1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc. All rights reserved.
26 */
27
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/time.h>
31 #include <sys/systm.h>
32 #include <sys/sysmacros.h>
33 #include <sys/resource.h>
34 #include <sys/vfs.h>
35 #include <sys/vnode.h>
36 #include <sys/file.h>
37 #include <sys/stat.h>
38 #include <sys/kmem.h>
39 #include <sys/cmn_err.h>
40 #include <sys/errno.h>
41 #include <sys/unistd.h>
42 #include <sys/sdt.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/policy.h>
45 #include <sys/zfs_znode.h>
46 #include <sys/zfs_fuid.h>
47 #include <sys/zfs_acl.h>
48 #include <sys/zfs_dir.h>
49 #include <sys/zfs_quota.h>
50 #include <sys/zfs_vfsops.h>
51 #include <sys/dmu.h>
52 #include <sys/dnode.h>
53 #include <sys/zap.h>
54 #include <sys/sa.h>
55 #include <acl/acl_common.h>
56
57
58 #define ALLOW ACE_ACCESS_ALLOWED_ACE_TYPE
59 #define DENY ACE_ACCESS_DENIED_ACE_TYPE
60 #define MAX_ACE_TYPE ACE_SYSTEM_ALARM_CALLBACK_OBJECT_ACE_TYPE
61 #define MIN_ACE_TYPE ALLOW
62
63 #define OWNING_GROUP (ACE_GROUP|ACE_IDENTIFIER_GROUP)
64 #define EVERYONE_ALLOW_MASK (ACE_READ_ACL|ACE_READ_ATTRIBUTES | \
65 ACE_READ_NAMED_ATTRS|ACE_SYNCHRONIZE)
66 #define EVERYONE_DENY_MASK (ACE_WRITE_ACL|ACE_WRITE_OWNER | \
67 ACE_WRITE_ATTRIBUTES|ACE_WRITE_NAMED_ATTRS)
68 #define OWNER_ALLOW_MASK (ACE_WRITE_ACL | ACE_WRITE_OWNER | \
69 ACE_WRITE_ATTRIBUTES|ACE_WRITE_NAMED_ATTRS)
70
71 #define ZFS_CHECKED_MASKS (ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_READ_DATA| \
72 ACE_READ_NAMED_ATTRS|ACE_WRITE_DATA|ACE_WRITE_ATTRIBUTES| \
73 ACE_WRITE_NAMED_ATTRS|ACE_APPEND_DATA|ACE_EXECUTE|ACE_WRITE_OWNER| \
74 ACE_WRITE_ACL|ACE_DELETE|ACE_DELETE_CHILD|ACE_SYNCHRONIZE)
75
76 #define WRITE_MASK_DATA (ACE_WRITE_DATA|ACE_APPEND_DATA|ACE_WRITE_NAMED_ATTRS)
77 #define WRITE_MASK_ATTRS (ACE_WRITE_ACL|ACE_WRITE_OWNER|ACE_WRITE_ATTRIBUTES| \
78 ACE_DELETE|ACE_DELETE_CHILD)
79 #define WRITE_MASK (WRITE_MASK_DATA|WRITE_MASK_ATTRS)
80
81 #define OGE_CLEAR (ACE_READ_DATA|ACE_LIST_DIRECTORY|ACE_WRITE_DATA| \
82 ACE_ADD_FILE|ACE_APPEND_DATA|ACE_ADD_SUBDIRECTORY|ACE_EXECUTE)
83
84 #define OKAY_MASK_BITS (ACE_READ_DATA|ACE_LIST_DIRECTORY|ACE_WRITE_DATA| \
85 ACE_ADD_FILE|ACE_APPEND_DATA|ACE_ADD_SUBDIRECTORY|ACE_EXECUTE)
86
87 #define ALL_INHERIT (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE | \
88 ACE_NO_PROPAGATE_INHERIT_ACE|ACE_INHERIT_ONLY_ACE|ACE_INHERITED_ACE)
89
90 #define RESTRICTED_CLEAR (ACE_WRITE_ACL|ACE_WRITE_OWNER)
91
92 #define V4_ACL_WIDE_FLAGS (ZFS_ACL_AUTO_INHERIT|ZFS_ACL_DEFAULTED|\
93 ZFS_ACL_PROTECTED)
94
95 #define ZFS_ACL_WIDE_FLAGS (V4_ACL_WIDE_FLAGS|ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|\
96 ZFS_ACL_OBJ_ACE)
97
98 #define ALL_MODE_EXECS (S_IXUSR | S_IXGRP | S_IXOTH)
99
100 static uint16_t
zfs_ace_v0_get_type(void * acep)101 zfs_ace_v0_get_type(void *acep)
102 {
103 return (((zfs_oldace_t *)acep)->z_type);
104 }
105
106 static uint16_t
zfs_ace_v0_get_flags(void * acep)107 zfs_ace_v0_get_flags(void *acep)
108 {
109 return (((zfs_oldace_t *)acep)->z_flags);
110 }
111
112 static uint32_t
zfs_ace_v0_get_mask(void * acep)113 zfs_ace_v0_get_mask(void *acep)
114 {
115 return (((zfs_oldace_t *)acep)->z_access_mask);
116 }
117
118 static uint64_t
zfs_ace_v0_get_who(void * acep)119 zfs_ace_v0_get_who(void *acep)
120 {
121 return (((zfs_oldace_t *)acep)->z_fuid);
122 }
123
124 static void
zfs_ace_v0_set_type(void * acep,uint16_t type)125 zfs_ace_v0_set_type(void *acep, uint16_t type)
126 {
127 ((zfs_oldace_t *)acep)->z_type = type;
128 }
129
130 static void
zfs_ace_v0_set_flags(void * acep,uint16_t flags)131 zfs_ace_v0_set_flags(void *acep, uint16_t flags)
132 {
133 ((zfs_oldace_t *)acep)->z_flags = flags;
134 }
135
136 static void
zfs_ace_v0_set_mask(void * acep,uint32_t mask)137 zfs_ace_v0_set_mask(void *acep, uint32_t mask)
138 {
139 ((zfs_oldace_t *)acep)->z_access_mask = mask;
140 }
141
142 static void
zfs_ace_v0_set_who(void * acep,uint64_t who)143 zfs_ace_v0_set_who(void *acep, uint64_t who)
144 {
145 ((zfs_oldace_t *)acep)->z_fuid = who;
146 }
147
148 static size_t
zfs_ace_v0_size(void * acep)149 zfs_ace_v0_size(void *acep)
150 {
151 (void) acep;
152 return (sizeof (zfs_oldace_t));
153 }
154
155 static size_t
zfs_ace_v0_abstract_size(void)156 zfs_ace_v0_abstract_size(void)
157 {
158 return (sizeof (zfs_oldace_t));
159 }
160
161 static int
zfs_ace_v0_mask_off(void)162 zfs_ace_v0_mask_off(void)
163 {
164 return (offsetof(zfs_oldace_t, z_access_mask));
165 }
166
167 static int
zfs_ace_v0_data(void * acep,void ** datap)168 zfs_ace_v0_data(void *acep, void **datap)
169 {
170 (void) acep;
171 *datap = NULL;
172 return (0);
173 }
174
175 static const acl_ops_t zfs_acl_v0_ops = {
176 zfs_ace_v0_get_mask,
177 zfs_ace_v0_set_mask,
178 zfs_ace_v0_get_flags,
179 zfs_ace_v0_set_flags,
180 zfs_ace_v0_get_type,
181 zfs_ace_v0_set_type,
182 zfs_ace_v0_get_who,
183 zfs_ace_v0_set_who,
184 zfs_ace_v0_size,
185 zfs_ace_v0_abstract_size,
186 zfs_ace_v0_mask_off,
187 zfs_ace_v0_data
188 };
189
190 static uint16_t
zfs_ace_fuid_get_type(void * acep)191 zfs_ace_fuid_get_type(void *acep)
192 {
193 return (((zfs_ace_hdr_t *)acep)->z_type);
194 }
195
196 static uint16_t
zfs_ace_fuid_get_flags(void * acep)197 zfs_ace_fuid_get_flags(void *acep)
198 {
199 return (((zfs_ace_hdr_t *)acep)->z_flags);
200 }
201
202 static uint32_t
zfs_ace_fuid_get_mask(void * acep)203 zfs_ace_fuid_get_mask(void *acep)
204 {
205 return (((zfs_ace_hdr_t *)acep)->z_access_mask);
206 }
207
208 static uint64_t
zfs_ace_fuid_get_who(void * args)209 zfs_ace_fuid_get_who(void *args)
210 {
211 uint16_t entry_type;
212 zfs_ace_t *acep = args;
213
214 entry_type = acep->z_hdr.z_flags & ACE_TYPE_FLAGS;
215
216 if (entry_type == ACE_OWNER || entry_type == OWNING_GROUP ||
217 entry_type == ACE_EVERYONE)
218 return (-1);
219 return (((zfs_ace_t *)acep)->z_fuid);
220 }
221
222 static void
zfs_ace_fuid_set_type(void * acep,uint16_t type)223 zfs_ace_fuid_set_type(void *acep, uint16_t type)
224 {
225 ((zfs_ace_hdr_t *)acep)->z_type = type;
226 }
227
228 static void
zfs_ace_fuid_set_flags(void * acep,uint16_t flags)229 zfs_ace_fuid_set_flags(void *acep, uint16_t flags)
230 {
231 ((zfs_ace_hdr_t *)acep)->z_flags = flags;
232 }
233
234 static void
zfs_ace_fuid_set_mask(void * acep,uint32_t mask)235 zfs_ace_fuid_set_mask(void *acep, uint32_t mask)
236 {
237 ((zfs_ace_hdr_t *)acep)->z_access_mask = mask;
238 }
239
240 static void
zfs_ace_fuid_set_who(void * arg,uint64_t who)241 zfs_ace_fuid_set_who(void *arg, uint64_t who)
242 {
243 zfs_ace_t *acep = arg;
244
245 uint16_t entry_type = acep->z_hdr.z_flags & ACE_TYPE_FLAGS;
246
247 if (entry_type == ACE_OWNER || entry_type == OWNING_GROUP ||
248 entry_type == ACE_EVERYONE)
249 return;
250 acep->z_fuid = who;
251 }
252
253 static size_t
zfs_ace_fuid_size(void * acep)254 zfs_ace_fuid_size(void *acep)
255 {
256 zfs_ace_hdr_t *zacep = acep;
257 uint16_t entry_type;
258
259 switch (zacep->z_type) {
260 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
261 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
262 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
263 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
264 return (sizeof (zfs_object_ace_t));
265 case ALLOW:
266 case DENY:
267 entry_type =
268 (((zfs_ace_hdr_t *)acep)->z_flags & ACE_TYPE_FLAGS);
269 if (entry_type == ACE_OWNER ||
270 entry_type == OWNING_GROUP ||
271 entry_type == ACE_EVERYONE)
272 return (sizeof (zfs_ace_hdr_t));
273 zfs_fallthrough;
274 default:
275 return (sizeof (zfs_ace_t));
276 }
277 }
278
279 static size_t
zfs_ace_fuid_abstract_size(void)280 zfs_ace_fuid_abstract_size(void)
281 {
282 return (sizeof (zfs_ace_hdr_t));
283 }
284
285 static int
zfs_ace_fuid_mask_off(void)286 zfs_ace_fuid_mask_off(void)
287 {
288 return (offsetof(zfs_ace_hdr_t, z_access_mask));
289 }
290
291 static int
zfs_ace_fuid_data(void * acep,void ** datap)292 zfs_ace_fuid_data(void *acep, void **datap)
293 {
294 zfs_ace_t *zacep = acep;
295 zfs_object_ace_t *zobjp;
296
297 switch (zacep->z_hdr.z_type) {
298 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
299 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
300 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
301 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
302 zobjp = acep;
303 *datap = (caddr_t)zobjp + sizeof (zfs_ace_t);
304 return (sizeof (zfs_object_ace_t) - sizeof (zfs_ace_t));
305 default:
306 *datap = NULL;
307 return (0);
308 }
309 }
310
311 static const acl_ops_t zfs_acl_fuid_ops = {
312 zfs_ace_fuid_get_mask,
313 zfs_ace_fuid_set_mask,
314 zfs_ace_fuid_get_flags,
315 zfs_ace_fuid_set_flags,
316 zfs_ace_fuid_get_type,
317 zfs_ace_fuid_set_type,
318 zfs_ace_fuid_get_who,
319 zfs_ace_fuid_set_who,
320 zfs_ace_fuid_size,
321 zfs_ace_fuid_abstract_size,
322 zfs_ace_fuid_mask_off,
323 zfs_ace_fuid_data
324 };
325
326 /*
327 * The following three functions are provided for compatibility with
328 * older ZPL version in order to determine if the file use to have
329 * an external ACL and what version of ACL previously existed on the
330 * file. Would really be nice to not need this, sigh.
331 */
332 uint64_t
zfs_external_acl(znode_t * zp)333 zfs_external_acl(znode_t *zp)
334 {
335 zfs_acl_phys_t acl_phys;
336 int error;
337
338 if (zp->z_is_sa)
339 return (0);
340
341 /*
342 * Need to deal with a potential
343 * race where zfs_sa_upgrade could cause
344 * z_isa_sa to change.
345 *
346 * If the lookup fails then the state of z_is_sa should have
347 * changed.
348 */
349
350 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(zp->z_zfsvfs),
351 &acl_phys, sizeof (acl_phys))) == 0)
352 return (acl_phys.z_acl_extern_obj);
353 else {
354 /*
355 * after upgrade the SA_ZPL_ZNODE_ACL should have been
356 * removed
357 */
358 VERIFY(zp->z_is_sa);
359 VERIFY3S(error, ==, ENOENT);
360 return (0);
361 }
362 }
363
364 /*
365 * Determine size of ACL in bytes
366 *
367 * This is more complicated than it should be since we have to deal
368 * with old external ACLs.
369 */
370 static int
zfs_acl_znode_info(znode_t * zp,int * aclsize,int * aclcount,zfs_acl_phys_t * aclphys)371 zfs_acl_znode_info(znode_t *zp, int *aclsize, int *aclcount,
372 zfs_acl_phys_t *aclphys)
373 {
374 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
375 uint64_t acl_count;
376 int size;
377 int error;
378
379 ASSERT(MUTEX_HELD(&zp->z_acl_lock));
380 if (zp->z_is_sa) {
381 if ((error = sa_size(zp->z_sa_hdl, SA_ZPL_DACL_ACES(zfsvfs),
382 &size)) != 0)
383 return (error);
384 *aclsize = size;
385 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_DACL_COUNT(zfsvfs),
386 &acl_count, sizeof (acl_count))) != 0)
387 return (error);
388 *aclcount = acl_count;
389 } else {
390 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(zfsvfs),
391 aclphys, sizeof (*aclphys))) != 0)
392 return (error);
393
394 if (aclphys->z_acl_version == ZFS_ACL_VERSION_INITIAL) {
395 *aclsize = ZFS_ACL_SIZE(aclphys->z_acl_size);
396 *aclcount = aclphys->z_acl_size;
397 } else {
398 *aclsize = aclphys->z_acl_size;
399 *aclcount = aclphys->z_acl_count;
400 }
401 }
402 return (0);
403 }
404
405 int
zfs_znode_acl_version(znode_t * zp)406 zfs_znode_acl_version(znode_t *zp)
407 {
408 zfs_acl_phys_t acl_phys;
409
410 if (zp->z_is_sa)
411 return (ZFS_ACL_VERSION_FUID);
412 else {
413 int error;
414
415 /*
416 * Need to deal with a potential
417 * race where zfs_sa_upgrade could cause
418 * z_isa_sa to change.
419 *
420 * If the lookup fails then the state of z_is_sa should have
421 * changed.
422 */
423 if ((error = sa_lookup(zp->z_sa_hdl,
424 SA_ZPL_ZNODE_ACL(zp->z_zfsvfs),
425 &acl_phys, sizeof (acl_phys))) == 0)
426 return (acl_phys.z_acl_version);
427 else {
428 /*
429 * After upgrade SA_ZPL_ZNODE_ACL should have
430 * been removed.
431 */
432 VERIFY(zp->z_is_sa);
433 VERIFY3S(error, ==, ENOENT);
434 return (ZFS_ACL_VERSION_FUID);
435 }
436 }
437 }
438
439 static int
zfs_acl_version(int version)440 zfs_acl_version(int version)
441 {
442 if (version < ZPL_VERSION_FUID)
443 return (ZFS_ACL_VERSION_INITIAL);
444 else
445 return (ZFS_ACL_VERSION_FUID);
446 }
447
448 static int
zfs_acl_version_zp(znode_t * zp)449 zfs_acl_version_zp(znode_t *zp)
450 {
451 return (zfs_acl_version(zp->z_zfsvfs->z_version));
452 }
453
454 zfs_acl_t *
zfs_acl_alloc(int vers)455 zfs_acl_alloc(int vers)
456 {
457 zfs_acl_t *aclp;
458
459 aclp = kmem_zalloc(sizeof (zfs_acl_t), KM_SLEEP);
460 list_create(&aclp->z_acl, sizeof (zfs_acl_node_t),
461 offsetof(zfs_acl_node_t, z_next));
462 aclp->z_version = vers;
463 if (vers == ZFS_ACL_VERSION_FUID)
464 aclp->z_ops = &zfs_acl_fuid_ops;
465 else
466 aclp->z_ops = &zfs_acl_v0_ops;
467 return (aclp);
468 }
469
470 zfs_acl_node_t *
zfs_acl_node_alloc(size_t bytes)471 zfs_acl_node_alloc(size_t bytes)
472 {
473 zfs_acl_node_t *aclnode;
474
475 aclnode = kmem_zalloc(sizeof (zfs_acl_node_t), KM_SLEEP);
476 if (bytes) {
477 aclnode->z_acldata = kmem_zalloc(bytes, KM_SLEEP);
478 aclnode->z_allocdata = aclnode->z_acldata;
479 aclnode->z_allocsize = bytes;
480 aclnode->z_size = bytes;
481 }
482
483 return (aclnode);
484 }
485
486 static void
zfs_acl_node_free(zfs_acl_node_t * aclnode)487 zfs_acl_node_free(zfs_acl_node_t *aclnode)
488 {
489 if (aclnode->z_allocsize)
490 kmem_free(aclnode->z_allocdata, aclnode->z_allocsize);
491 kmem_free(aclnode, sizeof (zfs_acl_node_t));
492 }
493
494 static void
zfs_acl_release_nodes(zfs_acl_t * aclp)495 zfs_acl_release_nodes(zfs_acl_t *aclp)
496 {
497 zfs_acl_node_t *aclnode;
498
499 while ((aclnode = list_remove_head(&aclp->z_acl)))
500 zfs_acl_node_free(aclnode);
501 aclp->z_acl_count = 0;
502 aclp->z_acl_bytes = 0;
503 }
504
505 void
zfs_acl_free(zfs_acl_t * aclp)506 zfs_acl_free(zfs_acl_t *aclp)
507 {
508 zfs_acl_release_nodes(aclp);
509 list_destroy(&aclp->z_acl);
510 kmem_free(aclp, sizeof (zfs_acl_t));
511 }
512
513 static boolean_t
zfs_acl_valid_ace_type(uint_t type,uint_t flags)514 zfs_acl_valid_ace_type(uint_t type, uint_t flags)
515 {
516 uint16_t entry_type;
517
518 switch (type) {
519 case ALLOW:
520 case DENY:
521 case ACE_SYSTEM_AUDIT_ACE_TYPE:
522 case ACE_SYSTEM_ALARM_ACE_TYPE:
523 entry_type = flags & ACE_TYPE_FLAGS;
524 return (entry_type == ACE_OWNER ||
525 entry_type == OWNING_GROUP ||
526 entry_type == ACE_EVERYONE || entry_type == 0 ||
527 entry_type == ACE_IDENTIFIER_GROUP);
528 default:
529 if (type <= MAX_ACE_TYPE)
530 return (B_TRUE);
531 }
532 return (B_FALSE);
533 }
534
535 static boolean_t
zfs_ace_valid(vtype_t obj_type,zfs_acl_t * aclp,uint16_t type,uint16_t iflags)536 zfs_ace_valid(vtype_t obj_type, zfs_acl_t *aclp, uint16_t type, uint16_t iflags)
537 {
538 /*
539 * first check type of entry
540 */
541
542 if (!zfs_acl_valid_ace_type(type, iflags))
543 return (B_FALSE);
544
545 switch (type) {
546 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
547 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
548 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
549 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
550 if (aclp->z_version < ZFS_ACL_VERSION_FUID)
551 return (B_FALSE);
552 aclp->z_hints |= ZFS_ACL_OBJ_ACE;
553 }
554
555 /*
556 * next check inheritance level flags
557 */
558
559 if (obj_type == VDIR &&
560 (iflags & (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE)))
561 aclp->z_hints |= ZFS_INHERIT_ACE;
562
563 if (iflags & (ACE_INHERIT_ONLY_ACE|ACE_NO_PROPAGATE_INHERIT_ACE)) {
564 if ((iflags & (ACE_FILE_INHERIT_ACE|
565 ACE_DIRECTORY_INHERIT_ACE)) == 0) {
566 return (B_FALSE);
567 }
568 }
569
570 return (B_TRUE);
571 }
572
573 static void *
zfs_acl_next_ace(zfs_acl_t * aclp,void * start,uint64_t * who,uint32_t * access_mask,uint16_t * iflags,uint16_t * type)574 zfs_acl_next_ace(zfs_acl_t *aclp, void *start, uint64_t *who,
575 uint32_t *access_mask, uint16_t *iflags, uint16_t *type)
576 {
577 zfs_acl_node_t *aclnode;
578
579 ASSERT3P(aclp, !=, NULL);
580
581 if (start == NULL) {
582 aclnode = list_head(&aclp->z_acl);
583 if (aclnode == NULL)
584 return (NULL);
585
586 aclp->z_next_ace = aclnode->z_acldata;
587 aclp->z_curr_node = aclnode;
588 aclnode->z_ace_idx = 0;
589 }
590
591 aclnode = aclp->z_curr_node;
592
593 if (aclnode == NULL)
594 return (NULL);
595
596 if (aclnode->z_ace_idx >= aclnode->z_ace_count) {
597 aclnode = list_next(&aclp->z_acl, aclnode);
598 if (aclnode == NULL)
599 return (NULL);
600 else {
601 aclp->z_curr_node = aclnode;
602 aclnode->z_ace_idx = 0;
603 aclp->z_next_ace = aclnode->z_acldata;
604 }
605 }
606
607 if (aclnode->z_ace_idx < aclnode->z_ace_count) {
608 void *acep = aclp->z_next_ace;
609 size_t ace_size;
610
611 /*
612 * Make sure we don't overstep our bounds
613 */
614 ace_size = aclp->z_ops->ace_size(acep);
615
616 if (((caddr_t)acep + ace_size) >
617 ((caddr_t)aclnode->z_acldata + aclnode->z_size)) {
618 return (NULL);
619 }
620
621 *iflags = aclp->z_ops->ace_flags_get(acep);
622 *type = aclp->z_ops->ace_type_get(acep);
623 *access_mask = aclp->z_ops->ace_mask_get(acep);
624 *who = aclp->z_ops->ace_who_get(acep);
625 aclp->z_next_ace = (caddr_t)aclp->z_next_ace + ace_size;
626 aclnode->z_ace_idx++;
627
628 return ((void *)acep);
629 }
630 return (NULL);
631 }
632
633 static uintptr_t
zfs_ace_walk(void * datap,uintptr_t cookie,int aclcnt,uint16_t * flags,uint16_t * type,uint32_t * mask)634 zfs_ace_walk(void *datap, uintptr_t cookie, int aclcnt,
635 uint16_t *flags, uint16_t *type, uint32_t *mask)
636 {
637 (void) aclcnt;
638 zfs_acl_t *aclp = datap;
639 zfs_ace_hdr_t *acep = (zfs_ace_hdr_t *)(uintptr_t)cookie;
640 uint64_t who;
641
642 acep = zfs_acl_next_ace(aclp, acep, &who, mask,
643 flags, type);
644 return ((uintptr_t)acep);
645 }
646
647 /*
648 * Copy ACE to internal ZFS format.
649 * While processing the ACL each ACE will be validated for correctness.
650 * ACE FUIDs will be created later.
651 */
652 static int
zfs_copy_ace_2_fuid(zfsvfs_t * zfsvfs,vtype_t obj_type,zfs_acl_t * aclp,void * datap,zfs_ace_t * z_acl,uint64_t aclcnt,size_t * size,zfs_fuid_info_t ** fuidp,cred_t * cr)653 zfs_copy_ace_2_fuid(zfsvfs_t *zfsvfs, vtype_t obj_type, zfs_acl_t *aclp,
654 void *datap, zfs_ace_t *z_acl, uint64_t aclcnt, size_t *size,
655 zfs_fuid_info_t **fuidp, cred_t *cr)
656 {
657 int i;
658 uint16_t entry_type;
659 zfs_ace_t *aceptr = z_acl;
660 ace_t *acep = datap;
661 zfs_object_ace_t *zobjacep;
662 ace_object_t *aceobjp;
663
664 for (i = 0; i != aclcnt; i++) {
665 aceptr->z_hdr.z_access_mask = acep->a_access_mask;
666 aceptr->z_hdr.z_flags = acep->a_flags;
667 aceptr->z_hdr.z_type = acep->a_type;
668 entry_type = aceptr->z_hdr.z_flags & ACE_TYPE_FLAGS;
669 if (entry_type != ACE_OWNER && entry_type != OWNING_GROUP &&
670 entry_type != ACE_EVERYONE) {
671 aceptr->z_fuid = zfs_fuid_create(zfsvfs, acep->a_who,
672 cr, (entry_type == 0) ?
673 ZFS_ACE_USER : ZFS_ACE_GROUP, fuidp);
674 }
675
676 /*
677 * Make sure ACE is valid
678 */
679 if (zfs_ace_valid(obj_type, aclp, aceptr->z_hdr.z_type,
680 aceptr->z_hdr.z_flags) != B_TRUE)
681 return (SET_ERROR(EINVAL));
682
683 switch (acep->a_type) {
684 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
685 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
686 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
687 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
688 zobjacep = (zfs_object_ace_t *)aceptr;
689 aceobjp = (ace_object_t *)acep;
690
691 memcpy(zobjacep->z_object_type, aceobjp->a_obj_type,
692 sizeof (aceobjp->a_obj_type));
693 memcpy(zobjacep->z_inherit_type,
694 aceobjp->a_inherit_obj_type,
695 sizeof (aceobjp->a_inherit_obj_type));
696 acep = (ace_t *)((caddr_t)acep + sizeof (ace_object_t));
697 break;
698 default:
699 acep = (ace_t *)((caddr_t)acep + sizeof (ace_t));
700 }
701
702 aceptr = (zfs_ace_t *)((caddr_t)aceptr +
703 aclp->z_ops->ace_size(aceptr));
704 }
705
706 *size = (caddr_t)aceptr - (caddr_t)z_acl;
707
708 return (0);
709 }
710
711 /*
712 * Copy ZFS ACEs to fixed size ace_t layout
713 */
714 static void
zfs_copy_fuid_2_ace(zfsvfs_t * zfsvfs,zfs_acl_t * aclp,cred_t * cr,void * datap,int filter)715 zfs_copy_fuid_2_ace(zfsvfs_t *zfsvfs, zfs_acl_t *aclp, cred_t *cr,
716 void *datap, int filter)
717 {
718 uint64_t who;
719 uint32_t access_mask;
720 uint16_t iflags, type;
721 zfs_ace_hdr_t *zacep = NULL;
722 ace_t *acep = datap;
723 ace_object_t *objacep;
724 zfs_object_ace_t *zobjacep;
725 size_t ace_size;
726 uint16_t entry_type;
727
728 while ((zacep = zfs_acl_next_ace(aclp, zacep,
729 &who, &access_mask, &iflags, &type))) {
730
731 switch (type) {
732 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
733 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
734 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
735 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
736 if (filter) {
737 continue;
738 }
739 zobjacep = (zfs_object_ace_t *)zacep;
740 objacep = (ace_object_t *)acep;
741 memcpy(objacep->a_obj_type,
742 zobjacep->z_object_type,
743 sizeof (zobjacep->z_object_type));
744 memcpy(objacep->a_inherit_obj_type,
745 zobjacep->z_inherit_type,
746 sizeof (zobjacep->z_inherit_type));
747 ace_size = sizeof (ace_object_t);
748 break;
749 default:
750 ace_size = sizeof (ace_t);
751 break;
752 }
753
754 entry_type = (iflags & ACE_TYPE_FLAGS);
755 if ((entry_type != ACE_OWNER &&
756 entry_type != OWNING_GROUP &&
757 entry_type != ACE_EVERYONE)) {
758 acep->a_who = zfs_fuid_map_id(zfsvfs, who,
759 cr, (entry_type & ACE_IDENTIFIER_GROUP) ?
760 ZFS_ACE_GROUP : ZFS_ACE_USER);
761 } else {
762 acep->a_who = (uid_t)(int64_t)who;
763 }
764 acep->a_access_mask = access_mask;
765 acep->a_flags = iflags;
766 acep->a_type = type;
767 acep = (ace_t *)((caddr_t)acep + ace_size);
768 }
769 }
770
771 static int
zfs_copy_ace_2_oldace(vtype_t obj_type,zfs_acl_t * aclp,ace_t * acep,zfs_oldace_t * z_acl,int aclcnt,size_t * size)772 zfs_copy_ace_2_oldace(vtype_t obj_type, zfs_acl_t *aclp, ace_t *acep,
773 zfs_oldace_t *z_acl, int aclcnt, size_t *size)
774 {
775 int i;
776 zfs_oldace_t *aceptr = z_acl;
777
778 for (i = 0; i != aclcnt; i++, aceptr++) {
779 aceptr->z_access_mask = acep[i].a_access_mask;
780 aceptr->z_type = acep[i].a_type;
781 aceptr->z_flags = acep[i].a_flags;
782 aceptr->z_fuid = acep[i].a_who;
783 /*
784 * Make sure ACE is valid
785 */
786 if (zfs_ace_valid(obj_type, aclp, aceptr->z_type,
787 aceptr->z_flags) != B_TRUE)
788 return (SET_ERROR(EINVAL));
789 }
790 *size = (caddr_t)aceptr - (caddr_t)z_acl;
791 return (0);
792 }
793
794 /*
795 * convert old ACL format to new
796 */
797 void
zfs_acl_xform(znode_t * zp,zfs_acl_t * aclp,cred_t * cr)798 zfs_acl_xform(znode_t *zp, zfs_acl_t *aclp, cred_t *cr)
799 {
800 zfs_oldace_t *oldaclp;
801 int i;
802 uint16_t type, iflags;
803 uint32_t access_mask;
804 uint64_t who;
805 void *cookie = NULL;
806 zfs_acl_node_t *newaclnode;
807
808 ASSERT3U(aclp->z_version, ==, ZFS_ACL_VERSION_INITIAL);
809 /*
810 * First create the ACE in a contiguous piece of memory
811 * for zfs_copy_ace_2_fuid().
812 *
813 * We only convert an ACL once, so this won't happen
814 * everytime.
815 */
816 oldaclp = kmem_alloc(sizeof (zfs_oldace_t) * aclp->z_acl_count,
817 KM_SLEEP);
818 i = 0;
819 while ((cookie = zfs_acl_next_ace(aclp, cookie, &who,
820 &access_mask, &iflags, &type))) {
821 oldaclp[i].z_flags = iflags;
822 oldaclp[i].z_type = type;
823 oldaclp[i].z_fuid = who;
824 oldaclp[i++].z_access_mask = access_mask;
825 }
826
827 newaclnode = zfs_acl_node_alloc(aclp->z_acl_count *
828 sizeof (zfs_object_ace_t));
829 aclp->z_ops = &zfs_acl_fuid_ops;
830 VERIFY0(zfs_copy_ace_2_fuid(zp->z_zfsvfs, ZTOV(zp)->v_type, aclp,
831 oldaclp, newaclnode->z_acldata, aclp->z_acl_count,
832 &newaclnode->z_size, NULL, cr));
833 newaclnode->z_ace_count = aclp->z_acl_count;
834 aclp->z_version = ZFS_ACL_VERSION;
835 kmem_free(oldaclp, aclp->z_acl_count * sizeof (zfs_oldace_t));
836
837 /*
838 * Release all previous ACL nodes
839 */
840
841 zfs_acl_release_nodes(aclp);
842
843 list_insert_head(&aclp->z_acl, newaclnode);
844
845 aclp->z_acl_bytes = newaclnode->z_size;
846 aclp->z_acl_count = newaclnode->z_ace_count;
847
848 }
849
850 /*
851 * Convert unix access mask to v4 access mask
852 */
853 static uint32_t
zfs_unix_to_v4(uint32_t access_mask)854 zfs_unix_to_v4(uint32_t access_mask)
855 {
856 uint32_t new_mask = 0;
857
858 if (access_mask & S_IXOTH)
859 new_mask |= ACE_EXECUTE;
860 if (access_mask & S_IWOTH)
861 new_mask |= ACE_WRITE_DATA;
862 if (access_mask & S_IROTH)
863 new_mask |= ACE_READ_DATA;
864 return (new_mask);
865 }
866
867 static void
zfs_set_ace(zfs_acl_t * aclp,void * acep,uint32_t access_mask,uint16_t access_type,uint64_t fuid,uint16_t entry_type)868 zfs_set_ace(zfs_acl_t *aclp, void *acep, uint32_t access_mask,
869 uint16_t access_type, uint64_t fuid, uint16_t entry_type)
870 {
871 uint16_t type = entry_type & ACE_TYPE_FLAGS;
872
873 aclp->z_ops->ace_mask_set(acep, access_mask);
874 aclp->z_ops->ace_type_set(acep, access_type);
875 aclp->z_ops->ace_flags_set(acep, entry_type);
876 if ((type != ACE_OWNER && type != OWNING_GROUP &&
877 type != ACE_EVERYONE))
878 aclp->z_ops->ace_who_set(acep, fuid);
879 }
880
881 /*
882 * Determine mode of file based on ACL.
883 */
884 uint64_t
zfs_mode_compute(uint64_t fmode,zfs_acl_t * aclp,uint64_t * pflags,uint64_t fuid,uint64_t fgid)885 zfs_mode_compute(uint64_t fmode, zfs_acl_t *aclp,
886 uint64_t *pflags, uint64_t fuid, uint64_t fgid)
887 {
888 int entry_type;
889 mode_t mode;
890 mode_t seen = 0;
891 zfs_ace_hdr_t *acep = NULL;
892 uint64_t who;
893 uint16_t iflags, type;
894 uint32_t access_mask;
895 boolean_t an_exec_denied = B_FALSE;
896
897 mode = (fmode & (S_IFMT | S_ISUID | S_ISGID | S_ISVTX));
898
899 while ((acep = zfs_acl_next_ace(aclp, acep, &who,
900 &access_mask, &iflags, &type))) {
901
902 if (!zfs_acl_valid_ace_type(type, iflags))
903 continue;
904
905 entry_type = (iflags & ACE_TYPE_FLAGS);
906
907 /*
908 * Skip over any inherit_only ACEs
909 */
910 if (iflags & ACE_INHERIT_ONLY_ACE)
911 continue;
912
913 if (entry_type == ACE_OWNER || (entry_type == 0 &&
914 who == fuid)) {
915 if ((access_mask & ACE_READ_DATA) &&
916 (!(seen & S_IRUSR))) {
917 seen |= S_IRUSR;
918 if (type == ALLOW) {
919 mode |= S_IRUSR;
920 }
921 }
922 if ((access_mask & ACE_WRITE_DATA) &&
923 (!(seen & S_IWUSR))) {
924 seen |= S_IWUSR;
925 if (type == ALLOW) {
926 mode |= S_IWUSR;
927 }
928 }
929 if ((access_mask & ACE_EXECUTE) &&
930 (!(seen & S_IXUSR))) {
931 seen |= S_IXUSR;
932 if (type == ALLOW) {
933 mode |= S_IXUSR;
934 }
935 }
936 } else if (entry_type == OWNING_GROUP ||
937 (entry_type == ACE_IDENTIFIER_GROUP && who == fgid)) {
938 if ((access_mask & ACE_READ_DATA) &&
939 (!(seen & S_IRGRP))) {
940 seen |= S_IRGRP;
941 if (type == ALLOW) {
942 mode |= S_IRGRP;
943 }
944 }
945 if ((access_mask & ACE_WRITE_DATA) &&
946 (!(seen & S_IWGRP))) {
947 seen |= S_IWGRP;
948 if (type == ALLOW) {
949 mode |= S_IWGRP;
950 }
951 }
952 if ((access_mask & ACE_EXECUTE) &&
953 (!(seen & S_IXGRP))) {
954 seen |= S_IXGRP;
955 if (type == ALLOW) {
956 mode |= S_IXGRP;
957 }
958 }
959 } else if (entry_type == ACE_EVERYONE) {
960 if ((access_mask & ACE_READ_DATA)) {
961 if (!(seen & S_IRUSR)) {
962 seen |= S_IRUSR;
963 if (type == ALLOW) {
964 mode |= S_IRUSR;
965 }
966 }
967 if (!(seen & S_IRGRP)) {
968 seen |= S_IRGRP;
969 if (type == ALLOW) {
970 mode |= S_IRGRP;
971 }
972 }
973 if (!(seen & S_IROTH)) {
974 seen |= S_IROTH;
975 if (type == ALLOW) {
976 mode |= S_IROTH;
977 }
978 }
979 }
980 if ((access_mask & ACE_WRITE_DATA)) {
981 if (!(seen & S_IWUSR)) {
982 seen |= S_IWUSR;
983 if (type == ALLOW) {
984 mode |= S_IWUSR;
985 }
986 }
987 if (!(seen & S_IWGRP)) {
988 seen |= S_IWGRP;
989 if (type == ALLOW) {
990 mode |= S_IWGRP;
991 }
992 }
993 if (!(seen & S_IWOTH)) {
994 seen |= S_IWOTH;
995 if (type == ALLOW) {
996 mode |= S_IWOTH;
997 }
998 }
999 }
1000 if ((access_mask & ACE_EXECUTE)) {
1001 if (!(seen & S_IXUSR)) {
1002 seen |= S_IXUSR;
1003 if (type == ALLOW) {
1004 mode |= S_IXUSR;
1005 }
1006 }
1007 if (!(seen & S_IXGRP)) {
1008 seen |= S_IXGRP;
1009 if (type == ALLOW) {
1010 mode |= S_IXGRP;
1011 }
1012 }
1013 if (!(seen & S_IXOTH)) {
1014 seen |= S_IXOTH;
1015 if (type == ALLOW) {
1016 mode |= S_IXOTH;
1017 }
1018 }
1019 }
1020 } else {
1021 /*
1022 * Only care if this IDENTIFIER_GROUP or
1023 * USER ACE denies execute access to someone,
1024 * mode is not affected
1025 */
1026 if ((access_mask & ACE_EXECUTE) && type == DENY)
1027 an_exec_denied = B_TRUE;
1028 }
1029 }
1030
1031 /*
1032 * Failure to allow is effectively a deny, so execute permission
1033 * is denied if it was never mentioned or if we explicitly
1034 * weren't allowed it.
1035 */
1036 if (!an_exec_denied &&
1037 ((seen & ALL_MODE_EXECS) != ALL_MODE_EXECS ||
1038 (mode & ALL_MODE_EXECS) != ALL_MODE_EXECS))
1039 an_exec_denied = B_TRUE;
1040
1041 if (an_exec_denied)
1042 *pflags &= ~ZFS_NO_EXECS_DENIED;
1043 else
1044 *pflags |= ZFS_NO_EXECS_DENIED;
1045
1046 return (mode);
1047 }
1048
1049 /*
1050 * Read an external acl object. If the intent is to modify, always
1051 * create a new acl and leave any cached acl in place.
1052 */
1053 int
zfs_acl_node_read(znode_t * zp,boolean_t have_lock,zfs_acl_t ** aclpp,boolean_t will_modify)1054 zfs_acl_node_read(znode_t *zp, boolean_t have_lock, zfs_acl_t **aclpp,
1055 boolean_t will_modify)
1056 {
1057 zfs_acl_t *aclp;
1058 int aclsize;
1059 int acl_count;
1060 zfs_acl_node_t *aclnode;
1061 zfs_acl_phys_t znode_acl;
1062 int version;
1063 int error;
1064
1065 ASSERT(MUTEX_HELD(&zp->z_acl_lock));
1066 if (zp->z_zfsvfs->z_replay == B_FALSE)
1067 ASSERT_VOP_LOCKED(ZTOV(zp), __func__);
1068
1069 if (zp->z_acl_cached && !will_modify) {
1070 *aclpp = zp->z_acl_cached;
1071 return (0);
1072 }
1073
1074 version = zfs_znode_acl_version(zp);
1075
1076 if ((error = zfs_acl_znode_info(zp, &aclsize,
1077 &acl_count, &znode_acl)) != 0) {
1078 goto done;
1079 }
1080
1081 aclp = zfs_acl_alloc(version);
1082
1083 aclp->z_acl_count = acl_count;
1084 aclp->z_acl_bytes = aclsize;
1085
1086 aclnode = zfs_acl_node_alloc(aclsize);
1087 aclnode->z_ace_count = aclp->z_acl_count;
1088 aclnode->z_size = aclsize;
1089
1090 if (!zp->z_is_sa) {
1091 if (znode_acl.z_acl_extern_obj) {
1092 error = dmu_read(zp->z_zfsvfs->z_os,
1093 znode_acl.z_acl_extern_obj, 0, aclnode->z_size,
1094 aclnode->z_acldata, DMU_READ_PREFETCH);
1095 } else {
1096 memcpy(aclnode->z_acldata, znode_acl.z_ace_data,
1097 aclnode->z_size);
1098 }
1099 } else {
1100 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_DACL_ACES(zp->z_zfsvfs),
1101 aclnode->z_acldata, aclnode->z_size);
1102 }
1103
1104 if (error != 0) {
1105 zfs_acl_free(aclp);
1106 zfs_acl_node_free(aclnode);
1107 /* convert checksum errors into IO errors */
1108 if (error == ECKSUM)
1109 error = SET_ERROR(EIO);
1110 goto done;
1111 }
1112
1113 list_insert_head(&aclp->z_acl, aclnode);
1114
1115 *aclpp = aclp;
1116 if (!will_modify)
1117 zp->z_acl_cached = aclp;
1118 done:
1119 return (error);
1120 }
1121
1122 void
zfs_acl_data_locator(void ** dataptr,uint32_t * length,uint32_t buflen,boolean_t start,void * userdata)1123 zfs_acl_data_locator(void **dataptr, uint32_t *length, uint32_t buflen,
1124 boolean_t start, void *userdata)
1125 {
1126 (void) buflen;
1127 zfs_acl_locator_cb_t *cb = (zfs_acl_locator_cb_t *)userdata;
1128
1129 if (start) {
1130 cb->cb_acl_node = list_head(&cb->cb_aclp->z_acl);
1131 } else {
1132 cb->cb_acl_node = list_next(&cb->cb_aclp->z_acl,
1133 cb->cb_acl_node);
1134 }
1135 ASSERT3P(cb->cb_acl_node, !=, NULL);
1136 *dataptr = cb->cb_acl_node->z_acldata;
1137 *length = cb->cb_acl_node->z_size;
1138 }
1139
1140 int
zfs_acl_chown_setattr(znode_t * zp)1141 zfs_acl_chown_setattr(znode_t *zp)
1142 {
1143 int error;
1144 zfs_acl_t *aclp;
1145
1146 if (zp->z_zfsvfs->z_replay == B_FALSE) {
1147 ASSERT_VOP_ELOCKED(ZTOV(zp), __func__);
1148 ASSERT_VOP_IN_SEQC(ZTOV(zp));
1149 }
1150 ASSERT(MUTEX_HELD(&zp->z_acl_lock));
1151
1152 if ((error = zfs_acl_node_read(zp, B_TRUE, &aclp, B_FALSE)) == 0)
1153 zp->z_mode = zfs_mode_compute(zp->z_mode, aclp,
1154 &zp->z_pflags, zp->z_uid, zp->z_gid);
1155 return (error);
1156 }
1157
1158 /*
1159 * common code for setting ACLs.
1160 *
1161 * This function is called from zfs_mode_update, zfs_perm_init, and zfs_setacl.
1162 * zfs_setacl passes a non-NULL inherit pointer (ihp) to indicate that it's
1163 * already checked the acl and knows whether to inherit.
1164 */
1165 int
zfs_aclset_common(znode_t * zp,zfs_acl_t * aclp,cred_t * cr,dmu_tx_t * tx)1166 zfs_aclset_common(znode_t *zp, zfs_acl_t *aclp, cred_t *cr, dmu_tx_t *tx)
1167 {
1168 int error;
1169 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1170 dmu_object_type_t otype;
1171 zfs_acl_locator_cb_t locate = { 0 };
1172 uint64_t mode;
1173 sa_bulk_attr_t bulk[5];
1174 uint64_t ctime[2];
1175 int count = 0;
1176 zfs_acl_phys_t acl_phys;
1177
1178 if (zp->z_zfsvfs->z_replay == B_FALSE) {
1179 ASSERT_VOP_IN_SEQC(ZTOV(zp));
1180 }
1181
1182 mode = zp->z_mode;
1183
1184 mode = zfs_mode_compute(mode, aclp, &zp->z_pflags,
1185 zp->z_uid, zp->z_gid);
1186
1187 zp->z_mode = mode;
1188 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
1189 &mode, sizeof (mode));
1190 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
1191 &zp->z_pflags, sizeof (zp->z_pflags));
1192 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
1193 &ctime, sizeof (ctime));
1194
1195 if (zp->z_acl_cached) {
1196 zfs_acl_free(zp->z_acl_cached);
1197 zp->z_acl_cached = NULL;
1198 }
1199
1200 /*
1201 * Upgrade needed?
1202 */
1203 if (!zfsvfs->z_use_fuids) {
1204 otype = DMU_OT_OLDACL;
1205 } else {
1206 if ((aclp->z_version == ZFS_ACL_VERSION_INITIAL) &&
1207 (zfsvfs->z_version >= ZPL_VERSION_FUID))
1208 zfs_acl_xform(zp, aclp, cr);
1209 ASSERT3U(aclp->z_version, >=, ZFS_ACL_VERSION_FUID);
1210 otype = DMU_OT_ACL;
1211 }
1212
1213 /*
1214 * Arrgh, we have to handle old on disk format
1215 * as well as newer (preferred) SA format.
1216 */
1217
1218 if (zp->z_is_sa) { /* the easy case, just update the ACL attribute */
1219 locate.cb_aclp = aclp;
1220 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_DACL_ACES(zfsvfs),
1221 zfs_acl_data_locator, &locate, aclp->z_acl_bytes);
1222 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_DACL_COUNT(zfsvfs),
1223 NULL, &aclp->z_acl_count, sizeof (uint64_t));
1224 } else { /* Painful legacy way */
1225 zfs_acl_node_t *aclnode;
1226 uint64_t off = 0;
1227 uint64_t aoid;
1228
1229 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(zfsvfs),
1230 &acl_phys, sizeof (acl_phys))) != 0)
1231 return (error);
1232
1233 aoid = acl_phys.z_acl_extern_obj;
1234
1235 if (aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1236 /*
1237 * If ACL was previously external and we are now
1238 * converting to new ACL format then release old
1239 * ACL object and create a new one.
1240 */
1241 if (aoid &&
1242 aclp->z_version != acl_phys.z_acl_version) {
1243 error = dmu_object_free(zfsvfs->z_os, aoid, tx);
1244 if (error)
1245 return (error);
1246 aoid = 0;
1247 }
1248 if (aoid == 0) {
1249 aoid = dmu_object_alloc(zfsvfs->z_os,
1250 otype, aclp->z_acl_bytes,
1251 otype == DMU_OT_ACL ?
1252 DMU_OT_SYSACL : DMU_OT_NONE,
1253 otype == DMU_OT_ACL ?
1254 DN_OLD_MAX_BONUSLEN : 0, tx);
1255 } else {
1256 (void) dmu_object_set_blocksize(zfsvfs->z_os,
1257 aoid, aclp->z_acl_bytes, 0, tx);
1258 }
1259 acl_phys.z_acl_extern_obj = aoid;
1260 for (aclnode = list_head(&aclp->z_acl); aclnode;
1261 aclnode = list_next(&aclp->z_acl, aclnode)) {
1262 if (aclnode->z_ace_count == 0)
1263 continue;
1264 dmu_write(zfsvfs->z_os, aoid, off,
1265 aclnode->z_size, aclnode->z_acldata, tx);
1266 off += aclnode->z_size;
1267 }
1268 } else {
1269 void *start = acl_phys.z_ace_data;
1270 /*
1271 * Migrating back embedded?
1272 */
1273 if (acl_phys.z_acl_extern_obj) {
1274 error = dmu_object_free(zfsvfs->z_os,
1275 acl_phys.z_acl_extern_obj, tx);
1276 if (error)
1277 return (error);
1278 acl_phys.z_acl_extern_obj = 0;
1279 }
1280
1281 for (aclnode = list_head(&aclp->z_acl); aclnode;
1282 aclnode = list_next(&aclp->z_acl, aclnode)) {
1283 if (aclnode->z_ace_count == 0)
1284 continue;
1285 memcpy(start, aclnode->z_acldata,
1286 aclnode->z_size);
1287 start = (caddr_t)start + aclnode->z_size;
1288 }
1289 }
1290 /*
1291 * If Old version then swap count/bytes to match old
1292 * layout of znode_acl_phys_t.
1293 */
1294 if (aclp->z_version == ZFS_ACL_VERSION_INITIAL) {
1295 acl_phys.z_acl_size = aclp->z_acl_count;
1296 acl_phys.z_acl_count = aclp->z_acl_bytes;
1297 } else {
1298 acl_phys.z_acl_size = aclp->z_acl_bytes;
1299 acl_phys.z_acl_count = aclp->z_acl_count;
1300 }
1301 acl_phys.z_acl_version = aclp->z_version;
1302
1303 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ZNODE_ACL(zfsvfs), NULL,
1304 &acl_phys, sizeof (acl_phys));
1305 }
1306
1307 /*
1308 * Replace ACL wide bits, but first clear them.
1309 */
1310 zp->z_pflags &= ~ZFS_ACL_WIDE_FLAGS;
1311
1312 zp->z_pflags |= aclp->z_hints;
1313
1314 if (ace_trivial_common(aclp, 0, zfs_ace_walk) == 0)
1315 zp->z_pflags |= ZFS_ACL_TRIVIAL;
1316
1317 zfs_tstamp_update_setup(zp, STATE_CHANGED, NULL, ctime);
1318 return (sa_bulk_update(zp->z_sa_hdl, bulk, count, tx));
1319 }
1320
1321 static void
zfs_acl_chmod(vtype_t vtype,uint64_t mode,boolean_t split,boolean_t trim,zfs_acl_t * aclp)1322 zfs_acl_chmod(vtype_t vtype, uint64_t mode, boolean_t split, boolean_t trim,
1323 zfs_acl_t *aclp)
1324 {
1325 void *acep = NULL;
1326 uint64_t who;
1327 int new_count, new_bytes;
1328 int ace_size;
1329 int entry_type;
1330 uint16_t iflags, type;
1331 uint32_t access_mask;
1332 zfs_acl_node_t *newnode;
1333 size_t abstract_size = aclp->z_ops->ace_abstract_size();
1334 void *zacep;
1335 boolean_t isdir;
1336 trivial_acl_t masks;
1337
1338 new_count = new_bytes = 0;
1339
1340 isdir = (vtype == VDIR);
1341
1342 acl_trivial_access_masks((mode_t)mode, isdir, &masks);
1343
1344 newnode = zfs_acl_node_alloc((abstract_size * 6) + aclp->z_acl_bytes);
1345
1346 zacep = newnode->z_acldata;
1347 if (masks.allow0) {
1348 zfs_set_ace(aclp, zacep, masks.allow0, ALLOW, -1, ACE_OWNER);
1349 zacep = (void *)((uintptr_t)zacep + abstract_size);
1350 new_count++;
1351 new_bytes += abstract_size;
1352 }
1353 if (masks.deny1) {
1354 zfs_set_ace(aclp, zacep, masks.deny1, DENY, -1, ACE_OWNER);
1355 zacep = (void *)((uintptr_t)zacep + abstract_size);
1356 new_count++;
1357 new_bytes += abstract_size;
1358 }
1359 if (masks.deny2) {
1360 zfs_set_ace(aclp, zacep, masks.deny2, DENY, -1, OWNING_GROUP);
1361 zacep = (void *)((uintptr_t)zacep + abstract_size);
1362 new_count++;
1363 new_bytes += abstract_size;
1364 }
1365
1366 while ((acep = zfs_acl_next_ace(aclp, acep, &who, &access_mask,
1367 &iflags, &type))) {
1368 entry_type = (iflags & ACE_TYPE_FLAGS);
1369 /*
1370 * ACEs used to represent the file mode may be divided
1371 * into an equivalent pair of inherit-only and regular
1372 * ACEs, if they are inheritable.
1373 * Skip regular ACEs, which are replaced by the new mode.
1374 */
1375 if (split && (entry_type == ACE_OWNER ||
1376 entry_type == OWNING_GROUP ||
1377 entry_type == ACE_EVERYONE)) {
1378 if (!isdir || !(iflags &
1379 (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE)))
1380 continue;
1381 /*
1382 * We preserve owner@, group@, or @everyone
1383 * permissions, if they are inheritable, by
1384 * copying them to inherit_only ACEs. This
1385 * prevents inheritable permissions from being
1386 * altered along with the file mode.
1387 */
1388 iflags |= ACE_INHERIT_ONLY_ACE;
1389 }
1390
1391 /*
1392 * If this ACL has any inheritable ACEs, mark that in
1393 * the hints (which are later masked into the pflags)
1394 * so create knows to do inheritance.
1395 */
1396 if (isdir && (iflags &
1397 (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE)))
1398 aclp->z_hints |= ZFS_INHERIT_ACE;
1399
1400 if ((type != ALLOW && type != DENY) ||
1401 (iflags & ACE_INHERIT_ONLY_ACE)) {
1402 switch (type) {
1403 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
1404 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
1405 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
1406 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
1407 aclp->z_hints |= ZFS_ACL_OBJ_ACE;
1408 break;
1409 }
1410 } else {
1411 /*
1412 * Limit permissions granted by ACEs to be no greater
1413 * than permissions of the requested group mode.
1414 * Applies when the "aclmode" property is set to
1415 * "groupmask".
1416 */
1417 if ((type == ALLOW) && trim)
1418 access_mask &= masks.group;
1419 }
1420 zfs_set_ace(aclp, zacep, access_mask, type, who, iflags);
1421 ace_size = aclp->z_ops->ace_size(acep);
1422 zacep = (void *)((uintptr_t)zacep + ace_size);
1423 new_count++;
1424 new_bytes += ace_size;
1425 }
1426 zfs_set_ace(aclp, zacep, masks.owner, ALLOW, -1, ACE_OWNER);
1427 zacep = (void *)((uintptr_t)zacep + abstract_size);
1428 zfs_set_ace(aclp, zacep, masks.group, ALLOW, -1, OWNING_GROUP);
1429 zacep = (void *)((uintptr_t)zacep + abstract_size);
1430 zfs_set_ace(aclp, zacep, masks.everyone, ALLOW, -1, ACE_EVERYONE);
1431
1432 new_count += 3;
1433 new_bytes += abstract_size * 3;
1434 zfs_acl_release_nodes(aclp);
1435 aclp->z_acl_count = new_count;
1436 aclp->z_acl_bytes = new_bytes;
1437 newnode->z_ace_count = new_count;
1438 newnode->z_size = new_bytes;
1439 list_insert_tail(&aclp->z_acl, newnode);
1440 }
1441
1442 int
zfs_acl_chmod_setattr(znode_t * zp,zfs_acl_t ** aclp,uint64_t mode)1443 zfs_acl_chmod_setattr(znode_t *zp, zfs_acl_t **aclp, uint64_t mode)
1444 {
1445 int error = 0;
1446
1447 mutex_enter(&zp->z_acl_lock);
1448 if (zp->z_zfsvfs->z_replay == B_FALSE)
1449 ASSERT_VOP_ELOCKED(ZTOV(zp), __func__);
1450 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_DISCARD)
1451 *aclp = zfs_acl_alloc(zfs_acl_version_zp(zp));
1452 else
1453 error = zfs_acl_node_read(zp, B_TRUE, aclp, B_TRUE);
1454
1455 if (error == 0) {
1456 (*aclp)->z_hints = zp->z_pflags & V4_ACL_WIDE_FLAGS;
1457 zfs_acl_chmod(ZTOV(zp)->v_type, mode, B_TRUE,
1458 (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_GROUPMASK), *aclp);
1459 }
1460 mutex_exit(&zp->z_acl_lock);
1461
1462 return (error);
1463 }
1464
1465 /*
1466 * Should ACE be inherited?
1467 */
1468 static int
zfs_ace_can_use(vtype_t vtype,uint16_t acep_flags)1469 zfs_ace_can_use(vtype_t vtype, uint16_t acep_flags)
1470 {
1471 int iflags = (acep_flags & 0xf);
1472
1473 if ((vtype == VDIR) && (iflags & ACE_DIRECTORY_INHERIT_ACE))
1474 return (1);
1475 else if (iflags & ACE_FILE_INHERIT_ACE)
1476 return (!((vtype == VDIR) &&
1477 (iflags & ACE_NO_PROPAGATE_INHERIT_ACE)));
1478 return (0);
1479 }
1480
1481 /*
1482 * inherit inheritable ACEs from parent
1483 */
1484 static zfs_acl_t *
zfs_acl_inherit(zfsvfs_t * zfsvfs,vtype_t vtype,zfs_acl_t * paclp,uint64_t mode,boolean_t * need_chmod)1485 zfs_acl_inherit(zfsvfs_t *zfsvfs, vtype_t vtype, zfs_acl_t *paclp,
1486 uint64_t mode, boolean_t *need_chmod)
1487 {
1488 void *pacep = NULL;
1489 void *acep;
1490 zfs_acl_node_t *aclnode;
1491 zfs_acl_t *aclp = NULL;
1492 uint64_t who;
1493 uint32_t access_mask;
1494 uint16_t iflags, newflags, type;
1495 size_t ace_size;
1496 void *data1, *data2;
1497 size_t data1sz, data2sz;
1498 uint_t aclinherit;
1499 boolean_t isdir = (vtype == VDIR);
1500 boolean_t isreg = (vtype == VREG);
1501
1502 *need_chmod = B_TRUE;
1503
1504 aclp = zfs_acl_alloc(paclp->z_version);
1505 aclinherit = zfsvfs->z_acl_inherit;
1506 if (aclinherit == ZFS_ACL_DISCARD || vtype == VLNK)
1507 return (aclp);
1508
1509 while ((pacep = zfs_acl_next_ace(paclp, pacep, &who,
1510 &access_mask, &iflags, &type))) {
1511
1512 /*
1513 * don't inherit bogus ACEs
1514 */
1515 if (!zfs_acl_valid_ace_type(type, iflags))
1516 continue;
1517
1518 /*
1519 * Check if ACE is inheritable by this vnode
1520 */
1521 if ((aclinherit == ZFS_ACL_NOALLOW && type == ALLOW) ||
1522 !zfs_ace_can_use(vtype, iflags))
1523 continue;
1524
1525 /*
1526 * If owner@, group@, or everyone@ inheritable
1527 * then zfs_acl_chmod() isn't needed.
1528 */
1529 if ((aclinherit == ZFS_ACL_PASSTHROUGH ||
1530 aclinherit == ZFS_ACL_PASSTHROUGH_X) &&
1531 ((iflags & (ACE_OWNER|ACE_EVERYONE)) ||
1532 ((iflags & OWNING_GROUP) == OWNING_GROUP)) &&
1533 (isreg || (isdir && (iflags & ACE_DIRECTORY_INHERIT_ACE))))
1534 *need_chmod = B_FALSE;
1535
1536 /*
1537 * Strip inherited execute permission from file if
1538 * not in mode
1539 */
1540 if (aclinherit == ZFS_ACL_PASSTHROUGH_X && type == ALLOW &&
1541 !isdir && ((mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0)) {
1542 access_mask &= ~ACE_EXECUTE;
1543 }
1544
1545 /*
1546 * Strip write_acl and write_owner from permissions
1547 * when inheriting an ACE
1548 */
1549 if (aclinherit == ZFS_ACL_RESTRICTED && type == ALLOW) {
1550 access_mask &= ~RESTRICTED_CLEAR;
1551 }
1552
1553 ace_size = aclp->z_ops->ace_size(pacep);
1554 aclnode = zfs_acl_node_alloc(ace_size);
1555 list_insert_tail(&aclp->z_acl, aclnode);
1556 acep = aclnode->z_acldata;
1557
1558 zfs_set_ace(aclp, acep, access_mask, type,
1559 who, iflags|ACE_INHERITED_ACE);
1560
1561 /*
1562 * Copy special opaque data if any
1563 */
1564 if ((data1sz = paclp->z_ops->ace_data(pacep, &data1)) != 0) {
1565 data2sz = aclp->z_ops->ace_data(acep, &data2);
1566 VERIFY3U(data2sz, ==, data1sz);
1567 memcpy(data2, data1, data2sz);
1568 }
1569
1570 aclp->z_acl_count++;
1571 aclnode->z_ace_count++;
1572 aclp->z_acl_bytes += aclnode->z_size;
1573 newflags = aclp->z_ops->ace_flags_get(acep);
1574
1575 /*
1576 * If ACE is not to be inherited further, or if the vnode is
1577 * not a directory, remove all inheritance flags
1578 */
1579 if (!isdir || (iflags & ACE_NO_PROPAGATE_INHERIT_ACE)) {
1580 newflags &= ~ALL_INHERIT;
1581 aclp->z_ops->ace_flags_set(acep,
1582 newflags|ACE_INHERITED_ACE);
1583 continue;
1584 }
1585
1586 /*
1587 * This directory has an inheritable ACE
1588 */
1589 aclp->z_hints |= ZFS_INHERIT_ACE;
1590
1591 /*
1592 * If only FILE_INHERIT is set then turn on
1593 * inherit_only
1594 */
1595 if ((iflags & (ACE_FILE_INHERIT_ACE |
1596 ACE_DIRECTORY_INHERIT_ACE)) == ACE_FILE_INHERIT_ACE) {
1597 newflags |= ACE_INHERIT_ONLY_ACE;
1598 aclp->z_ops->ace_flags_set(acep,
1599 newflags|ACE_INHERITED_ACE);
1600 } else {
1601 newflags &= ~ACE_INHERIT_ONLY_ACE;
1602 aclp->z_ops->ace_flags_set(acep,
1603 newflags|ACE_INHERITED_ACE);
1604 }
1605 }
1606 if (zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
1607 aclp->z_acl_count != 0) {
1608 *need_chmod = B_FALSE;
1609 }
1610
1611 return (aclp);
1612 }
1613
1614 /*
1615 * Create file system object initial permissions
1616 * including inheritable ACEs.
1617 * Also, create FUIDs for owner and group.
1618 */
1619 int
zfs_acl_ids_create(znode_t * dzp,int flag,vattr_t * vap,cred_t * cr,vsecattr_t * vsecp,zfs_acl_ids_t * acl_ids,zidmap_t * mnt_ns)1620 zfs_acl_ids_create(znode_t *dzp, int flag, vattr_t *vap, cred_t *cr,
1621 vsecattr_t *vsecp, zfs_acl_ids_t *acl_ids, zidmap_t *mnt_ns)
1622 {
1623 int error;
1624 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1625 zfs_acl_t *paclp;
1626 gid_t gid;
1627 boolean_t need_chmod = B_TRUE;
1628 boolean_t trim = B_FALSE;
1629 boolean_t inherited = B_FALSE;
1630
1631 if ((flag & IS_ROOT_NODE) == 0) {
1632 if (zfsvfs->z_replay == B_FALSE)
1633 ASSERT_VOP_ELOCKED(ZTOV(dzp), __func__);
1634 } else
1635 ASSERT3P(dzp->z_vnode, ==, NULL);
1636 memset(acl_ids, 0, sizeof (zfs_acl_ids_t));
1637 acl_ids->z_mode = MAKEIMODE(vap->va_type, vap->va_mode);
1638
1639 if (vsecp)
1640 if ((error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, cr,
1641 &acl_ids->z_fuidp, &acl_ids->z_aclp)) != 0)
1642 return (error);
1643 /*
1644 * Determine uid and gid.
1645 */
1646 if ((flag & IS_ROOT_NODE) || zfsvfs->z_replay ||
1647 ((flag & IS_XATTR) && (vap->va_type == VDIR))) {
1648 acl_ids->z_fuid = zfs_fuid_create(zfsvfs,
1649 (uint64_t)vap->va_uid, cr,
1650 ZFS_OWNER, &acl_ids->z_fuidp);
1651 acl_ids->z_fgid = zfs_fuid_create(zfsvfs,
1652 (uint64_t)vap->va_gid, cr,
1653 ZFS_GROUP, &acl_ids->z_fuidp);
1654 gid = vap->va_gid;
1655 } else {
1656 uid_t id = crgetuid(cr);
1657 if (IS_EPHEMERAL(id))
1658 id = UID_NOBODY;
1659 acl_ids->z_fuid = (uint64_t)id;
1660 acl_ids->z_fgid = 0;
1661 if (vap->va_mask & AT_GID) {
1662 acl_ids->z_fgid = zfs_fuid_create(zfsvfs,
1663 (uint64_t)vap->va_gid,
1664 cr, ZFS_GROUP, &acl_ids->z_fuidp);
1665 gid = vap->va_gid;
1666 if (acl_ids->z_fgid != dzp->z_gid &&
1667 !groupmember(vap->va_gid, cr) &&
1668 secpolicy_vnode_create_gid(cr) != 0)
1669 acl_ids->z_fgid = 0;
1670 }
1671 if (acl_ids->z_fgid == 0) {
1672 const char *domain;
1673 uint32_t rid;
1674
1675 acl_ids->z_fgid = dzp->z_gid;
1676 gid = zfs_fuid_map_id(zfsvfs, acl_ids->z_fgid,
1677 cr, ZFS_GROUP);
1678
1679 if (zfsvfs->z_use_fuids &&
1680 IS_EPHEMERAL(acl_ids->z_fgid)) {
1681 domain =
1682 zfs_fuid_idx_domain(&zfsvfs->z_fuid_idx,
1683 FUID_INDEX(acl_ids->z_fgid));
1684 rid = FUID_RID(acl_ids->z_fgid);
1685 zfs_fuid_node_add(&acl_ids->z_fuidp,
1686 domain, rid, FUID_INDEX(acl_ids->z_fgid),
1687 acl_ids->z_fgid, ZFS_GROUP);
1688 }
1689 }
1690 }
1691
1692 /*
1693 * If we're creating a directory, and the parent directory has the
1694 * set-GID bit set, set in on the new directory.
1695 * Otherwise, if the user is neither privileged nor a member of the
1696 * file's new group, clear the file's set-GID bit.
1697 */
1698
1699 if (!(flag & IS_ROOT_NODE) && (dzp->z_mode & S_ISGID) &&
1700 (vap->va_type == VDIR)) {
1701 acl_ids->z_mode |= S_ISGID;
1702 } else {
1703 if ((acl_ids->z_mode & S_ISGID) &&
1704 secpolicy_vnode_setids_setgids(ZTOV(dzp), cr, gid) != 0)
1705 acl_ids->z_mode &= ~S_ISGID;
1706 }
1707
1708 if (acl_ids->z_aclp == NULL) {
1709 mutex_enter(&dzp->z_acl_lock);
1710 if (!(flag & IS_ROOT_NODE) &&
1711 (dzp->z_pflags & ZFS_INHERIT_ACE) &&
1712 !(dzp->z_pflags & ZFS_XATTR)) {
1713 VERIFY0(zfs_acl_node_read(dzp, B_TRUE,
1714 &paclp, B_FALSE));
1715 acl_ids->z_aclp = zfs_acl_inherit(zfsvfs,
1716 vap->va_type, paclp, acl_ids->z_mode, &need_chmod);
1717 inherited = B_TRUE;
1718 } else {
1719 acl_ids->z_aclp =
1720 zfs_acl_alloc(zfs_acl_version_zp(dzp));
1721 acl_ids->z_aclp->z_hints |= ZFS_ACL_TRIVIAL;
1722 }
1723 mutex_exit(&dzp->z_acl_lock);
1724
1725 if (need_chmod) {
1726 if (vap->va_type == VDIR)
1727 acl_ids->z_aclp->z_hints |=
1728 ZFS_ACL_AUTO_INHERIT;
1729
1730 if (zfsvfs->z_acl_mode == ZFS_ACL_GROUPMASK &&
1731 zfsvfs->z_acl_inherit != ZFS_ACL_PASSTHROUGH &&
1732 zfsvfs->z_acl_inherit != ZFS_ACL_PASSTHROUGH_X)
1733 trim = B_TRUE;
1734 zfs_acl_chmod(vap->va_type, acl_ids->z_mode, B_FALSE,
1735 trim, acl_ids->z_aclp);
1736 }
1737 }
1738
1739 if (inherited || vsecp) {
1740 acl_ids->z_mode = zfs_mode_compute(acl_ids->z_mode,
1741 acl_ids->z_aclp, &acl_ids->z_aclp->z_hints,
1742 acl_ids->z_fuid, acl_ids->z_fgid);
1743 if (ace_trivial_common(acl_ids->z_aclp, 0, zfs_ace_walk) == 0)
1744 acl_ids->z_aclp->z_hints |= ZFS_ACL_TRIVIAL;
1745 }
1746
1747 return (0);
1748 }
1749
1750 /*
1751 * Free ACL and fuid_infop, but not the acl_ids structure
1752 */
1753 void
zfs_acl_ids_free(zfs_acl_ids_t * acl_ids)1754 zfs_acl_ids_free(zfs_acl_ids_t *acl_ids)
1755 {
1756 if (acl_ids->z_aclp)
1757 zfs_acl_free(acl_ids->z_aclp);
1758 if (acl_ids->z_fuidp)
1759 zfs_fuid_info_free(acl_ids->z_fuidp);
1760 acl_ids->z_aclp = NULL;
1761 acl_ids->z_fuidp = NULL;
1762 }
1763
1764 boolean_t
zfs_acl_ids_overquota(zfsvfs_t * zv,zfs_acl_ids_t * acl_ids,uint64_t projid)1765 zfs_acl_ids_overquota(zfsvfs_t *zv, zfs_acl_ids_t *acl_ids, uint64_t projid)
1766 {
1767 return (zfs_id_overquota(zv, DMU_USERUSED_OBJECT, acl_ids->z_fuid) ||
1768 zfs_id_overquota(zv, DMU_GROUPUSED_OBJECT, acl_ids->z_fgid) ||
1769 (projid != ZFS_DEFAULT_PROJID && projid != ZFS_INVALID_PROJID &&
1770 zfs_id_overquota(zv, DMU_PROJECTUSED_OBJECT, projid)));
1771 }
1772
1773 /*
1774 * Retrieve a file's ACL
1775 */
1776 int
zfs_getacl(znode_t * zp,vsecattr_t * vsecp,boolean_t skipaclchk,cred_t * cr)1777 zfs_getacl(znode_t *zp, vsecattr_t *vsecp, boolean_t skipaclchk, cred_t *cr)
1778 {
1779 zfs_acl_t *aclp;
1780 ulong_t mask;
1781 int error;
1782 int count = 0;
1783 int largeace = 0;
1784
1785 mask = vsecp->vsa_mask & (VSA_ACE | VSA_ACECNT |
1786 VSA_ACE_ACLFLAGS | VSA_ACE_ALLTYPES);
1787
1788 if (mask == 0)
1789 return (SET_ERROR(ENOSYS));
1790
1791 if ((error = zfs_zaccess(zp, ACE_READ_ACL, 0, skipaclchk, cr, NULL)))
1792 return (error);
1793
1794 mutex_enter(&zp->z_acl_lock);
1795
1796 if (zp->z_zfsvfs->z_replay == B_FALSE)
1797 ASSERT_VOP_LOCKED(ZTOV(zp), __func__);
1798 error = zfs_acl_node_read(zp, B_TRUE, &aclp, B_FALSE);
1799 if (error != 0) {
1800 mutex_exit(&zp->z_acl_lock);
1801 return (error);
1802 }
1803
1804 /*
1805 * Scan ACL to determine number of ACEs
1806 */
1807 if ((zp->z_pflags & ZFS_ACL_OBJ_ACE) && !(mask & VSA_ACE_ALLTYPES)) {
1808 void *zacep = NULL;
1809 uint64_t who;
1810 uint32_t access_mask;
1811 uint16_t type, iflags;
1812
1813 while ((zacep = zfs_acl_next_ace(aclp, zacep,
1814 &who, &access_mask, &iflags, &type))) {
1815 switch (type) {
1816 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
1817 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
1818 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
1819 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
1820 largeace++;
1821 continue;
1822 default:
1823 count++;
1824 }
1825 }
1826 vsecp->vsa_aclcnt = count;
1827 } else
1828 count = (int)aclp->z_acl_count;
1829
1830 if (mask & VSA_ACECNT) {
1831 vsecp->vsa_aclcnt = count;
1832 }
1833
1834 if (mask & VSA_ACE) {
1835 size_t aclsz;
1836
1837 aclsz = count * sizeof (ace_t) +
1838 sizeof (ace_object_t) * largeace;
1839
1840 vsecp->vsa_aclentp = kmem_alloc(aclsz, KM_SLEEP);
1841 vsecp->vsa_aclentsz = aclsz;
1842
1843 if (aclp->z_version == ZFS_ACL_VERSION_FUID)
1844 zfs_copy_fuid_2_ace(zp->z_zfsvfs, aclp, cr,
1845 vsecp->vsa_aclentp, !(mask & VSA_ACE_ALLTYPES));
1846 else {
1847 zfs_acl_node_t *aclnode;
1848 void *start = vsecp->vsa_aclentp;
1849
1850 for (aclnode = list_head(&aclp->z_acl); aclnode;
1851 aclnode = list_next(&aclp->z_acl, aclnode)) {
1852 memcpy(start, aclnode->z_acldata,
1853 aclnode->z_size);
1854 start = (caddr_t)start + aclnode->z_size;
1855 }
1856 ASSERT3U((caddr_t)start - (caddr_t)vsecp->vsa_aclentp,
1857 ==, aclp->z_acl_bytes);
1858 }
1859 }
1860 if (mask & VSA_ACE_ACLFLAGS) {
1861 vsecp->vsa_aclflags = 0;
1862 if (zp->z_pflags & ZFS_ACL_DEFAULTED)
1863 vsecp->vsa_aclflags |= ACL_DEFAULTED;
1864 if (zp->z_pflags & ZFS_ACL_PROTECTED)
1865 vsecp->vsa_aclflags |= ACL_PROTECTED;
1866 if (zp->z_pflags & ZFS_ACL_AUTO_INHERIT)
1867 vsecp->vsa_aclflags |= ACL_AUTO_INHERIT;
1868 }
1869
1870 mutex_exit(&zp->z_acl_lock);
1871
1872 return (0);
1873 }
1874
1875 int
zfs_vsec_2_aclp(zfsvfs_t * zfsvfs,umode_t obj_type,vsecattr_t * vsecp,cred_t * cr,zfs_fuid_info_t ** fuidp,zfs_acl_t ** zaclp)1876 zfs_vsec_2_aclp(zfsvfs_t *zfsvfs, umode_t obj_type,
1877 vsecattr_t *vsecp, cred_t *cr, zfs_fuid_info_t **fuidp, zfs_acl_t **zaclp)
1878 {
1879 zfs_acl_t *aclp;
1880 zfs_acl_node_t *aclnode;
1881 int aclcnt = vsecp->vsa_aclcnt;
1882 int error;
1883
1884 if (vsecp->vsa_aclcnt > MAX_ACL_ENTRIES || vsecp->vsa_aclcnt <= 0)
1885 return (SET_ERROR(EINVAL));
1886
1887 aclp = zfs_acl_alloc(zfs_acl_version(zfsvfs->z_version));
1888
1889 aclp->z_hints = 0;
1890 aclnode = zfs_acl_node_alloc(aclcnt * sizeof (zfs_object_ace_t));
1891 if (aclp->z_version == ZFS_ACL_VERSION_INITIAL) {
1892 if ((error = zfs_copy_ace_2_oldace(obj_type, aclp,
1893 (ace_t *)vsecp->vsa_aclentp, aclnode->z_acldata,
1894 aclcnt, &aclnode->z_size)) != 0) {
1895 zfs_acl_free(aclp);
1896 zfs_acl_node_free(aclnode);
1897 return (error);
1898 }
1899 } else {
1900 if ((error = zfs_copy_ace_2_fuid(zfsvfs, obj_type, aclp,
1901 vsecp->vsa_aclentp, aclnode->z_acldata, aclcnt,
1902 &aclnode->z_size, fuidp, cr)) != 0) {
1903 zfs_acl_free(aclp);
1904 zfs_acl_node_free(aclnode);
1905 return (error);
1906 }
1907 }
1908 aclp->z_acl_bytes = aclnode->z_size;
1909 aclnode->z_ace_count = aclcnt;
1910 aclp->z_acl_count = aclcnt;
1911 list_insert_head(&aclp->z_acl, aclnode);
1912
1913 /*
1914 * If flags are being set then add them to z_hints
1915 */
1916 if (vsecp->vsa_mask & VSA_ACE_ACLFLAGS) {
1917 if (vsecp->vsa_aclflags & ACL_PROTECTED)
1918 aclp->z_hints |= ZFS_ACL_PROTECTED;
1919 if (vsecp->vsa_aclflags & ACL_DEFAULTED)
1920 aclp->z_hints |= ZFS_ACL_DEFAULTED;
1921 if (vsecp->vsa_aclflags & ACL_AUTO_INHERIT)
1922 aclp->z_hints |= ZFS_ACL_AUTO_INHERIT;
1923 }
1924
1925 *zaclp = aclp;
1926
1927 return (0);
1928 }
1929
1930 /*
1931 * Set a file's ACL
1932 */
1933 int
zfs_setacl(znode_t * zp,vsecattr_t * vsecp,boolean_t skipaclchk,cred_t * cr)1934 zfs_setacl(znode_t *zp, vsecattr_t *vsecp, boolean_t skipaclchk, cred_t *cr)
1935 {
1936 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1937 zilog_t *zilog = zfsvfs->z_log;
1938 ulong_t mask = vsecp->vsa_mask & (VSA_ACE | VSA_ACECNT);
1939 dmu_tx_t *tx;
1940 int error;
1941 zfs_acl_t *aclp;
1942 zfs_fuid_info_t *fuidp = NULL;
1943 boolean_t fuid_dirtied;
1944 uint64_t acl_obj;
1945
1946 if (zp->z_zfsvfs->z_replay == B_FALSE)
1947 ASSERT_VOP_ELOCKED(ZTOV(zp), __func__);
1948 if (mask == 0)
1949 return (SET_ERROR(ENOSYS));
1950
1951 if (zp->z_pflags & ZFS_IMMUTABLE)
1952 return (SET_ERROR(EPERM));
1953
1954 if ((error = zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr, NULL)))
1955 return (error);
1956
1957 error = zfs_vsec_2_aclp(zfsvfs, ZTOV(zp)->v_type, vsecp, cr, &fuidp,
1958 &aclp);
1959 if (error)
1960 return (error);
1961
1962 /*
1963 * If ACL wide flags aren't being set then preserve any
1964 * existing flags.
1965 */
1966 if (!(vsecp->vsa_mask & VSA_ACE_ACLFLAGS)) {
1967 aclp->z_hints |=
1968 (zp->z_pflags & V4_ACL_WIDE_FLAGS);
1969 }
1970 top:
1971 mutex_enter(&zp->z_acl_lock);
1972
1973 tx = dmu_tx_create(zfsvfs->z_os);
1974
1975 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1976
1977 fuid_dirtied = zfsvfs->z_fuid_dirty;
1978 if (fuid_dirtied)
1979 zfs_fuid_txhold(zfsvfs, tx);
1980
1981 /*
1982 * If old version and ACL won't fit in bonus and we aren't
1983 * upgrading then take out necessary DMU holds
1984 */
1985
1986 if ((acl_obj = zfs_external_acl(zp)) != 0) {
1987 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
1988 zfs_znode_acl_version(zp) <= ZFS_ACL_VERSION_INITIAL) {
1989 dmu_tx_hold_free(tx, acl_obj, 0,
1990 DMU_OBJECT_END);
1991 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1992 aclp->z_acl_bytes);
1993 } else {
1994 dmu_tx_hold_write(tx, acl_obj, 0, aclp->z_acl_bytes);
1995 }
1996 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1997 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, aclp->z_acl_bytes);
1998 }
1999
2000 zfs_sa_upgrade_txholds(tx, zp);
2001 error = dmu_tx_assign(tx, DMU_TX_NOWAIT);
2002 if (error) {
2003 mutex_exit(&zp->z_acl_lock);
2004
2005 if (error == ERESTART) {
2006 dmu_tx_wait(tx);
2007 dmu_tx_abort(tx);
2008 goto top;
2009 }
2010 dmu_tx_abort(tx);
2011 zfs_acl_free(aclp);
2012 return (error);
2013 }
2014
2015 error = zfs_aclset_common(zp, aclp, cr, tx);
2016 ASSERT0(error);
2017 ASSERT3P(zp->z_acl_cached, ==, NULL);
2018 zp->z_acl_cached = aclp;
2019
2020 if (fuid_dirtied)
2021 zfs_fuid_sync(zfsvfs, tx);
2022
2023 zfs_log_acl(zilog, tx, zp, vsecp, fuidp);
2024
2025 if (fuidp)
2026 zfs_fuid_info_free(fuidp);
2027 dmu_tx_commit(tx);
2028 mutex_exit(&zp->z_acl_lock);
2029
2030 return (error);
2031 }
2032
2033 /*
2034 * Check accesses of interest (AoI) against attributes of the dataset
2035 * such as read-only. Returns zero if no AoI conflict with dataset
2036 * attributes, otherwise an appropriate errno is returned.
2037 */
2038 static int
zfs_zaccess_dataset_check(znode_t * zp,uint32_t v4_mode)2039 zfs_zaccess_dataset_check(znode_t *zp, uint32_t v4_mode)
2040 {
2041 if ((v4_mode & WRITE_MASK) &&
2042 (zp->z_zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) &&
2043 (!IS_DEVVP(ZTOV(zp)) || (v4_mode & WRITE_MASK_ATTRS))) {
2044 return (SET_ERROR(EROFS));
2045 }
2046
2047 /*
2048 * Intentionally allow ZFS_READONLY through here.
2049 * See zfs_zaccess_common().
2050 */
2051 if ((v4_mode & WRITE_MASK_DATA) &&
2052 (zp->z_pflags & ZFS_IMMUTABLE)) {
2053 return (SET_ERROR(EPERM));
2054 }
2055
2056 /*
2057 * In FreeBSD we allow to modify directory's content is ZFS_NOUNLINK
2058 * (sunlnk) is set. We just don't allow directory removal, which is
2059 * handled in zfs_zaccess_delete().
2060 */
2061 if ((v4_mode & ACE_DELETE) &&
2062 (zp->z_pflags & ZFS_NOUNLINK)) {
2063 return (EPERM);
2064 }
2065
2066 if (((v4_mode & (ACE_READ_DATA|ACE_EXECUTE)) &&
2067 (zp->z_pflags & ZFS_AV_QUARANTINED))) {
2068 return (SET_ERROR(EACCES));
2069 }
2070
2071 return (0);
2072 }
2073
2074 /*
2075 * The primary usage of this function is to loop through all of the
2076 * ACEs in the znode, determining what accesses of interest (AoI) to
2077 * the caller are allowed or denied. The AoI are expressed as bits in
2078 * the working_mode parameter. As each ACE is processed, bits covered
2079 * by that ACE are removed from the working_mode. This removal
2080 * facilitates two things. The first is that when the working mode is
2081 * empty (= 0), we know we've looked at all the AoI. The second is
2082 * that the ACE interpretation rules don't allow a later ACE to undo
2083 * something granted or denied by an earlier ACE. Removing the
2084 * discovered access or denial enforces this rule. At the end of
2085 * processing the ACEs, all AoI that were found to be denied are
2086 * placed into the working_mode, giving the caller a mask of denied
2087 * accesses. Returns:
2088 * 0 if all AoI granted
2089 * EACCESS if the denied mask is non-zero
2090 * other error if abnormal failure (e.g., IO error)
2091 *
2092 * A secondary usage of the function is to determine if any of the
2093 * AoI are granted. If an ACE grants any access in
2094 * the working_mode, we immediately short circuit out of the function.
2095 * This mode is chosen by setting anyaccess to B_TRUE. The
2096 * working_mode is not a denied access mask upon exit if the function
2097 * is used in this manner.
2098 */
2099 static int
zfs_zaccess_aces_check(znode_t * zp,uint32_t * working_mode,boolean_t anyaccess,cred_t * cr)2100 zfs_zaccess_aces_check(znode_t *zp, uint32_t *working_mode,
2101 boolean_t anyaccess, cred_t *cr)
2102 {
2103 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2104 zfs_acl_t *aclp;
2105 int error;
2106 uid_t uid = crgetuid(cr);
2107 uint64_t who;
2108 uint16_t type, iflags;
2109 uint16_t entry_type;
2110 uint32_t access_mask;
2111 uint32_t deny_mask = 0;
2112 zfs_ace_hdr_t *acep = NULL;
2113 boolean_t checkit;
2114 uid_t gowner;
2115 uid_t fowner;
2116
2117 zfs_fuid_map_ids(zp, cr, &fowner, &gowner);
2118
2119 mutex_enter(&zp->z_acl_lock);
2120
2121 if (zp->z_zfsvfs->z_replay == B_FALSE)
2122 ASSERT_VOP_LOCKED(ZTOV(zp), __func__);
2123 error = zfs_acl_node_read(zp, B_TRUE, &aclp, B_FALSE);
2124 if (error != 0) {
2125 mutex_exit(&zp->z_acl_lock);
2126 return (error);
2127 }
2128
2129 ASSERT3P(zp->z_acl_cached, !=, NULL);
2130
2131 while ((acep = zfs_acl_next_ace(aclp, acep, &who, &access_mask,
2132 &iflags, &type))) {
2133 uint32_t mask_matched;
2134
2135 if (!zfs_acl_valid_ace_type(type, iflags))
2136 continue;
2137
2138 if (ZTOV(zp)->v_type == VDIR && (iflags & ACE_INHERIT_ONLY_ACE))
2139 continue;
2140
2141 /* Skip ACE if it does not affect any AoI */
2142 mask_matched = (access_mask & *working_mode);
2143 if (!mask_matched)
2144 continue;
2145
2146 entry_type = (iflags & ACE_TYPE_FLAGS);
2147
2148 checkit = B_FALSE;
2149
2150 switch (entry_type) {
2151 case ACE_OWNER:
2152 if (uid == fowner)
2153 checkit = B_TRUE;
2154 break;
2155 case OWNING_GROUP:
2156 who = gowner;
2157 zfs_fallthrough;
2158 case ACE_IDENTIFIER_GROUP:
2159 checkit = zfs_groupmember(zfsvfs, who, cr);
2160 break;
2161 case ACE_EVERYONE:
2162 checkit = B_TRUE;
2163 break;
2164
2165 /* USER Entry */
2166 default:
2167 if (entry_type == 0) {
2168 uid_t newid;
2169
2170 newid = zfs_fuid_map_id(zfsvfs, who, cr,
2171 ZFS_ACE_USER);
2172 if (newid != UID_NOBODY &&
2173 uid == newid)
2174 checkit = B_TRUE;
2175 break;
2176 } else {
2177 mutex_exit(&zp->z_acl_lock);
2178 return (SET_ERROR(EIO));
2179 }
2180 }
2181
2182 if (checkit) {
2183 if (type == DENY) {
2184 DTRACE_PROBE3(zfs__ace__denies,
2185 znode_t *, zp,
2186 zfs_ace_hdr_t *, acep,
2187 uint32_t, mask_matched);
2188 deny_mask |= mask_matched;
2189 } else {
2190 DTRACE_PROBE3(zfs__ace__allows,
2191 znode_t *, zp,
2192 zfs_ace_hdr_t *, acep,
2193 uint32_t, mask_matched);
2194 if (anyaccess) {
2195 mutex_exit(&zp->z_acl_lock);
2196 return (0);
2197 }
2198 }
2199 *working_mode &= ~mask_matched;
2200 }
2201
2202 /* Are we done? */
2203 if (*working_mode == 0)
2204 break;
2205 }
2206
2207 mutex_exit(&zp->z_acl_lock);
2208
2209 /* Put the found 'denies' back on the working mode */
2210 if (deny_mask) {
2211 *working_mode |= deny_mask;
2212 return (SET_ERROR(EACCES));
2213 } else if (*working_mode) {
2214 return (-1);
2215 }
2216
2217 return (0);
2218 }
2219
2220 /*
2221 * Return true if any access whatsoever granted, we don't actually
2222 * care what access is granted.
2223 */
2224 boolean_t
zfs_has_access(znode_t * zp,cred_t * cr)2225 zfs_has_access(znode_t *zp, cred_t *cr)
2226 {
2227 uint32_t have = ACE_ALL_PERMS;
2228
2229 if (zfs_zaccess_aces_check(zp, &have, B_TRUE, cr) != 0) {
2230 uid_t owner;
2231
2232 owner = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_uid, cr, ZFS_OWNER);
2233 return (secpolicy_vnode_any_access(cr, ZTOV(zp), owner) == 0);
2234 }
2235 return (B_TRUE);
2236 }
2237
2238 static int
zfs_zaccess_common(znode_t * zp,uint32_t v4_mode,uint32_t * working_mode,boolean_t * check_privs,boolean_t skipaclchk,cred_t * cr)2239 zfs_zaccess_common(znode_t *zp, uint32_t v4_mode, uint32_t *working_mode,
2240 boolean_t *check_privs, boolean_t skipaclchk, cred_t *cr)
2241 {
2242 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2243 int err;
2244
2245 *working_mode = v4_mode;
2246 *check_privs = B_TRUE;
2247
2248 /*
2249 * Short circuit empty requests
2250 */
2251 if (v4_mode == 0 || zfsvfs->z_replay) {
2252 *working_mode = 0;
2253 return (0);
2254 }
2255
2256 if ((err = zfs_zaccess_dataset_check(zp, v4_mode)) != 0) {
2257 *check_privs = B_FALSE;
2258 return (err);
2259 }
2260
2261 /*
2262 * The caller requested that the ACL check be skipped. This
2263 * would only happen if the caller checked VOP_ACCESS() with a
2264 * 32 bit ACE mask and already had the appropriate permissions.
2265 */
2266 if (skipaclchk) {
2267 *working_mode = 0;
2268 return (0);
2269 }
2270
2271 /*
2272 * Note: ZFS_READONLY represents the "DOS R/O" attribute.
2273 * When that flag is set, we should behave as if write access
2274 * were not granted by anything in the ACL. In particular:
2275 * We _must_ allow writes after opening the file r/w, then
2276 * setting the DOS R/O attribute, and writing some more.
2277 * (Similar to how you can write after fchmod(fd, 0444).)
2278 *
2279 * Therefore ZFS_READONLY is ignored in the dataset check
2280 * above, and checked here as if part of the ACL check.
2281 * Also note: DOS R/O is ignored for directories.
2282 */
2283 if ((v4_mode & WRITE_MASK_DATA) &&
2284 (ZTOV(zp)->v_type != VDIR) &&
2285 (zp->z_pflags & ZFS_READONLY)) {
2286 return (SET_ERROR(EPERM));
2287 }
2288
2289 return (zfs_zaccess_aces_check(zp, working_mode, B_FALSE, cr));
2290 }
2291
2292 static int
zfs_zaccess_append(znode_t * zp,uint32_t * working_mode,boolean_t * check_privs,cred_t * cr)2293 zfs_zaccess_append(znode_t *zp, uint32_t *working_mode, boolean_t *check_privs,
2294 cred_t *cr)
2295 {
2296 if (*working_mode != ACE_WRITE_DATA)
2297 return (SET_ERROR(EACCES));
2298
2299 return (zfs_zaccess_common(zp, ACE_APPEND_DATA, working_mode,
2300 check_privs, B_FALSE, cr));
2301 }
2302
2303 /*
2304 * Check if VEXEC is allowed.
2305 *
2306 * This routine is based on zfs_fastaccesschk_execute which has slowpath
2307 * calling zfs_zaccess. This would be incorrect on FreeBSD (see
2308 * zfs_freebsd_access for the difference). Thus this variant let's the
2309 * caller handle the slowpath (if necessary).
2310 *
2311 * On top of that we perform a lockless check for ZFS_NO_EXECS_DENIED.
2312 *
2313 * Safe access to znode_t is provided by the vnode lock.
2314 */
2315 int
zfs_fastaccesschk_execute(znode_t * zdp,cred_t * cr)2316 zfs_fastaccesschk_execute(znode_t *zdp, cred_t *cr)
2317 {
2318 boolean_t is_attr;
2319
2320 if (zdp->z_pflags & ZFS_AV_QUARANTINED)
2321 return (1);
2322
2323 is_attr = ((zdp->z_pflags & ZFS_XATTR) &&
2324 (ZTOV(zdp)->v_type == VDIR));
2325 if (is_attr)
2326 return (1);
2327
2328 if (zdp->z_pflags & ZFS_NO_EXECS_DENIED)
2329 return (0);
2330
2331 return (1);
2332 }
2333
2334
2335 /*
2336 * Determine whether Access should be granted/denied.
2337 *
2338 * The least priv subsystem is always consulted as a basic privilege
2339 * can define any form of access.
2340 */
2341 int
zfs_zaccess(znode_t * zp,int mode,int flags,boolean_t skipaclchk,cred_t * cr,zidmap_t * mnt_ns)2342 zfs_zaccess(znode_t *zp, int mode, int flags, boolean_t skipaclchk, cred_t *cr,
2343 zidmap_t *mnt_ns)
2344 {
2345 uint32_t working_mode;
2346 int error;
2347 int is_attr;
2348 boolean_t check_privs;
2349 znode_t *xzp = NULL;
2350 znode_t *check_zp = zp;
2351 mode_t needed_bits;
2352 uid_t owner;
2353
2354 is_attr = ((zp->z_pflags & ZFS_XATTR) && (ZTOV(zp)->v_type == VDIR));
2355
2356 /*
2357 * In FreeBSD, we don't care about permissions of individual ADS.
2358 * Note that not checking them is not just an optimization - without
2359 * this shortcut, EA operations may bogusly fail with EACCES.
2360 */
2361 if (zp->z_pflags & ZFS_XATTR)
2362 return (0);
2363
2364 owner = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_uid, cr, ZFS_OWNER);
2365
2366 /*
2367 * Map the bits required to the standard vnode flags VREAD|VWRITE|VEXEC
2368 * in needed_bits. Map the bits mapped by working_mode (currently
2369 * missing) in missing_bits.
2370 * Call secpolicy_vnode_access2() with (needed_bits & ~checkmode),
2371 * needed_bits.
2372 */
2373 needed_bits = 0;
2374
2375 working_mode = mode;
2376 if ((working_mode & (ACE_READ_ACL|ACE_READ_ATTRIBUTES)) &&
2377 owner == crgetuid(cr))
2378 working_mode &= ~(ACE_READ_ACL|ACE_READ_ATTRIBUTES);
2379
2380 if (working_mode & (ACE_READ_DATA|ACE_READ_NAMED_ATTRS|
2381 ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_SYNCHRONIZE))
2382 needed_bits |= VREAD;
2383 if (working_mode & (ACE_WRITE_DATA|ACE_WRITE_NAMED_ATTRS|
2384 ACE_APPEND_DATA|ACE_WRITE_ATTRIBUTES|ACE_SYNCHRONIZE))
2385 needed_bits |= VWRITE;
2386 if (working_mode & ACE_EXECUTE)
2387 needed_bits |= VEXEC;
2388
2389 if ((error = zfs_zaccess_common(check_zp, mode, &working_mode,
2390 &check_privs, skipaclchk, cr)) == 0) {
2391 if (is_attr)
2392 VN_RELE(ZTOV(xzp));
2393 return (secpolicy_vnode_access2(cr, ZTOV(zp), owner,
2394 needed_bits, needed_bits));
2395 }
2396
2397 if (error && !check_privs) {
2398 if (is_attr)
2399 VN_RELE(ZTOV(xzp));
2400 return (error);
2401 }
2402
2403 if (error && (flags & V_APPEND)) {
2404 error = zfs_zaccess_append(zp, &working_mode, &check_privs, cr);
2405 }
2406
2407 if (error && check_privs) {
2408 mode_t checkmode = 0;
2409 vnode_t *check_vp = ZTOV(check_zp);
2410
2411 /*
2412 * First check for implicit owner permission on
2413 * read_acl/read_attributes
2414 */
2415
2416 ASSERT3U(working_mode, !=, 0);
2417
2418 if ((working_mode & (ACE_READ_ACL|ACE_READ_ATTRIBUTES) &&
2419 owner == crgetuid(cr)))
2420 working_mode &= ~(ACE_READ_ACL|ACE_READ_ATTRIBUTES);
2421
2422 if (working_mode & (ACE_READ_DATA|ACE_READ_NAMED_ATTRS|
2423 ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_SYNCHRONIZE))
2424 checkmode |= VREAD;
2425 if (working_mode & (ACE_WRITE_DATA|ACE_WRITE_NAMED_ATTRS|
2426 ACE_APPEND_DATA|ACE_WRITE_ATTRIBUTES|ACE_SYNCHRONIZE))
2427 checkmode |= VWRITE;
2428 if (working_mode & ACE_EXECUTE)
2429 checkmode |= VEXEC;
2430
2431 error = secpolicy_vnode_access2(cr, check_vp, owner,
2432 needed_bits & ~checkmode, needed_bits);
2433
2434 if (error == 0 && (working_mode & ACE_WRITE_OWNER))
2435 error = secpolicy_vnode_chown(check_vp, cr, owner);
2436 if (error == 0 && (working_mode & ACE_WRITE_ACL))
2437 error = secpolicy_vnode_setdac(check_vp, cr, owner);
2438
2439 if (error == 0 && (working_mode &
2440 (ACE_DELETE|ACE_DELETE_CHILD)))
2441 error = secpolicy_vnode_remove(check_vp, cr);
2442
2443 if (error == 0 && (working_mode & ACE_SYNCHRONIZE)) {
2444 error = secpolicy_vnode_chown(check_vp, cr, owner);
2445 }
2446 if (error == 0) {
2447 /*
2448 * See if any bits other than those already checked
2449 * for are still present. If so then return EACCES
2450 */
2451 if (working_mode & ~(ZFS_CHECKED_MASKS)) {
2452 error = SET_ERROR(EACCES);
2453 }
2454 }
2455 } else if (error == 0) {
2456 error = secpolicy_vnode_access2(cr, ZTOV(zp), owner,
2457 needed_bits, needed_bits);
2458 }
2459
2460
2461 if (is_attr)
2462 VN_RELE(ZTOV(xzp));
2463
2464 return (error);
2465 }
2466
2467 /*
2468 * Translate traditional unix VREAD/VWRITE/VEXEC mode into
2469 * NFSv4-style ZFS ACL format and call zfs_zaccess()
2470 */
2471 int
zfs_zaccess_rwx(znode_t * zp,mode_t mode,int flags,cred_t * cr,zidmap_t * mnt_ns)2472 zfs_zaccess_rwx(znode_t *zp, mode_t mode, int flags, cred_t *cr,
2473 zidmap_t *mnt_ns)
2474 {
2475 return (zfs_zaccess(zp, zfs_unix_to_v4(mode >> 6), flags, B_FALSE, cr,
2476 mnt_ns));
2477 }
2478
2479 /*
2480 * Access function for secpolicy_vnode_setattr
2481 */
2482 int
zfs_zaccess_unix(void * zp,int mode,cred_t * cr)2483 zfs_zaccess_unix(void *zp, int mode, cred_t *cr)
2484 {
2485 int v4_mode = zfs_unix_to_v4(mode >> 6);
2486
2487 return (zfs_zaccess(zp, v4_mode, 0, B_FALSE, cr, NULL));
2488 }
2489
2490 static int
zfs_delete_final_check(znode_t * zp,znode_t * dzp,mode_t available_perms,cred_t * cr)2491 zfs_delete_final_check(znode_t *zp, znode_t *dzp,
2492 mode_t available_perms, cred_t *cr)
2493 {
2494 int error;
2495 uid_t downer;
2496
2497 downer = zfs_fuid_map_id(dzp->z_zfsvfs, dzp->z_uid, cr, ZFS_OWNER);
2498
2499 error = secpolicy_vnode_access2(cr, ZTOV(dzp),
2500 downer, available_perms, VWRITE|VEXEC);
2501
2502 if (error == 0)
2503 error = zfs_sticky_remove_access(dzp, zp, cr);
2504
2505 return (error);
2506 }
2507
2508 /*
2509 * Determine whether Access should be granted/deny, without
2510 * consulting least priv subsystem.
2511 *
2512 * The following chart is the recommended NFSv4 enforcement for
2513 * ability to delete an object.
2514 *
2515 * -------------------------------------------------------
2516 * | Parent Dir | Target Object Permissions |
2517 * | permissions | |
2518 * -------------------------------------------------------
2519 * | | ACL Allows | ACL Denies| Delete |
2520 * | | Delete | Delete | unspecified|
2521 * -------------------------------------------------------
2522 * | ACL Allows | Permit | Permit | Permit |
2523 * | DELETE_CHILD | |
2524 * -------------------------------------------------------
2525 * | ACL Denies | Permit | Deny | Deny |
2526 * | DELETE_CHILD | | | |
2527 * -------------------------------------------------------
2528 * | ACL specifies | | | |
2529 * | only allow | Permit | Permit | Permit |
2530 * | write and | | | |
2531 * | execute | | | |
2532 * -------------------------------------------------------
2533 * | ACL denies | | | |
2534 * | write and | Permit | Deny | Deny |
2535 * | execute | | | |
2536 * -------------------------------------------------------
2537 * ^
2538 * |
2539 * No search privilege, can't even look up file?
2540 *
2541 */
2542 int
zfs_zaccess_delete(znode_t * dzp,znode_t * zp,cred_t * cr,zidmap_t * mnt_ns)2543 zfs_zaccess_delete(znode_t *dzp, znode_t *zp, cred_t *cr, zidmap_t *mnt_ns)
2544 {
2545 uint32_t dzp_working_mode = 0;
2546 uint32_t zp_working_mode = 0;
2547 int dzp_error, zp_error;
2548 mode_t available_perms;
2549 boolean_t dzpcheck_privs = B_TRUE;
2550 boolean_t zpcheck_privs = B_TRUE;
2551
2552 /*
2553 * We want specific DELETE permissions to
2554 * take precedence over WRITE/EXECUTE. We don't
2555 * want an ACL such as this to mess us up.
2556 * user:joe:write_data:deny,user:joe:delete:allow
2557 *
2558 * However, deny permissions may ultimately be overridden
2559 * by secpolicy_vnode_access().
2560 *
2561 * We will ask for all of the necessary permissions and then
2562 * look at the working modes from the directory and target object
2563 * to determine what was found.
2564 */
2565
2566 if (zp->z_pflags & (ZFS_IMMUTABLE | ZFS_NOUNLINK))
2567 return (SET_ERROR(EPERM));
2568
2569 /*
2570 * First row
2571 * If the directory permissions allow the delete, we are done.
2572 */
2573 if ((dzp_error = zfs_zaccess_common(dzp, ACE_DELETE_CHILD,
2574 &dzp_working_mode, &dzpcheck_privs, B_FALSE, cr)) == 0)
2575 return (0);
2576
2577 /*
2578 * If target object has delete permission then we are done
2579 */
2580 if ((zp_error = zfs_zaccess_common(zp, ACE_DELETE, &zp_working_mode,
2581 &zpcheck_privs, B_FALSE, cr)) == 0)
2582 return (0);
2583
2584 ASSERT(dzp_error);
2585 ASSERT(zp_error);
2586
2587 if (!dzpcheck_privs)
2588 return (dzp_error);
2589 if (!zpcheck_privs)
2590 return (zp_error);
2591
2592 /*
2593 * Second row
2594 *
2595 * If directory returns EACCES then delete_child was denied
2596 * due to deny delete_child. In this case send the request through
2597 * secpolicy_vnode_remove(). We don't use zfs_delete_final_check()
2598 * since that *could* allow the delete based on write/execute permission
2599 * and we want delete permissions to override write/execute.
2600 */
2601
2602 if (dzp_error == EACCES) {
2603 /* XXXPJD: s/dzp/zp/ ? */
2604 return (secpolicy_vnode_remove(ZTOV(dzp), cr));
2605 }
2606 /*
2607 * Third Row
2608 * only need to see if we have write/execute on directory.
2609 */
2610
2611 dzp_error = zfs_zaccess_common(dzp, ACE_EXECUTE|ACE_WRITE_DATA,
2612 &dzp_working_mode, &dzpcheck_privs, B_FALSE, cr);
2613
2614 if (dzp_error != 0 && !dzpcheck_privs)
2615 return (dzp_error);
2616
2617 /*
2618 * Fourth row
2619 */
2620
2621 available_perms = (dzp_working_mode & ACE_WRITE_DATA) ? 0 : VWRITE;
2622 available_perms |= (dzp_working_mode & ACE_EXECUTE) ? 0 : VEXEC;
2623
2624 return (zfs_delete_final_check(zp, dzp, available_perms, cr));
2625
2626 }
2627
2628 int
zfs_zaccess_rename(znode_t * sdzp,znode_t * szp,znode_t * tdzp,znode_t * tzp,cred_t * cr,zidmap_t * mnt_ns)2629 zfs_zaccess_rename(znode_t *sdzp, znode_t *szp, znode_t *tdzp,
2630 znode_t *tzp, cred_t *cr, zidmap_t *mnt_ns)
2631 {
2632 int add_perm;
2633 int error;
2634
2635 if (szp->z_pflags & ZFS_AV_QUARANTINED)
2636 return (SET_ERROR(EACCES));
2637
2638 add_perm = (ZTOV(szp)->v_type == VDIR) ?
2639 ACE_ADD_SUBDIRECTORY : ACE_ADD_FILE;
2640
2641 /*
2642 * Rename permissions are combination of delete permission +
2643 * add file/subdir permission.
2644 *
2645 * BSD operating systems also require write permission
2646 * on the directory being moved from one parent directory
2647 * to another.
2648 */
2649 if (ZTOV(szp)->v_type == VDIR && ZTOV(sdzp) != ZTOV(tdzp)) {
2650 if ((error = zfs_zaccess(szp, ACE_WRITE_DATA, 0, B_FALSE, cr,
2651 mnt_ns)))
2652 return (error);
2653 }
2654
2655 /*
2656 * first make sure we do the delete portion.
2657 *
2658 * If that succeeds then check for add_file/add_subdir permissions
2659 */
2660
2661 if ((error = zfs_zaccess_delete(sdzp, szp, cr, mnt_ns)))
2662 return (error);
2663
2664 /*
2665 * If we have a tzp, see if we can delete it?
2666 */
2667 if (tzp && (error = zfs_zaccess_delete(tdzp, tzp, cr, mnt_ns)))
2668 return (error);
2669
2670 /*
2671 * Now check for add permissions
2672 */
2673 error = zfs_zaccess(tdzp, add_perm, 0, B_FALSE, cr, mnt_ns);
2674
2675 return (error);
2676 }
2677