table.sgl;
318 	remaining_size = size;
319 	list_for_each_entry_safe(page, tmp_page, &pages, lru) {
320 		size_t sg_size = MIN(PAGESIZE << compound_order(page),
321 		    remaining_size);
322 		sg_set_page(sg, page, sg_size, 0);
323 		abd_mark_zfs_page(page);
324 		remaining_size -= sg_size;
325 
326 		sg = sg_next(sg);
327 		list_del(&page->lru);
328 	}
329 
330 	/*
331 	 * These conditions ensure that a possible transformation to a linear
332 	 * ABD would be valid.
333 	 */
334 	ASSERT(!PageHighMem(sg_page(table.sgl)));
335 	ASSERT0(ABD_SCATTER(abd).abd_offset);
336 
337 	if (table.nents == 1) {
338 		/*
339 		 * Since there is only one entry, this ABD can be represented
340 		 * as a linear buffer.  All single-page (4K) ABD's can be
341 		 * represented this way.  Some multi-page ABD's can also be
342 		 * represented this way, if we were able to allocate a single
343 		 * "chunk" (higher-order "page" which represents a power-of-2
344 		 * series of physically-contiguous pages).  This is often the
345 		 * case for 2-page (8K) ABD's.
346 		 *
347 		 * Representing a single-entry scatter ABD as a linear ABD
348 		 * has the performance advantage of avoiding the copy (and
349 		 * allocation) in abd_borrow_buf_copy / abd_return_buf_copy.
350 		 * A performance increase of around 5% has been observed for
351 		 * ARC-cached reads (of small blocks which can take advantage
352 		 * of this).
353 		 *
354 		 * Note that this optimization is only possible because the
355 		 * pages are always mapped into the kernel's address space.
356 		 * This is not the case for highmem pages, so the
357 		 * optimization can not be made there.
358 		 */
359 		abd->abd_flags |= ABD_FLAG_LINEAR;
360 		abd->abd_flags |= ABD_FLAG_LINEAR_PAGE;
361 		abd->abd_u.abd_linear.abd_sgl = table.sgl;
362 		ABD_LINEAR_BUF(abd) = page_address(sg_page(table.sgl));
363 	} else if (table.nents > 1) {
364 		ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
365 		abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
366 
367 		if (zones) {
368 			ABDSTAT_BUMP(abdstat_scatter_page_multi_zone);
369 			abd->abd_flags |= ABD_FLAG_MULTI_ZONE;
370 		}
371 
372 		ABD_SCATTER(abd).abd_sgl = table.sgl;
373 		ABD_SCATTER(abd).abd_nents = table.nents;
374 	}
375 }
376 #else
377 
378 /*
379  * Allocate N individual pages to construct a scatter ABD.  This function
380  * makes no attempt to request contiguous pages and requires the minimal
381  * number of kernel interfaces.  It's designed for maximum compatibility.
382  */
383 void
384 abd_alloc_chunks(abd_t *abd, size_t size)
385 {
386 	struct scatterlist *sg = NULL;
387 	struct sg_table table;
388 	struct page *page;
389 	gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
390 	int nr_pages = abd_chunkcnt_for_bytes(size);
391 	int i = 0;
392 
393 	while (sg_alloc_table(&table, nr_pages, gfp)) {
394 		ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
395 		schedule_timeout_interruptible(1);
396 	}
397 
398 	ASSERT3U(table.nents, ==, nr_pages);
399 	ABD_SCATTER(abd).abd_sgl = table.sgl;
400 	ABD_SCATTER(abd).abd_nents = nr_pages;
401 
402 	abd_for_each_sg(abd, sg, nr_pages, i) {
403 		while ((page = __page_cache_alloc(gfp)) == NULL) {
404 			ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
405 			schedule_timeout_interruptible(1);
406 		}
407 
408 		ABDSTAT_BUMP(abdstat_scatter_orders[0]);
409 		sg_set_page(sg, page, PAGESIZE, 0);
410 		abd_mark_zfs_page(page);
411 	}
412 
413 	if (nr_pages > 1) {
414 		ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
415 		abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
416 	}
417 }
418 #endif /* !CONFIG_HIGHMEM */
419 
420 /*
421  * This must be called if any of the sg_table allocation functions
422  * are called.
423  */
424 static void
425 abd_free_sg_table(abd_t *abd)
426 {
427 	struct sg_table table;
428 
429 	table.sgl = ABD_SCATTER(abd).abd_sgl;
430 	table.nents = table.orig_nents = ABD_SCATTER(abd).abd_nents;
431 	sg_free_table(&table);
432 }
433 
434 void
435 abd_free_chunks(abd_t *abd)
436 {
437 	struct scatterlist *sg = NULL;
438 	struct page *page;
439 	int nr_pages = ABD_SCATTER(abd).abd_nents;
440 	int order, i = 0;
441 
442 	if (abd->abd_flags & ABD_FLAG_MULTI_ZONE)
443 		ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_zone);
444 
445 	if (abd->abd_flags & ABD_FLAG_MULTI_CHUNK)
446 		ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk);
447 
448 	abd_for_each_sg(abd, sg, nr_pages, i) {
449 		page = sg_page(sg);
450 		abd_unmark_zfs_page(page);
451 		order = compound_order(page);
452 		__free_pages(page, order);
453 		ASSERT3U(sg->length, <=, PAGE_SIZE << order);
454 		ABDSTAT_BUMPDOWN(abdstat_scatter_orders[order]);
455 	}
456 	abd_free_sg_table(abd);
457 }
458 
459 /*
460  * Allocate scatter ABD of size SPA_MAXBLOCKSIZE, where each page in
461  * the scatterlist will be set to the zero'd out buffer abd_zero_page.
462  */
463 static void
464 abd_alloc_zero_scatter(void)
465 {
466 	struct scatterlist *sg = NULL;
467 	struct sg_table table;
468 	gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
469 	gfp_t gfp_zero_page = gfp | __GFP_ZERO;
470 	int nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
471 	int i = 0;
472 
473 	while ((abd_zero_page = __page_cache_alloc(gfp_zero_page)) == NULL) {
474 		ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
475 		schedule_timeout_interruptible(1);
476 	}
477 	abd_mark_zfs_page(abd_zero_page);
478 
479 	while (sg_alloc_table(&table, nr_pages, gfp)) {
480 		ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
481 		schedule_timeout_interruptible(1);
482 	}
483 	ASSERT3U(table.nents, ==, nr_pages);
484 
485 	abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
486 	abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER;
487 	ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
488 	ABD_SCATTER(abd_zero_scatter).abd_sgl = table.sgl;
489 	ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages;
490 	abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
491 	abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS;
492 
493 	abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) {
494 		sg_set_page(sg, abd_zero_page, PAGESIZE, 0);
495 	}
496 
497 	ABDSTAT_BUMP(abdstat_scatter_cnt);
498 	ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE);
499 	ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
500 }
501 
502 #else /* _KERNEL */
503 
504 #ifndef PAGE_SHIFT
505 #define	PAGE_SHIFT (highbit64(PAGESIZE)-1)
506 #endif
507 
508 #define	zfs_kmap_atomic(chunk)		((void *)chunk)
509 #define	zfs_kunmap_atomic(addr)		do { (void)(addr); } while (0)
510 #define	local_irq_save(flags)		do { (void)(flags); } while (0)
511 #define	local_irq_restore(flags)	do { (void)(flags); } while (0)
512 #define	nth_page(pg, i) \
513 	((struct page *)((void *)(pg) + (i) * PAGESIZE))
514 
515 struct scatterlist {
516 	struct page *page;
517 	int length;
518 	int end;
519 };
520 
521 static void
522 sg_init_table(struct scatterlist *sg, int nr)
523 {
524 	memset(sg, 0, nr * sizeof (struct scatterlist));
525 	sg[nr - 1].end = 1;
526 }
527 
528 /*
529  * This must be called if any of the sg_table allocation functions
530  * are called.
531  */
532 static void
533 abd_free_sg_table(abd_t *abd)
534 {
535 	int nents = ABD_SCATTER(abd).abd_nents;
536 	vmem_free(ABD_SCATTER(abd).abd_sgl,
537 	    nents * sizeof (struct scatterlist));
538 }
539 
540 #define	for_each_sg(sgl, sg, nr, i)	\
541 	for ((i) = 0, (sg) = (sgl); (i) < (nr); (i)++, (sg) = sg_next(sg))
542 
543 static inline void
544 sg_set_page(struct scatterlist *sg, struct page *page, unsigned int len,
545     unsigned int offset)
546 {
547 	/* currently we don't use offset */
548 	ASSERT(offset == 0);
549 	sg->page = page;
550 	sg->length = len;
551 }
552 
553 static inline struct page *
554 sg_page(struct scatterlist *sg)
555 {
556 	return (sg->page);
557 }
558 
559 static inline struct scatterlist *
560 sg_next(struct scatterlist *sg)
561 {
562 	if (sg->end)
563 		return (NULL);
564 
565 	return (sg + 1);
566 }
567 
568 void
569 abd_alloc_chunks(abd_t *abd, size_t size)
570 {
571 	unsigned nr_pages = abd_chunkcnt_for_bytes(size);
572 	struct scatterlist *sg;
573 	int i;
574 
575 	ABD_SCATTER(abd).abd_sgl = vmem_alloc(nr_pages *
576 	    sizeof (struct scatterlist), KM_SLEEP);
577 	sg_init_table(ABD_SCATTER(abd).abd_sgl, nr_pages);
578 
579 	abd_for_each_sg(abd, sg, nr_pages, i) {
580 		struct page *p = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP);
581 		sg_set_page(sg, p, PAGESIZE, 0);
582 	}
583 	ABD_SCATTER(abd).abd_nents = nr_pages;
584 }
585 
586 void
587 abd_free_chunks(abd_t *abd)
588 {
589 	int i, n = ABD_SCATTER(abd).abd_nents;
590 	struct scatterlist *sg;
591 
592 	abd_for_each_sg(abd, sg, n, i) {
593 		for (int j = 0; j < sg->length; j += PAGESIZE) {
594 			struct page *p = nth_page(sg_page(sg), j >> PAGE_SHIFT);
595 			umem_free(p, PAGESIZE);
596 		}
597 	}
598 	abd_free_sg_table(abd);
599 }
600 
601 static void
602 abd_alloc_zero_scatter(void)
603 {
604 	unsigned nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
605 	struct scatterlist *sg;
606 	int i;
607 
608 	abd_zero_page = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP);
609 	memset(abd_zero_page, 0, PAGESIZE);
610 	abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
611 	abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER;
612 	abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS;
613 	ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
614 	ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages;
615 	abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
616 	zfs_refcount_create(&abd_zero_scatter->abd_children);
617 	ABD_SCATTER(abd_zero_scatter).abd_sgl = vmem_alloc(nr_pages *
618 	    sizeof (struct scatterlist), KM_SLEEP);
619 
620 	sg_init_table(ABD_SCATTER(abd_zero_scatter).abd_sgl, nr_pages);
621 
622 	abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) {
623 		sg_set_page(sg, abd_zero_page, PAGESIZE, 0);
624 	}
625 
626 	ABDSTAT_BUMP(abdstat_scatter_cnt);
627 	ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE);
628 	ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
629 }
630 
631 #endif /* _KERNEL */
632 
633 boolean_t
634 abd_size_alloc_linear(size_t size)
635 {
636 	return (!zfs_abd_scatter_enabled || size < zfs_abd_scatter_min_size);
637 }
638 
639 void
640 abd_update_scatter_stats(abd_t *abd, abd_stats_op_t op)
641 {
642 	ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
643 	int waste = P2ROUNDUP(abd->abd_size, PAGESIZE) - abd->abd_size;
644 	if (op == ABDSTAT_INCR) {
645 		ABDSTAT_BUMP(abdstat_scatter_cnt);
646 		ABDSTAT_INCR(abdstat_scatter_data_size, abd->abd_size);
647 		ABDSTAT_INCR(abdstat_scatter_chunk_waste, waste);
648 		arc_space_consume(waste, ARC_SPACE_ABD_CHUNK_WASTE);
649 	} else {
650 		ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
651 		ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size);
652 		ABDSTAT_INCR(abdstat_scatter_chunk_waste, -waste);
653 		arc_space_return(waste, ARC_SPACE_ABD_CHUNK_WASTE);
654 	}
655 }
656 
657 void
658 abd_update_linear_stats(abd_t *abd, abd_stats_op_t op)
659 {
660 	ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
661 	if (op == ABDSTAT_INCR) {
662 		ABDSTAT_BUMP(abdstat_linear_cnt);
663 		ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size);
664 	} else {
665 		ABDSTAT_BUMPDOWN(abdstat_linear_cnt);
666 		ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size);
667 	}
668 }
669 
670 void
671 abd_verify_scatter(abd_t *abd)
672 {
673 	size_t n;
674 	int i = 0;
675 	struct scatterlist *sg = NULL;
676 
677 	ASSERT3U(ABD_SCATTER(abd).abd_nents, >, 0);
678 	ASSERT3U(ABD_SCATTER(abd).abd_offset, <,
679 	    ABD_SCATTER(abd).abd_sgl->length);
680 	n = ABD_SCATTER(abd).abd_nents;
681 	abd_for_each_sg(abd, sg, n, i) {
682 		ASSERT3P(sg_page(sg), !=, NULL);
683 	}
684 }
685 
686 static void
687 abd_free_zero_scatter(void)
688 {
689 	ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
690 	ABDSTAT_INCR(abdstat_scatter_data_size, -(int)PAGESIZE);
691 	ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk);
692 
693 	abd_free_sg_table(abd_zero_scatter);
694 	abd_free_struct(abd_zero_scatter);
695 	abd_zero_scatter = NULL;
696 	ASSERT3P(abd_zero_page, !=, NULL);
697 #if defined(_KERNEL)
698 	abd_unmark_zfs_page(abd_zero_page);
699 	__free_page(abd_zero_page);
700 #else
701 	umem_free(abd_zero_page, PAGESIZE);
702 #endif /* _KERNEL */
703 }
704 
705 static int
706 abd_kstats_update(kstat_t *ksp, int rw)
707 {
708 	abd_stats_t *as = ksp->ks_data;
709 
710 	if (rw == KSTAT_WRITE)
711 		return (EACCES);
712 	as->abdstat_struct_size.value.ui64 =
713 	    wmsum_value(&abd_sums.abdstat_struct_size);
714 	as->abdstat_linear_cnt.value.ui64 =
715 	    wmsum_value(&abd_sums.abdstat_linear_cnt);
716 	as->abdstat_linear_data_size.value.ui64 =
717 	    wmsum_value(&abd_sums.abdstat_linear_data_size);
718 	as->abdstat_scatter_cnt.value.ui64 =
719 	    wmsum_value(&abd_sums.abdstat_scatter_cnt);
720 	as->abdstat_scatter_data_size.value.ui64 =
721 	    wmsum_value(&abd_sums.abdstat_scatter_data_size);
722 	as->abdstat_scatter_chunk_waste.value.ui64 =
723 	    wmsum_value(&abd_sums.abdstat_scatter_chunk_waste);
724 	for (int i = 0; i < MAX_ORDER; i++) {
725 		as->abdstat_scatter_orders[i].value.ui64 =
726 		    wmsum_value(&abd_sums.abdstat_scatter_orders[i]);
727 	}
728 	as->abdstat_scatter_page_multi_chunk.value.ui64 =
729 	    wmsum_value(&abd_sums.abdstat_scatter_page_multi_chunk);
730 	as->abdstat_scatter_page_multi_zone.value.ui64 =
731 	    wmsum_value(&abd_sums.abdstat_scatter_page_multi_zone);
732 	as->abdstat_scatter_page_alloc_retry.value.ui64 =
733 	    wmsum_value(&abd_sums.abdstat_scatter_page_alloc_retry);
734 	as->abdstat_scatter_sg_table_retry.value.ui64 =
735 	    wmsum_value(&abd_sums.abdstat_scatter_sg_table_retry);
736 	return (0);
737 }
738 
739 void
740 abd_init(void)
741 {
742 	int i;
743 
744 	abd_cache = kmem_cache_create("abd_t", sizeof (abd_t),
745 	    0, NULL, NULL, NULL, NULL, NULL, 0);
746 
747 	wmsum_init(&abd_sums.abdstat_struct_size, 0);
748 	wmsum_init(&abd_sums.abdstat_linear_cnt, 0);
749 	wmsum_init(&abd_sums.abdstat_linear_data_size, 0);
750 	wmsum_init(&abd_sums.abdstat_scatter_cnt, 0);
751 	wmsum_init(&abd_sums.abdstat_scatter_data_size, 0);
752 	wmsum_init(&abd_sums.abdstat_scatter_chunk_waste, 0);
753 	for (i = 0; i < MAX_ORDER; i++)
754 		wmsum_init(&abd_sums.abdstat_scatter_orders[i], 0);
755 	wmsum_init(&abd_sums.abdstat_scatter_page_multi_chunk, 0);
756 	wmsum_init(&abd_sums.abdstat_scatter_page_multi_zone, 0);
757 	wmsum_init(&abd_sums.abdstat_scatter_page_alloc_retry, 0);
758 	wmsum_init(&abd_sums.abdstat_scatter_sg_table_retry, 0);
759 
760 	abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED,
761 	    sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
762 	if (abd_ksp != NULL) {
763 		for (i = 0; i < MAX_ORDER; i++) {
764 			snprintf(abd_stats.abdstat_scatter_orders[i].name,
765 			    KSTAT_STRLEN, "scatter_order_%d", i);
766 			abd_stats.abdstat_scatter_orders[i].data_type =
767 			    KSTAT_DATA_UINT64;
768 		}
769 		abd_ksp->ks_data = &abd_stats;
770 		abd_ksp->ks_update = abd_kstats_update;
771 		kstat_install(abd_ksp);
772 	}
773 
774 	abd_alloc_zero_scatter();
775 }
776 
777 void
778 abd_fini(void)
779 {
780 	abd_free_zero_scatter();
781 
782 	if (abd_ksp != NULL) {
783 		kstat_delete(abd_ksp);
784 		abd_ksp = NULL;
785 	}
786 
787 	wmsum_fini(&abd_sums.abdstat_struct_size);
788 	wmsum_fini(&abd_sums.abdstat_linear_cnt);
789 	wmsum_fini(&abd_sums.abdstat_linear_data_size);
790 	wmsum_fini(&abd_sums.abdstat_scatter_cnt);
791 	wmsum_fini(&abd_sums.abdstat_scatter_data_size);
792 	wmsum_fini(&abd_sums.abdstat_scatter_chunk_waste);
793 	for (int i = 0; i < MAX_ORDER; i++)
794 		wmsum_fini(&abd_sums.abdstat_scatter_orders[i]);
795 	wmsum_fini(&abd_sums.abdstat_scatter_page_multi_chunk);
796 	wmsum_fini(&abd_sums.abdstat_scatter_page_multi_zone);
797 	wmsum_fini(&abd_sums.abdstat_scatter_page_alloc_retry);
798 	wmsum_fini(&abd_sums.abdstat_scatter_sg_table_retry);
799 
800 	if (abd_cache) {
801 		kmem_cache_destroy(abd_cache);
802 		abd_cache = NULL;
803 	}
804 }
805 
806 void
807 abd_free_linear_page(abd_t *abd)
808 {
809 	/* Transform it back into a scatter ABD for freeing */
810 	struct scatterlist *sg = abd->abd_u.abd_linear.abd_sgl;
811 	abd->abd_flags &= ~ABD_FLAG_LINEAR;
812 	abd->abd_flags &= ~ABD_FLAG_LINEAR_PAGE;
813 	ABD_SCATTER(abd).abd_nents = 1;
814 	ABD_SCATTER(abd).abd_offset = 0;
815 	ABD_SCATTER(abd).abd_sgl = sg;
816 	abd_free_chunks(abd);
817 
818 	abd_update_scatter_stats(abd, ABDSTAT_DECR);
819 }
820 
821 /*
822  * If we're going to use this ABD for doing I/O using the block layer, the
823  * consumer of the ABD data doesn't care if it's scattered or not, and we don't
824  * plan to store this ABD in memory for a long period of time, we should
825  * allocate the ABD type that requires the least data copying to do the I/O.
826  *
827  * On Linux the optimal thing to do would be to use abd_get_offset() and
828  * construct a new ABD which shares the original pages thereby eliminating
829  * the copy.  But for the moment a new linear ABD is allocated until this
830  * performance optimization can be implemented.
831  */
832 abd_t *
833 abd_alloc_for_io(size_t size, boolean_t is_metadata)
834 {
835 	return (abd_alloc(size, is_metadata));
836 }
837 
838 abd_t *
839 abd_get_offset_scatter(abd_t *abd, abd_t *sabd, size_t off,
840     size_t size)
841 {
842 	(void) size;
843 	int i = 0;
844 	struct scatterlist *sg = NULL;
845 
846 	abd_verify(sabd);
847 	ASSERT3U(off, <=, sabd->abd_size);
848 
849 	size_t new_offset = ABD_SCATTER(sabd).abd_offset + off;
850 
851 	if (abd == NULL)
852 		abd = abd_alloc_struct(0);
853 
854 	/*
855 	 * Even if this buf is filesystem metadata, we only track that
856 	 * if we own the underlying data buffer, which is not true in
857 	 * this case. Therefore, we don't ever use ABD_FLAG_META here.
858 	 */
859 
860 	abd_for_each_sg(sabd, sg, ABD_SCATTER(sabd).abd_nents, i) {
861 		if (new_offset < sg->length)
862 			break;
863 		new_offset -= sg->length;
864 	}
865 
866 	ABD_SCATTER(abd).abd_sgl = sg;
867 	ABD_SCATTER(abd).abd_offset = new_offset;
868 	ABD_SCATTER(abd).abd_nents = ABD_SCATTER(sabd).abd_nents - i;
869 
870 	return (abd);
871 }
872 
873 /*
874  * Initialize the abd_iter.
875  */
876 void
877 abd_iter_init(struct abd_iter *aiter, abd_t *abd)
878 {
879 	ASSERT(!abd_is_gang(abd));
880 	abd_verify(abd);
881 	aiter->iter_abd = abd;
882 	aiter->iter_mapaddr = NULL;
883 	aiter->iter_mapsize = 0;
884 	aiter->iter_pos = 0;
885 	if (abd_is_linear(abd)) {
886 		aiter->iter_offset = 0;
887 		aiter->iter_sg = NULL;
888 	} else {
889 		aiter->iter_offset = ABD_SCATTER(abd).abd_offset;
890 		aiter->iter_sg = ABD_SCATTER(abd).abd_sgl;
891 	}
892 }
893 
894 /*
895  * This is just a helper function to see if we have exhausted the
896  * abd_iter and reached the end.
897  */
898 boolean_t
899 abd_iter_at_end(struct abd_iter *aiter)
900 {
901 	return (aiter->iter_pos == aiter->iter_abd->abd_size);
902 }
903 
904 /*
905  * Advance the iterator by a certain amount. Cannot be called when a chunk is
906  * in use. This can be safely called when the aiter has already exhausted, in
907  * which case this does nothing.
908  */
909 void
910 abd_iter_advance(struct abd_iter *aiter, size_t amount)
911 {
912 	ASSERT3P(aiter->iter_mapaddr, ==, NULL);
913 	ASSERT0(aiter->iter_mapsize);
914 
915 	/* There's nothing left to advance to, so do nothing */
916 	if (abd_iter_at_end(aiter))
917 		return;
918 
919 	aiter->iter_pos += amount;
920 	aiter->iter_offset += amount;
921 	if (!abd_is_linear(aiter->iter_abd)) {
922 		while (aiter->iter_offset >= aiter->iter_sg->length) {
923 			aiter->iter_offset -= aiter->iter_sg->length;
924 			aiter->iter_sg = sg_next(aiter->iter_sg);
925 			if (aiter->iter_sg == NULL) {
926 				ASSERT0(aiter->iter_offset);
927 				break;
928 			}
929 		}
930 	}
931 }
932 
933 /*
934  * Map the current chunk into aiter. This can be safely called when the aiter
935  * has already exhausted, in which case this does nothing.
936  */
937 void
938 abd_iter_map(struct abd_iter *aiter)
939 {
940 	void *paddr;
941 	size_t offset = 0;
942 
943 	ASSERT3P(aiter->iter_mapaddr, ==, NULL);
944 	ASSERT0(aiter->iter_mapsize);
945 
946 	/* There's nothing left to iterate over, so do nothing */
947 	if (abd_iter_at_end(aiter))
948 		return;
949 
950 	if (abd_is_linear(aiter->iter_abd)) {
951 		ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset);
952 		offset = aiter->iter_offset;
953 		aiter->iter_mapsize = aiter->iter_abd->abd_size - offset;
954 		paddr = ABD_LINEAR_BUF(aiter->iter_abd);
955 	} else {
956 		offset = aiter->iter_offset;
957 		aiter->iter_mapsize = MIN(aiter->iter_sg->length - offset,
958 		    aiter->iter_abd->abd_size - aiter->iter_pos);
959 
960 		paddr = zfs_kmap_atomic(sg_page(aiter->iter_sg));
961 	}
962 
963 	aiter->iter_mapaddr = (char *)paddr + offset;
964 }
965 
966 /*
967  * Unmap the current chunk from aiter. This can be safely called when the aiter
968  * has already exhausted, in which case this does nothing.
969  */
970 void
971 abd_iter_unmap(struct abd_iter *aiter)
972 {
973 	/* There's nothing left to unmap, so do nothing */
974 	if (abd_iter_at_end(aiter))
975 		return;
976 
977 	if (!abd_is_linear(aiter->iter_abd)) {
978 		/* LINTED E_FUNC_SET_NOT_USED */
979 		zfs_kunmap_atomic(aiter->iter_mapaddr - aiter->iter_offset);
980 	}
981 
982 	ASSERT3P(aiter->iter_mapaddr, !=, NULL);
983 	ASSERT3U(aiter->iter_mapsize, >, 0);
984 
985 	aiter->iter_mapaddr = NULL;
986 	aiter->iter_mapsize = 0;
987 }
988 
989 void
990 abd_cache_reap_now(void)
991 {
992 }
993 
994 #if defined(_KERNEL)
995 /*
996  * bio_nr_pages for ABD.
997  * @off is the offset in @abd
998  */
999 unsigned long
1000 abd_nr_pages_off(abd_t *abd, unsigned int size, size_t off)
1001 {
1002 	unsigned long pos;
1003 
1004 	if (abd_is_gang(abd)) {
1005 		unsigned long count = 0;
1006 
1007 		for (abd_t *cabd = abd_gang_get_offset(abd, &off);
1008 		    cabd != NULL && size != 0;
1009 		    cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
1010 			ASSERT3U(off, <, cabd->abd_size);
1011 			int mysize = MIN(size, cabd->abd_size - off);
1012 			count += abd_nr_pages_off(cabd, mysize, off);
1013 			size -= mysize;
1014 			off = 0;
1015 		}
1016 		return (count);
1017 	}
1018 
1019 	if (abd_is_linear(abd))
1020 		pos = (unsigned long)abd_to_buf(abd) + off;
1021 	else
1022 		pos = ABD_SCATTER(abd).abd_offset + off;
1023 
1024 	return (((pos + size + PAGESIZE - 1) >> PAGE_SHIFT) -
1025 	    (pos >> PAGE_SHIFT));
1026 }
1027 
1028 static unsigned int
1029 bio_map(struct bio *bio, void *buf_ptr, unsigned int bio_size)
1030 {
1031 	unsigned int offset, size, i;
1032 	struct page *page;
1033 
1034 	offset = offset_in_page(buf_ptr);
1035 	for (i = 0; i < bio->bi_max_vecs; i++) {
1036 		size = PAGE_SIZE - offset;
1037 
1038 		if (bio_size <= 0)
1039 			break;
1040 
1041 		if (size > bio_size)
1042 			size = bio_size;
1043 
1044 		if (is_vmalloc_addr(buf_ptr))
1045 			page = vmalloc_to_page(buf_ptr);
1046 		else
1047 			page = virt_to_page(buf_ptr);
1048 
1049 		/*
1050 		 * Some network related block device uses tcp_sendpage, which
1051 		 * doesn't behave well when using 0-count page, this is a
1052 		 * safety net to catch them.
1053 		 */
1054 		ASSERT3S(page_count(page), >, 0);
1055 
1056 		if (bio_add_page(bio, page, size, offset) != size)
1057 			break;
1058 
1059 		buf_ptr += size;
1060 		bio_size -= size;
1061 		offset = 0;
1062 	}
1063 
1064 	return (bio_size);
1065 }
1066 
1067 /*
1068  * bio_map for gang ABD.
1069  */
1070 static unsigned int
1071 abd_gang_bio_map_off(struct bio *bio, abd_t *abd,
1072     unsigned int io_size, size_t off)
1073 {
1074 	ASSERT(abd_is_gang(abd));
1075 
1076 	for (abd_t *cabd = abd_gang_get_offset(abd, &off);
1077 	    cabd != NULL;
1078 	    cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
1079 		ASSERT3U(off, <, cabd->abd_size);
1080 		int size = MIN(io_size, cabd->abd_size - off);
1081 		int remainder = abd_bio_map_off(bio, cabd, size, off);
1082 		io_size -= (size - remainder);
1083 		if (io_size == 0 || remainder > 0)
1084 			return (io_size);
1085 		off = 0;
1086 	}
1087 	ASSERT0(io_size);
1088 	return (io_size);
1089 }
1090 
1091 /*
1092  * bio_map for ABD.
1093  * @off is the offset in @abd
1094  * Remaining IO size is returned
1095  */
1096 unsigned int
1097 abd_bio_map_off(struct bio *bio, abd_t *abd,
1098     unsigned int io_size, size_t off)
1099 {
1100 	struct abd_iter aiter;
1101 
1102 	ASSERT3U(io_size, <=, abd->abd_size - off);
1103 	if (abd_is_linear(abd))
1104 		return (bio_map(bio, ((char *)abd_to_buf(abd)) + off, io_size));
1105 
1106 	ASSERT(!abd_is_linear(abd));
1107 	if (abd_is_gang(abd))
1108 		return (abd_gang_bio_map_off(bio, abd, io_size, off));
1109 
1110 	abd_iter_init(&aiter, abd);
1111 	abd_iter_advance(&aiter, off);
1112 
1113 	for (int i = 0; i < bio->bi_max_vecs; i++) {
1114 		struct page *pg;
1115 		size_t len, sgoff, pgoff;
1116 		struct scatterlist *sg;
1117 
1118 		if (io_size <= 0)
1119 			break;
1120 
1121 		sg = aiter.iter_sg;
1122 		sgoff = aiter.iter_offset;
1123 		pgoff = sgoff & (PAGESIZE - 1);
1124 		len = MIN(io_size, PAGESIZE - pgoff);
1125 		ASSERT(len > 0);
1126 
1127 		pg = nth_page(sg_page(sg), sgoff >> PAGE_SHIFT);
1128 		if (bio_add_page(bio, pg, len, pgoff) != len)
1129 			break;
1130 
1131 		io_size -= len;
1132 		abd_iter_advance(&aiter, len);
1133 	}
1134 
1135 	return (io_size);
1136 }
1137 
1138 /* Tunable Parameters */
1139 module_param(zfs_abd_scatter_enabled, int, 0644);
1140 MODULE_PARM_DESC(zfs_abd_scatter_enabled,
1141 	"Toggle whether ABD allocations must be linear.");
1142 module_param(zfs_abd_scatter_min_size, int, 0644);
1143 MODULE_PARM_DESC(zfs_abd_scatter_min_size,
1144 	"Minimum size of scatter allocations.");
1145 /* CSTYLED */
1146 module_param(zfs_abd_scatter_max_order, uint, 0644);
1147 MODULE_PARM_DESC(zfs_abd_scatter_max_order,
1148 	"Maximum order allocation used for a scatter ABD.");
1149 #endif
1150