1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2014 by Chunwei Chen. All rights reserved.
24 * Copyright (c) 2019 by Delphix. All rights reserved.
25 * Copyright (c) 2023, 2024, Klara Inc.
26 */
27
28 #include <sys/abd_impl.h>
29 #include <sys/param.h>
30 #include <sys/zio.h>
31 #include <sys/arc.h>
32 #include <sys/zfs_context.h>
33 #include <sys/zfs_znode.h>
34
35 /*
36 * We're simulating scatter/gather with 4K allocations, since that's more like
37 * what a typical kernel does.
38 */
39 #define ABD_PAGESIZE (4096)
40 #define ABD_PAGESHIFT (12)
41 #define ABD_PAGEMASK (ABD_PAGESIZE-1)
42
43 /*
44 * See rationale in module/os/linux/zfs/abd_os.c, but in userspace this is
45 * mostly useful to get a mix of linear and scatter ABDs for testing.
46 */
47 #define ABD_SCATTER_MIN_SIZE (512 * 3)
48
49 abd_t *abd_zero_scatter = NULL;
50
51 static uint_t
abd_iovcnt_for_bytes(size_t size)52 abd_iovcnt_for_bytes(size_t size)
53 {
54 /*
55 * Each iovec points to a 4K page. There's no real reason to do this
56 * in userspace, but our whole point here is to make it feel a bit
57 * more like a real paged memory model.
58 */
59 return (P2ROUNDUP(size, ABD_PAGESIZE) / ABD_PAGESIZE);
60 }
61
62 abd_t *
abd_alloc_struct_impl(size_t size)63 abd_alloc_struct_impl(size_t size)
64 {
65 /*
66 * Zero-sized means it will be used for a linear or gang abd, so just
67 * allocate the abd itself and return.
68 */
69 if (size == 0)
70 return (umem_alloc(sizeof (abd_t), UMEM_NOFAIL));
71
72 /*
73 * Allocating for a scatter abd, so compute how many ABD_PAGESIZE
74 * iovecs we will need to hold this size. Append that allocation to the
75 * end. Note that struct abd_scatter has includes abd_iov[1], so we
76 * allocate one less iovec than we need.
77 *
78 * Note we're not allocating the pages proper, just the iovec pointers.
79 * That's down in abd_alloc_chunks. We _could_ do it here in a single
80 * allocation, but it's fiddly and harder to read for no real gain.
81 */
82 uint_t n = abd_iovcnt_for_bytes(size);
83 abd_t *abd = umem_alloc(sizeof (abd_t) + (n-1) * sizeof (struct iovec),
84 UMEM_NOFAIL);
85 ABD_SCATTER(abd).abd_offset = 0;
86 ABD_SCATTER(abd).abd_iovcnt = n;
87 return (abd);
88 }
89
90 void
abd_free_struct_impl(abd_t * abd)91 abd_free_struct_impl(abd_t *abd)
92 {
93 /* For scatter, compute the extra amount we need to free */
94 uint_t iovcnt =
95 abd_is_linear(abd) || abd_is_gang(abd) ?
96 0 : (ABD_SCATTER(abd).abd_iovcnt - 1);
97 umem_free(abd, sizeof (abd_t) + iovcnt * sizeof (struct iovec));
98 }
99
100 void
abd_alloc_chunks(abd_t * abd,size_t size)101 abd_alloc_chunks(abd_t *abd, size_t size)
102 {
103 /*
104 * We've already allocated the iovec array; ensure that the wanted size
105 * actually matches, otherwise the caller has made a mistake somewhere.
106 */
107 uint_t n = ABD_SCATTER(abd).abd_iovcnt;
108 ASSERT3U(n, ==, abd_iovcnt_for_bytes(size));
109
110 /*
111 * Allocate a ABD_PAGESIZE region for each iovec.
112 */
113 struct iovec *iov = ABD_SCATTER(abd).abd_iov;
114 for (int i = 0; i < n; i++) {
115 iov[i].iov_base =
116 umem_alloc_aligned(ABD_PAGESIZE, ABD_PAGESIZE, UMEM_NOFAIL);
117 iov[i].iov_len = ABD_PAGESIZE;
118 }
119 }
120
121 void
abd_free_chunks(abd_t * abd)122 abd_free_chunks(abd_t *abd)
123 {
124 uint_t n = ABD_SCATTER(abd).abd_iovcnt;
125 struct iovec *iov = ABD_SCATTER(abd).abd_iov;
126 for (int i = 0; i < n; i++)
127 umem_free_aligned(iov[i].iov_base, ABD_PAGESIZE);
128 }
129
130 boolean_t
abd_size_alloc_linear(size_t size)131 abd_size_alloc_linear(size_t size)
132 {
133 return (size < ABD_SCATTER_MIN_SIZE);
134 }
135
136 void
abd_update_scatter_stats(abd_t * abd,abd_stats_op_t op)137 abd_update_scatter_stats(abd_t *abd, abd_stats_op_t op)
138 {
139 ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
140 int waste = P2ROUNDUP(abd->abd_size, ABD_PAGESIZE) - abd->abd_size;
141 if (op == ABDSTAT_INCR) {
142 arc_space_consume(waste, ARC_SPACE_ABD_CHUNK_WASTE);
143 } else {
144 arc_space_return(waste, ARC_SPACE_ABD_CHUNK_WASTE);
145 }
146 }
147
148 void
abd_update_linear_stats(abd_t * abd,abd_stats_op_t op)149 abd_update_linear_stats(abd_t *abd, abd_stats_op_t op)
150 {
151 (void) abd;
152 (void) op;
153 ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
154 }
155
156 void
abd_verify_scatter(abd_t * abd)157 abd_verify_scatter(abd_t *abd)
158 {
159 #ifdef ZFS_DEBUG
160 /*
161 * scatter abds shall have:
162 * - at least one iovec
163 * - all iov_base point somewhere
164 * - all iov_len are ABD_PAGESIZE
165 * - offset set within the abd pages somewhere
166 */
167 uint_t n = ABD_SCATTER(abd).abd_iovcnt;
168 ASSERT3U(n, >, 0);
169
170 uint_t len = 0;
171 for (int i = 0; i < n; i++) {
172 ASSERT3P(ABD_SCATTER(abd).abd_iov[i].iov_base, !=, NULL);
173 ASSERT3U(ABD_SCATTER(abd).abd_iov[i].iov_len, ==, ABD_PAGESIZE);
174 len += ABD_PAGESIZE;
175 }
176
177 ASSERT3U(ABD_SCATTER(abd).abd_offset, <, len);
178 #endif
179 }
180
181 void
abd_init(void)182 abd_init(void)
183 {
184 /*
185 * Create the "zero" scatter abd. This is always the size of the
186 * largest possible block, but only actually has a single allocated
187 * page, which all iovecs in the abd point to.
188 */
189 abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
190 abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER;
191 abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
192
193 void *zero =
194 umem_alloc_aligned(ABD_PAGESIZE, ABD_PAGESIZE, UMEM_NOFAIL);
195 memset(zero, 0, ABD_PAGESIZE);
196
197 uint_t n = abd_iovcnt_for_bytes(SPA_MAXBLOCKSIZE);
198 struct iovec *iov = ABD_SCATTER(abd_zero_scatter).abd_iov;
199 for (int i = 0; i < n; i++) {
200 iov[i].iov_base = zero;
201 iov[i].iov_len = ABD_PAGESIZE;
202 }
203 }
204
205 void
abd_fini(void)206 abd_fini(void)
207 {
208 umem_free_aligned(
209 ABD_SCATTER(abd_zero_scatter).abd_iov[0].iov_base, ABD_PAGESIZE);
210 abd_free_struct(abd_zero_scatter);
211 abd_zero_scatter = NULL;
212 }
213
214 void
abd_free_linear_page(abd_t * abd)215 abd_free_linear_page(abd_t *abd)
216 {
217 /*
218 * LINEAR_PAGE is specific to the Linux kernel; we never set this
219 * flag, so this will never be called.
220 */
221 (void) abd;
222 PANIC("unreachable");
223 }
224
225 abd_t *
abd_alloc_for_io(size_t size,boolean_t is_metadata)226 abd_alloc_for_io(size_t size, boolean_t is_metadata)
227 {
228 return (abd_alloc(size, is_metadata));
229 }
230
231 abd_t *
abd_get_offset_scatter(abd_t * dabd,abd_t * sabd,size_t off,size_t size)232 abd_get_offset_scatter(abd_t *dabd, abd_t *sabd, size_t off, size_t size)
233 {
234
235 /*
236 * Create a new scatter dabd by borrowing data pages from sabd to cover
237 * off+size.
238 *
239 * sabd is an existing scatter abd with a set of iovecs, each covering
240 * an ABD_PAGESIZE (4K) allocation. It's "zero" is at abd_offset.
241 *
242 * [........][........][........][........]
243 * ^- sabd_offset
244 *
245 * We want to produce a new abd, referencing those allocations at the
246 * given offset.
247 *
248 * [........][........][........][........]
249 * ^- dabd_offset = sabd_offset + off
250 * ^- dabd_offset + size
251 *
252 * In this example, dabd needs three iovecs. The first iovec is offset
253 * 0, so the final dabd_offset is masked back into the first iovec.
254 *
255 * [........][........][........]
256 * ^- dabd_offset
257 */
258 size_t soff = ABD_SCATTER(sabd).abd_offset + off;
259 size_t doff = soff & ABD_PAGEMASK;
260 size_t iovcnt = abd_iovcnt_for_bytes(doff + size);
261
262 /*
263 * If the passed-in abd has enough allocated iovecs already, reuse it.
264 * Otherwise, make a new one. The caller will free the original if the
265 * one it gets back is not the same.
266 *
267 * Note that it's ok if we reuse an abd with more iovecs than we need.
268 * abd_size has the usable amount of data, and the abd does not own the
269 * pages referenced by the iovecs. At worst, they're holding dangling
270 * pointers that we'll never use anyway.
271 */
272 if (dabd == NULL || ABD_SCATTER(dabd).abd_iovcnt < iovcnt)
273 dabd = abd_alloc_struct(iovcnt << ABD_PAGESHIFT);
274
275 /* Set offset into first page in view */
276 ABD_SCATTER(dabd).abd_offset = doff;
277
278 /* Copy the wanted iovecs from the source to the dest */
279 memcpy(&ABD_SCATTER(dabd).abd_iov[0],
280 &ABD_SCATTER(sabd).abd_iov[soff >> ABD_PAGESHIFT],
281 iovcnt * sizeof (struct iovec));
282
283 return (dabd);
284 }
285
286 void
abd_iter_init(struct abd_iter * aiter,abd_t * abd)287 abd_iter_init(struct abd_iter *aiter, abd_t *abd)
288 {
289 ASSERT(!abd_is_gang(abd));
290 abd_verify(abd);
291 memset(aiter, 0, sizeof (struct abd_iter));
292 aiter->iter_abd = abd;
293 }
294
295 boolean_t
abd_iter_at_end(struct abd_iter * aiter)296 abd_iter_at_end(struct abd_iter *aiter)
297 {
298 ASSERT3U(aiter->iter_pos, <=, aiter->iter_abd->abd_size);
299 return (aiter->iter_pos == aiter->iter_abd->abd_size);
300 }
301
302 void
abd_iter_advance(struct abd_iter * aiter,size_t amount)303 abd_iter_advance(struct abd_iter *aiter, size_t amount)
304 {
305 ASSERT3P(aiter->iter_mapaddr, ==, NULL);
306 ASSERT0(aiter->iter_mapsize);
307
308 if (abd_iter_at_end(aiter))
309 return;
310
311 aiter->iter_pos += amount;
312 ASSERT3U(aiter->iter_pos, <=, aiter->iter_abd->abd_size);
313 }
314
315 void
abd_iter_map(struct abd_iter * aiter)316 abd_iter_map(struct abd_iter *aiter)
317 {
318 ASSERT3P(aiter->iter_mapaddr, ==, NULL);
319 ASSERT0(aiter->iter_mapsize);
320
321 if (abd_iter_at_end(aiter))
322 return;
323
324 if (abd_is_linear(aiter->iter_abd)) {
325 aiter->iter_mapaddr =
326 ABD_LINEAR_BUF(aiter->iter_abd) + aiter->iter_pos;
327 aiter->iter_mapsize =
328 aiter->iter_abd->abd_size - aiter->iter_pos;
329 return;
330 }
331
332 /*
333 * For scatter, we index into the appropriate iovec, and return the
334 * smaller of the amount requested, or up to the end of the page.
335 */
336 size_t poff = aiter->iter_pos + ABD_SCATTER(aiter->iter_abd).abd_offset;
337
338 ASSERT3U(poff >> ABD_PAGESHIFT, <=,
339 ABD_SCATTER(aiter->iter_abd).abd_iovcnt);
340 struct iovec *iov = &ABD_SCATTER(aiter->iter_abd).
341 abd_iov[poff >> ABD_PAGESHIFT];
342
343 aiter->iter_mapsize = MIN(ABD_PAGESIZE - (poff & ABD_PAGEMASK),
344 aiter->iter_abd->abd_size - aiter->iter_pos);
345 ASSERT3U(aiter->iter_mapsize, <=, ABD_PAGESIZE);
346
347 aiter->iter_mapaddr = iov->iov_base + (poff & ABD_PAGEMASK);
348 }
349
350 void
abd_iter_unmap(struct abd_iter * aiter)351 abd_iter_unmap(struct abd_iter *aiter)
352 {
353 if (abd_iter_at_end(aiter))
354 return;
355
356 ASSERT3P(aiter->iter_mapaddr, !=, NULL);
357 ASSERT3U(aiter->iter_mapsize, >, 0);
358
359 aiter->iter_mapaddr = NULL;
360 aiter->iter_mapsize = 0;
361 }
362
363 void
abd_cache_reap_now(void)364 abd_cache_reap_now(void)
365 {
366 }
367
368 /*
369 * Borrow a raw buffer from an ABD without copying the contents of the ABD
370 * into the buffer. If the ABD is scattered, this will alloate a raw buffer
371 * whose contents are undefined. To copy over the existing data in the ABD, use
372 * abd_borrow_buf_copy() instead.
373 */
374 void *
abd_borrow_buf(abd_t * abd,size_t n)375 abd_borrow_buf(abd_t *abd, size_t n)
376 {
377 void *buf;
378 abd_verify(abd);
379 ASSERT3U(abd->abd_size, >=, 0);
380 if (abd_is_linear(abd)) {
381 buf = abd_to_buf(abd);
382 } else {
383 buf = zio_buf_alloc(n);
384 }
385 #ifdef ZFS_DEBUG
386 (void) zfs_refcount_add_many(&abd->abd_children, n, buf);
387 #endif
388 return (buf);
389 }
390
391 void *
abd_borrow_buf_copy(abd_t * abd,size_t n)392 abd_borrow_buf_copy(abd_t *abd, size_t n)
393 {
394 void *buf = abd_borrow_buf(abd, n);
395 if (!abd_is_linear(abd)) {
396 abd_copy_to_buf(buf, abd, n);
397 }
398 return (buf);
399 }
400
401 /*
402 * Return a borrowed raw buffer to an ABD. If the ABD is scattered, this will
403 * no change the contents of the ABD and will ASSERT that you didn't modify
404 * the buffer since it was borrowed. If you want any changes you made to buf to
405 * be copied back to abd, use abd_return_buf_copy() instead.
406 */
407 void
abd_return_buf(abd_t * abd,void * buf,size_t n)408 abd_return_buf(abd_t *abd, void *buf, size_t n)
409 {
410 abd_verify(abd);
411 ASSERT3U(abd->abd_size, >=, n);
412 #ifdef ZFS_DEBUG
413 (void) zfs_refcount_remove_many(&abd->abd_children, n, buf);
414 #endif
415 if (abd_is_linear(abd)) {
416 ASSERT3P(buf, ==, abd_to_buf(abd));
417 } else {
418 ASSERT0(abd_cmp_buf(abd, buf, n));
419 zio_buf_free(buf, n);
420 }
421 }
422
423 void
abd_return_buf_copy(abd_t * abd,void * buf,size_t n)424 abd_return_buf_copy(abd_t *abd, void *buf, size_t n)
425 {
426 if (!abd_is_linear(abd)) {
427 abd_copy_from_buf(abd, buf, n);
428 }
429 abd_return_buf(abd, buf, n);
430 }
431