1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2017, Intel Corporation.
26 * Copyright (c) 2023-2025, Klara, Inc.
27 */
28
29 /*
30 * ZFS Fault Injector
31 *
32 * This userland component takes a set of options and uses libzpool to translate
33 * from a user-visible object type and name to an internal representation.
34 * There are two basic types of faults: device faults and data faults.
35 *
36 *
37 * DEVICE FAULTS
38 *
39 * Errors can be injected into a particular vdev using the '-d' option. This
40 * option takes a path or vdev GUID to uniquely identify the device within a
41 * pool. There are four types of errors that can be injected, IO, ENXIO,
42 * ECHILD, and EILSEQ. These can be controlled through the '-e' option and the
43 * default is ENXIO. For EIO failures, any attempt to read data from the device
44 * will return EIO, but a subsequent attempt to reopen the device will succeed.
45 * For ENXIO failures, any attempt to read from the device will return EIO, but
46 * any attempt to reopen the device will also return ENXIO. The EILSEQ failures
47 * only apply to read operations (-T read) and will flip a bit after the device
48 * has read the original data.
49 *
50 * For label faults, the -L option must be specified. This allows faults
51 * to be injected into either the nvlist, uberblock, pad1, or pad2 region
52 * of all the labels for the specified device.
53 *
54 * This form of the command looks like:
55 *
56 * zinject -d device [-e errno] [-L <uber | nvlist | pad1 | pad2>] pool
57 *
58 *
59 * DATA FAULTS
60 *
61 * We begin with a tuple of the form:
62 *
63 * <type,level,range,object>
64 *
65 * type A string describing the type of data to target. Each type
66 * implicitly describes how to interpret 'object'. Currently,
67 * the following values are supported:
68 *
69 * data User data for a file
70 * dnode Dnode for a file or directory
71 *
72 * The following MOS objects are special. Instead of injecting
73 * errors on a particular object or blkid, we inject errors across
74 * all objects of the given type.
75 *
76 * mos Any data in the MOS
77 * mosdir object directory
78 * config pool configuration
79 * bpobj blkptr list
80 * spacemap spacemap
81 * metaslab metaslab
82 * errlog persistent error log
83 *
84 * level Object level. Defaults to '0', not applicable to all types. If
85 * a range is given, this corresponds to the indirect block
86 * corresponding to the specific range.
87 *
88 * range A numerical range [start,end) within the object. Defaults to
89 * the full size of the file.
90 *
91 * object A string describing the logical location of the object. For
92 * files and directories (currently the only supported types),
93 * this is the path of the object on disk.
94 *
95 * This is translated, via libzpool, into the following internal representation:
96 *
97 * <type,objset,object,level,range>
98 *
99 * These types should be self-explanatory. This tuple is then passed to the
100 * kernel via a special ioctl() to initiate fault injection for the given
101 * object. Note that 'type' is not strictly necessary for fault injection, but
102 * is used when translating existing faults into a human-readable string.
103 *
104 *
105 * The command itself takes one of the forms:
106 *
107 * zinject
108 * zinject <-a | -u pool>
109 * zinject -c <id|all>
110 * zinject [-q] <-t type> [-f freq] [-u] [-a] [-m] [-e errno] [-l level]
111 * [-r range] <object>
112 * zinject [-f freq] [-a] [-m] [-u] -b objset:object:level:start:end pool
113 *
114 * With no arguments, the command prints all currently registered injection
115 * handlers, with their numeric identifiers.
116 *
117 * The '-c' option will clear the given handler, or all handlers if 'all' is
118 * specified.
119 *
120 * The '-e' option takes a string describing the errno to simulate. This must
121 * be one of 'io', 'checksum', 'decompress', or 'decrypt'. In most cases this
122 * will result in the same behavior, but RAID-Z will produce a different set of
123 * ereports for this situation.
124 *
125 * The '-a', '-u', and '-m' flags toggle internal flush behavior. If '-a' is
126 * specified, then the ARC cache is flushed appropriately. If '-u' is
127 * specified, then the underlying SPA is unloaded. Either of these flags can be
128 * specified independently of any other handlers. The '-m' flag automatically
129 * does an unmount and remount of the underlying dataset to aid in flushing the
130 * cache.
131 *
132 * The '-f' flag controls the frequency of errors injected, expressed as a
133 * real number percentage between 0.0001 and 100. The default is 100.
134 *
135 * The this form is responsible for actually injecting the handler into the
136 * framework. It takes the arguments described above, translates them to the
137 * internal tuple using libzpool, and then issues an ioctl() to register the
138 * handler.
139 *
140 * The final form can target a specific bookmark, regardless of whether a
141 * human-readable interface has been designed. It allows developers to specify
142 * a particular block by number.
143 */
144
145 #include <errno.h>
146 #include <fcntl.h>
147 #include <stdio.h>
148 #include <stdlib.h>
149 #include <string.h>
150 #include <strings.h>
151 #include <unistd.h>
152
153 #include <sys/fs/zfs.h>
154 #include <sys/mount.h>
155
156 #include <libzfs.h>
157
158 #undef verify /* both libzfs.h and zfs_context.h want to define this */
159
160 #include "zinject.h"
161
162 libzfs_handle_t *g_zfs;
163 int zfs_fd;
164
165 static const char *const errtable[TYPE_INVAL] = {
166 "data",
167 "dnode",
168 "mos",
169 "mosdir",
170 "metaslab",
171 "config",
172 "bpobj",
173 "spacemap",
174 "errlog",
175 "uber",
176 "nvlist",
177 "pad1",
178 "pad2"
179 };
180
181 static err_type_t
name_to_type(const char * arg)182 name_to_type(const char *arg)
183 {
184 int i;
185 for (i = 0; i < TYPE_INVAL; i++)
186 if (strcmp(errtable[i], arg) == 0)
187 return (i);
188
189 return (TYPE_INVAL);
190 }
191
192 static const char *
type_to_name(uint64_t type)193 type_to_name(uint64_t type)
194 {
195 switch (type) {
196 case DMU_OT_OBJECT_DIRECTORY:
197 return ("mosdir");
198 case DMU_OT_OBJECT_ARRAY:
199 return ("metaslab");
200 case DMU_OT_PACKED_NVLIST:
201 return ("config");
202 case DMU_OT_BPOBJ:
203 return ("bpobj");
204 case DMU_OT_SPACE_MAP:
205 return ("spacemap");
206 case DMU_OT_ERROR_LOG:
207 return ("errlog");
208 default:
209 return ("-");
210 }
211 }
212
213 struct errstr {
214 int err;
215 const char *str;
216 };
217 static const struct errstr errstrtable[] = {
218 { EIO, "io" },
219 { ECKSUM, "checksum" },
220 { EINVAL, "decompress" },
221 { EACCES, "decrypt" },
222 { ENXIO, "nxio" },
223 { ECHILD, "dtl" },
224 { EILSEQ, "corrupt" },
225 { ENOSYS, "noop" },
226 { 0, NULL },
227 };
228
229 static int
str_to_err(const char * str)230 str_to_err(const char *str)
231 {
232 for (int i = 0; errstrtable[i].str != NULL; i++)
233 if (strcasecmp(errstrtable[i].str, str) == 0)
234 return (errstrtable[i].err);
235 return (-1);
236 }
237 static const char *
err_to_str(int err)238 err_to_str(int err)
239 {
240 for (int i = 0; errstrtable[i].str != NULL; i++)
241 if (errstrtable[i].err == err)
242 return (errstrtable[i].str);
243 return ("[unknown]");
244 }
245
246 static const char *const iotypestrtable[ZINJECT_IOTYPES] = {
247 [ZINJECT_IOTYPE_NULL] = "null",
248 [ZINJECT_IOTYPE_READ] = "read",
249 [ZINJECT_IOTYPE_WRITE] = "write",
250 [ZINJECT_IOTYPE_FREE] = "free",
251 [ZINJECT_IOTYPE_CLAIM] = "claim",
252 [ZINJECT_IOTYPE_FLUSH] = "flush",
253 [ZINJECT_IOTYPE_TRIM] = "trim",
254 [ZINJECT_IOTYPE_ALL] = "all",
255 [ZINJECT_IOTYPE_PROBE] = "probe",
256 };
257
258 static zinject_iotype_t
str_to_iotype(const char * arg)259 str_to_iotype(const char *arg)
260 {
261 for (uint_t iotype = 0; iotype < ZINJECT_IOTYPES; iotype++)
262 if (iotypestrtable[iotype] != NULL &&
263 strcasecmp(iotypestrtable[iotype], arg) == 0)
264 return (iotype);
265 return (ZINJECT_IOTYPES);
266 }
267
268 static const char *
iotype_to_str(zinject_iotype_t iotype)269 iotype_to_str(zinject_iotype_t iotype)
270 {
271 if (iotype >= ZINJECT_IOTYPES || iotypestrtable[iotype] == NULL)
272 return ("[unknown]");
273 return (iotypestrtable[iotype]);
274 }
275
276 /*
277 * Print usage message.
278 */
279 void
usage(void)280 usage(void)
281 {
282 (void) printf(
283 "usage:\n"
284 "\n"
285 "\tzinject\n"
286 "\n"
287 "\t\tList all active injection records.\n"
288 "\n"
289 "\tzinject -c <id|all>\n"
290 "\n"
291 "\t\tClear the particular record (if given a numeric ID), or\n"
292 "\t\tall records if 'all' is specified.\n"
293 "\n"
294 "\tzinject -p <function name> pool\n"
295 "\t\tInject a panic fault at the specified function. Only \n"
296 "\t\tfunctions which call spa_vdev_config_exit(), or \n"
297 "\t\tspa_vdev_exit() will trigger a panic.\n"
298 "\n"
299 "\tzinject -d device [-e errno] [-L <nvlist|uber|pad1|pad2>] [-F]\n"
300 "\t\t[-T <read|write|free|claim|flush|all>] [-f frequency] pool\n\n"
301 "\t\tInject a fault into a particular device or the device's\n"
302 "\t\tlabel. Label injection can either be 'nvlist', 'uber',\n "
303 "\t\t'pad1', or 'pad2'.\n"
304 "\t\t'errno' can be 'nxio' (the default), 'io', 'dtl',\n"
305 "\t\t'corrupt' (bit flip), or 'noop' (successfully do nothing).\n"
306 "\t\t'frequency' is a value between 0.0001 and 100.0 that limits\n"
307 "\t\tdevice error injection to a percentage of the IOs.\n"
308 "\n"
309 "\tzinject -d device -A <degrade|fault> -D <delay secs> pool\n"
310 "\t\tPerform a specific action on a particular device.\n"
311 "\n"
312 "\tzinject -d device -D latency:lanes pool\n"
313 "\n"
314 "\t\tAdd an artificial delay to IO requests on a particular\n"
315 "\t\tdevice, such that the requests take a minimum of 'latency'\n"
316 "\t\tmilliseconds to complete. Each delay has an associated\n"
317 "\t\tnumber of 'lanes' which defines the number of concurrent\n"
318 "\t\tIO requests that can be processed.\n"
319 "\n"
320 "\t\tFor example, with a single lane delay of 10 ms (-D 10:1),\n"
321 "\t\tthe device will only be able to service a single IO request\n"
322 "\t\tat a time with each request taking 10 ms to complete. So,\n"
323 "\t\tif only a single request is submitted every 10 ms, the\n"
324 "\t\taverage latency will be 10 ms; but if more than one request\n"
325 "\t\tis submitted every 10 ms, the average latency will be more\n"
326 "\t\tthan 10 ms.\n"
327 "\n"
328 "\t\tSimilarly, if a delay of 10 ms is specified to have two\n"
329 "\t\tlanes (-D 10:2), then the device will be able to service\n"
330 "\t\ttwo requests at a time, each with a minimum latency of\n"
331 "\t\t10 ms. So, if two requests are submitted every 10 ms, then\n"
332 "\t\tthe average latency will be 10 ms; but if more than two\n"
333 "\t\trequests are submitted every 10 ms, the average latency\n"
334 "\t\twill be more than 10 ms.\n"
335 "\n"
336 "\t\tAlso note, these delays are additive. So two invocations\n"
337 "\t\tof '-D 10:1', is roughly equivalent to a single invocation\n"
338 "\t\tof '-D 10:2'. This also means, one can specify multiple\n"
339 "\t\tlanes with differing target latencies. For example, an\n"
340 "\t\tinvocation of '-D 10:1' followed by '-D 25:2' will\n"
341 "\t\tcreate 3 lanes on the device; one lane with a latency\n"
342 "\t\tof 10 ms and two lanes with a 25 ms latency.\n"
343 "\n"
344 "\tzinject -P import|export -s <seconds> pool\n"
345 "\t\tAdd an artificial delay to a future pool import or export,\n"
346 "\t\tsuch that the operation takes a minimum of supplied seconds\n"
347 "\t\tto complete.\n"
348 "\n"
349 "\tzinject -I [-s <seconds> | -g <txgs>] pool\n"
350 "\t\tCause the pool to stop writing blocks yet not\n"
351 "\t\treport errors for a duration. Simulates buggy hardware\n"
352 "\t\tthat fails to honor cache flush requests.\n"
353 "\t\tDefault duration is 30 seconds. The machine is panicked\n"
354 "\t\tat the end of the duration.\n"
355 "\n"
356 "\tzinject -b objset:object:level:blkid pool\n"
357 "\n"
358 "\t\tInject an error into pool 'pool' with the numeric bookmark\n"
359 "\t\tspecified by the remaining tuple. Each number is in\n"
360 "\t\thexadecimal, and only one block can be specified.\n"
361 "\n"
362 "\tzinject [-q] <-t type> [-C dvas] [-e errno] [-l level]\n"
363 "\t\t[-r range] [-a] [-m] [-u] [-f freq] <object>\n"
364 "\n"
365 "\t\tInject an error into the object specified by the '-t' option\n"
366 "\t\tand the object descriptor. The 'object' parameter is\n"
367 "\t\tinterpreted depending on the '-t' option.\n"
368 "\n"
369 "\t\t-q\tQuiet mode. Only print out the handler number added.\n"
370 "\t\t-e\tInject a specific error. Must be one of 'io',\n"
371 "\t\t\t'checksum', 'decompress', or 'decrypt'. Default is 'io'.\n"
372 "\t\t-C\tInject the given error only into specific DVAs. The\n"
373 "\t\t\tDVAs should be specified as a list of 0-indexed DVAs\n"
374 "\t\t\tseparated by commas (ex. '0,2').\n"
375 "\t\t-l\tInject error at a particular block level. Default is "
376 "0.\n"
377 "\t\t-m\tAutomatically remount underlying filesystem.\n"
378 "\t\t-r\tInject error over a particular logical range of an\n"
379 "\t\t\tobject. Will be translated to the appropriate blkid\n"
380 "\t\t\trange according to the object's properties.\n"
381 "\t\t-a\tFlush the ARC cache. Can be specified without any\n"
382 "\t\t\tassociated object.\n"
383 "\t\t-u\tUnload the associated pool. Can be specified with only\n"
384 "\t\t\ta pool object.\n"
385 "\t\t-f\tOnly inject errors a fraction of the time. Expressed as\n"
386 "\t\t\ta percentage between 0.0001 and 100.\n"
387 "\n"
388 "\t-t data\t\tInject an error into the plain file contents of a\n"
389 "\t\t\tfile. The object must be specified as a complete path\n"
390 "\t\t\tto a file on a ZFS filesystem.\n"
391 "\n"
392 "\t-t dnode\tInject an error into the metadnode in the block\n"
393 "\t\t\tcorresponding to the dnode for a file or directory. The\n"
394 "\t\t\t'-r' option is incompatible with this mode. The object\n"
395 "\t\t\tis specified as a complete path to a file or directory\n"
396 "\t\t\ton a ZFS filesystem.\n"
397 "\n"
398 "\t-t <mos>\tInject errors into the MOS for objects of the given\n"
399 "\t\t\ttype. Valid types are: mos, mosdir, config, bpobj,\n"
400 "\t\t\tspacemap, metaslab, errlog. The only valid <object> is\n"
401 "\t\t\tthe poolname.\n");
402 }
403
404 static int
iter_handlers(int (* func)(int,const char *,zinject_record_t *,void *),void * data)405 iter_handlers(int (*func)(int, const char *, zinject_record_t *, void *),
406 void *data)
407 {
408 zfs_cmd_t zc = {"\0"};
409 int ret;
410
411 while (zfs_ioctl(g_zfs, ZFS_IOC_INJECT_LIST_NEXT, &zc) == 0)
412 if ((ret = func((int)zc.zc_guid, zc.zc_name,
413 &zc.zc_inject_record, data)) != 0)
414 return (ret);
415
416 if (errno != ENOENT) {
417 (void) fprintf(stderr, "Unable to list handlers: %s\n",
418 strerror(errno));
419 return (-1);
420 }
421
422 return (0);
423 }
424
425 static int
print_data_handler(int id,const char * pool,zinject_record_t * record,void * data)426 print_data_handler(int id, const char *pool, zinject_record_t *record,
427 void *data)
428 {
429 int *count = data;
430
431 if (record->zi_guid != 0 || record->zi_func[0] != '\0' ||
432 record->zi_duration != 0) {
433 return (0);
434 }
435
436 if (*count == 0) {
437 (void) printf("%3s %-15s %-6s %-6s %-8s %3s %-4s "
438 "%-15s %-6s %-15s\n", "ID", "POOL", "OBJSET", "OBJECT",
439 "TYPE", "LVL", "DVAs", "RANGE", "MATCH", "INJECT");
440 (void) printf("--- --------------- ------ "
441 "------ -------- --- ---- --------------- "
442 "------ ------\n");
443 }
444
445 *count += 1;
446
447 char rangebuf[32];
448 if (record->zi_start == 0 && record->zi_end == -1ULL)
449 snprintf(rangebuf, sizeof (rangebuf), "all");
450 else
451 snprintf(rangebuf, sizeof (rangebuf), "[%llu, %llu]",
452 (u_longlong_t)record->zi_start,
453 (u_longlong_t)record->zi_end);
454
455
456 (void) printf("%3d %-15s %-6llu %-6llu %-8s %-3d 0x%02x %-15s "
457 "%6llu %6llu\n", id, pool, (u_longlong_t)record->zi_objset,
458 (u_longlong_t)record->zi_object, type_to_name(record->zi_type),
459 record->zi_level, record->zi_dvas, rangebuf,
460 (u_longlong_t)record->zi_match_count,
461 (u_longlong_t)record->zi_inject_count);
462
463 return (0);
464 }
465
466 static int
print_device_handler(int id,const char * pool,zinject_record_t * record,void * data)467 print_device_handler(int id, const char *pool, zinject_record_t *record,
468 void *data)
469 {
470 int *count = data;
471
472 if (record->zi_guid == 0 || record->zi_func[0] != '\0')
473 return (0);
474
475 if (record->zi_cmd == ZINJECT_DELAY_IO)
476 return (0);
477
478 if (*count == 0) {
479 (void) printf("%3s %-15s %-16s %-5s %-10s %-9s "
480 "%-6s %-6s\n",
481 "ID", "POOL", "GUID", "TYPE", "ERROR", "FREQ",
482 "MATCH", "INJECT");
483 (void) printf(
484 "--- --------------- ---------------- "
485 "----- ---------- --------- "
486 "------ ------\n");
487 }
488
489 *count += 1;
490
491 double freq = record->zi_freq == 0 ? 100.0f :
492 (((double)record->zi_freq) / ZI_PERCENTAGE_MAX) * 100.0f;
493
494 (void) printf("%3d %-15s %llx %-5s %-10s %8.4f%% "
495 "%6llu %6llu\n", id, pool, (u_longlong_t)record->zi_guid,
496 iotype_to_str(record->zi_iotype), err_to_str(record->zi_error),
497 freq, (u_longlong_t)record->zi_match_count,
498 (u_longlong_t)record->zi_inject_count);
499
500 return (0);
501 }
502
503 static int
print_delay_handler(int id,const char * pool,zinject_record_t * record,void * data)504 print_delay_handler(int id, const char *pool, zinject_record_t *record,
505 void *data)
506 {
507 int *count = data;
508
509 if (record->zi_guid == 0 || record->zi_func[0] != '\0')
510 return (0);
511
512 if (record->zi_cmd != ZINJECT_DELAY_IO)
513 return (0);
514
515 if (*count == 0) {
516 (void) printf("%3s %-15s %-16s %-10s %-5s %-9s "
517 "%-6s %-6s\n",
518 "ID", "POOL", "GUID", "DELAY (ms)", "LANES", "FREQ",
519 "MATCH", "INJECT");
520 (void) printf("--- --------------- ---------------- "
521 "---------- ----- --------- "
522 "------ ------\n");
523 }
524
525 *count += 1;
526
527 double freq = record->zi_freq == 0 ? 100.0f :
528 (((double)record->zi_freq) / ZI_PERCENTAGE_MAX) * 100.0f;
529
530 (void) printf("%3d %-15s %llx %10llu %5llu %8.4f%% "
531 "%6llu %6llu\n", id, pool, (u_longlong_t)record->zi_guid,
532 (u_longlong_t)NSEC2MSEC(record->zi_timer),
533 (u_longlong_t)record->zi_nlanes, freq,
534 (u_longlong_t)record->zi_match_count,
535 (u_longlong_t)record->zi_inject_count);
536
537 return (0);
538 }
539
540 static int
print_panic_handler(int id,const char * pool,zinject_record_t * record,void * data)541 print_panic_handler(int id, const char *pool, zinject_record_t *record,
542 void *data)
543 {
544 int *count = data;
545
546 if (record->zi_func[0] == '\0')
547 return (0);
548
549 if (*count == 0) {
550 (void) printf("%3s %-15s %s\n", "ID", "POOL", "FUNCTION");
551 (void) printf("--- --------------- ----------------\n");
552 }
553
554 *count += 1;
555
556 (void) printf("%3d %-15s %s\n", id, pool, record->zi_func);
557
558 return (0);
559 }
560
561 static int
print_pool_delay_handler(int id,const char * pool,zinject_record_t * record,void * data)562 print_pool_delay_handler(int id, const char *pool, zinject_record_t *record,
563 void *data)
564 {
565 int *count = data;
566
567 if (record->zi_cmd != ZINJECT_DELAY_IMPORT &&
568 record->zi_cmd != ZINJECT_DELAY_EXPORT) {
569 return (0);
570 }
571
572 if (*count == 0) {
573 (void) printf("%3s %-19s %-11s %s\n",
574 "ID", "POOL", "DELAY (sec)", "COMMAND");
575 (void) printf("--- ------------------- -----------"
576 " -------\n");
577 }
578
579 *count += 1;
580
581 (void) printf("%3d %-19s %-11llu %s\n",
582 id, pool, (u_longlong_t)record->zi_duration,
583 record->zi_cmd == ZINJECT_DELAY_IMPORT ? "import": "export");
584
585 return (0);
586 }
587
588 /*
589 * Print all registered error handlers. Returns the number of handlers
590 * registered.
591 */
592 static int
print_all_handlers(void)593 print_all_handlers(void)
594 {
595 int count = 0, total = 0;
596
597 (void) iter_handlers(print_device_handler, &count);
598 if (count > 0) {
599 total += count;
600 (void) printf("\n");
601 count = 0;
602 }
603
604 (void) iter_handlers(print_delay_handler, &count);
605 if (count > 0) {
606 total += count;
607 (void) printf("\n");
608 count = 0;
609 }
610
611 (void) iter_handlers(print_data_handler, &count);
612 if (count > 0) {
613 total += count;
614 (void) printf("\n");
615 count = 0;
616 }
617
618 (void) iter_handlers(print_pool_delay_handler, &count);
619 if (count > 0) {
620 total += count;
621 (void) printf("\n");
622 count = 0;
623 }
624
625 (void) iter_handlers(print_panic_handler, &count);
626
627 return (count + total);
628 }
629
630 static int
cancel_one_handler(int id,const char * pool,zinject_record_t * record,void * data)631 cancel_one_handler(int id, const char *pool, zinject_record_t *record,
632 void *data)
633 {
634 (void) pool, (void) record, (void) data;
635 zfs_cmd_t zc = {"\0"};
636
637 zc.zc_guid = (uint64_t)id;
638
639 if (zfs_ioctl(g_zfs, ZFS_IOC_CLEAR_FAULT, &zc) != 0) {
640 (void) fprintf(stderr, "failed to remove handler %d: %s\n",
641 id, strerror(errno));
642 return (1);
643 }
644
645 return (0);
646 }
647
648 /*
649 * Remove all fault injection handlers.
650 */
651 static int
cancel_all_handlers(void)652 cancel_all_handlers(void)
653 {
654 int ret = iter_handlers(cancel_one_handler, NULL);
655
656 if (ret == 0)
657 (void) printf("removed all registered handlers\n");
658
659 return (ret);
660 }
661
662 /*
663 * Remove a specific fault injection handler.
664 */
665 static int
cancel_handler(int id)666 cancel_handler(int id)
667 {
668 zfs_cmd_t zc = {"\0"};
669
670 zc.zc_guid = (uint64_t)id;
671
672 if (zfs_ioctl(g_zfs, ZFS_IOC_CLEAR_FAULT, &zc) != 0) {
673 (void) fprintf(stderr, "failed to remove handler %d: %s\n",
674 id, strerror(errno));
675 return (1);
676 }
677
678 (void) printf("removed handler %d\n", id);
679
680 return (0);
681 }
682
683 /*
684 * Register a new fault injection handler.
685 */
686 static int
register_handler(const char * pool,int flags,zinject_record_t * record,int quiet)687 register_handler(const char *pool, int flags, zinject_record_t *record,
688 int quiet)
689 {
690 zfs_cmd_t zc = {"\0"};
691
692 (void) strlcpy(zc.zc_name, pool, sizeof (zc.zc_name));
693 zc.zc_inject_record = *record;
694 zc.zc_guid = flags;
695
696 if (zfs_ioctl(g_zfs, ZFS_IOC_INJECT_FAULT, &zc) != 0) {
697 const char *errmsg = strerror(errno);
698
699 switch (errno) {
700 case EDOM:
701 errmsg = "block level exceeds max level of object";
702 break;
703 case EEXIST:
704 if (record->zi_cmd == ZINJECT_DELAY_IMPORT)
705 errmsg = "pool already imported";
706 if (record->zi_cmd == ZINJECT_DELAY_EXPORT)
707 errmsg = "a handler already exists";
708 break;
709 case ENOENT:
710 /* import delay injector running on older zfs module */
711 if (record->zi_cmd == ZINJECT_DELAY_IMPORT)
712 errmsg = "import delay injector not supported";
713 break;
714 default:
715 break;
716 }
717 (void) fprintf(stderr, "failed to add handler: %s\n", errmsg);
718 return (1);
719 }
720
721 if (flags & ZINJECT_NULL)
722 return (0);
723
724 if (quiet) {
725 (void) printf("%llu\n", (u_longlong_t)zc.zc_guid);
726 } else {
727 (void) printf("Added handler %llu with the following "
728 "properties:\n", (u_longlong_t)zc.zc_guid);
729 (void) printf(" pool: %s\n", pool);
730 if (record->zi_guid) {
731 (void) printf(" vdev: %llx\n",
732 (u_longlong_t)record->zi_guid);
733 } else if (record->zi_func[0] != '\0') {
734 (void) printf(" panic function: %s\n",
735 record->zi_func);
736 } else if (record->zi_duration > 0) {
737 (void) printf(" time: %lld seconds\n",
738 (u_longlong_t)record->zi_duration);
739 } else if (record->zi_duration < 0) {
740 (void) printf(" txgs: %lld \n",
741 (u_longlong_t)-record->zi_duration);
742 } else if (record->zi_timer > 0) {
743 (void) printf(" timer: %lld ms\n",
744 (u_longlong_t)NSEC2MSEC(record->zi_timer));
745 } else {
746 (void) printf("objset: %llu\n",
747 (u_longlong_t)record->zi_objset);
748 (void) printf("object: %llu\n",
749 (u_longlong_t)record->zi_object);
750 (void) printf(" type: %llu\n",
751 (u_longlong_t)record->zi_type);
752 (void) printf(" level: %d\n", record->zi_level);
753 if (record->zi_start == 0 &&
754 record->zi_end == -1ULL)
755 (void) printf(" range: all\n");
756 else
757 (void) printf(" range: [%llu, %llu)\n",
758 (u_longlong_t)record->zi_start,
759 (u_longlong_t)record->zi_end);
760 (void) printf(" dvas: 0x%x\n", record->zi_dvas);
761 }
762 }
763
764 return (0);
765 }
766
767 static int
perform_action(const char * pool,zinject_record_t * record,int cmd)768 perform_action(const char *pool, zinject_record_t *record, int cmd)
769 {
770 zfs_cmd_t zc = {"\0"};
771
772 ASSERT(cmd == VDEV_STATE_DEGRADED || cmd == VDEV_STATE_FAULTED);
773 (void) strlcpy(zc.zc_name, pool, sizeof (zc.zc_name));
774 zc.zc_guid = record->zi_guid;
775 zc.zc_cookie = cmd;
776
777 if (zfs_ioctl(g_zfs, ZFS_IOC_VDEV_SET_STATE, &zc) == 0)
778 return (0);
779
780 return (1);
781 }
782
783 static int
parse_delay(char * str,uint64_t * delay,uint64_t * nlanes)784 parse_delay(char *str, uint64_t *delay, uint64_t *nlanes)
785 {
786 unsigned long scan_delay;
787 unsigned long scan_nlanes;
788
789 if (sscanf(str, "%lu:%lu", &scan_delay, &scan_nlanes) != 2)
790 return (1);
791
792 /*
793 * We explicitly disallow a delay of zero here, because we key
794 * off this value being non-zero in translate_device(), to
795 * determine if the fault is a ZINJECT_DELAY_IO fault or not.
796 */
797 if (scan_delay == 0)
798 return (1);
799
800 /*
801 * The units for the CLI delay parameter is milliseconds, but
802 * the data passed to the kernel is interpreted as nanoseconds.
803 * Thus we scale the milliseconds to nanoseconds here, and this
804 * nanosecond value is used to pass the delay to the kernel.
805 */
806 *delay = MSEC2NSEC(scan_delay);
807 *nlanes = scan_nlanes;
808
809 return (0);
810 }
811
812 static int
parse_frequency(const char * str,uint32_t * percent)813 parse_frequency(const char *str, uint32_t *percent)
814 {
815 double val;
816 char *post;
817
818 val = strtod(str, &post);
819 if (post == NULL || *post != '\0')
820 return (EINVAL);
821
822 /* valid range is [0.0001, 100.0] */
823 val /= 100.0f;
824 if (val < 0.000001f || val > 1.0f)
825 return (ERANGE);
826
827 /* convert to an integer for use by kernel */
828 *percent = ((uint32_t)(val * ZI_PERCENTAGE_MAX));
829
830 return (0);
831 }
832
833 /*
834 * This function converts a string specifier for DVAs into a bit mask.
835 * The dva's provided by the user should be 0 indexed and separated by
836 * a comma. For example:
837 * "1" -> 0b0010 (0x2)
838 * "0,1" -> 0b0011 (0x3)
839 * "0,1,2" -> 0b0111 (0x7)
840 */
841 static int
parse_dvas(const char * str,uint32_t * dvas_out)842 parse_dvas(const char *str, uint32_t *dvas_out)
843 {
844 const char *c = str;
845 uint32_t mask = 0;
846 boolean_t need_delim = B_FALSE;
847
848 /* max string length is 5 ("0,1,2") */
849 if (strlen(str) > 5 || strlen(str) == 0)
850 return (EINVAL);
851
852 while (*c != '\0') {
853 switch (*c) {
854 case '0':
855 case '1':
856 case '2':
857 /* check for pipe between DVAs */
858 if (need_delim)
859 return (EINVAL);
860
861 /* check if this DVA has been set already */
862 if (mask & (1 << ((*c) - '0')))
863 return (EINVAL);
864
865 mask |= (1 << ((*c) - '0'));
866 need_delim = B_TRUE;
867 break;
868 case ',':
869 need_delim = B_FALSE;
870 break;
871 default:
872 /* check for invalid character */
873 return (EINVAL);
874 }
875 c++;
876 }
877
878 /* check for dangling delimiter */
879 if (!need_delim)
880 return (EINVAL);
881
882 *dvas_out = mask;
883 return (0);
884 }
885
886 int
main(int argc,char ** argv)887 main(int argc, char **argv)
888 {
889 int c;
890 char *range = NULL;
891 char *cancel = NULL;
892 char *end;
893 char *raw = NULL;
894 char *device = NULL;
895 int level = 0;
896 int quiet = 0;
897 int error = 0;
898 int domount = 0;
899 int io_type = ZINJECT_IOTYPE_ALL;
900 int action = VDEV_STATE_UNKNOWN;
901 err_type_t type = TYPE_INVAL;
902 err_type_t label = TYPE_INVAL;
903 zinject_record_t record = { 0 };
904 char pool[MAXNAMELEN] = "";
905 char dataset[MAXNAMELEN] = "";
906 zfs_handle_t *zhp = NULL;
907 int nowrites = 0;
908 int dur_txg = 0;
909 int dur_secs = 0;
910 int ret;
911 int flags = 0;
912 uint32_t dvas = 0;
913
914 if ((g_zfs = libzfs_init()) == NULL) {
915 (void) fprintf(stderr, "%s\n", libzfs_error_init(errno));
916 return (1);
917 }
918
919 libzfs_print_on_error(g_zfs, B_TRUE);
920
921 if ((zfs_fd = open(ZFS_DEV, O_RDWR)) < 0) {
922 (void) fprintf(stderr, "failed to open ZFS device\n");
923 libzfs_fini(g_zfs);
924 return (1);
925 }
926
927 if (argc == 1) {
928 /*
929 * No arguments. Print the available handlers. If there are no
930 * available handlers, direct the user to '-h' for help
931 * information.
932 */
933 if (print_all_handlers() == 0) {
934 (void) printf("No handlers registered.\n");
935 (void) printf("Run 'zinject -h' for usage "
936 "information.\n");
937 }
938 libzfs_fini(g_zfs);
939 return (0);
940 }
941
942 while ((c = getopt(argc, argv,
943 ":aA:b:C:d:D:f:Fg:qhIc:t:T:l:mr:s:e:uL:p:P:")) != -1) {
944 switch (c) {
945 case 'a':
946 flags |= ZINJECT_FLUSH_ARC;
947 break;
948 case 'A':
949 if (strcasecmp(optarg, "degrade") == 0) {
950 action = VDEV_STATE_DEGRADED;
951 } else if (strcasecmp(optarg, "fault") == 0) {
952 action = VDEV_STATE_FAULTED;
953 } else {
954 (void) fprintf(stderr, "invalid action '%s': "
955 "must be 'degrade' or 'fault'\n", optarg);
956 usage();
957 libzfs_fini(g_zfs);
958 return (1);
959 }
960 break;
961 case 'b':
962 raw = optarg;
963 break;
964 case 'c':
965 cancel = optarg;
966 break;
967 case 'C':
968 ret = parse_dvas(optarg, &dvas);
969 if (ret != 0) {
970 (void) fprintf(stderr, "invalid DVA list '%s': "
971 "DVAs should be 0 indexed and separated by "
972 "commas.\n", optarg);
973 usage();
974 libzfs_fini(g_zfs);
975 return (1);
976 }
977 break;
978 case 'd':
979 device = optarg;
980 break;
981 case 'D':
982 errno = 0;
983 ret = parse_delay(optarg, &record.zi_timer,
984 &record.zi_nlanes);
985 if (ret != 0) {
986
987 (void) fprintf(stderr, "invalid i/o delay "
988 "value: '%s'\n", optarg);
989 usage();
990 libzfs_fini(g_zfs);
991 return (1);
992 }
993 break;
994 case 'e':
995 error = str_to_err(optarg);
996 if (error < 0) {
997 (void) fprintf(stderr, "invalid error type "
998 "'%s': must be one of: io decompress "
999 "decrypt nxio dtl corrupt noop\n",
1000 optarg);
1001 usage();
1002 libzfs_fini(g_zfs);
1003 return (1);
1004 }
1005 break;
1006 case 'f':
1007 ret = parse_frequency(optarg, &record.zi_freq);
1008 if (ret != 0) {
1009 (void) fprintf(stderr, "%sfrequency value must "
1010 "be in the range [0.0001, 100.0]\n",
1011 ret == EINVAL ? "invalid value: " :
1012 ret == ERANGE ? "out of range: " : "");
1013 libzfs_fini(g_zfs);
1014 return (1);
1015 }
1016 break;
1017 case 'F':
1018 record.zi_failfast = B_TRUE;
1019 break;
1020 case 'g':
1021 dur_txg = 1;
1022 record.zi_duration = (int)strtol(optarg, &end, 10);
1023 if (record.zi_duration <= 0 || *end != '\0') {
1024 (void) fprintf(stderr, "invalid duration '%s': "
1025 "must be a positive integer\n", optarg);
1026 usage();
1027 libzfs_fini(g_zfs);
1028 return (1);
1029 }
1030 /* store duration of txgs as its negative */
1031 record.zi_duration *= -1;
1032 break;
1033 case 'h':
1034 usage();
1035 libzfs_fini(g_zfs);
1036 return (0);
1037 case 'I':
1038 /* default duration, if one hasn't yet been defined */
1039 nowrites = 1;
1040 if (dur_secs == 0 && dur_txg == 0)
1041 record.zi_duration = 30;
1042 break;
1043 case 'l':
1044 level = (int)strtol(optarg, &end, 10);
1045 if (*end != '\0') {
1046 (void) fprintf(stderr, "invalid level '%s': "
1047 "must be an integer\n", optarg);
1048 usage();
1049 libzfs_fini(g_zfs);
1050 return (1);
1051 }
1052 break;
1053 case 'm':
1054 domount = 1;
1055 break;
1056 case 'p':
1057 (void) strlcpy(record.zi_func, optarg,
1058 sizeof (record.zi_func));
1059 record.zi_cmd = ZINJECT_PANIC;
1060 break;
1061 case 'P':
1062 if (strcasecmp(optarg, "import") == 0) {
1063 record.zi_cmd = ZINJECT_DELAY_IMPORT;
1064 } else if (strcasecmp(optarg, "export") == 0) {
1065 record.zi_cmd = ZINJECT_DELAY_EXPORT;
1066 } else {
1067 (void) fprintf(stderr, "invalid command '%s': "
1068 "must be 'import' or 'export'\n", optarg);
1069 usage();
1070 libzfs_fini(g_zfs);
1071 return (1);
1072 }
1073 break;
1074 case 'q':
1075 quiet = 1;
1076 break;
1077 case 'r':
1078 range = optarg;
1079 flags |= ZINJECT_CALC_RANGE;
1080 break;
1081 case 's':
1082 dur_secs = 1;
1083 record.zi_duration = (int)strtol(optarg, &end, 10);
1084 if (record.zi_duration <= 0 || *end != '\0') {
1085 (void) fprintf(stderr, "invalid duration '%s': "
1086 "must be a positive integer\n", optarg);
1087 usage();
1088 libzfs_fini(g_zfs);
1089 return (1);
1090 }
1091 break;
1092 case 'T':
1093 io_type = str_to_iotype(optarg);
1094 if (io_type == ZINJECT_IOTYPES) {
1095 (void) fprintf(stderr, "invalid I/O type "
1096 "'%s': must be 'read', 'write', 'free', "
1097 "'claim', 'flush' or 'all'\n", optarg);
1098 usage();
1099 libzfs_fini(g_zfs);
1100 return (1);
1101 }
1102 break;
1103 case 't':
1104 if ((type = name_to_type(optarg)) == TYPE_INVAL &&
1105 !MOS_TYPE(type)) {
1106 (void) fprintf(stderr, "invalid type '%s'\n",
1107 optarg);
1108 usage();
1109 libzfs_fini(g_zfs);
1110 return (1);
1111 }
1112 break;
1113 case 'u':
1114 flags |= ZINJECT_UNLOAD_SPA;
1115 break;
1116 case 'L':
1117 if ((label = name_to_type(optarg)) == TYPE_INVAL &&
1118 !LABEL_TYPE(type)) {
1119 (void) fprintf(stderr, "invalid label type "
1120 "'%s'\n", optarg);
1121 usage();
1122 libzfs_fini(g_zfs);
1123 return (1);
1124 }
1125 break;
1126 case ':':
1127 (void) fprintf(stderr, "option -%c requires an "
1128 "operand\n", optopt);
1129 usage();
1130 libzfs_fini(g_zfs);
1131 return (1);
1132 case '?':
1133 (void) fprintf(stderr, "invalid option '%c'\n",
1134 optopt);
1135 usage();
1136 libzfs_fini(g_zfs);
1137 return (2);
1138 }
1139 }
1140
1141 argc -= optind;
1142 argv += optind;
1143
1144 if (record.zi_duration != 0 && record.zi_cmd == 0)
1145 record.zi_cmd = ZINJECT_IGNORED_WRITES;
1146
1147 if (cancel != NULL) {
1148 /*
1149 * '-c' is invalid with any other options.
1150 */
1151 if (raw != NULL || range != NULL || type != TYPE_INVAL ||
1152 level != 0 || record.zi_cmd != ZINJECT_UNINITIALIZED ||
1153 record.zi_freq > 0 || dvas != 0) {
1154 (void) fprintf(stderr, "cancel (-c) incompatible with "
1155 "any other options\n");
1156 usage();
1157 libzfs_fini(g_zfs);
1158 return (2);
1159 }
1160 if (argc != 0) {
1161 (void) fprintf(stderr, "extraneous argument to '-c'\n");
1162 usage();
1163 libzfs_fini(g_zfs);
1164 return (2);
1165 }
1166
1167 if (strcmp(cancel, "all") == 0) {
1168 return (cancel_all_handlers());
1169 } else {
1170 int id = (int)strtol(cancel, &end, 10);
1171 if (*end != '\0') {
1172 (void) fprintf(stderr, "invalid handle id '%s':"
1173 " must be an integer or 'all'\n", cancel);
1174 usage();
1175 libzfs_fini(g_zfs);
1176 return (1);
1177 }
1178 return (cancel_handler(id));
1179 }
1180 }
1181
1182 if (device != NULL) {
1183 /*
1184 * Device (-d) injection uses a completely different mechanism
1185 * for doing injection, so handle it separately here.
1186 */
1187 if (raw != NULL || range != NULL || type != TYPE_INVAL ||
1188 level != 0 || record.zi_cmd != ZINJECT_UNINITIALIZED ||
1189 dvas != 0) {
1190 (void) fprintf(stderr, "device (-d) incompatible with "
1191 "data error injection\n");
1192 usage();
1193 libzfs_fini(g_zfs);
1194 return (2);
1195 }
1196
1197 if (argc != 1) {
1198 (void) fprintf(stderr, "device (-d) injection requires "
1199 "a single pool name\n");
1200 usage();
1201 libzfs_fini(g_zfs);
1202 return (2);
1203 }
1204
1205 (void) strlcpy(pool, argv[0], sizeof (pool));
1206 dataset[0] = '\0';
1207
1208 if (error == ECKSUM) {
1209 (void) fprintf(stderr, "device error type must be "
1210 "'io', 'nxio' or 'corrupt'\n");
1211 libzfs_fini(g_zfs);
1212 return (1);
1213 }
1214
1215 if (error == EILSEQ &&
1216 (record.zi_freq == 0 || io_type != ZINJECT_IOTYPE_READ)) {
1217 (void) fprintf(stderr, "device corrupt errors require "
1218 "io type read and a frequency value\n");
1219 libzfs_fini(g_zfs);
1220 return (1);
1221 }
1222
1223 record.zi_iotype = io_type;
1224 if (translate_device(pool, device, label, &record) != 0) {
1225 libzfs_fini(g_zfs);
1226 return (1);
1227 }
1228
1229 if (record.zi_nlanes) {
1230 switch (io_type) {
1231 case ZINJECT_IOTYPE_READ:
1232 case ZINJECT_IOTYPE_WRITE:
1233 case ZINJECT_IOTYPE_ALL:
1234 break;
1235 default:
1236 (void) fprintf(stderr, "I/O type for a delay "
1237 "must be 'read' or 'write'\n");
1238 usage();
1239 libzfs_fini(g_zfs);
1240 return (1);
1241 }
1242 }
1243
1244 if (!error)
1245 error = ENXIO;
1246
1247 if (action != VDEV_STATE_UNKNOWN)
1248 return (perform_action(pool, &record, action));
1249
1250 } else if (raw != NULL) {
1251 if (range != NULL || type != TYPE_INVAL || level != 0 ||
1252 record.zi_cmd != ZINJECT_UNINITIALIZED ||
1253 record.zi_freq > 0 || dvas != 0) {
1254 (void) fprintf(stderr, "raw (-b) format with "
1255 "any other options\n");
1256 usage();
1257 libzfs_fini(g_zfs);
1258 return (2);
1259 }
1260
1261 if (argc != 1) {
1262 (void) fprintf(stderr, "raw (-b) format expects a "
1263 "single pool name\n");
1264 usage();
1265 libzfs_fini(g_zfs);
1266 return (2);
1267 }
1268
1269 (void) strlcpy(pool, argv[0], sizeof (pool));
1270 dataset[0] = '\0';
1271
1272 if (error == ENXIO) {
1273 (void) fprintf(stderr, "data error type must be "
1274 "'checksum' or 'io'\n");
1275 libzfs_fini(g_zfs);
1276 return (1);
1277 }
1278
1279 record.zi_cmd = ZINJECT_DATA_FAULT;
1280 if (translate_raw(raw, &record) != 0) {
1281 libzfs_fini(g_zfs);
1282 return (1);
1283 }
1284 if (!error)
1285 error = EIO;
1286 } else if (record.zi_cmd == ZINJECT_PANIC) {
1287 if (raw != NULL || range != NULL || type != TYPE_INVAL ||
1288 level != 0 || device != NULL || record.zi_freq > 0 ||
1289 dvas != 0) {
1290 (void) fprintf(stderr, "%s incompatible with other "
1291 "options\n", "import|export delay (-P)");
1292 usage();
1293 libzfs_fini(g_zfs);
1294 return (2);
1295 }
1296
1297 if (argc < 1 || argc > 2) {
1298 (void) fprintf(stderr, "panic (-p) injection requires "
1299 "a single pool name and an optional id\n");
1300 usage();
1301 libzfs_fini(g_zfs);
1302 return (2);
1303 }
1304
1305 (void) strlcpy(pool, argv[0], sizeof (pool));
1306 if (argv[1] != NULL)
1307 record.zi_type = atoi(argv[1]);
1308 dataset[0] = '\0';
1309 } else if (record.zi_cmd == ZINJECT_DELAY_IMPORT ||
1310 record.zi_cmd == ZINJECT_DELAY_EXPORT) {
1311 if (raw != NULL || range != NULL || type != TYPE_INVAL ||
1312 level != 0 || device != NULL || record.zi_freq > 0 ||
1313 dvas != 0) {
1314 (void) fprintf(stderr, "%s incompatible with other "
1315 "options\n", "import|export delay (-P)");
1316 usage();
1317 libzfs_fini(g_zfs);
1318 return (2);
1319 }
1320
1321 if (argc != 1 || record.zi_duration <= 0) {
1322 (void) fprintf(stderr, "import|export delay (-P) "
1323 "injection requires a duration (-s) and a single "
1324 "pool name\n");
1325 usage();
1326 libzfs_fini(g_zfs);
1327 return (2);
1328 }
1329
1330 (void) strlcpy(pool, argv[0], sizeof (pool));
1331 } else if (record.zi_cmd == ZINJECT_IGNORED_WRITES) {
1332 if (raw != NULL || range != NULL || type != TYPE_INVAL ||
1333 level != 0 || record.zi_freq > 0 || dvas != 0) {
1334 (void) fprintf(stderr, "hardware failure (-I) "
1335 "incompatible with other options\n");
1336 usage();
1337 libzfs_fini(g_zfs);
1338 return (2);
1339 }
1340
1341 if (nowrites == 0) {
1342 (void) fprintf(stderr, "-s or -g meaningless "
1343 "without -I (ignore writes)\n");
1344 usage();
1345 libzfs_fini(g_zfs);
1346 return (2);
1347 } else if (dur_secs && dur_txg) {
1348 (void) fprintf(stderr, "choose a duration either "
1349 "in seconds (-s) or a number of txgs (-g) "
1350 "but not both\n");
1351 usage();
1352 libzfs_fini(g_zfs);
1353 return (2);
1354 } else if (argc != 1) {
1355 (void) fprintf(stderr, "ignore writes (-I) "
1356 "injection requires a single pool name\n");
1357 usage();
1358 libzfs_fini(g_zfs);
1359 return (2);
1360 }
1361
1362 (void) strlcpy(pool, argv[0], sizeof (pool));
1363 dataset[0] = '\0';
1364 } else if (type == TYPE_INVAL) {
1365 if (flags == 0) {
1366 (void) fprintf(stderr, "at least one of '-b', '-d', "
1367 "'-t', '-a', '-p', '-I' or '-u' "
1368 "must be specified\n");
1369 usage();
1370 libzfs_fini(g_zfs);
1371 return (2);
1372 }
1373
1374 if (argc == 1 && (flags & ZINJECT_UNLOAD_SPA)) {
1375 (void) strlcpy(pool, argv[0], sizeof (pool));
1376 dataset[0] = '\0';
1377 } else if (argc != 0) {
1378 (void) fprintf(stderr, "extraneous argument for "
1379 "'-f'\n");
1380 usage();
1381 libzfs_fini(g_zfs);
1382 return (2);
1383 }
1384
1385 flags |= ZINJECT_NULL;
1386 } else {
1387 if (argc != 1) {
1388 (void) fprintf(stderr, "missing object\n");
1389 usage();
1390 libzfs_fini(g_zfs);
1391 return (2);
1392 }
1393
1394 if (error == ENXIO || error == EILSEQ) {
1395 (void) fprintf(stderr, "data error type must be "
1396 "'checksum' or 'io'\n");
1397 libzfs_fini(g_zfs);
1398 return (1);
1399 }
1400
1401 if (dvas != 0) {
1402 if (error == EACCES || error == EINVAL) {
1403 (void) fprintf(stderr, "the '-C' option may "
1404 "not be used with logical data errors "
1405 "'decrypt' and 'decompress'\n");
1406 libzfs_fini(g_zfs);
1407 return (1);
1408 }
1409
1410 record.zi_dvas = dvas;
1411 }
1412
1413 if (error == EACCES) {
1414 if (type != TYPE_DATA) {
1415 (void) fprintf(stderr, "decryption errors "
1416 "may only be injected for 'data' types\n");
1417 libzfs_fini(g_zfs);
1418 return (1);
1419 }
1420
1421 record.zi_cmd = ZINJECT_DECRYPT_FAULT;
1422 /*
1423 * Internally, ZFS actually uses ECKSUM for decryption
1424 * errors since EACCES is used to indicate the key was
1425 * not found.
1426 */
1427 error = ECKSUM;
1428 } else {
1429 record.zi_cmd = ZINJECT_DATA_FAULT;
1430 }
1431
1432 if (translate_record(type, argv[0], range, level, &record, pool,
1433 dataset) != 0) {
1434 libzfs_fini(g_zfs);
1435 return (1);
1436 }
1437 if (!error)
1438 error = EIO;
1439 }
1440
1441 /*
1442 * If this is pool-wide metadata, unmount everything. The ioctl() will
1443 * unload the pool, so that we trigger spa-wide reopen of metadata next
1444 * time we access the pool.
1445 */
1446 if (dataset[0] != '\0' && domount) {
1447 if ((zhp = zfs_open(g_zfs, dataset,
1448 ZFS_TYPE_DATASET)) == NULL) {
1449 libzfs_fini(g_zfs);
1450 return (1);
1451 }
1452 if (zfs_unmount(zhp, NULL, 0) != 0) {
1453 libzfs_fini(g_zfs);
1454 return (1);
1455 }
1456 }
1457
1458 record.zi_error = error;
1459
1460 ret = register_handler(pool, flags, &record, quiet);
1461
1462 if (dataset[0] != '\0' && domount)
1463 ret = (zfs_mount(zhp, NULL, 0) != 0);
1464
1465 libzfs_fini(g_zfs);
1466
1467 return (ret);
1468 }
1469