1 // SPDX-License-Identifier: ISC
2 /*
3 * Copyright (c) 2004-2011 Atheros Communications Inc.
4 * Copyright (c) 2011-2012,2017 Qualcomm Atheros, Inc.
5 * Copyright (c) 2016-2017 Erik Stromdahl <erik.stromdahl@gmail.com>
6 */
7
8 #include <linux/module.h>
9 #include <linux/mmc/card.h>
10 #include <linux/mmc/mmc.h>
11 #include <linux/mmc/host.h>
12 #include <linux/mmc/sdio_func.h>
13 #include <linux/mmc/sdio_ids.h>
14 #include <linux/mmc/sdio.h>
15 #include <linux/mmc/sd.h>
16 #include <linux/bitfield.h>
17 #include "core.h"
18 #include "bmi.h"
19 #include "debug.h"
20 #include "hif.h"
21 #include "htc.h"
22 #include "mac.h"
23 #include "targaddrs.h"
24 #include "trace.h"
25 #include "sdio.h"
26 #include "coredump.h"
27
28 void ath10k_sdio_fw_crashed_dump(struct ath10k *ar);
29
30 #define ATH10K_SDIO_VSG_BUF_SIZE (64 * 1024)
31
32 /* inlined helper functions */
33
ath10k_sdio_calc_txrx_padded_len(struct ath10k_sdio * ar_sdio,size_t len)34 static inline int ath10k_sdio_calc_txrx_padded_len(struct ath10k_sdio *ar_sdio,
35 size_t len)
36 {
37 return __ALIGN_MASK((len), ar_sdio->mbox_info.block_mask);
38 }
39
pipe_id_to_eid(u8 pipe_id)40 static inline enum ath10k_htc_ep_id pipe_id_to_eid(u8 pipe_id)
41 {
42 return (enum ath10k_htc_ep_id)pipe_id;
43 }
44
ath10k_sdio_mbox_free_rx_pkt(struct ath10k_sdio_rx_data * pkt)45 static inline void ath10k_sdio_mbox_free_rx_pkt(struct ath10k_sdio_rx_data *pkt)
46 {
47 dev_kfree_skb(pkt->skb);
48 pkt->skb = NULL;
49 pkt->alloc_len = 0;
50 pkt->act_len = 0;
51 pkt->trailer_only = false;
52 }
53
ath10k_sdio_mbox_alloc_rx_pkt(struct ath10k_sdio_rx_data * pkt,size_t act_len,size_t full_len,bool part_of_bundle,bool last_in_bundle)54 static inline int ath10k_sdio_mbox_alloc_rx_pkt(struct ath10k_sdio_rx_data *pkt,
55 size_t act_len, size_t full_len,
56 bool part_of_bundle,
57 bool last_in_bundle)
58 {
59 pkt->skb = dev_alloc_skb(full_len);
60 if (!pkt->skb)
61 return -ENOMEM;
62
63 pkt->act_len = act_len;
64 pkt->alloc_len = full_len;
65 pkt->part_of_bundle = part_of_bundle;
66 pkt->last_in_bundle = last_in_bundle;
67 pkt->trailer_only = false;
68
69 return 0;
70 }
71
is_trailer_only_msg(struct ath10k_sdio_rx_data * pkt)72 static inline bool is_trailer_only_msg(struct ath10k_sdio_rx_data *pkt)
73 {
74 bool trailer_only = false;
75 struct ath10k_htc_hdr *htc_hdr =
76 (struct ath10k_htc_hdr *)pkt->skb->data;
77 u16 len = __le16_to_cpu(htc_hdr->len);
78
79 if (len == htc_hdr->trailer_len)
80 trailer_only = true;
81
82 return trailer_only;
83 }
84
85 /* sdio/mmc functions */
86
ath10k_sdio_set_cmd52_arg(u32 * arg,u8 write,u8 raw,unsigned int address,unsigned char val)87 static inline void ath10k_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw,
88 unsigned int address,
89 unsigned char val)
90 {
91 *arg = FIELD_PREP(BIT(31), write) |
92 FIELD_PREP(BIT(27), raw) |
93 FIELD_PREP(BIT(26), 1) |
94 FIELD_PREP(GENMASK(25, 9), address) |
95 FIELD_PREP(BIT(8), 1) |
96 FIELD_PREP(GENMASK(7, 0), val);
97 }
98
ath10k_sdio_func0_cmd52_wr_byte(struct mmc_card * card,unsigned int address,unsigned char byte)99 static int ath10k_sdio_func0_cmd52_wr_byte(struct mmc_card *card,
100 unsigned int address,
101 unsigned char byte)
102 {
103 struct mmc_command io_cmd;
104
105 memset(&io_cmd, 0, sizeof(io_cmd));
106 ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte);
107 io_cmd.opcode = SD_IO_RW_DIRECT;
108 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
109
110 return mmc_wait_for_cmd(card->host, &io_cmd, 0);
111 }
112
ath10k_sdio_func0_cmd52_rd_byte(struct mmc_card * card,unsigned int address,unsigned char * byte)113 static int ath10k_sdio_func0_cmd52_rd_byte(struct mmc_card *card,
114 unsigned int address,
115 unsigned char *byte)
116 {
117 struct mmc_command io_cmd;
118 int ret;
119
120 memset(&io_cmd, 0, sizeof(io_cmd));
121 ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 0, 0, address, 0);
122 io_cmd.opcode = SD_IO_RW_DIRECT;
123 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
124
125 ret = mmc_wait_for_cmd(card->host, &io_cmd, 0);
126 if (!ret)
127 *byte = io_cmd.resp[0];
128
129 return ret;
130 }
131
ath10k_sdio_config(struct ath10k * ar)132 static int ath10k_sdio_config(struct ath10k *ar)
133 {
134 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
135 struct sdio_func *func = ar_sdio->func;
136 unsigned char byte, asyncintdelay = 2;
137 int ret;
138
139 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio configuration\n");
140
141 sdio_claim_host(func);
142
143 byte = 0;
144 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card,
145 SDIO_CCCR_DRIVE_STRENGTH,
146 &byte);
147
148 byte &= ~ATH10K_SDIO_DRIVE_DTSX_MASK;
149 byte |= FIELD_PREP(ATH10K_SDIO_DRIVE_DTSX_MASK,
150 ATH10K_SDIO_DRIVE_DTSX_TYPE_D);
151
152 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card,
153 SDIO_CCCR_DRIVE_STRENGTH,
154 byte);
155
156 byte = 0;
157 ret = ath10k_sdio_func0_cmd52_rd_byte(
158 func->card,
159 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR,
160 &byte);
161
162 byte |= (CCCR_SDIO_DRIVER_STRENGTH_ENABLE_A |
163 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_C |
164 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_D);
165
166 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card,
167 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR,
168 byte);
169 if (ret) {
170 ath10k_warn(ar, "failed to enable driver strength: %d\n", ret);
171 goto out;
172 }
173
174 byte = 0;
175 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card,
176 CCCR_SDIO_IRQ_MODE_REG_SDIO3,
177 &byte);
178
179 byte |= SDIO_IRQ_MODE_ASYNC_4BIT_IRQ_SDIO3;
180
181 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card,
182 CCCR_SDIO_IRQ_MODE_REG_SDIO3,
183 byte);
184 if (ret) {
185 ath10k_warn(ar, "failed to enable 4-bit async irq mode: %d\n",
186 ret);
187 goto out;
188 }
189
190 byte = 0;
191 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card,
192 CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS,
193 &byte);
194
195 byte &= ~CCCR_SDIO_ASYNC_INT_DELAY_MASK;
196 byte |= FIELD_PREP(CCCR_SDIO_ASYNC_INT_DELAY_MASK, asyncintdelay);
197
198 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card,
199 CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS,
200 byte);
201
202 /* give us some time to enable, in ms */
203 func->enable_timeout = 100;
204
205 ret = sdio_set_block_size(func, ar_sdio->mbox_info.block_size);
206 if (ret) {
207 ath10k_warn(ar, "failed to set sdio block size to %d: %d\n",
208 ar_sdio->mbox_info.block_size, ret);
209 goto out;
210 }
211
212 out:
213 sdio_release_host(func);
214 return ret;
215 }
216
ath10k_sdio_write32(struct ath10k * ar,u32 addr,u32 val)217 static int ath10k_sdio_write32(struct ath10k *ar, u32 addr, u32 val)
218 {
219 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
220 struct sdio_func *func = ar_sdio->func;
221 int ret;
222
223 sdio_claim_host(func);
224
225 sdio_writel(func, val, addr, &ret);
226 if (ret) {
227 ath10k_warn(ar, "failed to write 0x%x to address 0x%x: %d\n",
228 val, addr, ret);
229 goto out;
230 }
231
232 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write32 addr 0x%x val 0x%x\n",
233 addr, val);
234
235 out:
236 sdio_release_host(func);
237
238 return ret;
239 }
240
ath10k_sdio_writesb32(struct ath10k * ar,u32 addr,u32 val)241 static int ath10k_sdio_writesb32(struct ath10k *ar, u32 addr, u32 val)
242 {
243 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
244 struct sdio_func *func = ar_sdio->func;
245 __le32 *buf;
246 int ret;
247
248 buf = kzalloc(sizeof(*buf), GFP_KERNEL);
249 if (!buf)
250 return -ENOMEM;
251
252 *buf = cpu_to_le32(val);
253
254 sdio_claim_host(func);
255
256 ret = sdio_writesb(func, addr, buf, sizeof(*buf));
257 if (ret) {
258 ath10k_warn(ar, "failed to write value 0x%x to fixed sb address 0x%x: %d\n",
259 val, addr, ret);
260 goto out;
261 }
262
263 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio writesb32 addr 0x%x val 0x%x\n",
264 addr, val);
265
266 out:
267 sdio_release_host(func);
268
269 kfree(buf);
270
271 return ret;
272 }
273
ath10k_sdio_read32(struct ath10k * ar,u32 addr,u32 * val)274 static int ath10k_sdio_read32(struct ath10k *ar, u32 addr, u32 *val)
275 {
276 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
277 struct sdio_func *func = ar_sdio->func;
278 int ret;
279
280 sdio_claim_host(func);
281 *val = sdio_readl(func, addr, &ret);
282 if (ret) {
283 ath10k_warn(ar, "failed to read from address 0x%x: %d\n",
284 addr, ret);
285 goto out;
286 }
287
288 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read32 addr 0x%x val 0x%x\n",
289 addr, *val);
290
291 out:
292 sdio_release_host(func);
293
294 return ret;
295 }
296
ath10k_sdio_read(struct ath10k * ar,u32 addr,void * buf,size_t len)297 static int ath10k_sdio_read(struct ath10k *ar, u32 addr, void *buf, size_t len)
298 {
299 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
300 struct sdio_func *func = ar_sdio->func;
301 int ret;
302
303 sdio_claim_host(func);
304
305 ret = sdio_memcpy_fromio(func, buf, addr, len);
306 if (ret) {
307 ath10k_warn(ar, "failed to read from address 0x%x: %d\n",
308 addr, ret);
309 goto out;
310 }
311
312 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read addr 0x%x buf 0x%p len %zu\n",
313 addr, buf, len);
314 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio read ", buf, len);
315
316 out:
317 sdio_release_host(func);
318
319 return ret;
320 }
321
ath10k_sdio_write(struct ath10k * ar,u32 addr,const void * buf,size_t len)322 static int ath10k_sdio_write(struct ath10k *ar, u32 addr, const void *buf, size_t len)
323 {
324 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
325 struct sdio_func *func = ar_sdio->func;
326 int ret;
327
328 sdio_claim_host(func);
329
330 /* For some reason toio() doesn't have const for the buffer, need
331 * an ugly hack to workaround that.
332 */
333 ret = sdio_memcpy_toio(func, addr, (void *)buf, len);
334 if (ret) {
335 ath10k_warn(ar, "failed to write to address 0x%x: %d\n",
336 addr, ret);
337 goto out;
338 }
339
340 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write addr 0x%x buf 0x%p len %zu\n",
341 addr, buf, len);
342 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio write ", buf, len);
343
344 out:
345 sdio_release_host(func);
346
347 return ret;
348 }
349
ath10k_sdio_readsb(struct ath10k * ar,u32 addr,void * buf,size_t len)350 static int ath10k_sdio_readsb(struct ath10k *ar, u32 addr, void *buf, size_t len)
351 {
352 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
353 struct sdio_func *func = ar_sdio->func;
354 int ret;
355
356 sdio_claim_host(func);
357
358 len = round_down(len, ar_sdio->mbox_info.block_size);
359
360 ret = sdio_readsb(func, buf, addr, len);
361 if (ret) {
362 ath10k_warn(ar, "failed to read from fixed (sb) address 0x%x: %d\n",
363 addr, ret);
364 goto out;
365 }
366
367 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio readsb addr 0x%x buf 0x%p len %zu\n",
368 addr, buf, len);
369 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio readsb ", buf, len);
370
371 out:
372 sdio_release_host(func);
373
374 return ret;
375 }
376
377 /* HIF mbox functions */
378
ath10k_sdio_mbox_rx_process_packet(struct ath10k * ar,struct ath10k_sdio_rx_data * pkt,u32 * lookaheads,int * n_lookaheads)379 static int ath10k_sdio_mbox_rx_process_packet(struct ath10k *ar,
380 struct ath10k_sdio_rx_data *pkt,
381 u32 *lookaheads,
382 int *n_lookaheads)
383 {
384 struct ath10k_htc *htc = &ar->htc;
385 struct sk_buff *skb = pkt->skb;
386 struct ath10k_htc_hdr *htc_hdr = (struct ath10k_htc_hdr *)skb->data;
387 bool trailer_present = htc_hdr->flags & ATH10K_HTC_FLAG_TRAILER_PRESENT;
388 enum ath10k_htc_ep_id eid;
389 u8 *trailer;
390 int ret;
391
392 if (trailer_present) {
393 trailer = skb->data + skb->len - htc_hdr->trailer_len;
394
395 eid = pipe_id_to_eid(htc_hdr->eid);
396
397 ret = ath10k_htc_process_trailer(htc,
398 trailer,
399 htc_hdr->trailer_len,
400 eid,
401 lookaheads,
402 n_lookaheads);
403 if (ret)
404 return ret;
405
406 if (is_trailer_only_msg(pkt))
407 pkt->trailer_only = true;
408
409 skb_trim(skb, skb->len - htc_hdr->trailer_len);
410 }
411
412 skb_pull(skb, sizeof(*htc_hdr));
413
414 return 0;
415 }
416
ath10k_sdio_mbox_rx_process_packets(struct ath10k * ar,u32 lookaheads[],int * n_lookahead)417 static int ath10k_sdio_mbox_rx_process_packets(struct ath10k *ar,
418 u32 lookaheads[],
419 int *n_lookahead)
420 {
421 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
422 struct ath10k_htc *htc = &ar->htc;
423 struct ath10k_sdio_rx_data *pkt;
424 struct ath10k_htc_ep *ep;
425 struct ath10k_skb_rxcb *cb;
426 enum ath10k_htc_ep_id id;
427 int ret, i, *n_lookahead_local;
428 u32 *lookaheads_local;
429 int lookahead_idx = 0;
430
431 for (i = 0; i < ar_sdio->n_rx_pkts; i++) {
432 lookaheads_local = lookaheads;
433 n_lookahead_local = n_lookahead;
434
435 id = ((struct ath10k_htc_hdr *)
436 &lookaheads[lookahead_idx++])->eid;
437
438 if (id >= ATH10K_HTC_EP_COUNT) {
439 ath10k_warn(ar, "invalid endpoint in look-ahead: %d\n",
440 id);
441 ret = -ENOMEM;
442 goto out;
443 }
444
445 ep = &htc->endpoint[id];
446
447 if (ep->service_id == 0) {
448 ath10k_warn(ar, "ep %d is not connected\n", id);
449 ret = -ENOMEM;
450 goto out;
451 }
452
453 pkt = &ar_sdio->rx_pkts[i];
454
455 if (pkt->part_of_bundle && !pkt->last_in_bundle) {
456 /* Only read lookahead's from RX trailers
457 * for the last packet in a bundle.
458 */
459 lookahead_idx--;
460 lookaheads_local = NULL;
461 n_lookahead_local = NULL;
462 }
463
464 ret = ath10k_sdio_mbox_rx_process_packet(ar,
465 pkt,
466 lookaheads_local,
467 n_lookahead_local);
468 if (ret)
469 goto out;
470
471 if (!pkt->trailer_only) {
472 cb = ATH10K_SKB_RXCB(pkt->skb);
473 cb->eid = id;
474
475 skb_queue_tail(&ar_sdio->rx_head, pkt->skb);
476 queue_work(ar->workqueue_aux,
477 &ar_sdio->async_work_rx);
478 } else {
479 kfree_skb(pkt->skb);
480 }
481
482 /* The RX complete handler now owns the skb...*/
483 pkt->skb = NULL;
484 pkt->alloc_len = 0;
485 }
486
487 ret = 0;
488
489 out:
490 /* Free all packets that was not passed on to the RX completion
491 * handler...
492 */
493 for (; i < ar_sdio->n_rx_pkts; i++)
494 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]);
495
496 return ret;
497 }
498
ath10k_sdio_mbox_alloc_bundle(struct ath10k * ar,struct ath10k_sdio_rx_data * rx_pkts,struct ath10k_htc_hdr * htc_hdr,size_t full_len,size_t act_len,size_t * bndl_cnt)499 static int ath10k_sdio_mbox_alloc_bundle(struct ath10k *ar,
500 struct ath10k_sdio_rx_data *rx_pkts,
501 struct ath10k_htc_hdr *htc_hdr,
502 size_t full_len, size_t act_len,
503 size_t *bndl_cnt)
504 {
505 int ret, i;
506 u8 max_msgs = ar->htc.max_msgs_per_htc_bundle;
507
508 *bndl_cnt = ath10k_htc_get_bundle_count(max_msgs, htc_hdr->flags);
509
510 if (*bndl_cnt > max_msgs) {
511 ath10k_warn(ar,
512 "HTC bundle length %u exceeds maximum %u\n",
513 le16_to_cpu(htc_hdr->len),
514 max_msgs);
515 return -ENOMEM;
516 }
517
518 /* Allocate bndl_cnt extra skb's for the bundle.
519 * The package containing the
520 * ATH10K_HTC_FLAG_BUNDLE_MASK flag is not included
521 * in bndl_cnt. The skb for that packet will be
522 * allocated separately.
523 */
524 for (i = 0; i < *bndl_cnt; i++) {
525 ret = ath10k_sdio_mbox_alloc_rx_pkt(&rx_pkts[i],
526 act_len,
527 full_len,
528 true,
529 false);
530 if (ret)
531 return ret;
532 }
533
534 return 0;
535 }
536
ath10k_sdio_mbox_rx_alloc(struct ath10k * ar,u32 lookaheads[],int n_lookaheads)537 static int ath10k_sdio_mbox_rx_alloc(struct ath10k *ar,
538 u32 lookaheads[], int n_lookaheads)
539 {
540 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
541 struct ath10k_htc_hdr *htc_hdr;
542 size_t full_len, act_len;
543 bool last_in_bundle;
544 int ret, i;
545 int pkt_cnt = 0;
546
547 if (n_lookaheads > ATH10K_SDIO_MAX_RX_MSGS) {
548 ath10k_warn(ar, "the total number of pkts to be fetched (%u) exceeds maximum %u\n",
549 n_lookaheads, ATH10K_SDIO_MAX_RX_MSGS);
550 ret = -ENOMEM;
551 goto err;
552 }
553
554 for (i = 0; i < n_lookaheads; i++) {
555 htc_hdr = (struct ath10k_htc_hdr *)&lookaheads[i];
556 last_in_bundle = false;
557
558 if (le16_to_cpu(htc_hdr->len) > ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH) {
559 ath10k_warn(ar, "payload length %d exceeds max htc length: %zu\n",
560 le16_to_cpu(htc_hdr->len),
561 ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH);
562 ret = -ENOMEM;
563
564 ath10k_core_start_recovery(ar);
565 ath10k_warn(ar, "exceeds length, start recovery\n");
566
567 goto err;
568 }
569
570 act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr);
571 full_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio, act_len);
572
573 if (full_len > ATH10K_SDIO_MAX_BUFFER_SIZE) {
574 ath10k_warn(ar, "rx buffer requested with invalid htc_hdr length (%d, 0x%x): %d\n",
575 htc_hdr->eid, htc_hdr->flags,
576 le16_to_cpu(htc_hdr->len));
577 ret = -EINVAL;
578 goto err;
579 }
580
581 if (ath10k_htc_get_bundle_count(
582 ar->htc.max_msgs_per_htc_bundle, htc_hdr->flags)) {
583 /* HTC header indicates that every packet to follow
584 * has the same padded length so that it can be
585 * optimally fetched as a full bundle.
586 */
587 size_t bndl_cnt;
588
589 ret = ath10k_sdio_mbox_alloc_bundle(ar,
590 &ar_sdio->rx_pkts[pkt_cnt],
591 htc_hdr,
592 full_len,
593 act_len,
594 &bndl_cnt);
595
596 if (ret) {
597 ath10k_warn(ar, "failed to allocate a bundle: %d\n",
598 ret);
599 goto err;
600 }
601
602 pkt_cnt += bndl_cnt;
603
604 /* next buffer will be the last in the bundle */
605 last_in_bundle = true;
606 }
607
608 /* Allocate skb for packet. If the packet had the
609 * ATH10K_HTC_FLAG_BUNDLE_MASK flag set, all bundled
610 * packet skb's have been allocated in the previous step.
611 */
612 if (htc_hdr->flags & ATH10K_HTC_FLAGS_RECV_1MORE_BLOCK)
613 full_len += ATH10K_HIF_MBOX_BLOCK_SIZE;
614
615 ret = ath10k_sdio_mbox_alloc_rx_pkt(&ar_sdio->rx_pkts[pkt_cnt],
616 act_len,
617 full_len,
618 last_in_bundle,
619 last_in_bundle);
620 if (ret) {
621 ath10k_warn(ar, "alloc_rx_pkt error %d\n", ret);
622 goto err;
623 }
624
625 pkt_cnt++;
626 }
627
628 ar_sdio->n_rx_pkts = pkt_cnt;
629
630 return 0;
631
632 err:
633 for (i = 0; i < ATH10K_SDIO_MAX_RX_MSGS; i++) {
634 if (!ar_sdio->rx_pkts[i].alloc_len)
635 break;
636 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]);
637 }
638
639 return ret;
640 }
641
ath10k_sdio_mbox_rx_fetch(struct ath10k * ar)642 static int ath10k_sdio_mbox_rx_fetch(struct ath10k *ar)
643 {
644 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
645 struct ath10k_sdio_rx_data *pkt = &ar_sdio->rx_pkts[0];
646 struct sk_buff *skb = pkt->skb;
647 struct ath10k_htc_hdr *htc_hdr;
648 int ret;
649
650 ret = ath10k_sdio_readsb(ar, ar_sdio->mbox_info.htc_addr,
651 skb->data, pkt->alloc_len);
652 if (ret)
653 goto err;
654
655 htc_hdr = (struct ath10k_htc_hdr *)skb->data;
656 pkt->act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr);
657
658 if (pkt->act_len > pkt->alloc_len) {
659 ret = -EINVAL;
660 goto err;
661 }
662
663 skb_put(skb, pkt->act_len);
664 return 0;
665
666 err:
667 ar_sdio->n_rx_pkts = 0;
668 ath10k_sdio_mbox_free_rx_pkt(pkt);
669
670 return ret;
671 }
672
ath10k_sdio_mbox_rx_fetch_bundle(struct ath10k * ar)673 static int ath10k_sdio_mbox_rx_fetch_bundle(struct ath10k *ar)
674 {
675 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
676 struct ath10k_sdio_rx_data *pkt;
677 struct ath10k_htc_hdr *htc_hdr;
678 int ret, i;
679 u32 pkt_offset, virt_pkt_len;
680
681 virt_pkt_len = 0;
682 for (i = 0; i < ar_sdio->n_rx_pkts; i++)
683 virt_pkt_len += ar_sdio->rx_pkts[i].alloc_len;
684
685 if (virt_pkt_len > ATH10K_SDIO_VSG_BUF_SIZE) {
686 ath10k_warn(ar, "sdio vsg buffer size limit: %d\n", virt_pkt_len);
687 ret = -E2BIG;
688 goto err;
689 }
690
691 ret = ath10k_sdio_readsb(ar, ar_sdio->mbox_info.htc_addr,
692 ar_sdio->vsg_buffer, virt_pkt_len);
693 if (ret) {
694 ath10k_warn(ar, "failed to read bundle packets: %d", ret);
695 goto err;
696 }
697
698 pkt_offset = 0;
699 for (i = 0; i < ar_sdio->n_rx_pkts; i++) {
700 pkt = &ar_sdio->rx_pkts[i];
701 htc_hdr = (struct ath10k_htc_hdr *)(ar_sdio->vsg_buffer + pkt_offset);
702 pkt->act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr);
703
704 if (pkt->act_len > pkt->alloc_len) {
705 ret = -EINVAL;
706 goto err;
707 }
708
709 skb_put_data(pkt->skb, htc_hdr, pkt->act_len);
710 pkt_offset += pkt->alloc_len;
711 }
712
713 return 0;
714
715 err:
716 /* Free all packets that was not successfully fetched. */
717 for (i = 0; i < ar_sdio->n_rx_pkts; i++)
718 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]);
719
720 ar_sdio->n_rx_pkts = 0;
721
722 return ret;
723 }
724
725 /* This is the timeout for mailbox processing done in the sdio irq
726 * handler. The timeout is deliberately set quite high since SDIO dump logs
727 * over serial port can/will add a substantial overhead to the processing
728 * (if enabled).
729 */
730 #define SDIO_MBOX_PROCESSING_TIMEOUT_HZ (20 * HZ)
731
ath10k_sdio_mbox_rxmsg_pending_handler(struct ath10k * ar,u32 msg_lookahead,bool * done)732 static int ath10k_sdio_mbox_rxmsg_pending_handler(struct ath10k *ar,
733 u32 msg_lookahead, bool *done)
734 {
735 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
736 u32 lookaheads[ATH10K_SDIO_MAX_RX_MSGS];
737 int n_lookaheads = 1;
738 unsigned long timeout;
739 int ret;
740
741 *done = true;
742
743 /* Copy the lookahead obtained from the HTC register table into our
744 * temp array as a start value.
745 */
746 lookaheads[0] = msg_lookahead;
747
748 timeout = jiffies + SDIO_MBOX_PROCESSING_TIMEOUT_HZ;
749 do {
750 /* Try to allocate as many HTC RX packets indicated by
751 * n_lookaheads.
752 */
753 ret = ath10k_sdio_mbox_rx_alloc(ar, lookaheads,
754 n_lookaheads);
755 if (ret)
756 break;
757
758 if (ar_sdio->n_rx_pkts >= 2)
759 /* A recv bundle was detected, force IRQ status
760 * re-check again.
761 */
762 *done = false;
763
764 if (ar_sdio->n_rx_pkts > 1)
765 ret = ath10k_sdio_mbox_rx_fetch_bundle(ar);
766 else
767 ret = ath10k_sdio_mbox_rx_fetch(ar);
768
769 /* Process fetched packets. This will potentially update
770 * n_lookaheads depending on if the packets contain lookahead
771 * reports.
772 */
773 n_lookaheads = 0;
774 ret = ath10k_sdio_mbox_rx_process_packets(ar,
775 lookaheads,
776 &n_lookaheads);
777
778 if (!n_lookaheads || ret)
779 break;
780
781 /* For SYNCH processing, if we get here, we are running
782 * through the loop again due to updated lookaheads. Set
783 * flag that we should re-check IRQ status registers again
784 * before leaving IRQ processing, this can net better
785 * performance in high throughput situations.
786 */
787 *done = false;
788 } while (time_before(jiffies, timeout));
789
790 if (ret && (ret != -ECANCELED))
791 ath10k_warn(ar, "failed to get pending recv messages: %d\n",
792 ret);
793
794 return ret;
795 }
796
ath10k_sdio_mbox_proc_dbg_intr(struct ath10k * ar)797 static int ath10k_sdio_mbox_proc_dbg_intr(struct ath10k *ar)
798 {
799 u32 val;
800 int ret;
801
802 /* TODO: Add firmware crash handling */
803 ath10k_warn(ar, "firmware crashed\n");
804
805 /* read counter to clear the interrupt, the debug error interrupt is
806 * counter 0.
807 */
808 ret = ath10k_sdio_read32(ar, MBOX_COUNT_DEC_ADDRESS, &val);
809 if (ret)
810 ath10k_warn(ar, "failed to clear debug interrupt: %d\n", ret);
811
812 return ret;
813 }
814
ath10k_sdio_mbox_proc_counter_intr(struct ath10k * ar)815 static int ath10k_sdio_mbox_proc_counter_intr(struct ath10k *ar)
816 {
817 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
818 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
819 u8 counter_int_status;
820 int ret;
821
822 mutex_lock(&irq_data->mtx);
823 counter_int_status = irq_data->irq_proc_reg->counter_int_status &
824 irq_data->irq_en_reg->cntr_int_status_en;
825
826 /* NOTE: other modules like GMBOX may use the counter interrupt for
827 * credit flow control on other counters, we only need to check for
828 * the debug assertion counter interrupt.
829 */
830 if (counter_int_status & ATH10K_SDIO_TARGET_DEBUG_INTR_MASK)
831 ret = ath10k_sdio_mbox_proc_dbg_intr(ar);
832 else
833 ret = 0;
834
835 mutex_unlock(&irq_data->mtx);
836
837 return ret;
838 }
839
ath10k_sdio_mbox_proc_err_intr(struct ath10k * ar)840 static int ath10k_sdio_mbox_proc_err_intr(struct ath10k *ar)
841 {
842 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
843 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
844 u8 error_int_status;
845 int ret;
846
847 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio error interrupt\n");
848
849 error_int_status = irq_data->irq_proc_reg->error_int_status & 0x0F;
850 if (!error_int_status) {
851 ath10k_warn(ar, "invalid error interrupt status: 0x%x\n",
852 error_int_status);
853 return -EIO;
854 }
855
856 ath10k_dbg(ar, ATH10K_DBG_SDIO,
857 "sdio error_int_status 0x%x\n", error_int_status);
858
859 if (FIELD_GET(MBOX_ERROR_INT_STATUS_WAKEUP_MASK,
860 error_int_status))
861 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio interrupt error wakeup\n");
862
863 if (FIELD_GET(MBOX_ERROR_INT_STATUS_RX_UNDERFLOW_MASK,
864 error_int_status))
865 ath10k_warn(ar, "rx underflow interrupt error\n");
866
867 if (FIELD_GET(MBOX_ERROR_INT_STATUS_TX_OVERFLOW_MASK,
868 error_int_status))
869 ath10k_warn(ar, "tx overflow interrupt error\n");
870
871 /* Clear the interrupt */
872 irq_data->irq_proc_reg->error_int_status &= ~error_int_status;
873
874 /* set W1C value to clear the interrupt, this hits the register first */
875 ret = ath10k_sdio_writesb32(ar, MBOX_ERROR_INT_STATUS_ADDRESS,
876 error_int_status);
877 if (ret) {
878 ath10k_warn(ar, "unable to write to error int status address: %d\n",
879 ret);
880 return ret;
881 }
882
883 return 0;
884 }
885
ath10k_sdio_mbox_proc_cpu_intr(struct ath10k * ar)886 static int ath10k_sdio_mbox_proc_cpu_intr(struct ath10k *ar)
887 {
888 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
889 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
890 u8 cpu_int_status;
891 int ret;
892
893 mutex_lock(&irq_data->mtx);
894 cpu_int_status = irq_data->irq_proc_reg->cpu_int_status &
895 irq_data->irq_en_reg->cpu_int_status_en;
896 if (!cpu_int_status) {
897 ath10k_warn(ar, "CPU interrupt status is zero\n");
898 ret = -EIO;
899 goto out;
900 }
901
902 /* Clear the interrupt */
903 irq_data->irq_proc_reg->cpu_int_status &= ~cpu_int_status;
904
905 /* Set up the register transfer buffer to hit the register 4 times,
906 * this is done to make the access 4-byte aligned to mitigate issues
907 * with host bus interconnects that restrict bus transfer lengths to
908 * be a multiple of 4-bytes.
909 *
910 * Set W1C value to clear the interrupt, this hits the register first.
911 */
912 ret = ath10k_sdio_writesb32(ar, MBOX_CPU_INT_STATUS_ADDRESS,
913 cpu_int_status);
914 if (ret) {
915 ath10k_warn(ar, "unable to write to cpu interrupt status address: %d\n",
916 ret);
917 goto out;
918 }
919
920 out:
921 mutex_unlock(&irq_data->mtx);
922 if (cpu_int_status & MBOX_CPU_STATUS_ENABLE_ASSERT_MASK)
923 ath10k_sdio_fw_crashed_dump(ar);
924
925 return ret;
926 }
927
ath10k_sdio_mbox_read_int_status(struct ath10k * ar,u8 * host_int_status,u32 * lookahead)928 static int ath10k_sdio_mbox_read_int_status(struct ath10k *ar,
929 u8 *host_int_status,
930 u32 *lookahead)
931 {
932 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
933 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
934 struct ath10k_sdio_irq_proc_regs *irq_proc_reg = irq_data->irq_proc_reg;
935 struct ath10k_sdio_irq_enable_regs *irq_en_reg = irq_data->irq_en_reg;
936 u8 htc_mbox = FIELD_PREP(ATH10K_HTC_MAILBOX_MASK, 1);
937 int ret;
938
939 mutex_lock(&irq_data->mtx);
940
941 *lookahead = 0;
942 *host_int_status = 0;
943
944 /* int_status_en is supposed to be non zero, otherwise interrupts
945 * shouldn't be enabled. There is however a short time frame during
946 * initialization between the irq register and int_status_en init
947 * where this can happen.
948 * We silently ignore this condition.
949 */
950 if (!irq_en_reg->int_status_en) {
951 ret = 0;
952 goto out;
953 }
954
955 /* Read the first sizeof(struct ath10k_irq_proc_registers)
956 * bytes of the HTC register table. This
957 * will yield us the value of different int status
958 * registers and the lookahead registers.
959 */
960 ret = ath10k_sdio_read(ar, MBOX_HOST_INT_STATUS_ADDRESS,
961 irq_proc_reg, sizeof(*irq_proc_reg));
962 if (ret) {
963 ath10k_core_start_recovery(ar);
964 ath10k_warn(ar, "read int status fail, start recovery\n");
965 goto out;
966 }
967
968 /* Update only those registers that are enabled */
969 *host_int_status = irq_proc_reg->host_int_status &
970 irq_en_reg->int_status_en;
971
972 /* Look at mbox status */
973 if (!(*host_int_status & htc_mbox)) {
974 *lookahead = 0;
975 ret = 0;
976 goto out;
977 }
978
979 /* Mask out pending mbox value, we use look ahead as
980 * the real flag for mbox processing.
981 */
982 *host_int_status &= ~htc_mbox;
983 if (irq_proc_reg->rx_lookahead_valid & htc_mbox) {
984 *lookahead = le32_to_cpu(
985 irq_proc_reg->rx_lookahead[ATH10K_HTC_MAILBOX]);
986 if (!*lookahead)
987 ath10k_warn(ar, "sdio mbox lookahead is zero\n");
988 }
989
990 out:
991 mutex_unlock(&irq_data->mtx);
992 return ret;
993 }
994
ath10k_sdio_mbox_proc_pending_irqs(struct ath10k * ar,bool * done)995 static int ath10k_sdio_mbox_proc_pending_irqs(struct ath10k *ar,
996 bool *done)
997 {
998 u8 host_int_status;
999 u32 lookahead;
1000 int ret;
1001
1002 /* NOTE: HIF implementation guarantees that the context of this
1003 * call allows us to perform SYNCHRONOUS I/O, that is we can block,
1004 * sleep or call any API that can block or switch thread/task
1005 * contexts. This is a fully schedulable context.
1006 */
1007
1008 ret = ath10k_sdio_mbox_read_int_status(ar,
1009 &host_int_status,
1010 &lookahead);
1011 if (ret) {
1012 *done = true;
1013 goto out;
1014 }
1015
1016 if (!host_int_status && !lookahead) {
1017 ret = 0;
1018 *done = true;
1019 goto out;
1020 }
1021
1022 if (lookahead) {
1023 ath10k_dbg(ar, ATH10K_DBG_SDIO,
1024 "sdio pending mailbox msg lookahead 0x%08x\n",
1025 lookahead);
1026
1027 ret = ath10k_sdio_mbox_rxmsg_pending_handler(ar,
1028 lookahead,
1029 done);
1030 if (ret)
1031 goto out;
1032 }
1033
1034 /* now, handle the rest of the interrupts */
1035 ath10k_dbg(ar, ATH10K_DBG_SDIO,
1036 "sdio host_int_status 0x%x\n", host_int_status);
1037
1038 if (FIELD_GET(MBOX_HOST_INT_STATUS_CPU_MASK, host_int_status)) {
1039 /* CPU Interrupt */
1040 ret = ath10k_sdio_mbox_proc_cpu_intr(ar);
1041 if (ret)
1042 goto out;
1043 }
1044
1045 if (FIELD_GET(MBOX_HOST_INT_STATUS_ERROR_MASK, host_int_status)) {
1046 /* Error Interrupt */
1047 ret = ath10k_sdio_mbox_proc_err_intr(ar);
1048 if (ret)
1049 goto out;
1050 }
1051
1052 if (FIELD_GET(MBOX_HOST_INT_STATUS_COUNTER_MASK, host_int_status))
1053 /* Counter Interrupt */
1054 ret = ath10k_sdio_mbox_proc_counter_intr(ar);
1055
1056 ret = 0;
1057
1058 out:
1059 /* An optimization to bypass reading the IRQ status registers
1060 * unnecessarily which can re-wake the target, if upper layers
1061 * determine that we are in a low-throughput mode, we can rely on
1062 * taking another interrupt rather than re-checking the status
1063 * registers which can re-wake the target.
1064 *
1065 * NOTE : for host interfaces that makes use of detecting pending
1066 * mbox messages at hif can not use this optimization due to
1067 * possible side effects, SPI requires the host to drain all
1068 * messages from the mailbox before exiting the ISR routine.
1069 */
1070
1071 ath10k_dbg(ar, ATH10K_DBG_SDIO,
1072 "sdio pending irqs done %d status %d",
1073 *done, ret);
1074
1075 return ret;
1076 }
1077
ath10k_sdio_set_mbox_info(struct ath10k * ar)1078 static void ath10k_sdio_set_mbox_info(struct ath10k *ar)
1079 {
1080 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1081 struct ath10k_mbox_info *mbox_info = &ar_sdio->mbox_info;
1082 u16 device = ar_sdio->func->device, dev_id_base, dev_id_chiprev;
1083
1084 mbox_info->htc_addr = ATH10K_HIF_MBOX_BASE_ADDR;
1085 mbox_info->block_size = ATH10K_HIF_MBOX_BLOCK_SIZE;
1086 mbox_info->block_mask = ATH10K_HIF_MBOX_BLOCK_SIZE - 1;
1087 mbox_info->gmbox_addr = ATH10K_HIF_GMBOX_BASE_ADDR;
1088 mbox_info->gmbox_sz = ATH10K_HIF_GMBOX_WIDTH;
1089
1090 mbox_info->ext_info[0].htc_ext_addr = ATH10K_HIF_MBOX0_EXT_BASE_ADDR;
1091
1092 dev_id_base = (device & 0x0F00);
1093 dev_id_chiprev = (device & 0x00FF);
1094 switch (dev_id_base) {
1095 case (SDIO_DEVICE_ID_ATHEROS_AR6005 & 0x0F00):
1096 if (dev_id_chiprev < 4)
1097 mbox_info->ext_info[0].htc_ext_sz =
1098 ATH10K_HIF_MBOX0_EXT_WIDTH;
1099 else
1100 /* from QCA6174 2.0(0x504), the width has been extended
1101 * to 56K
1102 */
1103 mbox_info->ext_info[0].htc_ext_sz =
1104 ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0;
1105 break;
1106 case (SDIO_DEVICE_ID_ATHEROS_QCA9377 & 0x0F00):
1107 mbox_info->ext_info[0].htc_ext_sz =
1108 ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0;
1109 break;
1110 default:
1111 mbox_info->ext_info[0].htc_ext_sz =
1112 ATH10K_HIF_MBOX0_EXT_WIDTH;
1113 }
1114
1115 mbox_info->ext_info[1].htc_ext_addr =
1116 mbox_info->ext_info[0].htc_ext_addr +
1117 mbox_info->ext_info[0].htc_ext_sz +
1118 ATH10K_HIF_MBOX_DUMMY_SPACE_SIZE;
1119 mbox_info->ext_info[1].htc_ext_sz = ATH10K_HIF_MBOX1_EXT_WIDTH;
1120 }
1121
1122 /* BMI functions */
1123
ath10k_sdio_bmi_credits(struct ath10k * ar)1124 static int ath10k_sdio_bmi_credits(struct ath10k *ar)
1125 {
1126 u32 addr, cmd_credits;
1127 unsigned long timeout;
1128 int ret;
1129
1130 /* Read the counter register to get the command credits */
1131 addr = MBOX_COUNT_DEC_ADDRESS + ATH10K_HIF_MBOX_NUM_MAX * 4;
1132 timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
1133 cmd_credits = 0;
1134
1135 while (time_before(jiffies, timeout) && !cmd_credits) {
1136 /* Hit the credit counter with a 4-byte access, the first byte
1137 * read will hit the counter and cause a decrement, while the
1138 * remaining 3 bytes has no effect. The rationale behind this
1139 * is to make all HIF accesses 4-byte aligned.
1140 */
1141 ret = ath10k_sdio_read32(ar, addr, &cmd_credits);
1142 if (ret) {
1143 ath10k_warn(ar,
1144 "unable to decrement the command credit count register: %d\n",
1145 ret);
1146 return ret;
1147 }
1148
1149 /* The counter is only 8 bits.
1150 * Ignore anything in the upper 3 bytes
1151 */
1152 cmd_credits &= 0xFF;
1153 }
1154
1155 if (!cmd_credits) {
1156 ath10k_warn(ar, "bmi communication timeout\n");
1157 return -ETIMEDOUT;
1158 }
1159
1160 return 0;
1161 }
1162
ath10k_sdio_bmi_get_rx_lookahead(struct ath10k * ar)1163 static int ath10k_sdio_bmi_get_rx_lookahead(struct ath10k *ar)
1164 {
1165 unsigned long timeout;
1166 u32 rx_word;
1167 int ret;
1168
1169 timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
1170 rx_word = 0;
1171
1172 while ((time_before(jiffies, timeout)) && !rx_word) {
1173 ret = ath10k_sdio_read32(ar,
1174 MBOX_HOST_INT_STATUS_ADDRESS,
1175 &rx_word);
1176 if (ret) {
1177 ath10k_warn(ar, "unable to read RX_LOOKAHEAD_VALID: %d\n", ret);
1178 return ret;
1179 }
1180
1181 /* all we really want is one bit */
1182 rx_word &= 1;
1183 }
1184
1185 if (!rx_word) {
1186 ath10k_warn(ar, "bmi_recv_buf FIFO empty\n");
1187 return -EINVAL;
1188 }
1189
1190 return ret;
1191 }
1192
ath10k_sdio_bmi_exchange_msg(struct ath10k * ar,void * req,u32 req_len,void * resp,u32 * resp_len)1193 static int ath10k_sdio_bmi_exchange_msg(struct ath10k *ar,
1194 void *req, u32 req_len,
1195 void *resp, u32 *resp_len)
1196 {
1197 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1198 u32 addr;
1199 int ret;
1200
1201 if (req) {
1202 ret = ath10k_sdio_bmi_credits(ar);
1203 if (ret)
1204 return ret;
1205
1206 addr = ar_sdio->mbox_info.htc_addr;
1207
1208 memcpy(ar_sdio->bmi_buf, req, req_len);
1209 ret = ath10k_sdio_write(ar, addr, ar_sdio->bmi_buf, req_len);
1210 if (ret) {
1211 ath10k_warn(ar,
1212 "unable to send the bmi data to the device: %d\n",
1213 ret);
1214 return ret;
1215 }
1216 }
1217
1218 if (!resp || !resp_len)
1219 /* No response expected */
1220 return 0;
1221
1222 /* During normal bootup, small reads may be required.
1223 * Rather than issue an HIF Read and then wait as the Target
1224 * adds successive bytes to the FIFO, we wait here until
1225 * we know that response data is available.
1226 *
1227 * This allows us to cleanly timeout on an unexpected
1228 * Target failure rather than risk problems at the HIF level.
1229 * In particular, this avoids SDIO timeouts and possibly garbage
1230 * data on some host controllers. And on an interconnect
1231 * such as Compact Flash (as well as some SDIO masters) which
1232 * does not provide any indication on data timeout, it avoids
1233 * a potential hang or garbage response.
1234 *
1235 * Synchronization is more difficult for reads larger than the
1236 * size of the MBOX FIFO (128B), because the Target is unable
1237 * to push the 129th byte of data until AFTER the Host posts an
1238 * HIF Read and removes some FIFO data. So for large reads the
1239 * Host proceeds to post an HIF Read BEFORE all the data is
1240 * actually available to read. Fortunately, large BMI reads do
1241 * not occur in practice -- they're supported for debug/development.
1242 *
1243 * So Host/Target BMI synchronization is divided into these cases:
1244 * CASE 1: length < 4
1245 * Should not happen
1246 *
1247 * CASE 2: 4 <= length <= 128
1248 * Wait for first 4 bytes to be in FIFO
1249 * If CONSERVATIVE_BMI_READ is enabled, also wait for
1250 * a BMI command credit, which indicates that the ENTIRE
1251 * response is available in the FIFO
1252 *
1253 * CASE 3: length > 128
1254 * Wait for the first 4 bytes to be in FIFO
1255 *
1256 * For most uses, a small timeout should be sufficient and we will
1257 * usually see a response quickly; but there may be some unusual
1258 * (debug) cases of BMI_EXECUTE where we want an larger timeout.
1259 * For now, we use an unbounded busy loop while waiting for
1260 * BMI_EXECUTE.
1261 *
1262 * If BMI_EXECUTE ever needs to support longer-latency execution,
1263 * especially in production, this code needs to be enhanced to sleep
1264 * and yield. Also note that BMI_COMMUNICATION_TIMEOUT is currently
1265 * a function of Host processor speed.
1266 */
1267 ret = ath10k_sdio_bmi_get_rx_lookahead(ar);
1268 if (ret)
1269 return ret;
1270
1271 /* We always read from the start of the mbox address */
1272 addr = ar_sdio->mbox_info.htc_addr;
1273 ret = ath10k_sdio_read(ar, addr, ar_sdio->bmi_buf, *resp_len);
1274 if (ret) {
1275 ath10k_warn(ar,
1276 "unable to read the bmi data from the device: %d\n",
1277 ret);
1278 return ret;
1279 }
1280
1281 memcpy(resp, ar_sdio->bmi_buf, *resp_len);
1282
1283 return 0;
1284 }
1285
1286 /* sdio async handling functions */
1287
1288 static struct ath10k_sdio_bus_request
ath10k_sdio_alloc_busreq(struct ath10k * ar)1289 *ath10k_sdio_alloc_busreq(struct ath10k *ar)
1290 {
1291 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1292 struct ath10k_sdio_bus_request *bus_req;
1293
1294 spin_lock_bh(&ar_sdio->lock);
1295
1296 if (list_empty(&ar_sdio->bus_req_freeq)) {
1297 bus_req = NULL;
1298 goto out;
1299 }
1300
1301 bus_req = list_first_entry(&ar_sdio->bus_req_freeq,
1302 struct ath10k_sdio_bus_request, list);
1303 list_del(&bus_req->list);
1304
1305 out:
1306 spin_unlock_bh(&ar_sdio->lock);
1307 return bus_req;
1308 }
1309
ath10k_sdio_free_bus_req(struct ath10k * ar,struct ath10k_sdio_bus_request * bus_req)1310 static void ath10k_sdio_free_bus_req(struct ath10k *ar,
1311 struct ath10k_sdio_bus_request *bus_req)
1312 {
1313 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1314
1315 memset(bus_req, 0, sizeof(*bus_req));
1316
1317 spin_lock_bh(&ar_sdio->lock);
1318 list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq);
1319 spin_unlock_bh(&ar_sdio->lock);
1320 }
1321
__ath10k_sdio_write_async(struct ath10k * ar,struct ath10k_sdio_bus_request * req)1322 static void __ath10k_sdio_write_async(struct ath10k *ar,
1323 struct ath10k_sdio_bus_request *req)
1324 {
1325 struct ath10k_htc_ep *ep;
1326 struct sk_buff *skb;
1327 int ret;
1328
1329 skb = req->skb;
1330 ret = ath10k_sdio_write(ar, req->address, skb->data, skb->len);
1331 if (ret)
1332 ath10k_warn(ar, "failed to write skb to 0x%x asynchronously: %d",
1333 req->address, ret);
1334
1335 if (req->htc_msg) {
1336 ep = &ar->htc.endpoint[req->eid];
1337 ath10k_htc_notify_tx_completion(ep, skb);
1338 } else if (req->comp) {
1339 complete(req->comp);
1340 }
1341
1342 ath10k_sdio_free_bus_req(ar, req);
1343 }
1344
1345 /* To improve throughput use workqueue to deliver packets to HTC layer,
1346 * this way SDIO bus is utilised much better.
1347 */
ath10k_rx_indication_async_work(struct work_struct * work)1348 static void ath10k_rx_indication_async_work(struct work_struct *work)
1349 {
1350 struct ath10k_sdio *ar_sdio = container_of(work, struct ath10k_sdio,
1351 async_work_rx);
1352 struct ath10k *ar = ar_sdio->ar;
1353 struct ath10k_htc_ep *ep;
1354 struct ath10k_skb_rxcb *cb;
1355 struct sk_buff *skb;
1356
1357 while (true) {
1358 skb = skb_dequeue(&ar_sdio->rx_head);
1359 if (!skb)
1360 break;
1361 cb = ATH10K_SKB_RXCB(skb);
1362 ep = &ar->htc.endpoint[cb->eid];
1363 ep->ep_ops.ep_rx_complete(ar, skb);
1364 }
1365
1366 if (test_bit(ATH10K_FLAG_CORE_REGISTERED, &ar->dev_flags)) {
1367 local_bh_disable();
1368 napi_schedule(&ar->napi);
1369 local_bh_enable();
1370 }
1371 }
1372
ath10k_sdio_read_rtc_state(struct ath10k_sdio * ar_sdio,unsigned char * state)1373 static int ath10k_sdio_read_rtc_state(struct ath10k_sdio *ar_sdio, unsigned char *state)
1374 {
1375 struct ath10k *ar = ar_sdio->ar;
1376 unsigned char rtc_state = 0;
1377 int ret = 0;
1378
1379 rtc_state = sdio_f0_readb(ar_sdio->func, ATH10K_CIS_RTC_STATE_ADDR, &ret);
1380 if (ret) {
1381 ath10k_warn(ar, "failed to read rtc state: %d\n", ret);
1382 return ret;
1383 }
1384
1385 *state = rtc_state & 0x3;
1386
1387 return ret;
1388 }
1389
ath10k_sdio_set_mbox_sleep(struct ath10k * ar,bool enable_sleep)1390 static int ath10k_sdio_set_mbox_sleep(struct ath10k *ar, bool enable_sleep)
1391 {
1392 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1393 u32 val;
1394 int retry = ATH10K_CIS_READ_RETRY, ret = 0;
1395 unsigned char rtc_state = 0;
1396
1397 sdio_claim_host(ar_sdio->func);
1398
1399 ret = ath10k_sdio_read32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, &val);
1400 if (ret) {
1401 ath10k_warn(ar, "failed to read fifo/chip control register: %d\n",
1402 ret);
1403 goto release;
1404 }
1405
1406 if (enable_sleep) {
1407 val &= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_OFF;
1408 ar_sdio->mbox_state = SDIO_MBOX_SLEEP_STATE;
1409 } else {
1410 val |= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_ON;
1411 ar_sdio->mbox_state = SDIO_MBOX_AWAKE_STATE;
1412 }
1413
1414 ret = ath10k_sdio_write32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, val);
1415 if (ret) {
1416 ath10k_warn(ar, "failed to write to FIFO_TIMEOUT_AND_CHIP_CONTROL: %d",
1417 ret);
1418 }
1419
1420 if (!enable_sleep) {
1421 do {
1422 udelay(ATH10K_CIS_READ_WAIT_4_RTC_CYCLE_IN_US);
1423 ret = ath10k_sdio_read_rtc_state(ar_sdio, &rtc_state);
1424
1425 if (ret) {
1426 ath10k_warn(ar, "failed to disable mbox sleep: %d", ret);
1427 break;
1428 }
1429
1430 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read rtc state: %d\n",
1431 rtc_state);
1432
1433 if (rtc_state == ATH10K_CIS_RTC_STATE_ON)
1434 break;
1435
1436 udelay(ATH10K_CIS_XTAL_SETTLE_DURATION_IN_US);
1437 retry--;
1438 } while (retry > 0);
1439 }
1440
1441 release:
1442 sdio_release_host(ar_sdio->func);
1443
1444 return ret;
1445 }
1446
ath10k_sdio_sleep_timer_handler(struct timer_list * t)1447 static void ath10k_sdio_sleep_timer_handler(struct timer_list *t)
1448 {
1449 struct ath10k_sdio *ar_sdio = from_timer(ar_sdio, t, sleep_timer);
1450
1451 ar_sdio->mbox_state = SDIO_MBOX_REQUEST_TO_SLEEP_STATE;
1452 queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work);
1453 }
1454
ath10k_sdio_write_async_work(struct work_struct * work)1455 static void ath10k_sdio_write_async_work(struct work_struct *work)
1456 {
1457 struct ath10k_sdio *ar_sdio = container_of(work, struct ath10k_sdio,
1458 wr_async_work);
1459 struct ath10k *ar = ar_sdio->ar;
1460 struct ath10k_sdio_bus_request *req, *tmp_req;
1461 struct ath10k_mbox_info *mbox_info = &ar_sdio->mbox_info;
1462
1463 spin_lock_bh(&ar_sdio->wr_async_lock);
1464
1465 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
1466 list_del(&req->list);
1467 spin_unlock_bh(&ar_sdio->wr_async_lock);
1468
1469 if (req->address >= mbox_info->htc_addr &&
1470 ar_sdio->mbox_state == SDIO_MBOX_SLEEP_STATE) {
1471 ath10k_sdio_set_mbox_sleep(ar, false);
1472 mod_timer(&ar_sdio->sleep_timer, jiffies +
1473 msecs_to_jiffies(ATH10K_MIN_SLEEP_INACTIVITY_TIME_MS));
1474 }
1475
1476 __ath10k_sdio_write_async(ar, req);
1477 spin_lock_bh(&ar_sdio->wr_async_lock);
1478 }
1479
1480 spin_unlock_bh(&ar_sdio->wr_async_lock);
1481
1482 if (ar_sdio->mbox_state == SDIO_MBOX_REQUEST_TO_SLEEP_STATE)
1483 ath10k_sdio_set_mbox_sleep(ar, true);
1484 }
1485
ath10k_sdio_prep_async_req(struct ath10k * ar,u32 addr,struct sk_buff * skb,struct completion * comp,bool htc_msg,enum ath10k_htc_ep_id eid)1486 static int ath10k_sdio_prep_async_req(struct ath10k *ar, u32 addr,
1487 struct sk_buff *skb,
1488 struct completion *comp,
1489 bool htc_msg, enum ath10k_htc_ep_id eid)
1490 {
1491 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1492 struct ath10k_sdio_bus_request *bus_req;
1493
1494 /* Allocate a bus request for the message and queue it on the
1495 * SDIO workqueue.
1496 */
1497 bus_req = ath10k_sdio_alloc_busreq(ar);
1498 if (!bus_req) {
1499 ath10k_warn(ar,
1500 "unable to allocate bus request for async request\n");
1501 return -ENOMEM;
1502 }
1503
1504 bus_req->skb = skb;
1505 bus_req->eid = eid;
1506 bus_req->address = addr;
1507 bus_req->htc_msg = htc_msg;
1508 bus_req->comp = comp;
1509
1510 spin_lock_bh(&ar_sdio->wr_async_lock);
1511 list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq);
1512 spin_unlock_bh(&ar_sdio->wr_async_lock);
1513
1514 return 0;
1515 }
1516
1517 /* IRQ handler */
1518
ath10k_sdio_irq_handler(struct sdio_func * func)1519 static void ath10k_sdio_irq_handler(struct sdio_func *func)
1520 {
1521 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func);
1522 struct ath10k *ar = ar_sdio->ar;
1523 unsigned long timeout;
1524 bool done = false;
1525 int ret;
1526
1527 /* Release the host during interrupts so we can pick it back up when
1528 * we process commands.
1529 */
1530 sdio_release_host(ar_sdio->func);
1531
1532 timeout = jiffies + ATH10K_SDIO_HIF_COMMUNICATION_TIMEOUT_HZ;
1533 do {
1534 ret = ath10k_sdio_mbox_proc_pending_irqs(ar, &done);
1535 if (ret)
1536 break;
1537 } while (time_before(jiffies, timeout) && !done);
1538
1539 ath10k_mac_tx_push_pending(ar);
1540
1541 sdio_claim_host(ar_sdio->func);
1542
1543 if (ret && ret != -ECANCELED)
1544 ath10k_warn(ar, "failed to process pending SDIO interrupts: %d\n",
1545 ret);
1546 }
1547
1548 /* sdio HIF functions */
1549
ath10k_sdio_disable_intrs(struct ath10k * ar)1550 static int ath10k_sdio_disable_intrs(struct ath10k *ar)
1551 {
1552 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1553 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
1554 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg;
1555 int ret;
1556
1557 mutex_lock(&irq_data->mtx);
1558
1559 memset(regs, 0, sizeof(*regs));
1560 ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS,
1561 ®s->int_status_en, sizeof(*regs));
1562 if (ret)
1563 ath10k_warn(ar, "unable to disable sdio interrupts: %d\n", ret);
1564
1565 mutex_unlock(&irq_data->mtx);
1566
1567 return ret;
1568 }
1569
ath10k_sdio_hif_power_up(struct ath10k * ar,enum ath10k_firmware_mode fw_mode)1570 static int ath10k_sdio_hif_power_up(struct ath10k *ar,
1571 enum ath10k_firmware_mode fw_mode)
1572 {
1573 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1574 struct sdio_func *func = ar_sdio->func;
1575 int ret;
1576
1577 if (!ar_sdio->is_disabled)
1578 return 0;
1579
1580 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power on\n");
1581
1582 ret = ath10k_sdio_config(ar);
1583 if (ret) {
1584 ath10k_err(ar, "failed to config sdio: %d\n", ret);
1585 return ret;
1586 }
1587
1588 sdio_claim_host(func);
1589
1590 ret = sdio_enable_func(func);
1591 if (ret) {
1592 ath10k_warn(ar, "unable to enable sdio function: %d)\n", ret);
1593 sdio_release_host(func);
1594 return ret;
1595 }
1596
1597 sdio_release_host(func);
1598
1599 /* Wait for hardware to initialise. It should take a lot less than
1600 * 20 ms but let's be conservative here.
1601 */
1602 msleep(20);
1603
1604 ar_sdio->is_disabled = false;
1605
1606 ret = ath10k_sdio_disable_intrs(ar);
1607 if (ret)
1608 return ret;
1609
1610 return 0;
1611 }
1612
ath10k_sdio_hif_power_down(struct ath10k * ar)1613 static void ath10k_sdio_hif_power_down(struct ath10k *ar)
1614 {
1615 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1616 int ret;
1617
1618 if (ar_sdio->is_disabled)
1619 return;
1620
1621 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power off\n");
1622
1623 del_timer_sync(&ar_sdio->sleep_timer);
1624 ath10k_sdio_set_mbox_sleep(ar, true);
1625
1626 /* Disable the card */
1627 sdio_claim_host(ar_sdio->func);
1628
1629 ret = sdio_disable_func(ar_sdio->func);
1630 if (ret) {
1631 ath10k_warn(ar, "unable to disable sdio function: %d\n", ret);
1632 sdio_release_host(ar_sdio->func);
1633 return;
1634 }
1635
1636 ret = mmc_hw_reset(ar_sdio->func->card);
1637 if (ret)
1638 ath10k_warn(ar, "unable to reset sdio: %d\n", ret);
1639
1640 sdio_release_host(ar_sdio->func);
1641
1642 ar_sdio->is_disabled = true;
1643 }
1644
ath10k_sdio_hif_tx_sg(struct ath10k * ar,u8 pipe_id,struct ath10k_hif_sg_item * items,int n_items)1645 static int ath10k_sdio_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1646 struct ath10k_hif_sg_item *items, int n_items)
1647 {
1648 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1649 enum ath10k_htc_ep_id eid;
1650 struct sk_buff *skb;
1651 int ret, i;
1652
1653 eid = pipe_id_to_eid(pipe_id);
1654
1655 for (i = 0; i < n_items; i++) {
1656 size_t padded_len;
1657 u32 address;
1658
1659 skb = items[i].transfer_context;
1660 padded_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio,
1661 skb->len);
1662 skb_trim(skb, padded_len);
1663
1664 /* Write TX data to the end of the mbox address space */
1665 address = ar_sdio->mbox_addr[eid] + ar_sdio->mbox_size[eid] -
1666 skb->len;
1667 ret = ath10k_sdio_prep_async_req(ar, address, skb,
1668 NULL, true, eid);
1669 if (ret)
1670 return ret;
1671 }
1672
1673 queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work);
1674
1675 return 0;
1676 }
1677
ath10k_sdio_enable_intrs(struct ath10k * ar)1678 static int ath10k_sdio_enable_intrs(struct ath10k *ar)
1679 {
1680 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1681 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
1682 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg;
1683 int ret;
1684
1685 mutex_lock(&irq_data->mtx);
1686
1687 /* Enable all but CPU interrupts */
1688 regs->int_status_en = FIELD_PREP(MBOX_INT_STATUS_ENABLE_ERROR_MASK, 1) |
1689 FIELD_PREP(MBOX_INT_STATUS_ENABLE_CPU_MASK, 1) |
1690 FIELD_PREP(MBOX_INT_STATUS_ENABLE_COUNTER_MASK, 1);
1691
1692 /* NOTE: There are some cases where HIF can do detection of
1693 * pending mbox messages which is disabled now.
1694 */
1695 regs->int_status_en |=
1696 FIELD_PREP(MBOX_INT_STATUS_ENABLE_MBOX_DATA_MASK, 1);
1697
1698 /* Set up the CPU Interrupt Status Register, enable CPU sourced interrupt #0
1699 * #0 is used for report assertion from target
1700 */
1701 regs->cpu_int_status_en = FIELD_PREP(MBOX_CPU_STATUS_ENABLE_ASSERT_MASK, 1);
1702
1703 /* Set up the Error Interrupt status Register */
1704 regs->err_int_status_en =
1705 FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_RX_UNDERFLOW_MASK, 1) |
1706 FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_TX_OVERFLOW_MASK, 1);
1707
1708 /* Enable Counter interrupt status register to get fatal errors for
1709 * debugging.
1710 */
1711 regs->cntr_int_status_en =
1712 FIELD_PREP(MBOX_COUNTER_INT_STATUS_ENABLE_BIT_MASK,
1713 ATH10K_SDIO_TARGET_DEBUG_INTR_MASK);
1714
1715 ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS,
1716 ®s->int_status_en, sizeof(*regs));
1717 if (ret)
1718 ath10k_warn(ar,
1719 "failed to update mbox interrupt status register : %d\n",
1720 ret);
1721
1722 mutex_unlock(&irq_data->mtx);
1723 return ret;
1724 }
1725
1726 /* HIF diagnostics */
1727
ath10k_sdio_hif_diag_read(struct ath10k * ar,u32 address,void * buf,size_t buf_len)1728 static int ath10k_sdio_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1729 size_t buf_len)
1730 {
1731 int ret;
1732 void *mem;
1733
1734 mem = kzalloc(buf_len, GFP_KERNEL);
1735 if (!mem)
1736 return -ENOMEM;
1737
1738 /* set window register to start read cycle */
1739 ret = ath10k_sdio_write32(ar, MBOX_WINDOW_READ_ADDR_ADDRESS, address);
1740 if (ret) {
1741 ath10k_warn(ar, "failed to set mbox window read address: %d", ret);
1742 goto out;
1743 }
1744
1745 /* read the data */
1746 ret = ath10k_sdio_read(ar, MBOX_WINDOW_DATA_ADDRESS, mem, buf_len);
1747 if (ret) {
1748 ath10k_warn(ar, "failed to read from mbox window data address: %d\n",
1749 ret);
1750 goto out;
1751 }
1752
1753 memcpy(buf, mem, buf_len);
1754
1755 out:
1756 kfree(mem);
1757
1758 return ret;
1759 }
1760
ath10k_sdio_diag_read32(struct ath10k * ar,u32 address,u32 * value)1761 static int ath10k_sdio_diag_read32(struct ath10k *ar, u32 address,
1762 u32 *value)
1763 {
1764 __le32 *val;
1765 int ret;
1766
1767 val = kzalloc(sizeof(*val), GFP_KERNEL);
1768 if (!val)
1769 return -ENOMEM;
1770
1771 ret = ath10k_sdio_hif_diag_read(ar, address, val, sizeof(*val));
1772 if (ret)
1773 goto out;
1774
1775 *value = __le32_to_cpu(*val);
1776
1777 out:
1778 kfree(val);
1779
1780 return ret;
1781 }
1782
ath10k_sdio_hif_diag_write_mem(struct ath10k * ar,u32 address,const void * data,int nbytes)1783 static int ath10k_sdio_hif_diag_write_mem(struct ath10k *ar, u32 address,
1784 const void *data, int nbytes)
1785 {
1786 int ret;
1787
1788 /* set write data */
1789 ret = ath10k_sdio_write(ar, MBOX_WINDOW_DATA_ADDRESS, data, nbytes);
1790 if (ret) {
1791 ath10k_warn(ar,
1792 "failed to write 0x%p to mbox window data address: %d\n",
1793 data, ret);
1794 return ret;
1795 }
1796
1797 /* set window register, which starts the write cycle */
1798 ret = ath10k_sdio_write32(ar, MBOX_WINDOW_WRITE_ADDR_ADDRESS, address);
1799 if (ret) {
1800 ath10k_warn(ar, "failed to set mbox window write address: %d", ret);
1801 return ret;
1802 }
1803
1804 return 0;
1805 }
1806
ath10k_sdio_hif_start_post(struct ath10k * ar)1807 static int ath10k_sdio_hif_start_post(struct ath10k *ar)
1808 {
1809 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1810 u32 addr, val;
1811 int ret = 0;
1812
1813 addr = host_interest_item_address(HI_ITEM(hi_acs_flags));
1814
1815 ret = ath10k_sdio_diag_read32(ar, addr, &val);
1816 if (ret) {
1817 ath10k_warn(ar, "unable to read hi_acs_flags : %d\n", ret);
1818 return ret;
1819 }
1820
1821 if (val & HI_ACS_FLAGS_SDIO_SWAP_MAILBOX_FW_ACK) {
1822 ath10k_dbg(ar, ATH10K_DBG_SDIO,
1823 "sdio mailbox swap service enabled\n");
1824 ar_sdio->swap_mbox = true;
1825 } else {
1826 ath10k_dbg(ar, ATH10K_DBG_SDIO,
1827 "sdio mailbox swap service disabled\n");
1828 ar_sdio->swap_mbox = false;
1829 }
1830
1831 ath10k_sdio_set_mbox_sleep(ar, true);
1832
1833 return 0;
1834 }
1835
ath10k_sdio_get_htt_tx_complete(struct ath10k * ar)1836 static int ath10k_sdio_get_htt_tx_complete(struct ath10k *ar)
1837 {
1838 u32 addr, val;
1839 int ret;
1840
1841 addr = host_interest_item_address(HI_ITEM(hi_acs_flags));
1842
1843 ret = ath10k_sdio_diag_read32(ar, addr, &val);
1844 if (ret) {
1845 ath10k_warn(ar,
1846 "unable to read hi_acs_flags for htt tx comple : %d\n", ret);
1847 return ret;
1848 }
1849
1850 ret = (val & HI_ACS_FLAGS_SDIO_REDUCE_TX_COMPL_FW_ACK);
1851
1852 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio reduce tx complete fw%sack\n",
1853 ret ? " " : " not ");
1854
1855 return ret;
1856 }
1857
1858 /* HIF start/stop */
1859
ath10k_sdio_hif_start(struct ath10k * ar)1860 static int ath10k_sdio_hif_start(struct ath10k *ar)
1861 {
1862 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1863 int ret;
1864
1865 ath10k_core_napi_enable(ar);
1866
1867 /* Sleep 20 ms before HIF interrupts are disabled.
1868 * This will give target plenty of time to process the BMI done
1869 * request before interrupts are disabled.
1870 */
1871 msleep(20);
1872 ret = ath10k_sdio_disable_intrs(ar);
1873 if (ret)
1874 return ret;
1875
1876 /* eid 0 always uses the lower part of the extended mailbox address
1877 * space (ext_info[0].htc_ext_addr).
1878 */
1879 ar_sdio->mbox_addr[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_addr;
1880 ar_sdio->mbox_size[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_sz;
1881
1882 sdio_claim_host(ar_sdio->func);
1883
1884 /* Register the isr */
1885 ret = sdio_claim_irq(ar_sdio->func, ath10k_sdio_irq_handler);
1886 if (ret) {
1887 ath10k_warn(ar, "failed to claim sdio interrupt: %d\n", ret);
1888 sdio_release_host(ar_sdio->func);
1889 return ret;
1890 }
1891
1892 sdio_release_host(ar_sdio->func);
1893
1894 ret = ath10k_sdio_enable_intrs(ar);
1895 if (ret)
1896 ath10k_warn(ar, "failed to enable sdio interrupts: %d\n", ret);
1897
1898 /* Enable sleep and then disable it again */
1899 ret = ath10k_sdio_set_mbox_sleep(ar, true);
1900 if (ret)
1901 return ret;
1902
1903 /* Wait for 20ms for the written value to take effect */
1904 msleep(20);
1905
1906 ret = ath10k_sdio_set_mbox_sleep(ar, false);
1907 if (ret)
1908 return ret;
1909
1910 return 0;
1911 }
1912
1913 #define SDIO_IRQ_DISABLE_TIMEOUT_HZ (3 * HZ)
1914
ath10k_sdio_irq_disable(struct ath10k * ar)1915 static void ath10k_sdio_irq_disable(struct ath10k *ar)
1916 {
1917 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1918 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
1919 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg;
1920 struct sk_buff *skb;
1921 struct completion irqs_disabled_comp;
1922 int ret;
1923
1924 skb = dev_alloc_skb(sizeof(*regs));
1925 if (!skb)
1926 return;
1927
1928 mutex_lock(&irq_data->mtx);
1929
1930 memset(regs, 0, sizeof(*regs)); /* disable all interrupts */
1931 memcpy(skb->data, regs, sizeof(*regs));
1932 skb_put(skb, sizeof(*regs));
1933
1934 mutex_unlock(&irq_data->mtx);
1935
1936 init_completion(&irqs_disabled_comp);
1937 ret = ath10k_sdio_prep_async_req(ar, MBOX_INT_STATUS_ENABLE_ADDRESS,
1938 skb, &irqs_disabled_comp, false, 0);
1939 if (ret)
1940 goto out;
1941
1942 queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work);
1943
1944 /* Wait for the completion of the IRQ disable request.
1945 * If there is a timeout we will try to disable irq's anyway.
1946 */
1947 ret = wait_for_completion_timeout(&irqs_disabled_comp,
1948 SDIO_IRQ_DISABLE_TIMEOUT_HZ);
1949 if (!ret)
1950 ath10k_warn(ar, "sdio irq disable request timed out\n");
1951
1952 sdio_claim_host(ar_sdio->func);
1953
1954 ret = sdio_release_irq(ar_sdio->func);
1955 if (ret)
1956 ath10k_warn(ar, "failed to release sdio interrupt: %d\n", ret);
1957
1958 sdio_release_host(ar_sdio->func);
1959
1960 out:
1961 kfree_skb(skb);
1962 }
1963
ath10k_sdio_hif_stop(struct ath10k * ar)1964 static void ath10k_sdio_hif_stop(struct ath10k *ar)
1965 {
1966 struct ath10k_sdio_bus_request *req, *tmp_req;
1967 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1968 struct sk_buff *skb;
1969
1970 ath10k_sdio_irq_disable(ar);
1971
1972 cancel_work_sync(&ar_sdio->async_work_rx);
1973
1974 while ((skb = skb_dequeue(&ar_sdio->rx_head)))
1975 dev_kfree_skb_any(skb);
1976
1977 cancel_work_sync(&ar_sdio->wr_async_work);
1978
1979 spin_lock_bh(&ar_sdio->wr_async_lock);
1980
1981 /* Free all bus requests that have not been handled */
1982 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
1983 struct ath10k_htc_ep *ep;
1984
1985 list_del(&req->list);
1986
1987 if (req->htc_msg) {
1988 ep = &ar->htc.endpoint[req->eid];
1989 ath10k_htc_notify_tx_completion(ep, req->skb);
1990 } else if (req->skb) {
1991 kfree_skb(req->skb);
1992 }
1993 ath10k_sdio_free_bus_req(ar, req);
1994 }
1995
1996 spin_unlock_bh(&ar_sdio->wr_async_lock);
1997
1998 ath10k_core_napi_sync_disable(ar);
1999 }
2000
2001 #ifdef CONFIG_PM
2002
ath10k_sdio_hif_suspend(struct ath10k * ar)2003 static int ath10k_sdio_hif_suspend(struct ath10k *ar)
2004 {
2005 return 0;
2006 }
2007
ath10k_sdio_hif_resume(struct ath10k * ar)2008 static int ath10k_sdio_hif_resume(struct ath10k *ar)
2009 {
2010 switch (ar->state) {
2011 case ATH10K_STATE_OFF:
2012 ath10k_dbg(ar, ATH10K_DBG_SDIO,
2013 "sdio resume configuring sdio\n");
2014
2015 /* need to set sdio settings after power is cut from sdio */
2016 ath10k_sdio_config(ar);
2017 break;
2018
2019 case ATH10K_STATE_ON:
2020 default:
2021 break;
2022 }
2023
2024 return 0;
2025 }
2026 #endif
2027
ath10k_sdio_hif_map_service_to_pipe(struct ath10k * ar,u16 service_id,u8 * ul_pipe,u8 * dl_pipe)2028 static int ath10k_sdio_hif_map_service_to_pipe(struct ath10k *ar,
2029 u16 service_id,
2030 u8 *ul_pipe, u8 *dl_pipe)
2031 {
2032 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
2033 struct ath10k_htc *htc = &ar->htc;
2034 u32 htt_addr, wmi_addr, htt_mbox_size, wmi_mbox_size;
2035 enum ath10k_htc_ep_id eid;
2036 bool ep_found = false;
2037 int i;
2038
2039 /* For sdio, we are interested in the mapping between eid
2040 * and pipeid rather than service_id to pipe_id.
2041 * First we find out which eid has been allocated to the
2042 * service...
2043 */
2044 for (i = 0; i < ATH10K_HTC_EP_COUNT; i++) {
2045 if (htc->endpoint[i].service_id == service_id) {
2046 eid = htc->endpoint[i].eid;
2047 ep_found = true;
2048 break;
2049 }
2050 }
2051
2052 if (!ep_found)
2053 return -EINVAL;
2054
2055 /* Then we create the simplest mapping possible between pipeid
2056 * and eid
2057 */
2058 *ul_pipe = *dl_pipe = (u8)eid;
2059
2060 /* Normally, HTT will use the upper part of the extended
2061 * mailbox address space (ext_info[1].htc_ext_addr) and WMI ctrl
2062 * the lower part (ext_info[0].htc_ext_addr).
2063 * If fw wants swapping of mailbox addresses, the opposite is true.
2064 */
2065 if (ar_sdio->swap_mbox) {
2066 htt_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr;
2067 wmi_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr;
2068 htt_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz;
2069 wmi_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz;
2070 } else {
2071 htt_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr;
2072 wmi_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr;
2073 htt_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz;
2074 wmi_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz;
2075 }
2076
2077 switch (service_id) {
2078 case ATH10K_HTC_SVC_ID_RSVD_CTRL:
2079 /* HTC ctrl ep mbox address has already been setup in
2080 * ath10k_sdio_hif_start
2081 */
2082 break;
2083 case ATH10K_HTC_SVC_ID_WMI_CONTROL:
2084 ar_sdio->mbox_addr[eid] = wmi_addr;
2085 ar_sdio->mbox_size[eid] = wmi_mbox_size;
2086 ath10k_dbg(ar, ATH10K_DBG_SDIO,
2087 "sdio wmi ctrl mbox_addr 0x%x mbox_size %d\n",
2088 ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]);
2089 break;
2090 case ATH10K_HTC_SVC_ID_HTT_DATA_MSG:
2091 ar_sdio->mbox_addr[eid] = htt_addr;
2092 ar_sdio->mbox_size[eid] = htt_mbox_size;
2093 ath10k_dbg(ar, ATH10K_DBG_SDIO,
2094 "sdio htt data mbox_addr 0x%x mbox_size %d\n",
2095 ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]);
2096 break;
2097 default:
2098 ath10k_warn(ar, "unsupported HTC service id: %d\n",
2099 service_id);
2100 return -EINVAL;
2101 }
2102
2103 return 0;
2104 }
2105
ath10k_sdio_hif_get_default_pipe(struct ath10k * ar,u8 * ul_pipe,u8 * dl_pipe)2106 static void ath10k_sdio_hif_get_default_pipe(struct ath10k *ar,
2107 u8 *ul_pipe, u8 *dl_pipe)
2108 {
2109 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio hif get default pipe\n");
2110
2111 /* HTC ctrl ep (SVC id 1) always has eid (and pipe_id in our
2112 * case) == 0
2113 */
2114 *ul_pipe = 0;
2115 *dl_pipe = 0;
2116 }
2117
2118 static const struct ath10k_hif_ops ath10k_sdio_hif_ops = {
2119 .tx_sg = ath10k_sdio_hif_tx_sg,
2120 .diag_read = ath10k_sdio_hif_diag_read,
2121 .diag_write = ath10k_sdio_hif_diag_write_mem,
2122 .exchange_bmi_msg = ath10k_sdio_bmi_exchange_msg,
2123 .start = ath10k_sdio_hif_start,
2124 .stop = ath10k_sdio_hif_stop,
2125 .start_post = ath10k_sdio_hif_start_post,
2126 .get_htt_tx_complete = ath10k_sdio_get_htt_tx_complete,
2127 .map_service_to_pipe = ath10k_sdio_hif_map_service_to_pipe,
2128 .get_default_pipe = ath10k_sdio_hif_get_default_pipe,
2129 .power_up = ath10k_sdio_hif_power_up,
2130 .power_down = ath10k_sdio_hif_power_down,
2131 #ifdef CONFIG_PM
2132 .suspend = ath10k_sdio_hif_suspend,
2133 .resume = ath10k_sdio_hif_resume,
2134 #endif
2135 };
2136
2137 #ifdef CONFIG_PM_SLEEP
2138
2139 /* Empty handlers so that mmc subsystem doesn't remove us entirely during
2140 * suspend. We instead follow cfg80211 suspend/resume handlers.
2141 */
ath10k_sdio_pm_suspend(struct device * device)2142 static int ath10k_sdio_pm_suspend(struct device *device)
2143 {
2144 struct sdio_func *func = dev_to_sdio_func(device);
2145 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func);
2146 struct ath10k *ar = ar_sdio->ar;
2147 mmc_pm_flag_t pm_flag, pm_caps;
2148 int ret;
2149
2150 if (!device_may_wakeup(ar->dev))
2151 return 0;
2152
2153 ath10k_sdio_set_mbox_sleep(ar, true);
2154
2155 pm_flag = MMC_PM_KEEP_POWER;
2156
2157 ret = sdio_set_host_pm_flags(func, pm_flag);
2158 if (ret) {
2159 pm_caps = sdio_get_host_pm_caps(func);
2160 ath10k_warn(ar, "failed to set sdio host pm flags (0x%x, 0x%x): %d\n",
2161 pm_flag, pm_caps, ret);
2162 return ret;
2163 }
2164
2165 return ret;
2166 }
2167
ath10k_sdio_pm_resume(struct device * device)2168 static int ath10k_sdio_pm_resume(struct device *device)
2169 {
2170 return 0;
2171 }
2172
2173 static SIMPLE_DEV_PM_OPS(ath10k_sdio_pm_ops, ath10k_sdio_pm_suspend,
2174 ath10k_sdio_pm_resume);
2175
2176 #define ATH10K_SDIO_PM_OPS (&ath10k_sdio_pm_ops)
2177
2178 #else
2179
2180 #define ATH10K_SDIO_PM_OPS NULL
2181
2182 #endif /* CONFIG_PM_SLEEP */
2183
ath10k_sdio_napi_poll(struct napi_struct * ctx,int budget)2184 static int ath10k_sdio_napi_poll(struct napi_struct *ctx, int budget)
2185 {
2186 struct ath10k *ar = container_of(ctx, struct ath10k, napi);
2187 int done;
2188
2189 done = ath10k_htt_rx_hl_indication(ar, budget);
2190 ath10k_dbg(ar, ATH10K_DBG_SDIO, "napi poll: done: %d, budget:%d\n", done, budget);
2191
2192 if (done < budget)
2193 napi_complete_done(ctx, done);
2194
2195 return done;
2196 }
2197
ath10k_sdio_read_host_interest_value(struct ath10k * ar,u32 item_offset,u32 * val)2198 static int ath10k_sdio_read_host_interest_value(struct ath10k *ar,
2199 u32 item_offset,
2200 u32 *val)
2201 {
2202 u32 addr;
2203 int ret;
2204
2205 addr = host_interest_item_address(item_offset);
2206
2207 ret = ath10k_sdio_diag_read32(ar, addr, val);
2208
2209 if (ret)
2210 ath10k_warn(ar, "unable to read host interest offset %d value\n",
2211 item_offset);
2212
2213 return ret;
2214 }
2215
ath10k_sdio_read_mem(struct ath10k * ar,u32 address,void * buf,u32 buf_len)2216 static int ath10k_sdio_read_mem(struct ath10k *ar, u32 address, void *buf,
2217 u32 buf_len)
2218 {
2219 u32 val;
2220 int i, ret;
2221
2222 for (i = 0; i < buf_len; i += 4) {
2223 ret = ath10k_sdio_diag_read32(ar, address + i, &val);
2224 if (ret) {
2225 ath10k_warn(ar, "unable to read mem %d value\n", address + i);
2226 break;
2227 }
2228 memcpy(buf + i, &val, 4);
2229 }
2230
2231 return ret;
2232 }
2233
ath10k_sdio_is_fast_dump_supported(struct ath10k * ar)2234 static bool ath10k_sdio_is_fast_dump_supported(struct ath10k *ar)
2235 {
2236 u32 param;
2237
2238 ath10k_sdio_read_host_interest_value(ar, HI_ITEM(hi_option_flag2), ¶m);
2239
2240 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio hi_option_flag2 %x\n", param);
2241
2242 return !!(param & HI_OPTION_SDIO_CRASH_DUMP_ENHANCEMENT_FW);
2243 }
2244
ath10k_sdio_dump_registers(struct ath10k * ar,struct ath10k_fw_crash_data * crash_data,bool fast_dump)2245 static void ath10k_sdio_dump_registers(struct ath10k *ar,
2246 struct ath10k_fw_crash_data *crash_data,
2247 bool fast_dump)
2248 {
2249 u32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
2250 int i, ret;
2251 u32 reg_dump_area;
2252
2253 ret = ath10k_sdio_read_host_interest_value(ar, HI_ITEM(hi_failure_state),
2254 ®_dump_area);
2255 if (ret) {
2256 ath10k_warn(ar, "failed to read firmware dump area: %d\n", ret);
2257 return;
2258 }
2259
2260 if (fast_dump)
2261 ret = ath10k_bmi_read_memory(ar, reg_dump_area, reg_dump_values,
2262 sizeof(reg_dump_values));
2263 else
2264 ret = ath10k_sdio_read_mem(ar, reg_dump_area, reg_dump_values,
2265 sizeof(reg_dump_values));
2266
2267 if (ret) {
2268 ath10k_warn(ar, "failed to read firmware dump value: %d\n", ret);
2269 return;
2270 }
2271
2272 ath10k_err(ar, "firmware register dump:\n");
2273 for (i = 0; i < ARRAY_SIZE(reg_dump_values); i += 4)
2274 ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
2275 i,
2276 reg_dump_values[i],
2277 reg_dump_values[i + 1],
2278 reg_dump_values[i + 2],
2279 reg_dump_values[i + 3]);
2280
2281 if (!crash_data)
2282 return;
2283
2284 for (i = 0; i < ARRAY_SIZE(reg_dump_values); i++)
2285 crash_data->registers[i] = __cpu_to_le32(reg_dump_values[i]);
2286 }
2287
ath10k_sdio_dump_memory_section(struct ath10k * ar,const struct ath10k_mem_region * mem_region,u8 * buf,size_t buf_len)2288 static int ath10k_sdio_dump_memory_section(struct ath10k *ar,
2289 const struct ath10k_mem_region *mem_region,
2290 u8 *buf, size_t buf_len)
2291 {
2292 const struct ath10k_mem_section *cur_section, *next_section;
2293 unsigned int count, section_size, skip_size;
2294 int ret, i, j;
2295
2296 if (!mem_region || !buf)
2297 return 0;
2298
2299 cur_section = &mem_region->section_table.sections[0];
2300
2301 if (mem_region->start > cur_section->start) {
2302 ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n",
2303 mem_region->start, cur_section->start);
2304 return 0;
2305 }
2306
2307 skip_size = cur_section->start - mem_region->start;
2308
2309 /* fill the gap between the first register section and register
2310 * start address
2311 */
2312 for (i = 0; i < skip_size; i++) {
2313 *buf = ATH10K_MAGIC_NOT_COPIED;
2314 buf++;
2315 }
2316
2317 count = 0;
2318 i = 0;
2319 for (; cur_section; cur_section = next_section) {
2320 section_size = cur_section->end - cur_section->start;
2321
2322 if (section_size <= 0) {
2323 ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n",
2324 cur_section->start,
2325 cur_section->end);
2326 break;
2327 }
2328
2329 if (++i == mem_region->section_table.size) {
2330 /* last section */
2331 next_section = NULL;
2332 skip_size = 0;
2333 } else {
2334 next_section = cur_section + 1;
2335
2336 if (cur_section->end > next_section->start) {
2337 ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n",
2338 next_section->start,
2339 cur_section->end);
2340 break;
2341 }
2342
2343 skip_size = next_section->start - cur_section->end;
2344 }
2345
2346 if (buf_len < (skip_size + section_size)) {
2347 ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len);
2348 break;
2349 }
2350
2351 buf_len -= skip_size + section_size;
2352
2353 /* read section to dest memory */
2354 ret = ath10k_sdio_read_mem(ar, cur_section->start,
2355 buf, section_size);
2356 if (ret) {
2357 ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n",
2358 cur_section->start, ret);
2359 break;
2360 }
2361
2362 buf += section_size;
2363 count += section_size;
2364
2365 /* fill in the gap between this section and the next */
2366 for (j = 0; j < skip_size; j++) {
2367 *buf = ATH10K_MAGIC_NOT_COPIED;
2368 buf++;
2369 }
2370
2371 count += skip_size;
2372 }
2373
2374 return count;
2375 }
2376
2377 /* if an error happened returns < 0, otherwise the length */
ath10k_sdio_dump_memory_generic(struct ath10k * ar,const struct ath10k_mem_region * current_region,u8 * buf,bool fast_dump)2378 static int ath10k_sdio_dump_memory_generic(struct ath10k *ar,
2379 const struct ath10k_mem_region *current_region,
2380 u8 *buf,
2381 bool fast_dump)
2382 {
2383 int ret;
2384
2385 if (current_region->section_table.size > 0)
2386 /* Copy each section individually. */
2387 return ath10k_sdio_dump_memory_section(ar,
2388 current_region,
2389 buf,
2390 current_region->len);
2391
2392 /* No individiual memory sections defined so we can
2393 * copy the entire memory region.
2394 */
2395 if (fast_dump)
2396 ret = ath10k_bmi_read_memory(ar,
2397 current_region->start,
2398 buf,
2399 current_region->len);
2400 else
2401 ret = ath10k_sdio_read_mem(ar,
2402 current_region->start,
2403 buf,
2404 current_region->len);
2405
2406 if (ret) {
2407 ath10k_warn(ar, "failed to copy ramdump region %s: %d\n",
2408 current_region->name, ret);
2409 return ret;
2410 }
2411
2412 return current_region->len;
2413 }
2414
ath10k_sdio_dump_memory(struct ath10k * ar,struct ath10k_fw_crash_data * crash_data,bool fast_dump)2415 static void ath10k_sdio_dump_memory(struct ath10k *ar,
2416 struct ath10k_fw_crash_data *crash_data,
2417 bool fast_dump)
2418 {
2419 const struct ath10k_hw_mem_layout *mem_layout;
2420 const struct ath10k_mem_region *current_region;
2421 struct ath10k_dump_ram_data_hdr *hdr;
2422 u32 count;
2423 size_t buf_len;
2424 int ret, i;
2425 u8 *buf;
2426
2427 if (!crash_data)
2428 return;
2429
2430 mem_layout = ath10k_coredump_get_mem_layout(ar);
2431 if (!mem_layout)
2432 return;
2433
2434 current_region = &mem_layout->region_table.regions[0];
2435
2436 buf = crash_data->ramdump_buf;
2437 buf_len = crash_data->ramdump_buf_len;
2438
2439 memset(buf, 0, buf_len);
2440
2441 for (i = 0; i < mem_layout->region_table.size; i++) {
2442 count = 0;
2443
2444 if (current_region->len > buf_len) {
2445 ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n",
2446 current_region->name,
2447 current_region->len,
2448 buf_len);
2449 break;
2450 }
2451
2452 /* Reserve space for the header. */
2453 hdr = (void *)buf;
2454 buf += sizeof(*hdr);
2455 buf_len -= sizeof(*hdr);
2456
2457 ret = ath10k_sdio_dump_memory_generic(ar, current_region, buf,
2458 fast_dump);
2459 if (ret >= 0)
2460 count = ret;
2461
2462 hdr->region_type = cpu_to_le32(current_region->type);
2463 hdr->start = cpu_to_le32(current_region->start);
2464 hdr->length = cpu_to_le32(count);
2465
2466 if (count == 0)
2467 /* Note: the header remains, just with zero length. */
2468 break;
2469
2470 buf += count;
2471 buf_len -= count;
2472
2473 current_region++;
2474 }
2475 }
2476
ath10k_sdio_fw_crashed_dump(struct ath10k * ar)2477 void ath10k_sdio_fw_crashed_dump(struct ath10k *ar)
2478 {
2479 struct ath10k_fw_crash_data *crash_data;
2480 char guid[UUID_STRING_LEN + 1];
2481 bool fast_dump;
2482
2483 fast_dump = ath10k_sdio_is_fast_dump_supported(ar);
2484
2485 if (fast_dump)
2486 ath10k_bmi_start(ar);
2487
2488 ar->stats.fw_crash_counter++;
2489
2490 ath10k_sdio_disable_intrs(ar);
2491
2492 crash_data = ath10k_coredump_new(ar);
2493
2494 if (crash_data)
2495 scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
2496 else
2497 scnprintf(guid, sizeof(guid), "n/a");
2498
2499 ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
2500 ath10k_print_driver_info(ar);
2501 ath10k_sdio_dump_registers(ar, crash_data, fast_dump);
2502 ath10k_sdio_dump_memory(ar, crash_data, fast_dump);
2503
2504 ath10k_sdio_enable_intrs(ar);
2505
2506 ath10k_core_start_recovery(ar);
2507 }
2508
ath10k_sdio_probe(struct sdio_func * func,const struct sdio_device_id * id)2509 static int ath10k_sdio_probe(struct sdio_func *func,
2510 const struct sdio_device_id *id)
2511 {
2512 struct ath10k_sdio *ar_sdio;
2513 struct ath10k *ar;
2514 enum ath10k_hw_rev hw_rev;
2515 u32 dev_id_base;
2516 struct ath10k_bus_params bus_params = {};
2517 int ret, i;
2518
2519 /* Assumption: All SDIO based chipsets (so far) are QCA6174 based.
2520 * If there will be newer chipsets that does not use the hw reg
2521 * setup as defined in qca6174_regs and qca6174_values, this
2522 * assumption is no longer valid and hw_rev must be setup differently
2523 * depending on chipset.
2524 */
2525 hw_rev = ATH10K_HW_QCA6174;
2526
2527 ar = ath10k_core_create(sizeof(*ar_sdio), &func->dev, ATH10K_BUS_SDIO,
2528 hw_rev, &ath10k_sdio_hif_ops);
2529 if (!ar) {
2530 dev_err(&func->dev, "failed to allocate core\n");
2531 return -ENOMEM;
2532 }
2533
2534 netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_sdio_napi_poll);
2535
2536 ath10k_dbg(ar, ATH10K_DBG_BOOT,
2537 "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n",
2538 func->num, func->vendor, func->device,
2539 func->max_blksize, func->cur_blksize);
2540
2541 ar_sdio = ath10k_sdio_priv(ar);
2542
2543 ar_sdio->irq_data.irq_proc_reg =
2544 devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_proc_regs),
2545 GFP_KERNEL);
2546 if (!ar_sdio->irq_data.irq_proc_reg) {
2547 ret = -ENOMEM;
2548 goto err_core_destroy;
2549 }
2550
2551 ar_sdio->vsg_buffer = devm_kmalloc(ar->dev, ATH10K_SDIO_VSG_BUF_SIZE, GFP_KERNEL);
2552 if (!ar_sdio->vsg_buffer) {
2553 ret = -ENOMEM;
2554 goto err_core_destroy;
2555 }
2556
2557 ar_sdio->irq_data.irq_en_reg =
2558 devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_enable_regs),
2559 GFP_KERNEL);
2560 if (!ar_sdio->irq_data.irq_en_reg) {
2561 ret = -ENOMEM;
2562 goto err_core_destroy;
2563 }
2564
2565 ar_sdio->bmi_buf = devm_kzalloc(ar->dev, BMI_MAX_LARGE_CMDBUF_SIZE, GFP_KERNEL);
2566 if (!ar_sdio->bmi_buf) {
2567 ret = -ENOMEM;
2568 goto err_core_destroy;
2569 }
2570
2571 ar_sdio->func = func;
2572 sdio_set_drvdata(func, ar_sdio);
2573
2574 ar_sdio->is_disabled = true;
2575 ar_sdio->ar = ar;
2576
2577 spin_lock_init(&ar_sdio->lock);
2578 spin_lock_init(&ar_sdio->wr_async_lock);
2579 mutex_init(&ar_sdio->irq_data.mtx);
2580
2581 INIT_LIST_HEAD(&ar_sdio->bus_req_freeq);
2582 INIT_LIST_HEAD(&ar_sdio->wr_asyncq);
2583
2584 INIT_WORK(&ar_sdio->wr_async_work, ath10k_sdio_write_async_work);
2585 ar_sdio->workqueue = create_singlethread_workqueue("ath10k_sdio_wq");
2586 if (!ar_sdio->workqueue) {
2587 ret = -ENOMEM;
2588 goto err_core_destroy;
2589 }
2590
2591 for (i = 0; i < ATH10K_SDIO_BUS_REQUEST_MAX_NUM; i++)
2592 ath10k_sdio_free_bus_req(ar, &ar_sdio->bus_req[i]);
2593
2594 skb_queue_head_init(&ar_sdio->rx_head);
2595 INIT_WORK(&ar_sdio->async_work_rx, ath10k_rx_indication_async_work);
2596
2597 dev_id_base = (id->device & 0x0F00);
2598 if (dev_id_base != (SDIO_DEVICE_ID_ATHEROS_AR6005 & 0x0F00) &&
2599 dev_id_base != (SDIO_DEVICE_ID_ATHEROS_QCA9377 & 0x0F00)) {
2600 ret = -ENODEV;
2601 ath10k_err(ar, "unsupported device id %u (0x%x)\n",
2602 dev_id_base, id->device);
2603 goto err_free_wq;
2604 }
2605
2606 ar->dev_id = QCA9377_1_0_DEVICE_ID;
2607 ar->id.vendor = id->vendor;
2608 ar->id.device = id->device;
2609
2610 ath10k_sdio_set_mbox_info(ar);
2611
2612 bus_params.dev_type = ATH10K_DEV_TYPE_HL;
2613 /* TODO: don't know yet how to get chip_id with SDIO */
2614 bus_params.chip_id = 0;
2615 bus_params.hl_msdu_ids = true;
2616
2617 ar->hw->max_mtu = ETH_DATA_LEN;
2618
2619 ret = ath10k_core_register(ar, &bus_params);
2620 if (ret) {
2621 ath10k_err(ar, "failed to register driver core: %d\n", ret);
2622 goto err_free_wq;
2623 }
2624
2625 timer_setup(&ar_sdio->sleep_timer, ath10k_sdio_sleep_timer_handler, 0);
2626
2627 return 0;
2628
2629 err_free_wq:
2630 destroy_workqueue(ar_sdio->workqueue);
2631 err_core_destroy:
2632 ath10k_core_destroy(ar);
2633
2634 return ret;
2635 }
2636
ath10k_sdio_remove(struct sdio_func * func)2637 static void ath10k_sdio_remove(struct sdio_func *func)
2638 {
2639 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func);
2640 struct ath10k *ar = ar_sdio->ar;
2641
2642 ath10k_dbg(ar, ATH10K_DBG_BOOT,
2643 "sdio removed func %d vendor 0x%x device 0x%x\n",
2644 func->num, func->vendor, func->device);
2645
2646 ath10k_core_unregister(ar);
2647
2648 netif_napi_del(&ar->napi);
2649
2650 ath10k_core_destroy(ar);
2651
2652 destroy_workqueue(ar_sdio->workqueue);
2653 }
2654
2655 static const struct sdio_device_id ath10k_sdio_devices[] = {
2656 {SDIO_DEVICE(SDIO_VENDOR_ID_ATHEROS, SDIO_DEVICE_ID_ATHEROS_AR6005)},
2657 {SDIO_DEVICE(SDIO_VENDOR_ID_ATHEROS, SDIO_DEVICE_ID_ATHEROS_QCA9377)},
2658 {},
2659 };
2660
2661 MODULE_DEVICE_TABLE(sdio, ath10k_sdio_devices);
2662
2663 static struct sdio_driver ath10k_sdio_driver = {
2664 .name = "ath10k_sdio",
2665 .id_table = ath10k_sdio_devices,
2666 .probe = ath10k_sdio_probe,
2667 .remove = ath10k_sdio_remove,
2668 .drv = {
2669 .owner = THIS_MODULE,
2670 .pm = ATH10K_SDIO_PM_OPS,
2671 },
2672 };
2673
ath10k_sdio_init(void)2674 static int __init ath10k_sdio_init(void)
2675 {
2676 int ret;
2677
2678 ret = sdio_register_driver(&ath10k_sdio_driver);
2679 if (ret)
2680 pr_err("sdio driver registration failed: %d\n", ret);
2681
2682 return ret;
2683 }
2684
ath10k_sdio_exit(void)2685 static void __exit ath10k_sdio_exit(void)
2686 {
2687 sdio_unregister_driver(&ath10k_sdio_driver);
2688 }
2689
2690 module_init(ath10k_sdio_init);
2691 module_exit(ath10k_sdio_exit);
2692
2693 MODULE_AUTHOR("Qualcomm Atheros");
2694 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN SDIO devices");
2695 MODULE_LICENSE("Dual BSD/GPL");
2696