1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2014 by Chunwei Chen. All rights reserved. 23 * Copyright (c) 2019 by Delphix. All rights reserved. 24 */ 25 26 /* 27 * See abd.c for a general overview of the arc buffered data (ABD). 28 * 29 * Linear buffers act exactly like normal buffers and are always mapped into the 30 * kernel's virtual memory space, while scattered ABD data chunks are allocated 31 * as physical pages and then mapped in only while they are actually being 32 * accessed through one of the abd_* library functions. Using scattered ABDs 33 * provides several benefits: 34 * 35 * (1) They avoid use of kmem_*, preventing performance problems where running 36 * kmem_reap on very large memory systems never finishes and causes 37 * constant TLB shootdowns. 38 * 39 * (2) Fragmentation is less of an issue since when we are at the limit of 40 * allocatable space, we won't have to search around for a long free 41 * hole in the VA space for large ARC allocations. Each chunk is mapped in 42 * individually, so even if we are using HIGHMEM (see next point) we 43 * wouldn't need to worry about finding a contiguous address range. 44 * 45 * (3) If we are not using HIGHMEM, then all physical memory is always 46 * mapped into the kernel's address space, so we also avoid the map / 47 * unmap costs on each ABD access. 48 * 49 * If we are not using HIGHMEM, scattered buffers which have only one chunk 50 * can be treated as linear buffers, because they are contiguous in the 51 * kernel's virtual address space. See abd_alloc_chunks() for details. 52 */ 53 54 #include <sys/abd_impl.h> 55 #include <sys/param.h> 56 #include <sys/zio.h> 57 #include <sys/arc.h> 58 #include <sys/zfs_context.h> 59 #include <sys/zfs_znode.h> 60 #ifdef _KERNEL 61 #include <linux/kmap_compat.h> 62 #include <linux/scatterlist.h> 63 #else 64 #define MAX_ORDER 1 65 #endif 66 67 typedef struct abd_stats { 68 kstat_named_t abdstat_struct_size; 69 kstat_named_t abdstat_linear_cnt; 70 kstat_named_t abdstat_linear_data_size; 71 kstat_named_t abdstat_scatter_cnt; 72 kstat_named_t abdstat_scatter_data_size; 73 kstat_named_t abdstat_scatter_chunk_waste; 74 kstat_named_t abdstat_scatter_orders[MAX_ORDER]; 75 kstat_named_t abdstat_scatter_page_multi_chunk; 76 kstat_named_t abdstat_scatter_page_multi_zone; 77 kstat_named_t abdstat_scatter_page_alloc_retry; 78 kstat_named_t abdstat_scatter_sg_table_retry; 79 } abd_stats_t; 80 81 static abd_stats_t abd_stats = { 82 /* Amount of memory occupied by all of the abd_t struct allocations */ 83 { "struct_size", KSTAT_DATA_UINT64 }, 84 /* 85 * The number of linear ABDs which are currently allocated, excluding 86 * ABDs which don't own their data (for instance the ones which were 87 * allocated through abd_get_offset() and abd_get_from_buf()). If an 88 * ABD takes ownership of its buf then it will become tracked. 89 */ 90 { "linear_cnt", KSTAT_DATA_UINT64 }, 91 /* Amount of data stored in all linear ABDs tracked by linear_cnt */ 92 { "linear_data_size", KSTAT_DATA_UINT64 }, 93 /* 94 * The number of scatter ABDs which are currently allocated, excluding 95 * ABDs which don't own their data (for instance the ones which were 96 * allocated through abd_get_offset()). 97 */ 98 { "scatter_cnt", KSTAT_DATA_UINT64 }, 99 /* Amount of data stored in all scatter ABDs tracked by scatter_cnt */ 100 { "scatter_data_size", KSTAT_DATA_UINT64 }, 101 /* 102 * The amount of space wasted at the end of the last chunk across all 103 * scatter ABDs tracked by scatter_cnt. 104 */ 105 { "scatter_chunk_waste", KSTAT_DATA_UINT64 }, 106 /* 107 * The number of compound allocations of a given order. These 108 * allocations are spread over all currently allocated ABDs, and 109 * act as a measure of memory fragmentation. 110 */ 111 { { "scatter_order_N", KSTAT_DATA_UINT64 } }, 112 /* 113 * The number of scatter ABDs which contain multiple chunks. 114 * ABDs are preferentially allocated from the minimum number of 115 * contiguous multi-page chunks, a single chunk is optimal. 116 */ 117 { "scatter_page_multi_chunk", KSTAT_DATA_UINT64 }, 118 /* 119 * The number of scatter ABDs which are split across memory zones. 120 * ABDs are preferentially allocated using pages from a single zone. 121 */ 122 { "scatter_page_multi_zone", KSTAT_DATA_UINT64 }, 123 /* 124 * The total number of retries encountered when attempting to 125 * allocate the pages to populate the scatter ABD. 126 */ 127 { "scatter_page_alloc_retry", KSTAT_DATA_UINT64 }, 128 /* 129 * The total number of retries encountered when attempting to 130 * allocate the sg table for an ABD. 131 */ 132 { "scatter_sg_table_retry", KSTAT_DATA_UINT64 }, 133 }; 134 135 struct { 136 wmsum_t abdstat_struct_size; 137 wmsum_t abdstat_linear_cnt; 138 wmsum_t abdstat_linear_data_size; 139 wmsum_t abdstat_scatter_cnt; 140 wmsum_t abdstat_scatter_data_size; 141 wmsum_t abdstat_scatter_chunk_waste; 142 wmsum_t abdstat_scatter_orders[MAX_ORDER]; 143 wmsum_t abdstat_scatter_page_multi_chunk; 144 wmsum_t abdstat_scatter_page_multi_zone; 145 wmsum_t abdstat_scatter_page_alloc_retry; 146 wmsum_t abdstat_scatter_sg_table_retry; 147 } abd_sums; 148 149 #define abd_for_each_sg(abd, sg, n, i) \ 150 for_each_sg(ABD_SCATTER(abd).abd_sgl, sg, n, i) 151 152 unsigned zfs_abd_scatter_max_order = MAX_ORDER - 1; 153 154 /* 155 * zfs_abd_scatter_min_size is the minimum allocation size to use scatter 156 * ABD's. Smaller allocations will use linear ABD's which uses 157 * zio_[data_]buf_alloc(). 158 * 159 * Scatter ABD's use at least one page each, so sub-page allocations waste 160 * some space when allocated as scatter (e.g. 2KB scatter allocation wastes 161 * half of each page). Using linear ABD's for small allocations means that 162 * they will be put on slabs which contain many allocations. This can 163 * improve memory efficiency, but it also makes it much harder for ARC 164 * evictions to actually free pages, because all the buffers on one slab need 165 * to be freed in order for the slab (and underlying pages) to be freed. 166 * Typically, 512B and 1KB kmem caches have 16 buffers per slab, so it's 167 * possible for them to actually waste more memory than scatter (one page per 168 * buf = wasting 3/4 or 7/8th; one buf per slab = wasting 15/16th). 169 * 170 * Spill blocks are typically 512B and are heavily used on systems running 171 * selinux with the default dnode size and the `xattr=sa` property set. 172 * 173 * By default we use linear allocations for 512B and 1KB, and scatter 174 * allocations for larger (1.5KB and up). 175 */ 176 int zfs_abd_scatter_min_size = 512 * 3; 177 178 /* 179 * We use a scattered SPA_MAXBLOCKSIZE sized ABD whose pages are 180 * just a single zero'd page. This allows us to conserve memory by 181 * only using a single zero page for the scatterlist. 182 */ 183 abd_t *abd_zero_scatter = NULL; 184 185 struct page; 186 /* 187 * abd_zero_page we will be an allocated zero'd PAGESIZE buffer, which is 188 * assigned to set each of the pages of abd_zero_scatter. 189 */ 190 static struct page *abd_zero_page = NULL; 191 192 static kmem_cache_t *abd_cache = NULL; 193 static kstat_t *abd_ksp; 194 195 static uint_t 196 abd_chunkcnt_for_bytes(size_t size) 197 { 198 return (P2ROUNDUP(size, PAGESIZE) / PAGESIZE); 199 } 200 201 abd_t * 202 abd_alloc_struct_impl(size_t size) 203 { 204 /* 205 * In Linux we do not use the size passed in during ABD 206 * allocation, so we just ignore it. 207 */ 208 abd_t *abd = kmem_cache_alloc(abd_cache, KM_PUSHPAGE); 209 ASSERT3P(abd, !=, NULL); 210 ABDSTAT_INCR(abdstat_struct_size, sizeof (abd_t)); 211 212 return (abd); 213 } 214 215 void 216 abd_free_struct_impl(abd_t *abd) 217 { 218 kmem_cache_free(abd_cache, abd); 219 ABDSTAT_INCR(abdstat_struct_size, -(int)sizeof (abd_t)); 220 } 221 222 #ifdef _KERNEL 223 /* 224 * Mark zfs data pages so they can be excluded from kernel crash dumps 225 */ 226 #ifdef _LP64 227 #define ABD_FILE_CACHE_PAGE 0x2F5ABDF11ECAC4E 228 229 static inline void 230 abd_mark_zfs_page(struct page *page) 231 { 232 get_page(page); 233 SetPagePrivate(page); 234 set_page_private(page, ABD_FILE_CACHE_PAGE); 235 } 236 237 static inline void 238 abd_unmark_zfs_page(struct page *page) 239 { 240 set_page_private(page, 0UL); 241 ClearPagePrivate(page); 242 put_page(page); 243 } 244 #else 245 #define abd_mark_zfs_page(page) 246 #define abd_unmark_zfs_page(page) 247 #endif /* _LP64 */ 248 249 #ifndef CONFIG_HIGHMEM 250 251 #ifndef __GFP_RECLAIM 252 #define __GFP_RECLAIM __GFP_WAIT 253 #endif 254 255 /* 256 * The goal is to minimize fragmentation by preferentially populating ABDs 257 * with higher order compound pages from a single zone. Allocation size is 258 * progressively decreased until it can be satisfied without performing 259 * reclaim or compaction. When necessary this function will degenerate to 260 * allocating individual pages and allowing reclaim to satisfy allocations. 261 */ 262 void 263 abd_alloc_chunks(abd_t *abd, size_t size) 264 { 265 struct list_head pages; 266 struct sg_table table; 267 struct scatterlist *sg; 268 struct page *page, *tmp_page = NULL; 269 gfp_t gfp = __GFP_NOWARN | GFP_NOIO; 270 gfp_t gfp_comp = (gfp | __GFP_NORETRY | __GFP_COMP) & ~__GFP_RECLAIM; 271 int max_order = MIN(zfs_abd_scatter_max_order, MAX_ORDER - 1); 272 int nr_pages = abd_chunkcnt_for_bytes(size); 273 int chunks = 0, zones = 0; 274 size_t remaining_size; 275 int nid = NUMA_NO_NODE; 276 int alloc_pages = 0; 277 278 INIT_LIST_HEAD(&pages); 279 280 while (alloc_pages < nr_pages) { 281 unsigned chunk_pages; 282 int order; 283 284 order = MIN(highbit64(nr_pages - alloc_pages) - 1, max_order); 285 chunk_pages = (1U << order); 286 287 page = alloc_pages_node(nid, order ? gfp_comp : gfp, order); 288 if (page == NULL) { 289 if (order == 0) { 290 ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry); 291 schedule_timeout_interruptible(1); 292 } else { 293 max_order = MAX(0, order - 1); 294 } 295 continue; 296 } 297 298 list_add_tail(&page->lru, &pages); 299 300 if ((nid != NUMA_NO_NODE) && (page_to_nid(page) != nid)) 301 zones++; 302 303 nid = page_to_nid(page); 304 ABDSTAT_BUMP(abdstat_scatter_orders[order]); 305 chunks++; 306 alloc_pages += chunk_pages; 307 } 308 309 ASSERT3S(alloc_pages, ==, nr_pages); 310 311 while (sg_alloc_table(&table, chunks, gfp)) { 312 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry); 313 schedule_timeout_interruptible(1); 314 } 315 316 sg = table.sgl; 317 remaining_size = size; 318 list_for_each_entry_safe(page, tmp_page, &pages, lru) { 319 size_t sg_size = MIN(PAGESIZE << compound_order(page), 320 remaining_size); 321 sg_set_page(sg, page, sg_size, 0); 322 abd_mark_zfs_page(page); 323 remaining_size -= sg_size; 324 325 sg = sg_next(sg); 326 list_del(&page->lru); 327 } 328 329 /* 330 * These conditions ensure that a possible transformation to a linear 331 * ABD would be valid. 332 */ 333 ASSERT(!PageHighMem(sg_page(table.sgl))); 334 ASSERT0(ABD_SCATTER(abd).abd_offset); 335 336 if (table.nents == 1) { 337 /* 338 * Since there is only one entry, this ABD can be represented 339 * as a linear buffer. All single-page (4K) ABD's can be 340 * represented this way. Some multi-page ABD's can also be 341 * represented this way, if we were able to allocate a single 342 * "chunk" (higher-order "page" which represents a power-of-2 343 * series of physically-contiguous pages). This is often the 344 * case for 2-page (8K) ABD's. 345 * 346 * Representing a single-entry scatter ABD as a linear ABD 347 * has the performance advantage of avoiding the copy (and 348 * allocation) in abd_borrow_buf_copy / abd_return_buf_copy. 349 * A performance increase of around 5% has been observed for 350 * ARC-cached reads (of small blocks which can take advantage 351 * of this). 352 * 353 * Note that this optimization is only possible because the 354 * pages are always mapped into the kernel's address space. 355 * This is not the case for highmem pages, so the 356 * optimization can not be made there. 357 */ 358 abd->abd_flags |= ABD_FLAG_LINEAR; 359 abd->abd_flags |= ABD_FLAG_LINEAR_PAGE; 360 abd->abd_u.abd_linear.abd_sgl = table.sgl; 361 ABD_LINEAR_BUF(abd) = page_address(sg_page(table.sgl)); 362 } else if (table.nents > 1) { 363 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); 364 abd->abd_flags |= ABD_FLAG_MULTI_CHUNK; 365 366 if (zones) { 367 ABDSTAT_BUMP(abdstat_scatter_page_multi_zone); 368 abd->abd_flags |= ABD_FLAG_MULTI_ZONE; 369 } 370 371 ABD_SCATTER(abd).abd_sgl = table.sgl; 372 ABD_SCATTER(abd).abd_nents = table.nents; 373 } 374 } 375 #else 376 377 /* 378 * Allocate N individual pages to construct a scatter ABD. This function 379 * makes no attempt to request contiguous pages and requires the minimal 380 * number of kernel interfaces. It's designed for maximum compatibility. 381 */ 382 void 383 abd_alloc_chunks(abd_t *abd, size_t size) 384 { 385 struct scatterlist *sg = NULL; 386 struct sg_table table; 387 struct page *page; 388 gfp_t gfp = __GFP_NOWARN | GFP_NOIO; 389 int nr_pages = abd_chunkcnt_for_bytes(size); 390 int i = 0; 391 392 while (sg_alloc_table(&table, nr_pages, gfp)) { 393 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry); 394 schedule_timeout_interruptible(1); 395 } 396 397 ASSERT3U(table.nents, ==, nr_pages); 398 ABD_SCATTER(abd).abd_sgl = table.sgl; 399 ABD_SCATTER(abd).abd_nents = nr_pages; 400 401 abd_for_each_sg(abd, sg, nr_pages, i) { 402 while ((page = __page_cache_alloc(gfp)) == NULL) { 403 ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry); 404 schedule_timeout_interruptible(1); 405 } 406 407 ABDSTAT_BUMP(abdstat_scatter_orders[0]); 408 sg_set_page(sg, page, PAGESIZE, 0); 409 abd_mark_zfs_page(page); 410 } 411 412 if (nr_pages > 1) { 413 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); 414 abd->abd_flags |= ABD_FLAG_MULTI_CHUNK; 415 } 416 } 417 #endif /* !CONFIG_HIGHMEM */ 418 419 /* 420 * This must be called if any of the sg_table allocation functions 421 * are called. 422 */ 423 static void 424 abd_free_sg_table(abd_t *abd) 425 { 426 struct sg_table table; 427 428 table.sgl = ABD_SCATTER(abd).abd_sgl; 429 table.nents = table.orig_nents = ABD_SCATTER(abd).abd_nents; 430 sg_free_table(&table); 431 } 432 433 void 434 abd_free_chunks(abd_t *abd) 435 { 436 struct scatterlist *sg = NULL; 437 struct page *page; 438 int nr_pages = ABD_SCATTER(abd).abd_nents; 439 int order, i = 0; 440 441 if (abd->abd_flags & ABD_FLAG_MULTI_ZONE) 442 ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_zone); 443 444 if (abd->abd_flags & ABD_FLAG_MULTI_CHUNK) 445 ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk); 446 447 abd_for_each_sg(abd, sg, nr_pages, i) { 448 page = sg_page(sg); 449 abd_unmark_zfs_page(page); 450 order = compound_order(page); 451 __free_pages(page, order); 452 ASSERT3U(sg->length, <=, PAGE_SIZE << order); 453 ABDSTAT_BUMPDOWN(abdstat_scatter_orders[order]); 454 } 455 abd_free_sg_table(abd); 456 } 457 458 /* 459 * Allocate scatter ABD of size SPA_MAXBLOCKSIZE, where each page in 460 * the scatterlist will be set to the zero'd out buffer abd_zero_page. 461 */ 462 static void 463 abd_alloc_zero_scatter(void) 464 { 465 struct scatterlist *sg = NULL; 466 struct sg_table table; 467 gfp_t gfp = __GFP_NOWARN | GFP_NOIO; 468 gfp_t gfp_zero_page = gfp | __GFP_ZERO; 469 int nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE); 470 int i = 0; 471 472 while ((abd_zero_page = __page_cache_alloc(gfp_zero_page)) == NULL) { 473 ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry); 474 schedule_timeout_interruptible(1); 475 } 476 abd_mark_zfs_page(abd_zero_page); 477 478 while (sg_alloc_table(&table, nr_pages, gfp)) { 479 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry); 480 schedule_timeout_interruptible(1); 481 } 482 ASSERT3U(table.nents, ==, nr_pages); 483 484 abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE); 485 abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER; 486 ABD_SCATTER(abd_zero_scatter).abd_offset = 0; 487 ABD_SCATTER(abd_zero_scatter).abd_sgl = table.sgl; 488 ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages; 489 abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE; 490 abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS; 491 492 abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) { 493 sg_set_page(sg, abd_zero_page, PAGESIZE, 0); 494 } 495 496 ABDSTAT_BUMP(abdstat_scatter_cnt); 497 ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE); 498 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); 499 } 500 501 #else /* _KERNEL */ 502 503 #ifndef PAGE_SHIFT 504 #define PAGE_SHIFT (highbit64(PAGESIZE)-1) 505 #endif 506 507 #define zfs_kmap_atomic(chunk) ((void *)chunk) 508 #define zfs_kunmap_atomic(addr) do { (void)(addr); } while (0) 509 #define local_irq_save(flags) do { (void)(flags); } while (0) 510 #define local_irq_restore(flags) do { (void)(flags); } while (0) 511 #define nth_page(pg, i) \ 512 ((struct page *)((void *)(pg) + (i) * PAGESIZE)) 513 514 struct scatterlist { 515 struct page *page; 516 int length; 517 int end; 518 }; 519 520 static void 521 sg_init_table(struct scatterlist *sg, int nr) 522 { 523 memset(sg, 0, nr * sizeof (struct scatterlist)); 524 sg[nr - 1].end = 1; 525 } 526 527 /* 528 * This must be called if any of the sg_table allocation functions 529 * are called. 530 */ 531 static void 532 abd_free_sg_table(abd_t *abd) 533 { 534 int nents = ABD_SCATTER(abd).abd_nents; 535 vmem_free(ABD_SCATTER(abd).abd_sgl, 536 nents * sizeof (struct scatterlist)); 537 } 538 539 #define for_each_sg(sgl, sg, nr, i) \ 540 for ((i) = 0, (sg) = (sgl); (i) < (nr); (i)++, (sg) = sg_next(sg)) 541 542 static inline void 543 sg_set_page(struct scatterlist *sg, struct page *page, unsigned int len, 544 unsigned int offset) 545 { 546 /* currently we don't use offset */ 547 ASSERT(offset == 0); 548 sg->page = page; 549 sg->length = len; 550 } 551 552 static inline struct page * 553 sg_page(struct scatterlist *sg) 554 { 555 return (sg->page); 556 } 557 558 static inline struct scatterlist * 559 sg_next(struct scatterlist *sg) 560 { 561 if (sg->end) 562 return (NULL); 563 564 return (sg + 1); 565 } 566 567 void 568 abd_alloc_chunks(abd_t *abd, size_t size) 569 { 570 unsigned nr_pages = abd_chunkcnt_for_bytes(size); 571 struct scatterlist *sg; 572 int i; 573 574 ABD_SCATTER(abd).abd_sgl = vmem_alloc(nr_pages * 575 sizeof (struct scatterlist), KM_SLEEP); 576 sg_init_table(ABD_SCATTER(abd).abd_sgl, nr_pages); 577 578 abd_for_each_sg(abd, sg, nr_pages, i) { 579 struct page *p = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP); 580 sg_set_page(sg, p, PAGESIZE, 0); 581 } 582 ABD_SCATTER(abd).abd_nents = nr_pages; 583 } 584 585 void 586 abd_free_chunks(abd_t *abd) 587 { 588 int i, n = ABD_SCATTER(abd).abd_nents; 589 struct scatterlist *sg; 590 591 abd_for_each_sg(abd, sg, n, i) { 592 for (int j = 0; j < sg->length; j += PAGESIZE) { 593 struct page *p = nth_page(sg_page(sg), j >> PAGE_SHIFT); 594 umem_free(p, PAGESIZE); 595 } 596 } 597 abd_free_sg_table(abd); 598 } 599 600 static void 601 abd_alloc_zero_scatter(void) 602 { 603 unsigned nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE); 604 struct scatterlist *sg; 605 int i; 606 607 abd_zero_page = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP); 608 memset(abd_zero_page, 0, PAGESIZE); 609 abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE); 610 abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER; 611 abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS; 612 ABD_SCATTER(abd_zero_scatter).abd_offset = 0; 613 ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages; 614 abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE; 615 zfs_refcount_create(&abd_zero_scatter->abd_children); 616 ABD_SCATTER(abd_zero_scatter).abd_sgl = vmem_alloc(nr_pages * 617 sizeof (struct scatterlist), KM_SLEEP); 618 619 sg_init_table(ABD_SCATTER(abd_zero_scatter).abd_sgl, nr_pages); 620 621 abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) { 622 sg_set_page(sg, abd_zero_page, PAGESIZE, 0); 623 } 624 625 ABDSTAT_BUMP(abdstat_scatter_cnt); 626 ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE); 627 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); 628 } 629 630 #endif /* _KERNEL */ 631 632 boolean_t 633 abd_size_alloc_linear(size_t size) 634 { 635 return (size < zfs_abd_scatter_min_size ? B_TRUE : B_FALSE); 636 } 637 638 void 639 abd_update_scatter_stats(abd_t *abd, abd_stats_op_t op) 640 { 641 ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR); 642 int waste = P2ROUNDUP(abd->abd_size, PAGESIZE) - abd->abd_size; 643 if (op == ABDSTAT_INCR) { 644 ABDSTAT_BUMP(abdstat_scatter_cnt); 645 ABDSTAT_INCR(abdstat_scatter_data_size, abd->abd_size); 646 ABDSTAT_INCR(abdstat_scatter_chunk_waste, waste); 647 arc_space_consume(waste, ARC_SPACE_ABD_CHUNK_WASTE); 648 } else { 649 ABDSTAT_BUMPDOWN(abdstat_scatter_cnt); 650 ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size); 651 ABDSTAT_INCR(abdstat_scatter_chunk_waste, -waste); 652 arc_space_return(waste, ARC_SPACE_ABD_CHUNK_WASTE); 653 } 654 } 655 656 void 657 abd_update_linear_stats(abd_t *abd, abd_stats_op_t op) 658 { 659 ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR); 660 if (op == ABDSTAT_INCR) { 661 ABDSTAT_BUMP(abdstat_linear_cnt); 662 ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size); 663 } else { 664 ABDSTAT_BUMPDOWN(abdstat_linear_cnt); 665 ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size); 666 } 667 } 668 669 void 670 abd_verify_scatter(abd_t *abd) 671 { 672 size_t n; 673 int i = 0; 674 struct scatterlist *sg = NULL; 675 676 ASSERT3U(ABD_SCATTER(abd).abd_nents, >, 0); 677 ASSERT3U(ABD_SCATTER(abd).abd_offset, <, 678 ABD_SCATTER(abd).abd_sgl->length); 679 n = ABD_SCATTER(abd).abd_nents; 680 abd_for_each_sg(abd, sg, n, i) { 681 ASSERT3P(sg_page(sg), !=, NULL); 682 } 683 } 684 685 static void 686 abd_free_zero_scatter(void) 687 { 688 ABDSTAT_BUMPDOWN(abdstat_scatter_cnt); 689 ABDSTAT_INCR(abdstat_scatter_data_size, -(int)PAGESIZE); 690 ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk); 691 692 abd_free_sg_table(abd_zero_scatter); 693 abd_free_struct(abd_zero_scatter); 694 abd_zero_scatter = NULL; 695 ASSERT3P(abd_zero_page, !=, NULL); 696 #if defined(_KERNEL) 697 abd_unmark_zfs_page(abd_zero_page); 698 __free_page(abd_zero_page); 699 #else 700 umem_free(abd_zero_page, PAGESIZE); 701 #endif /* _KERNEL */ 702 } 703 704 static int 705 abd_kstats_update(kstat_t *ksp, int rw) 706 { 707 abd_stats_t *as = ksp->ks_data; 708 709 if (rw == KSTAT_WRITE) 710 return (EACCES); 711 as->abdstat_struct_size.value.ui64 = 712 wmsum_value(&abd_sums.abdstat_struct_size); 713 as->abdstat_linear_cnt.value.ui64 = 714 wmsum_value(&abd_sums.abdstat_linear_cnt); 715 as->abdstat_linear_data_size.value.ui64 = 716 wmsum_value(&abd_sums.abdstat_linear_data_size); 717 as->abdstat_scatter_cnt.value.ui64 = 718 wmsum_value(&abd_sums.abdstat_scatter_cnt); 719 as->abdstat_scatter_data_size.value.ui64 = 720 wmsum_value(&abd_sums.abdstat_scatter_data_size); 721 as->abdstat_scatter_chunk_waste.value.ui64 = 722 wmsum_value(&abd_sums.abdstat_scatter_chunk_waste); 723 for (int i = 0; i < MAX_ORDER; i++) { 724 as->abdstat_scatter_orders[i].value.ui64 = 725 wmsum_value(&abd_sums.abdstat_scatter_orders[i]); 726 } 727 as->abdstat_scatter_page_multi_chunk.value.ui64 = 728 wmsum_value(&abd_sums.abdstat_scatter_page_multi_chunk); 729 as->abdstat_scatter_page_multi_zone.value.ui64 = 730 wmsum_value(&abd_sums.abdstat_scatter_page_multi_zone); 731 as->abdstat_scatter_page_alloc_retry.value.ui64 = 732 wmsum_value(&abd_sums.abdstat_scatter_page_alloc_retry); 733 as->abdstat_scatter_sg_table_retry.value.ui64 = 734 wmsum_value(&abd_sums.abdstat_scatter_sg_table_retry); 735 return (0); 736 } 737 738 void 739 abd_init(void) 740 { 741 int i; 742 743 abd_cache = kmem_cache_create("abd_t", sizeof (abd_t), 744 0, NULL, NULL, NULL, NULL, NULL, 0); 745 746 wmsum_init(&abd_sums.abdstat_struct_size, 0); 747 wmsum_init(&abd_sums.abdstat_linear_cnt, 0); 748 wmsum_init(&abd_sums.abdstat_linear_data_size, 0); 749 wmsum_init(&abd_sums.abdstat_scatter_cnt, 0); 750 wmsum_init(&abd_sums.abdstat_scatter_data_size, 0); 751 wmsum_init(&abd_sums.abdstat_scatter_chunk_waste, 0); 752 for (i = 0; i < MAX_ORDER; i++) 753 wmsum_init(&abd_sums.abdstat_scatter_orders[i], 0); 754 wmsum_init(&abd_sums.abdstat_scatter_page_multi_chunk, 0); 755 wmsum_init(&abd_sums.abdstat_scatter_page_multi_zone, 0); 756 wmsum_init(&abd_sums.abdstat_scatter_page_alloc_retry, 0); 757 wmsum_init(&abd_sums.abdstat_scatter_sg_table_retry, 0); 758 759 abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED, 760 sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 761 if (abd_ksp != NULL) { 762 for (i = 0; i < MAX_ORDER; i++) { 763 snprintf(abd_stats.abdstat_scatter_orders[i].name, 764 KSTAT_STRLEN, "scatter_order_%d", i); 765 abd_stats.abdstat_scatter_orders[i].data_type = 766 KSTAT_DATA_UINT64; 767 } 768 abd_ksp->ks_data = &abd_stats; 769 abd_ksp->ks_update = abd_kstats_update; 770 kstat_install(abd_ksp); 771 } 772 773 abd_alloc_zero_scatter(); 774 } 775 776 void 777 abd_fini(void) 778 { 779 abd_free_zero_scatter(); 780 781 if (abd_ksp != NULL) { 782 kstat_delete(abd_ksp); 783 abd_ksp = NULL; 784 } 785 786 wmsum_fini(&abd_sums.abdstat_struct_size); 787 wmsum_fini(&abd_sums.abdstat_linear_cnt); 788 wmsum_fini(&abd_sums.abdstat_linear_data_size); 789 wmsum_fini(&abd_sums.abdstat_scatter_cnt); 790 wmsum_fini(&abd_sums.abdstat_scatter_data_size); 791 wmsum_fini(&abd_sums.abdstat_scatter_chunk_waste); 792 for (int i = 0; i < MAX_ORDER; i++) 793 wmsum_fini(&abd_sums.abdstat_scatter_orders[i]); 794 wmsum_fini(&abd_sums.abdstat_scatter_page_multi_chunk); 795 wmsum_fini(&abd_sums.abdstat_scatter_page_multi_zone); 796 wmsum_fini(&abd_sums.abdstat_scatter_page_alloc_retry); 797 wmsum_fini(&abd_sums.abdstat_scatter_sg_table_retry); 798 799 if (abd_cache) { 800 kmem_cache_destroy(abd_cache); 801 abd_cache = NULL; 802 } 803 } 804 805 void 806 abd_free_linear_page(abd_t *abd) 807 { 808 /* Transform it back into a scatter ABD for freeing */ 809 struct scatterlist *sg = abd->abd_u.abd_linear.abd_sgl; 810 abd->abd_flags &= ~ABD_FLAG_LINEAR; 811 abd->abd_flags &= ~ABD_FLAG_LINEAR_PAGE; 812 ABD_SCATTER(abd).abd_nents = 1; 813 ABD_SCATTER(abd).abd_offset = 0; 814 ABD_SCATTER(abd).abd_sgl = sg; 815 abd_free_chunks(abd); 816 817 abd_update_scatter_stats(abd, ABDSTAT_DECR); 818 } 819 820 /* 821 * If we're going to use this ABD for doing I/O using the block layer, the 822 * consumer of the ABD data doesn't care if it's scattered or not, and we don't 823 * plan to store this ABD in memory for a long period of time, we should 824 * allocate the ABD type that requires the least data copying to do the I/O. 825 * 826 * On Linux the optimal thing to do would be to use abd_get_offset() and 827 * construct a new ABD which shares the original pages thereby eliminating 828 * the copy. But for the moment a new linear ABD is allocated until this 829 * performance optimization can be implemented. 830 */ 831 abd_t * 832 abd_alloc_for_io(size_t size, boolean_t is_metadata) 833 { 834 return (abd_alloc(size, is_metadata)); 835 } 836 837 abd_t * 838 abd_get_offset_scatter(abd_t *abd, abd_t *sabd, size_t off) 839 { 840 int i = 0; 841 struct scatterlist *sg = NULL; 842 843 abd_verify(sabd); 844 ASSERT3U(off, <=, sabd->abd_size); 845 846 size_t new_offset = ABD_SCATTER(sabd).abd_offset + off; 847 848 if (abd == NULL) 849 abd = abd_alloc_struct(0); 850 851 /* 852 * Even if this buf is filesystem metadata, we only track that 853 * if we own the underlying data buffer, which is not true in 854 * this case. Therefore, we don't ever use ABD_FLAG_META here. 855 */ 856 857 abd_for_each_sg(sabd, sg, ABD_SCATTER(sabd).abd_nents, i) { 858 if (new_offset < sg->length) 859 break; 860 new_offset -= sg->length; 861 } 862 863 ABD_SCATTER(abd).abd_sgl = sg; 864 ABD_SCATTER(abd).abd_offset = new_offset; 865 ABD_SCATTER(abd).abd_nents = ABD_SCATTER(sabd).abd_nents - i; 866 867 return (abd); 868 } 869 870 /* 871 * Initialize the abd_iter. 872 */ 873 void 874 abd_iter_init(struct abd_iter *aiter, abd_t *abd) 875 { 876 ASSERT(!abd_is_gang(abd)); 877 abd_verify(abd); 878 aiter->iter_abd = abd; 879 aiter->iter_mapaddr = NULL; 880 aiter->iter_mapsize = 0; 881 aiter->iter_pos = 0; 882 if (abd_is_linear(abd)) { 883 aiter->iter_offset = 0; 884 aiter->iter_sg = NULL; 885 } else { 886 aiter->iter_offset = ABD_SCATTER(abd).abd_offset; 887 aiter->iter_sg = ABD_SCATTER(abd).abd_sgl; 888 } 889 } 890 891 /* 892 * This is just a helper function to see if we have exhausted the 893 * abd_iter and reached the end. 894 */ 895 boolean_t 896 abd_iter_at_end(struct abd_iter *aiter) 897 { 898 return (aiter->iter_pos == aiter->iter_abd->abd_size); 899 } 900 901 /* 902 * Advance the iterator by a certain amount. Cannot be called when a chunk is 903 * in use. This can be safely called when the aiter has already exhausted, in 904 * which case this does nothing. 905 */ 906 void 907 abd_iter_advance(struct abd_iter *aiter, size_t amount) 908 { 909 ASSERT3P(aiter->iter_mapaddr, ==, NULL); 910 ASSERT0(aiter->iter_mapsize); 911 912 /* There's nothing left to advance to, so do nothing */ 913 if (abd_iter_at_end(aiter)) 914 return; 915 916 aiter->iter_pos += amount; 917 aiter->iter_offset += amount; 918 if (!abd_is_linear(aiter->iter_abd)) { 919 while (aiter->iter_offset >= aiter->iter_sg->length) { 920 aiter->iter_offset -= aiter->iter_sg->length; 921 aiter->iter_sg = sg_next(aiter->iter_sg); 922 if (aiter->iter_sg == NULL) { 923 ASSERT0(aiter->iter_offset); 924 break; 925 } 926 } 927 } 928 } 929 930 /* 931 * Map the current chunk into aiter. This can be safely called when the aiter 932 * has already exhausted, in which case this does nothing. 933 */ 934 void 935 abd_iter_map(struct abd_iter *aiter) 936 { 937 void *paddr; 938 size_t offset = 0; 939 940 ASSERT3P(aiter->iter_mapaddr, ==, NULL); 941 ASSERT0(aiter->iter_mapsize); 942 943 /* There's nothing left to iterate over, so do nothing */ 944 if (abd_iter_at_end(aiter)) 945 return; 946 947 if (abd_is_linear(aiter->iter_abd)) { 948 ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset); 949 offset = aiter->iter_offset; 950 aiter->iter_mapsize = aiter->iter_abd->abd_size - offset; 951 paddr = ABD_LINEAR_BUF(aiter->iter_abd); 952 } else { 953 offset = aiter->iter_offset; 954 aiter->iter_mapsize = MIN(aiter->iter_sg->length - offset, 955 aiter->iter_abd->abd_size - aiter->iter_pos); 956 957 paddr = zfs_kmap_atomic(sg_page(aiter->iter_sg)); 958 } 959 960 aiter->iter_mapaddr = (char *)paddr + offset; 961 } 962 963 /* 964 * Unmap the current chunk from aiter. This can be safely called when the aiter 965 * has already exhausted, in which case this does nothing. 966 */ 967 void 968 abd_iter_unmap(struct abd_iter *aiter) 969 { 970 /* There's nothing left to unmap, so do nothing */ 971 if (abd_iter_at_end(aiter)) 972 return; 973 974 if (!abd_is_linear(aiter->iter_abd)) { 975 /* LINTED E_FUNC_SET_NOT_USED */ 976 zfs_kunmap_atomic(aiter->iter_mapaddr - aiter->iter_offset); 977 } 978 979 ASSERT3P(aiter->iter_mapaddr, !=, NULL); 980 ASSERT3U(aiter->iter_mapsize, >, 0); 981 982 aiter->iter_mapaddr = NULL; 983 aiter->iter_mapsize = 0; 984 } 985 986 void 987 abd_cache_reap_now(void) 988 { 989 } 990 991 #if defined(_KERNEL) 992 /* 993 * bio_nr_pages for ABD. 994 * @off is the offset in @abd 995 */ 996 unsigned long 997 abd_nr_pages_off(abd_t *abd, unsigned int size, size_t off) 998 { 999 unsigned long pos; 1000 1001 if (abd_is_gang(abd)) { 1002 unsigned long count = 0; 1003 1004 for (abd_t *cabd = abd_gang_get_offset(abd, &off); 1005 cabd != NULL && size != 0; 1006 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) { 1007 ASSERT3U(off, <, cabd->abd_size); 1008 int mysize = MIN(size, cabd->abd_size - off); 1009 count += abd_nr_pages_off(cabd, mysize, off); 1010 size -= mysize; 1011 off = 0; 1012 } 1013 return (count); 1014 } 1015 1016 if (abd_is_linear(abd)) 1017 pos = (unsigned long)abd_to_buf(abd) + off; 1018 else 1019 pos = ABD_SCATTER(abd).abd_offset + off; 1020 1021 return (((pos + size + PAGESIZE - 1) >> PAGE_SHIFT) - 1022 (pos >> PAGE_SHIFT)); 1023 } 1024 1025 static unsigned int 1026 bio_map(struct bio *bio, void *buf_ptr, unsigned int bio_size) 1027 { 1028 unsigned int offset, size, i; 1029 struct page *page; 1030 1031 offset = offset_in_page(buf_ptr); 1032 for (i = 0; i < bio->bi_max_vecs; i++) { 1033 size = PAGE_SIZE - offset; 1034 1035 if (bio_size <= 0) 1036 break; 1037 1038 if (size > bio_size) 1039 size = bio_size; 1040 1041 if (is_vmalloc_addr(buf_ptr)) 1042 page = vmalloc_to_page(buf_ptr); 1043 else 1044 page = virt_to_page(buf_ptr); 1045 1046 /* 1047 * Some network related block device uses tcp_sendpage, which 1048 * doesn't behave well when using 0-count page, this is a 1049 * safety net to catch them. 1050 */ 1051 ASSERT3S(page_count(page), >, 0); 1052 1053 if (bio_add_page(bio, page, size, offset) != size) 1054 break; 1055 1056 buf_ptr += size; 1057 bio_size -= size; 1058 offset = 0; 1059 } 1060 1061 return (bio_size); 1062 } 1063 1064 /* 1065 * bio_map for gang ABD. 1066 */ 1067 static unsigned int 1068 abd_gang_bio_map_off(struct bio *bio, abd_t *abd, 1069 unsigned int io_size, size_t off) 1070 { 1071 ASSERT(abd_is_gang(abd)); 1072 1073 for (abd_t *cabd = abd_gang_get_offset(abd, &off); 1074 cabd != NULL; 1075 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) { 1076 ASSERT3U(off, <, cabd->abd_size); 1077 int size = MIN(io_size, cabd->abd_size - off); 1078 int remainder = abd_bio_map_off(bio, cabd, size, off); 1079 io_size -= (size - remainder); 1080 if (io_size == 0 || remainder > 0) 1081 return (io_size); 1082 off = 0; 1083 } 1084 ASSERT0(io_size); 1085 return (io_size); 1086 } 1087 1088 /* 1089 * bio_map for ABD. 1090 * @off is the offset in @abd 1091 * Remaining IO size is returned 1092 */ 1093 unsigned int 1094 abd_bio_map_off(struct bio *bio, abd_t *abd, 1095 unsigned int io_size, size_t off) 1096 { 1097 struct abd_iter aiter; 1098 1099 ASSERT3U(io_size, <=, abd->abd_size - off); 1100 if (abd_is_linear(abd)) 1101 return (bio_map(bio, ((char *)abd_to_buf(abd)) + off, io_size)); 1102 1103 ASSERT(!abd_is_linear(abd)); 1104 if (abd_is_gang(abd)) 1105 return (abd_gang_bio_map_off(bio, abd, io_size, off)); 1106 1107 abd_iter_init(&aiter, abd); 1108 abd_iter_advance(&aiter, off); 1109 1110 for (int i = 0; i < bio->bi_max_vecs; i++) { 1111 struct page *pg; 1112 size_t len, sgoff, pgoff; 1113 struct scatterlist *sg; 1114 1115 if (io_size <= 0) 1116 break; 1117 1118 sg = aiter.iter_sg; 1119 sgoff = aiter.iter_offset; 1120 pgoff = sgoff & (PAGESIZE - 1); 1121 len = MIN(io_size, PAGESIZE - pgoff); 1122 ASSERT(len > 0); 1123 1124 pg = nth_page(sg_page(sg), sgoff >> PAGE_SHIFT); 1125 if (bio_add_page(bio, pg, len, pgoff) != len) 1126 break; 1127 1128 io_size -= len; 1129 abd_iter_advance(&aiter, len); 1130 } 1131 1132 return (io_size); 1133 } 1134 1135 /* Tunable Parameters */ 1136 module_param(zfs_abd_scatter_enabled, int, 0644); 1137 MODULE_PARM_DESC(zfs_abd_scatter_enabled, 1138 "Toggle whether ABD allocations must be linear."); 1139 module_param(zfs_abd_scatter_min_size, int, 0644); 1140 MODULE_PARM_DESC(zfs_abd_scatter_min_size, 1141 "Minimum size of scatter allocations."); 1142 /* CSTYLED */ 1143 module_param(zfs_abd_scatter_max_order, uint, 0644); 1144 MODULE_PARM_DESC(zfs_abd_scatter_max_order, 1145 "Maximum order allocation used for a scatter ABD."); 1146 #endif 1147