1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2014 by Chunwei Chen. All rights reserved. 23 * Copyright (c) 2019 by Delphix. All rights reserved. 24 * Copyright (c) 2023, 2024, Klara Inc. 25 */ 26 27 /* 28 * See abd.c for a general overview of the arc buffered data (ABD). 29 * 30 * Linear buffers act exactly like normal buffers and are always mapped into the 31 * kernel's virtual memory space, while scattered ABD data chunks are allocated 32 * as physical pages and then mapped in only while they are actually being 33 * accessed through one of the abd_* library functions. Using scattered ABDs 34 * provides several benefits: 35 * 36 * (1) They avoid use of kmem_*, preventing performance problems where running 37 * kmem_reap on very large memory systems never finishes and causes 38 * constant TLB shootdowns. 39 * 40 * (2) Fragmentation is less of an issue since when we are at the limit of 41 * allocatable space, we won't have to search around for a long free 42 * hole in the VA space for large ARC allocations. Each chunk is mapped in 43 * individually, so even if we are using HIGHMEM (see next point) we 44 * wouldn't need to worry about finding a contiguous address range. 45 * 46 * (3) If we are not using HIGHMEM, then all physical memory is always 47 * mapped into the kernel's address space, so we also avoid the map / 48 * unmap costs on each ABD access. 49 * 50 * If we are not using HIGHMEM, scattered buffers which have only one chunk 51 * can be treated as linear buffers, because they are contiguous in the 52 * kernel's virtual address space. See abd_alloc_chunks() for details. 53 */ 54 55 #include <sys/abd_impl.h> 56 #include <sys/param.h> 57 #include <sys/zio.h> 58 #include <sys/arc.h> 59 #include <sys/zfs_context.h> 60 #include <sys/zfs_znode.h> 61 #include <linux/kmap_compat.h> 62 #include <linux/mm_compat.h> 63 #include <linux/scatterlist.h> 64 #include <linux/version.h> 65 66 #if defined(MAX_ORDER) 67 #define ABD_MAX_ORDER (MAX_ORDER) 68 #elif defined(MAX_PAGE_ORDER) 69 #define ABD_MAX_ORDER (MAX_PAGE_ORDER) 70 #endif 71 72 typedef struct abd_stats { 73 kstat_named_t abdstat_struct_size; 74 kstat_named_t abdstat_linear_cnt; 75 kstat_named_t abdstat_linear_data_size; 76 kstat_named_t abdstat_scatter_cnt; 77 kstat_named_t abdstat_scatter_data_size; 78 kstat_named_t abdstat_scatter_chunk_waste; 79 kstat_named_t abdstat_scatter_orders[ABD_MAX_ORDER]; 80 kstat_named_t abdstat_scatter_page_multi_chunk; 81 kstat_named_t abdstat_scatter_page_multi_zone; 82 kstat_named_t abdstat_scatter_page_alloc_retry; 83 kstat_named_t abdstat_scatter_sg_table_retry; 84 } abd_stats_t; 85 86 static abd_stats_t abd_stats = { 87 /* Amount of memory occupied by all of the abd_t struct allocations */ 88 { "struct_size", KSTAT_DATA_UINT64 }, 89 /* 90 * The number of linear ABDs which are currently allocated, excluding 91 * ABDs which don't own their data (for instance the ones which were 92 * allocated through abd_get_offset() and abd_get_from_buf()). If an 93 * ABD takes ownership of its buf then it will become tracked. 94 */ 95 { "linear_cnt", KSTAT_DATA_UINT64 }, 96 /* Amount of data stored in all linear ABDs tracked by linear_cnt */ 97 { "linear_data_size", KSTAT_DATA_UINT64 }, 98 /* 99 * The number of scatter ABDs which are currently allocated, excluding 100 * ABDs which don't own their data (for instance the ones which were 101 * allocated through abd_get_offset()). 102 */ 103 { "scatter_cnt", KSTAT_DATA_UINT64 }, 104 /* Amount of data stored in all scatter ABDs tracked by scatter_cnt */ 105 { "scatter_data_size", KSTAT_DATA_UINT64 }, 106 /* 107 * The amount of space wasted at the end of the last chunk across all 108 * scatter ABDs tracked by scatter_cnt. 109 */ 110 { "scatter_chunk_waste", KSTAT_DATA_UINT64 }, 111 /* 112 * The number of compound allocations of a given order. These 113 * allocations are spread over all currently allocated ABDs, and 114 * act as a measure of memory fragmentation. 115 */ 116 { { "scatter_order_N", KSTAT_DATA_UINT64 } }, 117 /* 118 * The number of scatter ABDs which contain multiple chunks. 119 * ABDs are preferentially allocated from the minimum number of 120 * contiguous multi-page chunks, a single chunk is optimal. 121 */ 122 { "scatter_page_multi_chunk", KSTAT_DATA_UINT64 }, 123 /* 124 * The number of scatter ABDs which are split across memory zones. 125 * ABDs are preferentially allocated using pages from a single zone. 126 */ 127 { "scatter_page_multi_zone", KSTAT_DATA_UINT64 }, 128 /* 129 * The total number of retries encountered when attempting to 130 * allocate the pages to populate the scatter ABD. 131 */ 132 { "scatter_page_alloc_retry", KSTAT_DATA_UINT64 }, 133 /* 134 * The total number of retries encountered when attempting to 135 * allocate the sg table for an ABD. 136 */ 137 { "scatter_sg_table_retry", KSTAT_DATA_UINT64 }, 138 }; 139 140 static struct { 141 wmsum_t abdstat_struct_size; 142 wmsum_t abdstat_linear_cnt; 143 wmsum_t abdstat_linear_data_size; 144 wmsum_t abdstat_scatter_cnt; 145 wmsum_t abdstat_scatter_data_size; 146 wmsum_t abdstat_scatter_chunk_waste; 147 wmsum_t abdstat_scatter_orders[ABD_MAX_ORDER]; 148 wmsum_t abdstat_scatter_page_multi_chunk; 149 wmsum_t abdstat_scatter_page_multi_zone; 150 wmsum_t abdstat_scatter_page_alloc_retry; 151 wmsum_t abdstat_scatter_sg_table_retry; 152 } abd_sums; 153 154 #define abd_for_each_sg(abd, sg, n, i) \ 155 for_each_sg(ABD_SCATTER(abd).abd_sgl, sg, n, i) 156 157 /* 158 * zfs_abd_scatter_min_size is the minimum allocation size to use scatter 159 * ABD's. Smaller allocations will use linear ABD's which uses 160 * zio_[data_]buf_alloc(). 161 * 162 * Scatter ABD's use at least one page each, so sub-page allocations waste 163 * some space when allocated as scatter (e.g. 2KB scatter allocation wastes 164 * half of each page). Using linear ABD's for small allocations means that 165 * they will be put on slabs which contain many allocations. This can 166 * improve memory efficiency, but it also makes it much harder for ARC 167 * evictions to actually free pages, because all the buffers on one slab need 168 * to be freed in order for the slab (and underlying pages) to be freed. 169 * Typically, 512B and 1KB kmem caches have 16 buffers per slab, so it's 170 * possible for them to actually waste more memory than scatter (one page per 171 * buf = wasting 3/4 or 7/8th; one buf per slab = wasting 15/16th). 172 * 173 * Spill blocks are typically 512B and are heavily used on systems running 174 * selinux with the default dnode size and the `xattr=sa` property set. 175 * 176 * By default we use linear allocations for 512B and 1KB, and scatter 177 * allocations for larger (1.5KB and up). 178 */ 179 static int zfs_abd_scatter_min_size = 512 * 3; 180 181 /* 182 * We use a scattered SPA_MAXBLOCKSIZE sized ABD whose pages are 183 * just a single zero'd page. This allows us to conserve memory by 184 * only using a single zero page for the scatterlist. 185 */ 186 abd_t *abd_zero_scatter = NULL; 187 188 struct page; 189 190 /* 191 * abd_zero_page is assigned to each of the pages of abd_zero_scatter. It will 192 * point to ZERO_PAGE if it is available or it will be an allocated zero'd 193 * PAGESIZE buffer. 194 */ 195 static struct page *abd_zero_page = NULL; 196 197 static kmem_cache_t *abd_cache = NULL; 198 static kstat_t *abd_ksp; 199 200 static uint_t 201 abd_chunkcnt_for_bytes(size_t size) 202 { 203 return (P2ROUNDUP(size, PAGESIZE) / PAGESIZE); 204 } 205 206 abd_t * 207 abd_alloc_struct_impl(size_t size) 208 { 209 /* 210 * In Linux we do not use the size passed in during ABD 211 * allocation, so we just ignore it. 212 */ 213 (void) size; 214 abd_t *abd = kmem_cache_alloc(abd_cache, KM_PUSHPAGE); 215 ASSERT3P(abd, !=, NULL); 216 ABDSTAT_INCR(abdstat_struct_size, sizeof (abd_t)); 217 218 return (abd); 219 } 220 221 void 222 abd_free_struct_impl(abd_t *abd) 223 { 224 kmem_cache_free(abd_cache, abd); 225 ABDSTAT_INCR(abdstat_struct_size, -(int)sizeof (abd_t)); 226 } 227 228 static unsigned zfs_abd_scatter_max_order = ABD_MAX_ORDER - 1; 229 230 /* 231 * Mark zfs data pages so they can be excluded from kernel crash dumps 232 */ 233 #ifdef _LP64 234 #define ABD_FILE_CACHE_PAGE 0x2F5ABDF11ECAC4E 235 236 static inline void 237 abd_mark_zfs_page(struct page *page) 238 { 239 get_page(page); 240 SetPagePrivate(page); 241 set_page_private(page, ABD_FILE_CACHE_PAGE); 242 } 243 244 static inline void 245 abd_unmark_zfs_page(struct page *page) 246 { 247 set_page_private(page, 0UL); 248 ClearPagePrivate(page); 249 put_page(page); 250 } 251 #else 252 #define abd_mark_zfs_page(page) 253 #define abd_unmark_zfs_page(page) 254 #endif /* _LP64 */ 255 256 #ifndef CONFIG_HIGHMEM 257 258 #ifndef __GFP_RECLAIM 259 #define __GFP_RECLAIM __GFP_WAIT 260 #endif 261 262 /* 263 * The goal is to minimize fragmentation by preferentially populating ABDs 264 * with higher order compound pages from a single zone. Allocation size is 265 * progressively decreased until it can be satisfied without performing 266 * reclaim or compaction. When necessary this function will degenerate to 267 * allocating individual pages and allowing reclaim to satisfy allocations. 268 */ 269 void 270 abd_alloc_chunks(abd_t *abd, size_t size) 271 { 272 struct list_head pages; 273 struct sg_table table; 274 struct scatterlist *sg; 275 struct page *page, *tmp_page = NULL; 276 gfp_t gfp = __GFP_RECLAIMABLE | __GFP_NOWARN | GFP_NOIO; 277 gfp_t gfp_comp = (gfp | __GFP_NORETRY | __GFP_COMP) & ~__GFP_RECLAIM; 278 unsigned int max_order = MIN(zfs_abd_scatter_max_order, 279 ABD_MAX_ORDER - 1); 280 unsigned int nr_pages = abd_chunkcnt_for_bytes(size); 281 unsigned int chunks = 0, zones = 0; 282 size_t remaining_size; 283 int nid = NUMA_NO_NODE; 284 unsigned int alloc_pages = 0; 285 286 INIT_LIST_HEAD(&pages); 287 288 ASSERT3U(alloc_pages, <, nr_pages); 289 290 while (alloc_pages < nr_pages) { 291 unsigned int chunk_pages; 292 unsigned int order; 293 294 order = MIN(highbit64(nr_pages - alloc_pages) - 1, max_order); 295 chunk_pages = (1U << order); 296 297 page = alloc_pages_node(nid, order ? gfp_comp : gfp, order); 298 if (page == NULL) { 299 if (order == 0) { 300 ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry); 301 schedule_timeout_interruptible(1); 302 } else { 303 max_order = MAX(0, order - 1); 304 } 305 continue; 306 } 307 308 list_add_tail(&page->lru, &pages); 309 310 if ((nid != NUMA_NO_NODE) && (page_to_nid(page) != nid)) 311 zones++; 312 313 nid = page_to_nid(page); 314 ABDSTAT_BUMP(abdstat_scatter_orders[order]); 315 chunks++; 316 alloc_pages += chunk_pages; 317 } 318 319 ASSERT3S(alloc_pages, ==, nr_pages); 320 321 while (sg_alloc_table(&table, chunks, gfp)) { 322 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry); 323 schedule_timeout_interruptible(1); 324 } 325 326 sg = table.sgl; 327 remaining_size = size; 328 list_for_each_entry_safe(page, tmp_page, &pages, lru) { 329 size_t sg_size = MIN(PAGESIZE << compound_order(page), 330 remaining_size); 331 sg_set_page(sg, page, sg_size, 0); 332 abd_mark_zfs_page(page); 333 remaining_size -= sg_size; 334 335 sg = sg_next(sg); 336 list_del(&page->lru); 337 } 338 339 /* 340 * These conditions ensure that a possible transformation to a linear 341 * ABD would be valid. 342 */ 343 ASSERT(!PageHighMem(sg_page(table.sgl))); 344 ASSERT0(ABD_SCATTER(abd).abd_offset); 345 346 if (table.nents == 1) { 347 /* 348 * Since there is only one entry, this ABD can be represented 349 * as a linear buffer. All single-page (4K) ABD's can be 350 * represented this way. Some multi-page ABD's can also be 351 * represented this way, if we were able to allocate a single 352 * "chunk" (higher-order "page" which represents a power-of-2 353 * series of physically-contiguous pages). This is often the 354 * case for 2-page (8K) ABD's. 355 * 356 * Representing a single-entry scatter ABD as a linear ABD 357 * has the performance advantage of avoiding the copy (and 358 * allocation) in abd_borrow_buf_copy / abd_return_buf_copy. 359 * A performance increase of around 5% has been observed for 360 * ARC-cached reads (of small blocks which can take advantage 361 * of this). 362 * 363 * Note that this optimization is only possible because the 364 * pages are always mapped into the kernel's address space. 365 * This is not the case for highmem pages, so the 366 * optimization can not be made there. 367 */ 368 abd->abd_flags |= ABD_FLAG_LINEAR; 369 abd->abd_flags |= ABD_FLAG_LINEAR_PAGE; 370 abd->abd_u.abd_linear.abd_sgl = table.sgl; 371 ABD_LINEAR_BUF(abd) = page_address(sg_page(table.sgl)); 372 } else if (table.nents > 1) { 373 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); 374 abd->abd_flags |= ABD_FLAG_MULTI_CHUNK; 375 376 if (zones) { 377 ABDSTAT_BUMP(abdstat_scatter_page_multi_zone); 378 abd->abd_flags |= ABD_FLAG_MULTI_ZONE; 379 } 380 381 ABD_SCATTER(abd).abd_sgl = table.sgl; 382 ABD_SCATTER(abd).abd_nents = table.nents; 383 } 384 } 385 #else 386 387 /* 388 * Allocate N individual pages to construct a scatter ABD. This function 389 * makes no attempt to request contiguous pages and requires the minimal 390 * number of kernel interfaces. It's designed for maximum compatibility. 391 */ 392 void 393 abd_alloc_chunks(abd_t *abd, size_t size) 394 { 395 struct scatterlist *sg = NULL; 396 struct sg_table table; 397 struct page *page; 398 gfp_t gfp = __GFP_RECLAIMABLE | __GFP_NOWARN | GFP_NOIO; 399 int nr_pages = abd_chunkcnt_for_bytes(size); 400 int i = 0; 401 402 while (sg_alloc_table(&table, nr_pages, gfp)) { 403 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry); 404 schedule_timeout_interruptible(1); 405 } 406 407 ASSERT3U(table.nents, ==, nr_pages); 408 ABD_SCATTER(abd).abd_sgl = table.sgl; 409 ABD_SCATTER(abd).abd_nents = nr_pages; 410 411 abd_for_each_sg(abd, sg, nr_pages, i) { 412 while ((page = __page_cache_alloc(gfp)) == NULL) { 413 ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry); 414 schedule_timeout_interruptible(1); 415 } 416 417 ABDSTAT_BUMP(abdstat_scatter_orders[0]); 418 sg_set_page(sg, page, PAGESIZE, 0); 419 abd_mark_zfs_page(page); 420 } 421 422 if (nr_pages > 1) { 423 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); 424 abd->abd_flags |= ABD_FLAG_MULTI_CHUNK; 425 } 426 } 427 #endif /* !CONFIG_HIGHMEM */ 428 429 /* 430 * This must be called if any of the sg_table allocation functions 431 * are called. 432 */ 433 static void 434 abd_free_sg_table(abd_t *abd) 435 { 436 struct sg_table table; 437 438 table.sgl = ABD_SCATTER(abd).abd_sgl; 439 table.nents = table.orig_nents = ABD_SCATTER(abd).abd_nents; 440 sg_free_table(&table); 441 } 442 443 void 444 abd_free_chunks(abd_t *abd) 445 { 446 struct scatterlist *sg = NULL; 447 struct page *page; 448 int nr_pages = ABD_SCATTER(abd).abd_nents; 449 int order, i = 0; 450 451 if (abd->abd_flags & ABD_FLAG_MULTI_ZONE) 452 ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_zone); 453 454 if (abd->abd_flags & ABD_FLAG_MULTI_CHUNK) 455 ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk); 456 457 /* 458 * Scatter ABDs may be constructed by abd_alloc_from_pages() from 459 * an array of pages. In which case they should not be freed. 460 */ 461 if (!abd_is_from_pages(abd)) { 462 abd_for_each_sg(abd, sg, nr_pages, i) { 463 page = sg_page(sg); 464 abd_unmark_zfs_page(page); 465 order = compound_order(page); 466 __free_pages(page, order); 467 ASSERT3U(sg->length, <=, PAGE_SIZE << order); 468 ABDSTAT_BUMPDOWN(abdstat_scatter_orders[order]); 469 } 470 } 471 472 abd_free_sg_table(abd); 473 } 474 475 /* 476 * Allocate scatter ABD of size SPA_MAXBLOCKSIZE, where each page in 477 * the scatterlist will be set to the zero'd out buffer abd_zero_page. 478 */ 479 static void 480 abd_alloc_zero_scatter(void) 481 { 482 struct scatterlist *sg = NULL; 483 struct sg_table table; 484 gfp_t gfp = __GFP_NOWARN | GFP_NOIO; 485 int nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE); 486 int i = 0; 487 488 #if defined(HAVE_ZERO_PAGE_GPL_ONLY) 489 gfp_t gfp_zero_page = gfp | __GFP_ZERO; 490 while ((abd_zero_page = __page_cache_alloc(gfp_zero_page)) == NULL) { 491 ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry); 492 schedule_timeout_interruptible(1); 493 } 494 abd_mark_zfs_page(abd_zero_page); 495 #else 496 abd_zero_page = ZERO_PAGE(0); 497 #endif /* HAVE_ZERO_PAGE_GPL_ONLY */ 498 499 while (sg_alloc_table(&table, nr_pages, gfp)) { 500 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry); 501 schedule_timeout_interruptible(1); 502 } 503 ASSERT3U(table.nents, ==, nr_pages); 504 505 abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE); 506 abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER; 507 ABD_SCATTER(abd_zero_scatter).abd_offset = 0; 508 ABD_SCATTER(abd_zero_scatter).abd_sgl = table.sgl; 509 ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages; 510 abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE; 511 abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK; 512 513 abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) { 514 sg_set_page(sg, abd_zero_page, PAGESIZE, 0); 515 } 516 517 ABDSTAT_BUMP(abdstat_scatter_cnt); 518 ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE); 519 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); 520 } 521 522 boolean_t 523 abd_size_alloc_linear(size_t size) 524 { 525 return (!zfs_abd_scatter_enabled || size < zfs_abd_scatter_min_size); 526 } 527 528 void 529 abd_update_scatter_stats(abd_t *abd, abd_stats_op_t op) 530 { 531 ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR); 532 int waste = P2ROUNDUP(abd->abd_size, PAGESIZE) - abd->abd_size; 533 if (op == ABDSTAT_INCR) { 534 ABDSTAT_BUMP(abdstat_scatter_cnt); 535 ABDSTAT_INCR(abdstat_scatter_data_size, abd->abd_size); 536 ABDSTAT_INCR(abdstat_scatter_chunk_waste, waste); 537 arc_space_consume(waste, ARC_SPACE_ABD_CHUNK_WASTE); 538 } else { 539 ABDSTAT_BUMPDOWN(abdstat_scatter_cnt); 540 ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size); 541 ABDSTAT_INCR(abdstat_scatter_chunk_waste, -waste); 542 arc_space_return(waste, ARC_SPACE_ABD_CHUNK_WASTE); 543 } 544 } 545 546 void 547 abd_update_linear_stats(abd_t *abd, abd_stats_op_t op) 548 { 549 ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR); 550 if (op == ABDSTAT_INCR) { 551 ABDSTAT_BUMP(abdstat_linear_cnt); 552 ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size); 553 } else { 554 ABDSTAT_BUMPDOWN(abdstat_linear_cnt); 555 ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size); 556 } 557 } 558 559 void 560 abd_verify_scatter(abd_t *abd) 561 { 562 ASSERT3U(ABD_SCATTER(abd).abd_nents, >, 0); 563 ASSERT3U(ABD_SCATTER(abd).abd_offset, <, 564 ABD_SCATTER(abd).abd_sgl->length); 565 566 #ifdef ZFS_DEBUG 567 struct scatterlist *sg = NULL; 568 size_t n = ABD_SCATTER(abd).abd_nents; 569 int i = 0; 570 571 abd_for_each_sg(abd, sg, n, i) { 572 ASSERT3P(sg_page(sg), !=, NULL); 573 } 574 #endif 575 } 576 577 static void 578 abd_free_zero_scatter(void) 579 { 580 ABDSTAT_BUMPDOWN(abdstat_scatter_cnt); 581 ABDSTAT_INCR(abdstat_scatter_data_size, -(int)PAGESIZE); 582 ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk); 583 584 abd_free_sg_table(abd_zero_scatter); 585 abd_free_struct(abd_zero_scatter); 586 abd_zero_scatter = NULL; 587 ASSERT3P(abd_zero_page, !=, NULL); 588 #if defined(HAVE_ZERO_PAGE_GPL_ONLY) 589 abd_unmark_zfs_page(abd_zero_page); 590 __free_page(abd_zero_page); 591 #endif /* HAVE_ZERO_PAGE_GPL_ONLY */ 592 } 593 594 static int 595 abd_kstats_update(kstat_t *ksp, int rw) 596 { 597 abd_stats_t *as = ksp->ks_data; 598 599 if (rw == KSTAT_WRITE) 600 return (EACCES); 601 as->abdstat_struct_size.value.ui64 = 602 wmsum_value(&abd_sums.abdstat_struct_size); 603 as->abdstat_linear_cnt.value.ui64 = 604 wmsum_value(&abd_sums.abdstat_linear_cnt); 605 as->abdstat_linear_data_size.value.ui64 = 606 wmsum_value(&abd_sums.abdstat_linear_data_size); 607 as->abdstat_scatter_cnt.value.ui64 = 608 wmsum_value(&abd_sums.abdstat_scatter_cnt); 609 as->abdstat_scatter_data_size.value.ui64 = 610 wmsum_value(&abd_sums.abdstat_scatter_data_size); 611 as->abdstat_scatter_chunk_waste.value.ui64 = 612 wmsum_value(&abd_sums.abdstat_scatter_chunk_waste); 613 for (int i = 0; i < ABD_MAX_ORDER; i++) { 614 as->abdstat_scatter_orders[i].value.ui64 = 615 wmsum_value(&abd_sums.abdstat_scatter_orders[i]); 616 } 617 as->abdstat_scatter_page_multi_chunk.value.ui64 = 618 wmsum_value(&abd_sums.abdstat_scatter_page_multi_chunk); 619 as->abdstat_scatter_page_multi_zone.value.ui64 = 620 wmsum_value(&abd_sums.abdstat_scatter_page_multi_zone); 621 as->abdstat_scatter_page_alloc_retry.value.ui64 = 622 wmsum_value(&abd_sums.abdstat_scatter_page_alloc_retry); 623 as->abdstat_scatter_sg_table_retry.value.ui64 = 624 wmsum_value(&abd_sums.abdstat_scatter_sg_table_retry); 625 return (0); 626 } 627 628 void 629 abd_init(void) 630 { 631 int i; 632 633 abd_cache = kmem_cache_create("abd_t", sizeof (abd_t), 634 0, NULL, NULL, NULL, NULL, NULL, KMC_RECLAIMABLE); 635 636 wmsum_init(&abd_sums.abdstat_struct_size, 0); 637 wmsum_init(&abd_sums.abdstat_linear_cnt, 0); 638 wmsum_init(&abd_sums.abdstat_linear_data_size, 0); 639 wmsum_init(&abd_sums.abdstat_scatter_cnt, 0); 640 wmsum_init(&abd_sums.abdstat_scatter_data_size, 0); 641 wmsum_init(&abd_sums.abdstat_scatter_chunk_waste, 0); 642 for (i = 0; i < ABD_MAX_ORDER; i++) 643 wmsum_init(&abd_sums.abdstat_scatter_orders[i], 0); 644 wmsum_init(&abd_sums.abdstat_scatter_page_multi_chunk, 0); 645 wmsum_init(&abd_sums.abdstat_scatter_page_multi_zone, 0); 646 wmsum_init(&abd_sums.abdstat_scatter_page_alloc_retry, 0); 647 wmsum_init(&abd_sums.abdstat_scatter_sg_table_retry, 0); 648 649 abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED, 650 sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 651 if (abd_ksp != NULL) { 652 for (i = 0; i < ABD_MAX_ORDER; i++) { 653 snprintf(abd_stats.abdstat_scatter_orders[i].name, 654 KSTAT_STRLEN, "scatter_order_%d", i); 655 abd_stats.abdstat_scatter_orders[i].data_type = 656 KSTAT_DATA_UINT64; 657 } 658 abd_ksp->ks_data = &abd_stats; 659 abd_ksp->ks_update = abd_kstats_update; 660 kstat_install(abd_ksp); 661 } 662 663 abd_alloc_zero_scatter(); 664 } 665 666 void 667 abd_fini(void) 668 { 669 abd_free_zero_scatter(); 670 671 if (abd_ksp != NULL) { 672 kstat_delete(abd_ksp); 673 abd_ksp = NULL; 674 } 675 676 wmsum_fini(&abd_sums.abdstat_struct_size); 677 wmsum_fini(&abd_sums.abdstat_linear_cnt); 678 wmsum_fini(&abd_sums.abdstat_linear_data_size); 679 wmsum_fini(&abd_sums.abdstat_scatter_cnt); 680 wmsum_fini(&abd_sums.abdstat_scatter_data_size); 681 wmsum_fini(&abd_sums.abdstat_scatter_chunk_waste); 682 for (int i = 0; i < ABD_MAX_ORDER; i++) 683 wmsum_fini(&abd_sums.abdstat_scatter_orders[i]); 684 wmsum_fini(&abd_sums.abdstat_scatter_page_multi_chunk); 685 wmsum_fini(&abd_sums.abdstat_scatter_page_multi_zone); 686 wmsum_fini(&abd_sums.abdstat_scatter_page_alloc_retry); 687 wmsum_fini(&abd_sums.abdstat_scatter_sg_table_retry); 688 689 if (abd_cache) { 690 kmem_cache_destroy(abd_cache); 691 abd_cache = NULL; 692 } 693 } 694 695 void 696 abd_free_linear_page(abd_t *abd) 697 { 698 /* Transform it back into a scatter ABD for freeing */ 699 struct scatterlist *sg = abd->abd_u.abd_linear.abd_sgl; 700 701 /* When backed by user page unmap it */ 702 if (abd_is_from_pages(abd)) 703 zfs_kunmap(sg_page(sg)); 704 705 abd->abd_flags &= ~ABD_FLAG_LINEAR; 706 abd->abd_flags &= ~ABD_FLAG_LINEAR_PAGE; 707 ABD_SCATTER(abd).abd_nents = 1; 708 ABD_SCATTER(abd).abd_offset = 0; 709 ABD_SCATTER(abd).abd_sgl = sg; 710 abd_free_chunks(abd); 711 } 712 713 /* 714 * Allocate a scatter ABD structure from user pages. The pages must be 715 * pinned with get_user_pages, or similiar, but need not be mapped via 716 * the kmap interfaces. 717 */ 718 abd_t * 719 abd_alloc_from_pages(struct page **pages, unsigned long offset, uint64_t size) 720 { 721 uint_t npages = DIV_ROUND_UP(size, PAGE_SIZE); 722 struct sg_table table; 723 724 VERIFY3U(size, <=, DMU_MAX_ACCESS); 725 ASSERT3U(offset, <, PAGE_SIZE); 726 ASSERT3P(pages, !=, NULL); 727 728 /* 729 * Even if this buf is filesystem metadata, we only track that we 730 * own the underlying data buffer, which is not true in this case. 731 * Therefore, we don't ever use ABD_FLAG_META here. 732 */ 733 abd_t *abd = abd_alloc_struct(0); 734 abd->abd_flags |= ABD_FLAG_FROM_PAGES | ABD_FLAG_OWNER; 735 abd->abd_size = size; 736 737 while (sg_alloc_table_from_pages(&table, pages, npages, offset, 738 size, __GFP_NOWARN | GFP_NOIO) != 0) { 739 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry); 740 schedule_timeout_interruptible(1); 741 } 742 743 if ((offset + size) <= PAGE_SIZE) { 744 /* 745 * Since there is only one entry, this ABD can be represented 746 * as a linear buffer. All single-page (4K) ABD's constructed 747 * from a user page can be represented this way as long as the 748 * page is mapped to a virtual address. This allows us to 749 * apply an offset in to the mapped page. 750 * 751 * Note that kmap() must be used, not kmap_atomic(), because 752 * the mapping needs to bet set up on all CPUs. Using kmap() 753 * also enables the user of highmem pages when required. 754 */ 755 abd->abd_flags |= ABD_FLAG_LINEAR | ABD_FLAG_LINEAR_PAGE; 756 abd->abd_u.abd_linear.abd_sgl = table.sgl; 757 zfs_kmap(sg_page(table.sgl)); 758 ABD_LINEAR_BUF(abd) = sg_virt(table.sgl); 759 } else { 760 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); 761 abd->abd_flags |= ABD_FLAG_MULTI_CHUNK; 762 763 ABD_SCATTER(abd).abd_offset = offset; 764 ABD_SCATTER(abd).abd_sgl = table.sgl; 765 ABD_SCATTER(abd).abd_nents = table.nents; 766 767 ASSERT0(ABD_SCATTER(abd).abd_offset); 768 } 769 770 return (abd); 771 } 772 773 /* 774 * If we're going to use this ABD for doing I/O using the block layer, the 775 * consumer of the ABD data doesn't care if it's scattered or not, and we don't 776 * plan to store this ABD in memory for a long period of time, we should 777 * allocate the ABD type that requires the least data copying to do the I/O. 778 * 779 * On Linux the optimal thing to do would be to use abd_get_offset() and 780 * construct a new ABD which shares the original pages thereby eliminating 781 * the copy. But for the moment a new linear ABD is allocated until this 782 * performance optimization can be implemented. 783 */ 784 abd_t * 785 abd_alloc_for_io(size_t size, boolean_t is_metadata) 786 { 787 return (abd_alloc(size, is_metadata)); 788 } 789 790 abd_t * 791 abd_get_offset_scatter(abd_t *abd, abd_t *sabd, size_t off, 792 size_t size) 793 { 794 (void) size; 795 int i = 0; 796 struct scatterlist *sg = NULL; 797 798 abd_verify(sabd); 799 ASSERT3U(off, <=, sabd->abd_size); 800 801 size_t new_offset = ABD_SCATTER(sabd).abd_offset + off; 802 803 if (abd == NULL) 804 abd = abd_alloc_struct(0); 805 806 /* 807 * Even if this buf is filesystem metadata, we only track that 808 * if we own the underlying data buffer, which is not true in 809 * this case. Therefore, we don't ever use ABD_FLAG_META here. 810 */ 811 812 abd_for_each_sg(sabd, sg, ABD_SCATTER(sabd).abd_nents, i) { 813 if (new_offset < sg->length) 814 break; 815 new_offset -= sg->length; 816 } 817 818 ABD_SCATTER(abd).abd_sgl = sg; 819 ABD_SCATTER(abd).abd_offset = new_offset; 820 ABD_SCATTER(abd).abd_nents = ABD_SCATTER(sabd).abd_nents - i; 821 822 if (abd_is_from_pages(sabd)) 823 abd->abd_flags |= ABD_FLAG_FROM_PAGES; 824 825 return (abd); 826 } 827 828 /* 829 * Initialize the abd_iter. 830 */ 831 void 832 abd_iter_init(struct abd_iter *aiter, abd_t *abd) 833 { 834 ASSERT(!abd_is_gang(abd)); 835 abd_verify(abd); 836 memset(aiter, 0, sizeof (struct abd_iter)); 837 aiter->iter_abd = abd; 838 if (!abd_is_linear(abd)) { 839 aiter->iter_offset = ABD_SCATTER(abd).abd_offset; 840 aiter->iter_sg = ABD_SCATTER(abd).abd_sgl; 841 } 842 } 843 844 /* 845 * This is just a helper function to see if we have exhausted the 846 * abd_iter and reached the end. 847 */ 848 boolean_t 849 abd_iter_at_end(struct abd_iter *aiter) 850 { 851 ASSERT3U(aiter->iter_pos, <=, aiter->iter_abd->abd_size); 852 return (aiter->iter_pos == aiter->iter_abd->abd_size); 853 } 854 855 /* 856 * Advance the iterator by a certain amount. Cannot be called when a chunk is 857 * in use. This can be safely called when the aiter has already exhausted, in 858 * which case this does nothing. 859 */ 860 void 861 abd_iter_advance(struct abd_iter *aiter, size_t amount) 862 { 863 /* 864 * Ensure that last chunk is not in use. abd_iterate_*() must clear 865 * this state (directly or abd_iter_unmap()) before advancing. 866 */ 867 ASSERT3P(aiter->iter_mapaddr, ==, NULL); 868 ASSERT0(aiter->iter_mapsize); 869 ASSERT3P(aiter->iter_page, ==, NULL); 870 ASSERT0(aiter->iter_page_doff); 871 ASSERT0(aiter->iter_page_dsize); 872 873 /* There's nothing left to advance to, so do nothing */ 874 if (abd_iter_at_end(aiter)) 875 return; 876 877 aiter->iter_pos += amount; 878 aiter->iter_offset += amount; 879 if (!abd_is_linear(aiter->iter_abd)) { 880 while (aiter->iter_offset >= aiter->iter_sg->length) { 881 aiter->iter_offset -= aiter->iter_sg->length; 882 aiter->iter_sg = sg_next(aiter->iter_sg); 883 if (aiter->iter_sg == NULL) { 884 ASSERT0(aiter->iter_offset); 885 break; 886 } 887 } 888 } 889 } 890 891 /* 892 * Map the current chunk into aiter. This can be safely called when the aiter 893 * has already exhausted, in which case this does nothing. 894 */ 895 void 896 abd_iter_map(struct abd_iter *aiter) 897 { 898 void *paddr; 899 size_t offset = 0; 900 901 ASSERT3P(aiter->iter_mapaddr, ==, NULL); 902 ASSERT0(aiter->iter_mapsize); 903 904 /* There's nothing left to iterate over, so do nothing */ 905 if (abd_iter_at_end(aiter)) 906 return; 907 908 if (abd_is_linear(aiter->iter_abd)) { 909 ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset); 910 offset = aiter->iter_offset; 911 aiter->iter_mapsize = aiter->iter_abd->abd_size - offset; 912 paddr = ABD_LINEAR_BUF(aiter->iter_abd); 913 } else { 914 offset = aiter->iter_offset; 915 aiter->iter_mapsize = MIN(aiter->iter_sg->length - offset, 916 aiter->iter_abd->abd_size - aiter->iter_pos); 917 918 paddr = zfs_kmap_local(sg_page(aiter->iter_sg)); 919 } 920 921 aiter->iter_mapaddr = (char *)paddr + offset; 922 } 923 924 /* 925 * Unmap the current chunk from aiter. This can be safely called when the aiter 926 * has already exhausted, in which case this does nothing. 927 */ 928 void 929 abd_iter_unmap(struct abd_iter *aiter) 930 { 931 /* There's nothing left to unmap, so do nothing */ 932 if (abd_iter_at_end(aiter)) 933 return; 934 935 if (!abd_is_linear(aiter->iter_abd)) { 936 /* LINTED E_FUNC_SET_NOT_USED */ 937 zfs_kunmap_local(aiter->iter_mapaddr - aiter->iter_offset); 938 } 939 940 ASSERT3P(aiter->iter_mapaddr, !=, NULL); 941 ASSERT3U(aiter->iter_mapsize, >, 0); 942 943 aiter->iter_mapaddr = NULL; 944 aiter->iter_mapsize = 0; 945 } 946 947 void 948 abd_cache_reap_now(void) 949 { 950 } 951 952 /* 953 * Borrow a raw buffer from an ABD without copying the contents of the ABD 954 * into the buffer. If the ABD is scattered, this will allocate a raw buffer 955 * whose contents are undefined. To copy over the existing data in the ABD, use 956 * abd_borrow_buf_copy() instead. 957 */ 958 void * 959 abd_borrow_buf(abd_t *abd, size_t n) 960 { 961 void *buf; 962 abd_verify(abd); 963 ASSERT3U(abd->abd_size, >=, 0); 964 /* 965 * In the event the ABD is composed of a single user page from Direct 966 * I/O we can not direclty return the raw buffer. This is a consequence 967 * of not being able to write protect the page and the contents of the 968 * page can be changed at any time by the user. 969 */ 970 if (abd_is_from_pages(abd)) { 971 buf = zio_buf_alloc(n); 972 } else if (abd_is_linear(abd)) { 973 buf = abd_to_buf(abd); 974 } else { 975 buf = zio_buf_alloc(n); 976 } 977 978 #ifdef ZFS_DEBUG 979 (void) zfs_refcount_add_many(&abd->abd_children, n, buf); 980 #endif 981 return (buf); 982 } 983 984 void * 985 abd_borrow_buf_copy(abd_t *abd, size_t n) 986 { 987 void *buf = abd_borrow_buf(abd, n); 988 989 /* 990 * In the event the ABD is composed of a single user page from Direct 991 * I/O we must make sure copy the data over into the newly allocated 992 * buffer. This is a consequence of the fact that we can not write 993 * protect the user page and there is a risk the contents of the page 994 * could be changed by the user at any moment. 995 */ 996 if (!abd_is_linear(abd) || abd_is_from_pages(abd)) { 997 abd_copy_to_buf(buf, abd, n); 998 } 999 return (buf); 1000 } 1001 1002 /* 1003 * Return a borrowed raw buffer to an ABD. If the ABD is scatterd, this will 1004 * not change the contents of the ABD. If you want any changes you made to 1005 * buf to be copied back to abd, use abd_return_buf_copy() instead. If the 1006 * ABD is not constructed from user pages for Direct I/O then an ASSERT 1007 * checks to make sure the contents of buffer have not changed since it was 1008 * borrowed. We can not ASSERT that the contents of the buffer have not changed 1009 * if it is composed of user pages because the pages can not be placed under 1010 * write protection and the user could have possibly changed the contents in 1011 * the pages at any time. This is also an issue for Direct I/O reads. Checksum 1012 * verifications in the ZIO pipeline check for this issue and handle it by 1013 * returning an error on checksum verification failure. 1014 */ 1015 void 1016 abd_return_buf(abd_t *abd, void *buf, size_t n) 1017 { 1018 abd_verify(abd); 1019 ASSERT3U(abd->abd_size, >=, n); 1020 #ifdef ZFS_DEBUG 1021 (void) zfs_refcount_remove_many(&abd->abd_children, n, buf); 1022 #endif 1023 if (abd_is_from_pages(abd)) { 1024 zio_buf_free(buf, n); 1025 } else if (abd_is_linear(abd)) { 1026 ASSERT3P(buf, ==, abd_to_buf(abd)); 1027 } else if (abd_is_gang(abd)) { 1028 #ifdef ZFS_DEBUG 1029 /* 1030 * We have to be careful with gang ABD's that we do not ASSERT0 1031 * for any ABD's that contain user pages from Direct I/O. In 1032 * order to handle this, we just iterate through the gang ABD 1033 * and only verify ABDs that are not from user pages. 1034 */ 1035 void *cmp_buf = buf; 1036 1037 for (abd_t *cabd = list_head(&ABD_GANG(abd).abd_gang_chain); 1038 cabd != NULL; 1039 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) { 1040 if (!abd_is_from_pages(cabd)) { 1041 ASSERT0(abd_cmp_buf(cabd, cmp_buf, 1042 cabd->abd_size)); 1043 } 1044 cmp_buf = (char *)cmp_buf + cabd->abd_size; 1045 } 1046 #endif 1047 zio_buf_free(buf, n); 1048 } else { 1049 ASSERT0(abd_cmp_buf(abd, buf, n)); 1050 zio_buf_free(buf, n); 1051 } 1052 } 1053 1054 void 1055 abd_return_buf_copy(abd_t *abd, void *buf, size_t n) 1056 { 1057 if (!abd_is_linear(abd) || abd_is_from_pages(abd)) { 1058 abd_copy_from_buf(abd, buf, n); 1059 } 1060 abd_return_buf(abd, buf, n); 1061 } 1062 1063 /* 1064 * This is abd_iter_page(), the function underneath abd_iterate_page_func(). 1065 * It yields the next page struct and data offset and size within it, without 1066 * mapping it into the address space. 1067 */ 1068 1069 /* 1070 * "Compound pages" are a group of pages that can be referenced from a single 1071 * struct page *. Its organised as a "head" page, followed by a series of 1072 * "tail" pages. 1073 * 1074 * In OpenZFS, compound pages are allocated using the __GFP_COMP flag, which we 1075 * get from scatter ABDs and SPL vmalloc slabs (ie >16K allocations). So a 1076 * great many of the IO buffers we get are going to be of this type. 1077 * 1078 * The tail pages are just regular PAGESIZE pages, and can be safely used 1079 * as-is. However, the head page has length covering itself and all the tail 1080 * pages. If the ABD chunk spans multiple pages, then we can use the head page 1081 * and a >PAGESIZE length, which is far more efficient. 1082 * 1083 * Before kernel 4.5 however, compound page heads were refcounted separately 1084 * from tail pages, such that moving back to the head page would require us to 1085 * take a reference to it and releasing it once we're completely finished with 1086 * it. In practice, that meant when our caller is done with the ABD, which we 1087 * have no insight into from here. Rather than contort this API to track head 1088 * page references on such ancient kernels, we disabled this special compound 1089 * page handling on kernels before 4.5, instead just using treating each page 1090 * within it as a regular PAGESIZE page (which it is). This is slightly less 1091 * efficient, but makes everything far simpler. 1092 * 1093 * We no longer support kernels before 4.5, so in theory none of this is 1094 * necessary. However, this code is still relatively new in the grand scheme of 1095 * things, so I'm leaving the ability to compile this out for the moment. 1096 * 1097 * Setting/clearing ABD_ITER_COMPOUND_PAGES below enables/disables the special 1098 * handling, by defining the ABD_ITER_PAGE_SIZE(page) macro to understand 1099 * compound pages, or not, and compiling in/out the support to detect compound 1100 * tail pages and move back to the start. 1101 */ 1102 1103 /* On by default */ 1104 #define ABD_ITER_COMPOUND_PAGES 1105 1106 #ifdef ABD_ITER_COMPOUND_PAGES 1107 #define ABD_ITER_PAGE_SIZE(page) \ 1108 (PageCompound(page) ? page_size(page) : PAGESIZE) 1109 #else 1110 #define ABD_ITER_PAGE_SIZE(page) (PAGESIZE) 1111 #endif 1112 1113 void 1114 abd_iter_page(struct abd_iter *aiter) 1115 { 1116 if (abd_iter_at_end(aiter)) { 1117 aiter->iter_page = NULL; 1118 aiter->iter_page_doff = 0; 1119 aiter->iter_page_dsize = 0; 1120 return; 1121 } 1122 1123 struct page *page; 1124 size_t doff, dsize; 1125 1126 /* 1127 * Find the page, and the start of the data within it. This is computed 1128 * differently for linear and scatter ABDs; linear is referenced by 1129 * virtual memory location, while scatter is referenced by page 1130 * pointer. 1131 */ 1132 if (abd_is_linear(aiter->iter_abd)) { 1133 ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset); 1134 1135 /* memory address at iter_pos */ 1136 void *paddr = ABD_LINEAR_BUF(aiter->iter_abd) + aiter->iter_pos; 1137 1138 /* struct page for address */ 1139 page = is_vmalloc_addr(paddr) ? 1140 vmalloc_to_page(paddr) : virt_to_page(paddr); 1141 1142 /* offset of address within the page */ 1143 doff = offset_in_page(paddr); 1144 } else { 1145 ASSERT(!abd_is_gang(aiter->iter_abd)); 1146 1147 /* current scatter page */ 1148 page = nth_page(sg_page(aiter->iter_sg), 1149 aiter->iter_offset >> PAGE_SHIFT); 1150 1151 /* position within page */ 1152 doff = aiter->iter_offset & (PAGESIZE - 1); 1153 } 1154 1155 #ifdef ABD_ITER_COMPOUND_PAGES 1156 if (PageTail(page)) { 1157 /* 1158 * If this is a compound tail page, move back to the head, and 1159 * adjust the offset to match. This may let us yield a much 1160 * larger amount of data from a single logical page, and so 1161 * leave our caller with fewer pages to process. 1162 */ 1163 struct page *head = compound_head(page); 1164 doff += ((page - head) * PAGESIZE); 1165 page = head; 1166 } 1167 #endif 1168 1169 ASSERT(page); 1170 1171 /* 1172 * Compute the maximum amount of data we can take from this page. This 1173 * is the smaller of: 1174 * - the remaining space in the page 1175 * - the remaining space in this scatterlist entry (which may not cover 1176 * the entire page) 1177 * - the remaining space in the abd (which may not cover the entire 1178 * scatterlist entry) 1179 */ 1180 dsize = MIN(ABD_ITER_PAGE_SIZE(page) - doff, 1181 aiter->iter_abd->abd_size - aiter->iter_pos); 1182 if (!abd_is_linear(aiter->iter_abd)) 1183 dsize = MIN(dsize, aiter->iter_sg->length - aiter->iter_offset); 1184 ASSERT3U(dsize, >, 0); 1185 1186 /* final iterator outputs */ 1187 aiter->iter_page = page; 1188 aiter->iter_page_doff = doff; 1189 aiter->iter_page_dsize = dsize; 1190 } 1191 1192 /* 1193 * Note: ABD BIO functions only needed to support vdev_classic. See comments in 1194 * vdev_disk.c. 1195 */ 1196 1197 /* 1198 * bio_nr_pages for ABD. 1199 * @off is the offset in @abd 1200 */ 1201 unsigned long 1202 abd_nr_pages_off(abd_t *abd, unsigned int size, size_t off) 1203 { 1204 unsigned long pos; 1205 1206 if (abd_is_gang(abd)) { 1207 unsigned long count = 0; 1208 1209 for (abd_t *cabd = abd_gang_get_offset(abd, &off); 1210 cabd != NULL && size != 0; 1211 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) { 1212 ASSERT3U(off, <, cabd->abd_size); 1213 int mysize = MIN(size, cabd->abd_size - off); 1214 count += abd_nr_pages_off(cabd, mysize, off); 1215 size -= mysize; 1216 off = 0; 1217 } 1218 return (count); 1219 } 1220 1221 if (abd_is_linear(abd)) 1222 pos = (unsigned long)abd_to_buf(abd) + off; 1223 else 1224 pos = ABD_SCATTER(abd).abd_offset + off; 1225 1226 return (((pos + size + PAGESIZE - 1) >> PAGE_SHIFT) - 1227 (pos >> PAGE_SHIFT)); 1228 } 1229 1230 static unsigned int 1231 bio_map(struct bio *bio, void *buf_ptr, unsigned int bio_size) 1232 { 1233 unsigned int offset, size, i; 1234 struct page *page; 1235 1236 offset = offset_in_page(buf_ptr); 1237 for (i = 0; i < bio->bi_max_vecs; i++) { 1238 size = PAGE_SIZE - offset; 1239 1240 if (bio_size <= 0) 1241 break; 1242 1243 if (size > bio_size) 1244 size = bio_size; 1245 1246 if (is_vmalloc_addr(buf_ptr)) 1247 page = vmalloc_to_page(buf_ptr); 1248 else 1249 page = virt_to_page(buf_ptr); 1250 1251 /* 1252 * Some network related block device uses tcp_sendpage, which 1253 * doesn't behave well when using 0-count page, this is a 1254 * safety net to catch them. 1255 */ 1256 ASSERT3S(page_count(page), >, 0); 1257 1258 if (bio_add_page(bio, page, size, offset) != size) 1259 break; 1260 1261 buf_ptr += size; 1262 bio_size -= size; 1263 offset = 0; 1264 } 1265 1266 return (bio_size); 1267 } 1268 1269 /* 1270 * bio_map for gang ABD. 1271 */ 1272 static unsigned int 1273 abd_gang_bio_map_off(struct bio *bio, abd_t *abd, 1274 unsigned int io_size, size_t off) 1275 { 1276 ASSERT(abd_is_gang(abd)); 1277 1278 for (abd_t *cabd = abd_gang_get_offset(abd, &off); 1279 cabd != NULL; 1280 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) { 1281 ASSERT3U(off, <, cabd->abd_size); 1282 int size = MIN(io_size, cabd->abd_size - off); 1283 int remainder = abd_bio_map_off(bio, cabd, size, off); 1284 io_size -= (size - remainder); 1285 if (io_size == 0 || remainder > 0) 1286 return (io_size); 1287 off = 0; 1288 } 1289 ASSERT0(io_size); 1290 return (io_size); 1291 } 1292 1293 /* 1294 * bio_map for ABD. 1295 * @off is the offset in @abd 1296 * Remaining IO size is returned 1297 */ 1298 unsigned int 1299 abd_bio_map_off(struct bio *bio, abd_t *abd, 1300 unsigned int io_size, size_t off) 1301 { 1302 struct abd_iter aiter; 1303 1304 ASSERT3U(io_size, <=, abd->abd_size - off); 1305 if (abd_is_linear(abd)) 1306 return (bio_map(bio, ((char *)abd_to_buf(abd)) + off, io_size)); 1307 1308 ASSERT(!abd_is_linear(abd)); 1309 if (abd_is_gang(abd)) 1310 return (abd_gang_bio_map_off(bio, abd, io_size, off)); 1311 1312 abd_iter_init(&aiter, abd); 1313 abd_iter_advance(&aiter, off); 1314 1315 for (int i = 0; i < bio->bi_max_vecs; i++) { 1316 struct page *pg; 1317 size_t len, sgoff, pgoff; 1318 struct scatterlist *sg; 1319 1320 if (io_size <= 0) 1321 break; 1322 1323 sg = aiter.iter_sg; 1324 sgoff = aiter.iter_offset; 1325 pgoff = sgoff & (PAGESIZE - 1); 1326 len = MIN(io_size, PAGESIZE - pgoff); 1327 ASSERT(len > 0); 1328 1329 pg = nth_page(sg_page(sg), sgoff >> PAGE_SHIFT); 1330 if (bio_add_page(bio, pg, len, pgoff) != len) 1331 break; 1332 1333 io_size -= len; 1334 abd_iter_advance(&aiter, len); 1335 } 1336 1337 return (io_size); 1338 } 1339 1340 /* Tunable Parameters */ 1341 module_param(zfs_abd_scatter_enabled, int, 0644); 1342 MODULE_PARM_DESC(zfs_abd_scatter_enabled, 1343 "Toggle whether ABD allocations must be linear."); 1344 module_param(zfs_abd_scatter_min_size, int, 0644); 1345 MODULE_PARM_DESC(zfs_abd_scatter_min_size, 1346 "Minimum size of scatter allocations."); 1347 /* CSTYLED */ 1348 module_param(zfs_abd_scatter_max_order, uint, 0644); 1349 MODULE_PARM_DESC(zfs_abd_scatter_max_order, 1350 "Maximum order allocation used for a scatter ABD."); 1351