1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2014 by Chunwei Chen. All rights reserved. 23 * Copyright (c) 2019 by Delphix. All rights reserved. 24 */ 25 26 /* 27 * See abd.c for a general overview of the arc buffered data (ABD). 28 * 29 * Linear buffers act exactly like normal buffers and are always mapped into the 30 * kernel's virtual memory space, while scattered ABD data chunks are allocated 31 * as physical pages and then mapped in only while they are actually being 32 * accessed through one of the abd_* library functions. Using scattered ABDs 33 * provides several benefits: 34 * 35 * (1) They avoid use of kmem_*, preventing performance problems where running 36 * kmem_reap on very large memory systems never finishes and causes 37 * constant TLB shootdowns. 38 * 39 * (2) Fragmentation is less of an issue since when we are at the limit of 40 * allocatable space, we won't have to search around for a long free 41 * hole in the VA space for large ARC allocations. Each chunk is mapped in 42 * individually, so even if we are using HIGHMEM (see next point) we 43 * wouldn't need to worry about finding a contiguous address range. 44 * 45 * (3) If we are not using HIGHMEM, then all physical memory is always 46 * mapped into the kernel's address space, so we also avoid the map / 47 * unmap costs on each ABD access. 48 * 49 * If we are not using HIGHMEM, scattered buffers which have only one chunk 50 * can be treated as linear buffers, because they are contiguous in the 51 * kernel's virtual address space. See abd_alloc_chunks() for details. 52 */ 53 54 #include <sys/abd_impl.h> 55 #include <sys/param.h> 56 #include <sys/zio.h> 57 #include <sys/arc.h> 58 #include <sys/zfs_context.h> 59 #include <sys/zfs_znode.h> 60 #ifdef _KERNEL 61 #include <linux/kmap_compat.h> 62 #include <linux/scatterlist.h> 63 #else 64 #define MAX_ORDER 1 65 #endif 66 67 typedef struct abd_stats { 68 kstat_named_t abdstat_struct_size; 69 kstat_named_t abdstat_linear_cnt; 70 kstat_named_t abdstat_linear_data_size; 71 kstat_named_t abdstat_scatter_cnt; 72 kstat_named_t abdstat_scatter_data_size; 73 kstat_named_t abdstat_scatter_chunk_waste; 74 kstat_named_t abdstat_scatter_orders[MAX_ORDER]; 75 kstat_named_t abdstat_scatter_page_multi_chunk; 76 kstat_named_t abdstat_scatter_page_multi_zone; 77 kstat_named_t abdstat_scatter_page_alloc_retry; 78 kstat_named_t abdstat_scatter_sg_table_retry; 79 } abd_stats_t; 80 81 static abd_stats_t abd_stats = { 82 /* Amount of memory occupied by all of the abd_t struct allocations */ 83 { "struct_size", KSTAT_DATA_UINT64 }, 84 /* 85 * The number of linear ABDs which are currently allocated, excluding 86 * ABDs which don't own their data (for instance the ones which were 87 * allocated through abd_get_offset() and abd_get_from_buf()). If an 88 * ABD takes ownership of its buf then it will become tracked. 89 */ 90 { "linear_cnt", KSTAT_DATA_UINT64 }, 91 /* Amount of data stored in all linear ABDs tracked by linear_cnt */ 92 { "linear_data_size", KSTAT_DATA_UINT64 }, 93 /* 94 * The number of scatter ABDs which are currently allocated, excluding 95 * ABDs which don't own their data (for instance the ones which were 96 * allocated through abd_get_offset()). 97 */ 98 { "scatter_cnt", KSTAT_DATA_UINT64 }, 99 /* Amount of data stored in all scatter ABDs tracked by scatter_cnt */ 100 { "scatter_data_size", KSTAT_DATA_UINT64 }, 101 /* 102 * The amount of space wasted at the end of the last chunk across all 103 * scatter ABDs tracked by scatter_cnt. 104 */ 105 { "scatter_chunk_waste", KSTAT_DATA_UINT64 }, 106 /* 107 * The number of compound allocations of a given order. These 108 * allocations are spread over all currently allocated ABDs, and 109 * act as a measure of memory fragmentation. 110 */ 111 { { "scatter_order_N", KSTAT_DATA_UINT64 } }, 112 /* 113 * The number of scatter ABDs which contain multiple chunks. 114 * ABDs are preferentially allocated from the minimum number of 115 * contiguous multi-page chunks, a single chunk is optimal. 116 */ 117 { "scatter_page_multi_chunk", KSTAT_DATA_UINT64 }, 118 /* 119 * The number of scatter ABDs which are split across memory zones. 120 * ABDs are preferentially allocated using pages from a single zone. 121 */ 122 { "scatter_page_multi_zone", KSTAT_DATA_UINT64 }, 123 /* 124 * The total number of retries encountered when attempting to 125 * allocate the pages to populate the scatter ABD. 126 */ 127 { "scatter_page_alloc_retry", KSTAT_DATA_UINT64 }, 128 /* 129 * The total number of retries encountered when attempting to 130 * allocate the sg table for an ABD. 131 */ 132 { "scatter_sg_table_retry", KSTAT_DATA_UINT64 }, 133 }; 134 135 #define abd_for_each_sg(abd, sg, n, i) \ 136 for_each_sg(ABD_SCATTER(abd).abd_sgl, sg, n, i) 137 138 unsigned zfs_abd_scatter_max_order = MAX_ORDER - 1; 139 140 /* 141 * zfs_abd_scatter_min_size is the minimum allocation size to use scatter 142 * ABD's. Smaller allocations will use linear ABD's which uses 143 * zio_[data_]buf_alloc(). 144 * 145 * Scatter ABD's use at least one page each, so sub-page allocations waste 146 * some space when allocated as scatter (e.g. 2KB scatter allocation wastes 147 * half of each page). Using linear ABD's for small allocations means that 148 * they will be put on slabs which contain many allocations. This can 149 * improve memory efficiency, but it also makes it much harder for ARC 150 * evictions to actually free pages, because all the buffers on one slab need 151 * to be freed in order for the slab (and underlying pages) to be freed. 152 * Typically, 512B and 1KB kmem caches have 16 buffers per slab, so it's 153 * possible for them to actually waste more memory than scatter (one page per 154 * buf = wasting 3/4 or 7/8th; one buf per slab = wasting 15/16th). 155 * 156 * Spill blocks are typically 512B and are heavily used on systems running 157 * selinux with the default dnode size and the `xattr=sa` property set. 158 * 159 * By default we use linear allocations for 512B and 1KB, and scatter 160 * allocations for larger (1.5KB and up). 161 */ 162 int zfs_abd_scatter_min_size = 512 * 3; 163 164 /* 165 * We use a scattered SPA_MAXBLOCKSIZE sized ABD whose pages are 166 * just a single zero'd page. This allows us to conserve memory by 167 * only using a single zero page for the scatterlist. 168 */ 169 abd_t *abd_zero_scatter = NULL; 170 171 struct page; 172 /* 173 * abd_zero_page we will be an allocated zero'd PAGESIZE buffer, which is 174 * assigned to set each of the pages of abd_zero_scatter. 175 */ 176 static struct page *abd_zero_page = NULL; 177 178 static kmem_cache_t *abd_cache = NULL; 179 static kstat_t *abd_ksp; 180 181 static uint_t 182 abd_chunkcnt_for_bytes(size_t size) 183 { 184 return (P2ROUNDUP(size, PAGESIZE) / PAGESIZE); 185 } 186 187 abd_t * 188 abd_alloc_struct_impl(size_t size) 189 { 190 /* 191 * In Linux we do not use the size passed in during ABD 192 * allocation, so we just ignore it. 193 */ 194 abd_t *abd = kmem_cache_alloc(abd_cache, KM_PUSHPAGE); 195 ASSERT3P(abd, !=, NULL); 196 ABDSTAT_INCR(abdstat_struct_size, sizeof (abd_t)); 197 198 return (abd); 199 } 200 201 void 202 abd_free_struct_impl(abd_t *abd) 203 { 204 kmem_cache_free(abd_cache, abd); 205 ABDSTAT_INCR(abdstat_struct_size, -(int)sizeof (abd_t)); 206 } 207 208 #ifdef _KERNEL 209 /* 210 * Mark zfs data pages so they can be excluded from kernel crash dumps 211 */ 212 #ifdef _LP64 213 #define ABD_FILE_CACHE_PAGE 0x2F5ABDF11ECAC4E 214 215 static inline void 216 abd_mark_zfs_page(struct page *page) 217 { 218 get_page(page); 219 SetPagePrivate(page); 220 set_page_private(page, ABD_FILE_CACHE_PAGE); 221 } 222 223 static inline void 224 abd_unmark_zfs_page(struct page *page) 225 { 226 set_page_private(page, 0UL); 227 ClearPagePrivate(page); 228 put_page(page); 229 } 230 #else 231 #define abd_mark_zfs_page(page) 232 #define abd_unmark_zfs_page(page) 233 #endif /* _LP64 */ 234 235 #ifndef CONFIG_HIGHMEM 236 237 #ifndef __GFP_RECLAIM 238 #define __GFP_RECLAIM __GFP_WAIT 239 #endif 240 241 /* 242 * The goal is to minimize fragmentation by preferentially populating ABDs 243 * with higher order compound pages from a single zone. Allocation size is 244 * progressively decreased until it can be satisfied without performing 245 * reclaim or compaction. When necessary this function will degenerate to 246 * allocating individual pages and allowing reclaim to satisfy allocations. 247 */ 248 void 249 abd_alloc_chunks(abd_t *abd, size_t size) 250 { 251 struct list_head pages; 252 struct sg_table table; 253 struct scatterlist *sg; 254 struct page *page, *tmp_page = NULL; 255 gfp_t gfp = __GFP_NOWARN | GFP_NOIO; 256 gfp_t gfp_comp = (gfp | __GFP_NORETRY | __GFP_COMP) & ~__GFP_RECLAIM; 257 int max_order = MIN(zfs_abd_scatter_max_order, MAX_ORDER - 1); 258 int nr_pages = abd_chunkcnt_for_bytes(size); 259 int chunks = 0, zones = 0; 260 size_t remaining_size; 261 int nid = NUMA_NO_NODE; 262 int alloc_pages = 0; 263 264 INIT_LIST_HEAD(&pages); 265 266 while (alloc_pages < nr_pages) { 267 unsigned chunk_pages; 268 int order; 269 270 order = MIN(highbit64(nr_pages - alloc_pages) - 1, max_order); 271 chunk_pages = (1U << order); 272 273 page = alloc_pages_node(nid, order ? gfp_comp : gfp, order); 274 if (page == NULL) { 275 if (order == 0) { 276 ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry); 277 schedule_timeout_interruptible(1); 278 } else { 279 max_order = MAX(0, order - 1); 280 } 281 continue; 282 } 283 284 list_add_tail(&page->lru, &pages); 285 286 if ((nid != NUMA_NO_NODE) && (page_to_nid(page) != nid)) 287 zones++; 288 289 nid = page_to_nid(page); 290 ABDSTAT_BUMP(abdstat_scatter_orders[order]); 291 chunks++; 292 alloc_pages += chunk_pages; 293 } 294 295 ASSERT3S(alloc_pages, ==, nr_pages); 296 297 while (sg_alloc_table(&table, chunks, gfp)) { 298 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry); 299 schedule_timeout_interruptible(1); 300 } 301 302 sg = table.sgl; 303 remaining_size = size; 304 list_for_each_entry_safe(page, tmp_page, &pages, lru) { 305 size_t sg_size = MIN(PAGESIZE << compound_order(page), 306 remaining_size); 307 sg_set_page(sg, page, sg_size, 0); 308 abd_mark_zfs_page(page); 309 remaining_size -= sg_size; 310 311 sg = sg_next(sg); 312 list_del(&page->lru); 313 } 314 315 /* 316 * These conditions ensure that a possible transformation to a linear 317 * ABD would be valid. 318 */ 319 ASSERT(!PageHighMem(sg_page(table.sgl))); 320 ASSERT0(ABD_SCATTER(abd).abd_offset); 321 322 if (table.nents == 1) { 323 /* 324 * Since there is only one entry, this ABD can be represented 325 * as a linear buffer. All single-page (4K) ABD's can be 326 * represented this way. Some multi-page ABD's can also be 327 * represented this way, if we were able to allocate a single 328 * "chunk" (higher-order "page" which represents a power-of-2 329 * series of physically-contiguous pages). This is often the 330 * case for 2-page (8K) ABD's. 331 * 332 * Representing a single-entry scatter ABD as a linear ABD 333 * has the performance advantage of avoiding the copy (and 334 * allocation) in abd_borrow_buf_copy / abd_return_buf_copy. 335 * A performance increase of around 5% has been observed for 336 * ARC-cached reads (of small blocks which can take advantage 337 * of this). 338 * 339 * Note that this optimization is only possible because the 340 * pages are always mapped into the kernel's address space. 341 * This is not the case for highmem pages, so the 342 * optimization can not be made there. 343 */ 344 abd->abd_flags |= ABD_FLAG_LINEAR; 345 abd->abd_flags |= ABD_FLAG_LINEAR_PAGE; 346 abd->abd_u.abd_linear.abd_sgl = table.sgl; 347 ABD_LINEAR_BUF(abd) = page_address(sg_page(table.sgl)); 348 } else if (table.nents > 1) { 349 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); 350 abd->abd_flags |= ABD_FLAG_MULTI_CHUNK; 351 352 if (zones) { 353 ABDSTAT_BUMP(abdstat_scatter_page_multi_zone); 354 abd->abd_flags |= ABD_FLAG_MULTI_ZONE; 355 } 356 357 ABD_SCATTER(abd).abd_sgl = table.sgl; 358 ABD_SCATTER(abd).abd_nents = table.nents; 359 } 360 } 361 #else 362 363 /* 364 * Allocate N individual pages to construct a scatter ABD. This function 365 * makes no attempt to request contiguous pages and requires the minimal 366 * number of kernel interfaces. It's designed for maximum compatibility. 367 */ 368 void 369 abd_alloc_chunks(abd_t *abd, size_t size) 370 { 371 struct scatterlist *sg = NULL; 372 struct sg_table table; 373 struct page *page; 374 gfp_t gfp = __GFP_NOWARN | GFP_NOIO; 375 int nr_pages = abd_chunkcnt_for_bytes(size); 376 int i = 0; 377 378 while (sg_alloc_table(&table, nr_pages, gfp)) { 379 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry); 380 schedule_timeout_interruptible(1); 381 } 382 383 ASSERT3U(table.nents, ==, nr_pages); 384 ABD_SCATTER(abd).abd_sgl = table.sgl; 385 ABD_SCATTER(abd).abd_nents = nr_pages; 386 387 abd_for_each_sg(abd, sg, nr_pages, i) { 388 while ((page = __page_cache_alloc(gfp)) == NULL) { 389 ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry); 390 schedule_timeout_interruptible(1); 391 } 392 393 ABDSTAT_BUMP(abdstat_scatter_orders[0]); 394 sg_set_page(sg, page, PAGESIZE, 0); 395 abd_mark_zfs_page(page); 396 } 397 398 if (nr_pages > 1) { 399 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); 400 abd->abd_flags |= ABD_FLAG_MULTI_CHUNK; 401 } 402 } 403 #endif /* !CONFIG_HIGHMEM */ 404 405 /* 406 * This must be called if any of the sg_table allocation functions 407 * are called. 408 */ 409 static void 410 abd_free_sg_table(abd_t *abd) 411 { 412 struct sg_table table; 413 414 table.sgl = ABD_SCATTER(abd).abd_sgl; 415 table.nents = table.orig_nents = ABD_SCATTER(abd).abd_nents; 416 sg_free_table(&table); 417 } 418 419 void 420 abd_free_chunks(abd_t *abd) 421 { 422 struct scatterlist *sg = NULL; 423 struct page *page; 424 int nr_pages = ABD_SCATTER(abd).abd_nents; 425 int order, i = 0; 426 427 if (abd->abd_flags & ABD_FLAG_MULTI_ZONE) 428 ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_zone); 429 430 if (abd->abd_flags & ABD_FLAG_MULTI_CHUNK) 431 ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk); 432 433 abd_for_each_sg(abd, sg, nr_pages, i) { 434 page = sg_page(sg); 435 abd_unmark_zfs_page(page); 436 order = compound_order(page); 437 __free_pages(page, order); 438 ASSERT3U(sg->length, <=, PAGE_SIZE << order); 439 ABDSTAT_BUMPDOWN(abdstat_scatter_orders[order]); 440 } 441 abd_free_sg_table(abd); 442 } 443 444 /* 445 * Allocate scatter ABD of size SPA_MAXBLOCKSIZE, where each page in 446 * the scatterlist will be set to the zero'd out buffer abd_zero_page. 447 */ 448 static void 449 abd_alloc_zero_scatter(void) 450 { 451 struct scatterlist *sg = NULL; 452 struct sg_table table; 453 gfp_t gfp = __GFP_NOWARN | GFP_NOIO; 454 gfp_t gfp_zero_page = gfp | __GFP_ZERO; 455 int nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE); 456 int i = 0; 457 458 while ((abd_zero_page = __page_cache_alloc(gfp_zero_page)) == NULL) { 459 ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry); 460 schedule_timeout_interruptible(1); 461 } 462 abd_mark_zfs_page(abd_zero_page); 463 464 while (sg_alloc_table(&table, nr_pages, gfp)) { 465 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry); 466 schedule_timeout_interruptible(1); 467 } 468 ASSERT3U(table.nents, ==, nr_pages); 469 470 abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE); 471 abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER; 472 ABD_SCATTER(abd_zero_scatter).abd_offset = 0; 473 ABD_SCATTER(abd_zero_scatter).abd_sgl = table.sgl; 474 ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages; 475 abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE; 476 abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS; 477 478 abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) { 479 sg_set_page(sg, abd_zero_page, PAGESIZE, 0); 480 } 481 482 ABDSTAT_BUMP(abdstat_scatter_cnt); 483 ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE); 484 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); 485 } 486 487 #else /* _KERNEL */ 488 489 #ifndef PAGE_SHIFT 490 #define PAGE_SHIFT (highbit64(PAGESIZE)-1) 491 #endif 492 493 #define zfs_kmap_atomic(chunk) ((void *)chunk) 494 #define zfs_kunmap_atomic(addr) do { (void)(addr); } while (0) 495 #define local_irq_save(flags) do { (void)(flags); } while (0) 496 #define local_irq_restore(flags) do { (void)(flags); } while (0) 497 #define nth_page(pg, i) \ 498 ((struct page *)((void *)(pg) + (i) * PAGESIZE)) 499 500 struct scatterlist { 501 struct page *page; 502 int length; 503 int end; 504 }; 505 506 static void 507 sg_init_table(struct scatterlist *sg, int nr) 508 { 509 memset(sg, 0, nr * sizeof (struct scatterlist)); 510 sg[nr - 1].end = 1; 511 } 512 513 /* 514 * This must be called if any of the sg_table allocation functions 515 * are called. 516 */ 517 static void 518 abd_free_sg_table(abd_t *abd) 519 { 520 int nents = ABD_SCATTER(abd).abd_nents; 521 vmem_free(ABD_SCATTER(abd).abd_sgl, 522 nents * sizeof (struct scatterlist)); 523 } 524 525 #define for_each_sg(sgl, sg, nr, i) \ 526 for ((i) = 0, (sg) = (sgl); (i) < (nr); (i)++, (sg) = sg_next(sg)) 527 528 static inline void 529 sg_set_page(struct scatterlist *sg, struct page *page, unsigned int len, 530 unsigned int offset) 531 { 532 /* currently we don't use offset */ 533 ASSERT(offset == 0); 534 sg->page = page; 535 sg->length = len; 536 } 537 538 static inline struct page * 539 sg_page(struct scatterlist *sg) 540 { 541 return (sg->page); 542 } 543 544 static inline struct scatterlist * 545 sg_next(struct scatterlist *sg) 546 { 547 if (sg->end) 548 return (NULL); 549 550 return (sg + 1); 551 } 552 553 void 554 abd_alloc_chunks(abd_t *abd, size_t size) 555 { 556 unsigned nr_pages = abd_chunkcnt_for_bytes(size); 557 struct scatterlist *sg; 558 int i; 559 560 ABD_SCATTER(abd).abd_sgl = vmem_alloc(nr_pages * 561 sizeof (struct scatterlist), KM_SLEEP); 562 sg_init_table(ABD_SCATTER(abd).abd_sgl, nr_pages); 563 564 abd_for_each_sg(abd, sg, nr_pages, i) { 565 struct page *p = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP); 566 sg_set_page(sg, p, PAGESIZE, 0); 567 } 568 ABD_SCATTER(abd).abd_nents = nr_pages; 569 } 570 571 void 572 abd_free_chunks(abd_t *abd) 573 { 574 int i, n = ABD_SCATTER(abd).abd_nents; 575 struct scatterlist *sg; 576 577 abd_for_each_sg(abd, sg, n, i) { 578 for (int j = 0; j < sg->length; j += PAGESIZE) { 579 struct page *p = nth_page(sg_page(sg), j >> PAGE_SHIFT); 580 umem_free(p, PAGESIZE); 581 } 582 } 583 abd_free_sg_table(abd); 584 } 585 586 static void 587 abd_alloc_zero_scatter(void) 588 { 589 unsigned nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE); 590 struct scatterlist *sg; 591 int i; 592 593 abd_zero_page = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP); 594 memset(abd_zero_page, 0, PAGESIZE); 595 abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE); 596 abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER; 597 abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS; 598 ABD_SCATTER(abd_zero_scatter).abd_offset = 0; 599 ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages; 600 abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE; 601 zfs_refcount_create(&abd_zero_scatter->abd_children); 602 ABD_SCATTER(abd_zero_scatter).abd_sgl = vmem_alloc(nr_pages * 603 sizeof (struct scatterlist), KM_SLEEP); 604 605 sg_init_table(ABD_SCATTER(abd_zero_scatter).abd_sgl, nr_pages); 606 607 abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) { 608 sg_set_page(sg, abd_zero_page, PAGESIZE, 0); 609 } 610 611 ABDSTAT_BUMP(abdstat_scatter_cnt); 612 ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE); 613 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); 614 } 615 616 #endif /* _KERNEL */ 617 618 boolean_t 619 abd_size_alloc_linear(size_t size) 620 { 621 return (size < zfs_abd_scatter_min_size ? B_TRUE : B_FALSE); 622 } 623 624 void 625 abd_update_scatter_stats(abd_t *abd, abd_stats_op_t op) 626 { 627 ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR); 628 int waste = P2ROUNDUP(abd->abd_size, PAGESIZE) - abd->abd_size; 629 if (op == ABDSTAT_INCR) { 630 ABDSTAT_BUMP(abdstat_scatter_cnt); 631 ABDSTAT_INCR(abdstat_scatter_data_size, abd->abd_size); 632 ABDSTAT_INCR(abdstat_scatter_chunk_waste, waste); 633 arc_space_consume(waste, ARC_SPACE_ABD_CHUNK_WASTE); 634 } else { 635 ABDSTAT_BUMPDOWN(abdstat_scatter_cnt); 636 ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size); 637 ABDSTAT_INCR(abdstat_scatter_chunk_waste, -waste); 638 arc_space_return(waste, ARC_SPACE_ABD_CHUNK_WASTE); 639 } 640 } 641 642 void 643 abd_update_linear_stats(abd_t *abd, abd_stats_op_t op) 644 { 645 ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR); 646 if (op == ABDSTAT_INCR) { 647 ABDSTAT_BUMP(abdstat_linear_cnt); 648 ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size); 649 } else { 650 ABDSTAT_BUMPDOWN(abdstat_linear_cnt); 651 ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size); 652 } 653 } 654 655 void 656 abd_verify_scatter(abd_t *abd) 657 { 658 size_t n; 659 int i = 0; 660 struct scatterlist *sg = NULL; 661 662 ASSERT3U(ABD_SCATTER(abd).abd_nents, >, 0); 663 ASSERT3U(ABD_SCATTER(abd).abd_offset, <, 664 ABD_SCATTER(abd).abd_sgl->length); 665 n = ABD_SCATTER(abd).abd_nents; 666 abd_for_each_sg(abd, sg, n, i) { 667 ASSERT3P(sg_page(sg), !=, NULL); 668 } 669 } 670 671 static void 672 abd_free_zero_scatter(void) 673 { 674 ABDSTAT_BUMPDOWN(abdstat_scatter_cnt); 675 ABDSTAT_INCR(abdstat_scatter_data_size, -(int)PAGESIZE); 676 ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk); 677 678 abd_free_sg_table(abd_zero_scatter); 679 abd_free_struct(abd_zero_scatter); 680 abd_zero_scatter = NULL; 681 ASSERT3P(abd_zero_page, !=, NULL); 682 #if defined(_KERNEL) 683 abd_unmark_zfs_page(abd_zero_page); 684 __free_page(abd_zero_page); 685 #else 686 umem_free(abd_zero_page, PAGESIZE); 687 #endif /* _KERNEL */ 688 } 689 690 void 691 abd_init(void) 692 { 693 int i; 694 695 abd_cache = kmem_cache_create("abd_t", sizeof (abd_t), 696 0, NULL, NULL, NULL, NULL, NULL, 0); 697 698 abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED, 699 sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 700 if (abd_ksp != NULL) { 701 for (i = 0; i < MAX_ORDER; i++) { 702 snprintf(abd_stats.abdstat_scatter_orders[i].name, 703 KSTAT_STRLEN, "scatter_order_%d", i); 704 abd_stats.abdstat_scatter_orders[i].data_type = 705 KSTAT_DATA_UINT64; 706 } 707 abd_ksp->ks_data = &abd_stats; 708 kstat_install(abd_ksp); 709 } 710 711 abd_alloc_zero_scatter(); 712 } 713 714 void 715 abd_fini(void) 716 { 717 abd_free_zero_scatter(); 718 719 if (abd_ksp != NULL) { 720 kstat_delete(abd_ksp); 721 abd_ksp = NULL; 722 } 723 724 if (abd_cache) { 725 kmem_cache_destroy(abd_cache); 726 abd_cache = NULL; 727 } 728 } 729 730 void 731 abd_free_linear_page(abd_t *abd) 732 { 733 /* Transform it back into a scatter ABD for freeing */ 734 struct scatterlist *sg = abd->abd_u.abd_linear.abd_sgl; 735 abd->abd_flags &= ~ABD_FLAG_LINEAR; 736 abd->abd_flags &= ~ABD_FLAG_LINEAR_PAGE; 737 ABD_SCATTER(abd).abd_nents = 1; 738 ABD_SCATTER(abd).abd_offset = 0; 739 ABD_SCATTER(abd).abd_sgl = sg; 740 abd_free_chunks(abd); 741 742 abd_update_scatter_stats(abd, ABDSTAT_DECR); 743 } 744 745 /* 746 * If we're going to use this ABD for doing I/O using the block layer, the 747 * consumer of the ABD data doesn't care if it's scattered or not, and we don't 748 * plan to store this ABD in memory for a long period of time, we should 749 * allocate the ABD type that requires the least data copying to do the I/O. 750 * 751 * On Linux the optimal thing to do would be to use abd_get_offset() and 752 * construct a new ABD which shares the original pages thereby eliminating 753 * the copy. But for the moment a new linear ABD is allocated until this 754 * performance optimization can be implemented. 755 */ 756 abd_t * 757 abd_alloc_for_io(size_t size, boolean_t is_metadata) 758 { 759 return (abd_alloc(size, is_metadata)); 760 } 761 762 abd_t * 763 abd_get_offset_scatter(abd_t *abd, abd_t *sabd, size_t off) 764 { 765 int i = 0; 766 struct scatterlist *sg = NULL; 767 768 abd_verify(sabd); 769 ASSERT3U(off, <=, sabd->abd_size); 770 771 size_t new_offset = ABD_SCATTER(sabd).abd_offset + off; 772 773 if (abd == NULL) 774 abd = abd_alloc_struct(0); 775 776 /* 777 * Even if this buf is filesystem metadata, we only track that 778 * if we own the underlying data buffer, which is not true in 779 * this case. Therefore, we don't ever use ABD_FLAG_META here. 780 */ 781 782 abd_for_each_sg(sabd, sg, ABD_SCATTER(sabd).abd_nents, i) { 783 if (new_offset < sg->length) 784 break; 785 new_offset -= sg->length; 786 } 787 788 ABD_SCATTER(abd).abd_sgl = sg; 789 ABD_SCATTER(abd).abd_offset = new_offset; 790 ABD_SCATTER(abd).abd_nents = ABD_SCATTER(sabd).abd_nents - i; 791 792 return (abd); 793 } 794 795 /* 796 * Initialize the abd_iter. 797 */ 798 void 799 abd_iter_init(struct abd_iter *aiter, abd_t *abd) 800 { 801 ASSERT(!abd_is_gang(abd)); 802 abd_verify(abd); 803 aiter->iter_abd = abd; 804 aiter->iter_mapaddr = NULL; 805 aiter->iter_mapsize = 0; 806 aiter->iter_pos = 0; 807 if (abd_is_linear(abd)) { 808 aiter->iter_offset = 0; 809 aiter->iter_sg = NULL; 810 } else { 811 aiter->iter_offset = ABD_SCATTER(abd).abd_offset; 812 aiter->iter_sg = ABD_SCATTER(abd).abd_sgl; 813 } 814 } 815 816 /* 817 * This is just a helper function to see if we have exhausted the 818 * abd_iter and reached the end. 819 */ 820 boolean_t 821 abd_iter_at_end(struct abd_iter *aiter) 822 { 823 return (aiter->iter_pos == aiter->iter_abd->abd_size); 824 } 825 826 /* 827 * Advance the iterator by a certain amount. Cannot be called when a chunk is 828 * in use. This can be safely called when the aiter has already exhausted, in 829 * which case this does nothing. 830 */ 831 void 832 abd_iter_advance(struct abd_iter *aiter, size_t amount) 833 { 834 ASSERT3P(aiter->iter_mapaddr, ==, NULL); 835 ASSERT0(aiter->iter_mapsize); 836 837 /* There's nothing left to advance to, so do nothing */ 838 if (abd_iter_at_end(aiter)) 839 return; 840 841 aiter->iter_pos += amount; 842 aiter->iter_offset += amount; 843 if (!abd_is_linear(aiter->iter_abd)) { 844 while (aiter->iter_offset >= aiter->iter_sg->length) { 845 aiter->iter_offset -= aiter->iter_sg->length; 846 aiter->iter_sg = sg_next(aiter->iter_sg); 847 if (aiter->iter_sg == NULL) { 848 ASSERT0(aiter->iter_offset); 849 break; 850 } 851 } 852 } 853 } 854 855 /* 856 * Map the current chunk into aiter. This can be safely called when the aiter 857 * has already exhausted, in which case this does nothing. 858 */ 859 void 860 abd_iter_map(struct abd_iter *aiter) 861 { 862 void *paddr; 863 size_t offset = 0; 864 865 ASSERT3P(aiter->iter_mapaddr, ==, NULL); 866 ASSERT0(aiter->iter_mapsize); 867 868 /* There's nothing left to iterate over, so do nothing */ 869 if (abd_iter_at_end(aiter)) 870 return; 871 872 if (abd_is_linear(aiter->iter_abd)) { 873 ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset); 874 offset = aiter->iter_offset; 875 aiter->iter_mapsize = aiter->iter_abd->abd_size - offset; 876 paddr = ABD_LINEAR_BUF(aiter->iter_abd); 877 } else { 878 offset = aiter->iter_offset; 879 aiter->iter_mapsize = MIN(aiter->iter_sg->length - offset, 880 aiter->iter_abd->abd_size - aiter->iter_pos); 881 882 paddr = zfs_kmap_atomic(sg_page(aiter->iter_sg)); 883 } 884 885 aiter->iter_mapaddr = (char *)paddr + offset; 886 } 887 888 /* 889 * Unmap the current chunk from aiter. This can be safely called when the aiter 890 * has already exhausted, in which case this does nothing. 891 */ 892 void 893 abd_iter_unmap(struct abd_iter *aiter) 894 { 895 /* There's nothing left to unmap, so do nothing */ 896 if (abd_iter_at_end(aiter)) 897 return; 898 899 if (!abd_is_linear(aiter->iter_abd)) { 900 /* LINTED E_FUNC_SET_NOT_USED */ 901 zfs_kunmap_atomic(aiter->iter_mapaddr - aiter->iter_offset); 902 } 903 904 ASSERT3P(aiter->iter_mapaddr, !=, NULL); 905 ASSERT3U(aiter->iter_mapsize, >, 0); 906 907 aiter->iter_mapaddr = NULL; 908 aiter->iter_mapsize = 0; 909 } 910 911 void 912 abd_cache_reap_now(void) 913 { 914 } 915 916 #if defined(_KERNEL) 917 /* 918 * bio_nr_pages for ABD. 919 * @off is the offset in @abd 920 */ 921 unsigned long 922 abd_nr_pages_off(abd_t *abd, unsigned int size, size_t off) 923 { 924 unsigned long pos; 925 926 if (abd_is_gang(abd)) { 927 unsigned long count = 0; 928 929 for (abd_t *cabd = abd_gang_get_offset(abd, &off); 930 cabd != NULL && size != 0; 931 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) { 932 ASSERT3U(off, <, cabd->abd_size); 933 int mysize = MIN(size, cabd->abd_size - off); 934 count += abd_nr_pages_off(cabd, mysize, off); 935 size -= mysize; 936 off = 0; 937 } 938 return (count); 939 } 940 941 if (abd_is_linear(abd)) 942 pos = (unsigned long)abd_to_buf(abd) + off; 943 else 944 pos = ABD_SCATTER(abd).abd_offset + off; 945 946 return (((pos + size + PAGESIZE - 1) >> PAGE_SHIFT) - 947 (pos >> PAGE_SHIFT)); 948 } 949 950 static unsigned int 951 bio_map(struct bio *bio, void *buf_ptr, unsigned int bio_size) 952 { 953 unsigned int offset, size, i; 954 struct page *page; 955 956 offset = offset_in_page(buf_ptr); 957 for (i = 0; i < bio->bi_max_vecs; i++) { 958 size = PAGE_SIZE - offset; 959 960 if (bio_size <= 0) 961 break; 962 963 if (size > bio_size) 964 size = bio_size; 965 966 if (is_vmalloc_addr(buf_ptr)) 967 page = vmalloc_to_page(buf_ptr); 968 else 969 page = virt_to_page(buf_ptr); 970 971 /* 972 * Some network related block device uses tcp_sendpage, which 973 * doesn't behave well when using 0-count page, this is a 974 * safety net to catch them. 975 */ 976 ASSERT3S(page_count(page), >, 0); 977 978 if (bio_add_page(bio, page, size, offset) != size) 979 break; 980 981 buf_ptr += size; 982 bio_size -= size; 983 offset = 0; 984 } 985 986 return (bio_size); 987 } 988 989 /* 990 * bio_map for gang ABD. 991 */ 992 static unsigned int 993 abd_gang_bio_map_off(struct bio *bio, abd_t *abd, 994 unsigned int io_size, size_t off) 995 { 996 ASSERT(abd_is_gang(abd)); 997 998 for (abd_t *cabd = abd_gang_get_offset(abd, &off); 999 cabd != NULL; 1000 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) { 1001 ASSERT3U(off, <, cabd->abd_size); 1002 int size = MIN(io_size, cabd->abd_size - off); 1003 int remainder = abd_bio_map_off(bio, cabd, size, off); 1004 io_size -= (size - remainder); 1005 if (io_size == 0 || remainder > 0) 1006 return (io_size); 1007 off = 0; 1008 } 1009 ASSERT0(io_size); 1010 return (io_size); 1011 } 1012 1013 /* 1014 * bio_map for ABD. 1015 * @off is the offset in @abd 1016 * Remaining IO size is returned 1017 */ 1018 unsigned int 1019 abd_bio_map_off(struct bio *bio, abd_t *abd, 1020 unsigned int io_size, size_t off) 1021 { 1022 struct abd_iter aiter; 1023 1024 ASSERT3U(io_size, <=, abd->abd_size - off); 1025 if (abd_is_linear(abd)) 1026 return (bio_map(bio, ((char *)abd_to_buf(abd)) + off, io_size)); 1027 1028 ASSERT(!abd_is_linear(abd)); 1029 if (abd_is_gang(abd)) 1030 return (abd_gang_bio_map_off(bio, abd, io_size, off)); 1031 1032 abd_iter_init(&aiter, abd); 1033 abd_iter_advance(&aiter, off); 1034 1035 for (int i = 0; i < bio->bi_max_vecs; i++) { 1036 struct page *pg; 1037 size_t len, sgoff, pgoff; 1038 struct scatterlist *sg; 1039 1040 if (io_size <= 0) 1041 break; 1042 1043 sg = aiter.iter_sg; 1044 sgoff = aiter.iter_offset; 1045 pgoff = sgoff & (PAGESIZE - 1); 1046 len = MIN(io_size, PAGESIZE - pgoff); 1047 ASSERT(len > 0); 1048 1049 pg = nth_page(sg_page(sg), sgoff >> PAGE_SHIFT); 1050 if (bio_add_page(bio, pg, len, pgoff) != len) 1051 break; 1052 1053 io_size -= len; 1054 abd_iter_advance(&aiter, len); 1055 } 1056 1057 return (io_size); 1058 } 1059 1060 /* Tunable Parameters */ 1061 module_param(zfs_abd_scatter_enabled, int, 0644); 1062 MODULE_PARM_DESC(zfs_abd_scatter_enabled, 1063 "Toggle whether ABD allocations must be linear."); 1064 module_param(zfs_abd_scatter_min_size, int, 0644); 1065 MODULE_PARM_DESC(zfs_abd_scatter_min_size, 1066 "Minimum size of scatter allocations."); 1067 /* CSTYLED */ 1068 module_param(zfs_abd_scatter_max_order, uint, 0644); 1069 MODULE_PARM_DESC(zfs_abd_scatter_max_order, 1070 "Maximum order allocation used for a scatter ABD."); 1071 #endif 1072