1 /* 2 * Copyright 2009-2015 Samy Al Bahra. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #ifndef CK_PR_X86_64_H 28 #define CK_PR_X86_64_H 29 30 #ifndef CK_PR_H 31 #error Do not include this file directly, use ck_pr.h 32 #endif 33 34 #include <ck_cc.h> 35 #include <ck_md.h> 36 #include <ck_stdint.h> 37 38 /* 39 * The following represent supported atomic operations. 40 * These operations may be emulated. 41 */ 42 #include "ck_f_pr.h" 43 44 /* 45 * Support for TSX extensions. 46 */ 47 #ifdef CK_MD_RTM_ENABLE 48 #include "ck_pr_rtm.h" 49 #endif 50 51 /* Minimum requirements for the CK_PR interface are met. */ 52 #define CK_F_PR 53 54 #ifdef CK_MD_UMP 55 #define CK_PR_LOCK_PREFIX 56 #else 57 #define CK_PR_LOCK_PREFIX "lock " 58 #endif 59 60 /* 61 * Prevent speculative execution in busy-wait loops (P4 <=) or "predefined 62 * delay". 63 */ 64 CK_CC_INLINE static void 65 ck_pr_stall(void) 66 { 67 __asm__ __volatile__("pause" ::: "memory"); 68 return; 69 } 70 71 #define CK_PR_FENCE(T, I) \ 72 CK_CC_INLINE static void \ 73 ck_pr_fence_strict_##T(void) \ 74 { \ 75 __asm__ __volatile__(I ::: "memory"); \ 76 } 77 78 /* Atomic operations are always serializing. */ 79 CK_PR_FENCE(atomic, "") 80 CK_PR_FENCE(atomic_store, "") 81 CK_PR_FENCE(atomic_load, "") 82 CK_PR_FENCE(store_atomic, "") 83 CK_PR_FENCE(load_atomic, "") 84 85 /* Traditional fence interface. */ 86 CK_PR_FENCE(load, "lfence") 87 CK_PR_FENCE(load_store, "mfence") 88 CK_PR_FENCE(store, "sfence") 89 CK_PR_FENCE(store_load, "mfence") 90 CK_PR_FENCE(memory, "mfence") 91 92 /* Below are stdatomic-style fences. */ 93 94 /* 95 * Provides load-store and store-store ordering. However, Intel specifies that 96 * the WC memory model is relaxed. It is likely an sfence *is* sufficient (in 97 * particular, stores are not re-ordered with respect to prior loads and it is 98 * really just the stores that are subject to re-ordering). However, we take 99 * the conservative route as the manuals are too ambiguous for my taste. 100 */ 101 CK_PR_FENCE(release, "mfence") 102 103 /* 104 * Provides load-load and load-store ordering. The lfence instruction ensures 105 * all prior load operations are complete before any subsequent instructions 106 * actually begin execution. However, the manual also ends up going to describe 107 * WC memory as a relaxed model. 108 */ 109 CK_PR_FENCE(acquire, "mfence") 110 111 CK_PR_FENCE(acqrel, "mfence") 112 CK_PR_FENCE(lock, "mfence") 113 CK_PR_FENCE(unlock, "mfence") 114 115 #undef CK_PR_FENCE 116 117 /* 118 * Read for ownership. Older compilers will generate the 32-bit 119 * 3DNow! variant which is binary compatible with x86-64 variant 120 * of prefetchw. 121 */ 122 #ifndef CK_F_PR_RFO 123 #define CK_F_PR_RFO 124 CK_CC_INLINE static void 125 ck_pr_rfo(const void *m) 126 { 127 128 __asm__ __volatile__("prefetchw (%0)" 129 : 130 : "r" (m) 131 : "memory"); 132 133 return; 134 } 135 #endif /* CK_F_PR_RFO */ 136 137 /* 138 * Atomic fetch-and-store operations. 139 */ 140 #define CK_PR_FAS(S, M, T, C, I) \ 141 CK_CC_INLINE static T \ 142 ck_pr_fas_##S(M *target, T v) \ 143 { \ 144 __asm__ __volatile__(I " %0, %1" \ 145 : "+m" (*(C *)target), \ 146 "+q" (v) \ 147 : \ 148 : "memory"); \ 149 return v; \ 150 } 151 152 CK_PR_FAS(ptr, void, void *, uint64_t, "xchgq") 153 154 #define CK_PR_FAS_S(S, T, I) CK_PR_FAS(S, T, T, T, I) 155 156 #ifndef CK_PR_DISABLE_DOUBLE 157 CK_PR_FAS_S(double, double, "xchgq") 158 #endif 159 CK_PR_FAS_S(char, char, "xchgb") 160 CK_PR_FAS_S(uint, unsigned int, "xchgl") 161 CK_PR_FAS_S(int, int, "xchgl") 162 CK_PR_FAS_S(64, uint64_t, "xchgq") 163 CK_PR_FAS_S(32, uint32_t, "xchgl") 164 CK_PR_FAS_S(16, uint16_t, "xchgw") 165 CK_PR_FAS_S(8, uint8_t, "xchgb") 166 167 #undef CK_PR_FAS_S 168 #undef CK_PR_FAS 169 170 /* 171 * Atomic load-from-memory operations. 172 */ 173 #define CK_PR_LOAD(S, M, T, C, I) \ 174 CK_CC_INLINE static T \ 175 ck_pr_md_load_##S(const M *target) \ 176 { \ 177 T r; \ 178 __asm__ __volatile__(I " %1, %0" \ 179 : "=q" (r) \ 180 : "m" (*(const C *)target) \ 181 : "memory"); \ 182 return (r); \ 183 } 184 185 CK_PR_LOAD(ptr, void, void *, uint64_t, "movq") 186 187 #define CK_PR_LOAD_S(S, T, I) CK_PR_LOAD(S, T, T, T, I) 188 189 CK_PR_LOAD_S(char, char, "movb") 190 CK_PR_LOAD_S(uint, unsigned int, "movl") 191 CK_PR_LOAD_S(int, int, "movl") 192 #ifndef CK_PR_DISABLE_DOUBLE 193 CK_PR_LOAD_S(double, double, "movq") 194 #endif 195 CK_PR_LOAD_S(64, uint64_t, "movq") 196 CK_PR_LOAD_S(32, uint32_t, "movl") 197 CK_PR_LOAD_S(16, uint16_t, "movw") 198 CK_PR_LOAD_S(8, uint8_t, "movb") 199 200 #undef CK_PR_LOAD_S 201 #undef CK_PR_LOAD 202 203 CK_CC_INLINE static void 204 ck_pr_load_64_2(const uint64_t target[2], uint64_t v[2]) 205 { 206 __asm__ __volatile__("movq %%rdx, %%rcx;" 207 "movq %%rax, %%rbx;" 208 CK_PR_LOCK_PREFIX "cmpxchg16b %2;" 209 : "=a" (v[0]), 210 "=d" (v[1]) 211 : "m" (*(const uint64_t *)target) 212 : "rbx", "rcx", "memory", "cc"); 213 return; 214 } 215 216 CK_CC_INLINE static void 217 ck_pr_load_ptr_2(const void *t, void *v) 218 { 219 ck_pr_load_64_2(CK_CPP_CAST(const uint64_t *, t), 220 CK_CPP_CAST(uint64_t *, v)); 221 return; 222 } 223 224 #define CK_PR_LOAD_2(S, W, T) \ 225 CK_CC_INLINE static void \ 226 ck_pr_md_load_##S##_##W(const T t[2], T v[2]) \ 227 { \ 228 ck_pr_load_64_2((const uint64_t *)(const void *)t, \ 229 (uint64_t *)(void *)v); \ 230 return; \ 231 } 232 233 CK_PR_LOAD_2(char, 16, char) 234 CK_PR_LOAD_2(int, 4, int) 235 CK_PR_LOAD_2(uint, 4, unsigned int) 236 CK_PR_LOAD_2(32, 4, uint32_t) 237 CK_PR_LOAD_2(16, 8, uint16_t) 238 CK_PR_LOAD_2(8, 16, uint8_t) 239 240 #undef CK_PR_LOAD_2 241 242 /* 243 * Atomic store-to-memory operations. 244 */ 245 #define CK_PR_STORE_IMM(S, M, T, C, I, K) \ 246 CK_CC_INLINE static void \ 247 ck_pr_md_store_##S(M *target, T v) \ 248 { \ 249 __asm__ __volatile__(I " %1, %0" \ 250 : "=m" (*(C *)target) \ 251 : K "q" (v) \ 252 : "memory"); \ 253 return; \ 254 } 255 256 #define CK_PR_STORE(S, M, T, C, I) \ 257 CK_CC_INLINE static void \ 258 ck_pr_md_store_##S(M *target, T v) \ 259 { \ 260 __asm__ __volatile__(I " %1, %0" \ 261 : "=m" (*(C *)target) \ 262 : "q" (v) \ 263 : "memory"); \ 264 return; \ 265 } 266 267 CK_PR_STORE_IMM(ptr, void, const void *, uint64_t, "movq", CK_CC_IMM_U32) 268 #ifndef CK_PR_DISABLE_DOUBLE 269 CK_PR_STORE(double, double, double, double, "movq") 270 #endif 271 272 #define CK_PR_STORE_S(S, T, I, K) CK_PR_STORE_IMM(S, T, T, T, I, K) 273 274 CK_PR_STORE_S(char, char, "movb", CK_CC_IMM_S32) 275 CK_PR_STORE_S(int, int, "movl", CK_CC_IMM_S32) 276 CK_PR_STORE_S(uint, unsigned int, "movl", CK_CC_IMM_U32) 277 CK_PR_STORE_S(64, uint64_t, "movq", CK_CC_IMM_U32) 278 CK_PR_STORE_S(32, uint32_t, "movl", CK_CC_IMM_U32) 279 CK_PR_STORE_S(16, uint16_t, "movw", CK_CC_IMM_U32) 280 CK_PR_STORE_S(8, uint8_t, "movb", CK_CC_IMM_U32) 281 282 #undef CK_PR_STORE_S 283 #undef CK_PR_STORE_IMM 284 #undef CK_PR_STORE 285 286 /* 287 * Atomic fetch-and-add operations. 288 */ 289 #define CK_PR_FAA(S, M, T, C, I) \ 290 CK_CC_INLINE static T \ 291 ck_pr_faa_##S(M *target, T d) \ 292 { \ 293 __asm__ __volatile__(CK_PR_LOCK_PREFIX I " %1, %0" \ 294 : "+m" (*(C *)target), \ 295 "+q" (d) \ 296 : \ 297 : "memory", "cc"); \ 298 return (d); \ 299 } 300 301 CK_PR_FAA(ptr, void, uintptr_t, uint64_t, "xaddq") 302 303 #define CK_PR_FAA_S(S, T, I) CK_PR_FAA(S, T, T, T, I) 304 305 CK_PR_FAA_S(char, char, "xaddb") 306 CK_PR_FAA_S(uint, unsigned int, "xaddl") 307 CK_PR_FAA_S(int, int, "xaddl") 308 CK_PR_FAA_S(64, uint64_t, "xaddq") 309 CK_PR_FAA_S(32, uint32_t, "xaddl") 310 CK_PR_FAA_S(16, uint16_t, "xaddw") 311 CK_PR_FAA_S(8, uint8_t, "xaddb") 312 313 #undef CK_PR_FAA_S 314 #undef CK_PR_FAA 315 316 /* 317 * Atomic store-only unary operations. 318 */ 319 #define CK_PR_UNARY(K, S, T, C, I) \ 320 CK_PR_UNARY_R(K, S, T, C, I) \ 321 CK_PR_UNARY_V(K, S, T, C, I) 322 323 #define CK_PR_UNARY_R(K, S, T, C, I) \ 324 CK_CC_INLINE static void \ 325 ck_pr_##K##_##S(T *target) \ 326 { \ 327 __asm__ __volatile__(CK_PR_LOCK_PREFIX I " %0" \ 328 : "+m" (*(C *)target) \ 329 : \ 330 : "memory", "cc"); \ 331 return; \ 332 } 333 334 #define CK_PR_UNARY_V(K, S, T, C, I) \ 335 CK_CC_INLINE static bool \ 336 ck_pr_##K##_##S##_is_zero(T *target) \ 337 { \ 338 bool ret; \ 339 __asm__ __volatile__(CK_PR_LOCK_PREFIX I " %0; setz %1" \ 340 : "+m" (*(C *)target), \ 341 "=rm" (ret) \ 342 : \ 343 : "memory", "cc"); \ 344 return ret; \ 345 } 346 347 #define CK_PR_UNARY_S(K, S, T, I) CK_PR_UNARY(K, S, T, T, I) 348 349 #define CK_PR_GENERATE(K) \ 350 CK_PR_UNARY(K, ptr, void, uint64_t, #K "q") \ 351 CK_PR_UNARY_S(K, char, char, #K "b") \ 352 CK_PR_UNARY_S(K, int, int, #K "l") \ 353 CK_PR_UNARY_S(K, uint, unsigned int, #K "l") \ 354 CK_PR_UNARY_S(K, 64, uint64_t, #K "q") \ 355 CK_PR_UNARY_S(K, 32, uint32_t, #K "l") \ 356 CK_PR_UNARY_S(K, 16, uint16_t, #K "w") \ 357 CK_PR_UNARY_S(K, 8, uint8_t, #K "b") 358 359 CK_PR_GENERATE(inc) 360 CK_PR_GENERATE(dec) 361 CK_PR_GENERATE(neg) 362 363 /* not does not affect condition flags. */ 364 #undef CK_PR_UNARY_V 365 #define CK_PR_UNARY_V(a, b, c, d, e) 366 CK_PR_GENERATE(not) 367 368 #undef CK_PR_GENERATE 369 #undef CK_PR_UNARY_S 370 #undef CK_PR_UNARY_V 371 #undef CK_PR_UNARY_R 372 #undef CK_PR_UNARY 373 374 /* 375 * Atomic store-only binary operations. 376 */ 377 #define CK_PR_BINARY(K, S, M, T, C, I, O) \ 378 CK_CC_INLINE static void \ 379 ck_pr_##K##_##S(M *target, T d) \ 380 { \ 381 __asm__ __volatile__(CK_PR_LOCK_PREFIX I " %1, %0" \ 382 : "+m" (*(C *)target) \ 383 : O "q" (d) \ 384 : "memory", "cc"); \ 385 return; \ 386 } 387 388 #define CK_PR_BINARY_S(K, S, T, I, O) CK_PR_BINARY(K, S, T, T, T, I, O) 389 390 #define CK_PR_GENERATE(K) \ 391 CK_PR_BINARY(K, ptr, void, uintptr_t, uint64_t, #K "q", CK_CC_IMM_U32) \ 392 CK_PR_BINARY_S(K, char, char, #K "b", CK_CC_IMM_S32) \ 393 CK_PR_BINARY_S(K, int, int, #K "l", CK_CC_IMM_S32) \ 394 CK_PR_BINARY_S(K, uint, unsigned int, #K "l", CK_CC_IMM_U32) \ 395 CK_PR_BINARY_S(K, 64, uint64_t, #K "q", CK_CC_IMM_U32) \ 396 CK_PR_BINARY_S(K, 32, uint32_t, #K "l", CK_CC_IMM_U32) \ 397 CK_PR_BINARY_S(K, 16, uint16_t, #K "w", CK_CC_IMM_U32) \ 398 CK_PR_BINARY_S(K, 8, uint8_t, #K "b", CK_CC_IMM_U32) 399 400 CK_PR_GENERATE(add) 401 CK_PR_GENERATE(sub) 402 CK_PR_GENERATE(and) 403 CK_PR_GENERATE(or) 404 CK_PR_GENERATE(xor) 405 406 #undef CK_PR_GENERATE 407 #undef CK_PR_BINARY_S 408 #undef CK_PR_BINARY 409 410 /* 411 * Atomic compare and swap, with a variant that sets *v to the old value of target. 412 */ 413 #ifdef __GCC_ASM_FLAG_OUTPUTS__ 414 #define CK_PR_CAS(S, M, T, C, I) \ 415 CK_CC_INLINE static bool \ 416 ck_pr_cas_##S(M *target, T compare, T set) \ 417 { \ 418 bool z; \ 419 __asm__ __volatile__(CK_PR_LOCK_PREFIX I " %3, %0" \ 420 : "+m" (*(C *)target), \ 421 "=@ccz" (z), \ 422 /* RAX is clobbered by cmpxchg. */ \ 423 "+a" (compare) \ 424 : "q" (set) \ 425 : "memory", "cc"); \ 426 return z; \ 427 } \ 428 \ 429 CK_CC_INLINE static bool \ 430 ck_pr_cas_##S##_value(M *target, T compare, T set, M *v) \ 431 { \ 432 bool z; \ 433 __asm__ __volatile__(CK_PR_LOCK_PREFIX I " %3, %0;" \ 434 : "+m" (*(C *)target), \ 435 "=@ccz" (z), \ 436 "+a" (compare) \ 437 : "q" (set) \ 438 : "memory", "cc"); \ 439 *(T *)v = compare; \ 440 return z; \ 441 } 442 #else 443 #define CK_PR_CAS(S, M, T, C, I) \ 444 CK_CC_INLINE static bool \ 445 ck_pr_cas_##S(M *target, T compare, T set) \ 446 { \ 447 bool z; \ 448 __asm__ __volatile__(CK_PR_LOCK_PREFIX I " %2, %0; setz %1" \ 449 : "+m" (*(C *)target), \ 450 "=a" (z) \ 451 : "q" (set), \ 452 "a" (compare) \ 453 : "memory", "cc"); \ 454 return z; \ 455 } \ 456 \ 457 CK_CC_INLINE static bool \ 458 ck_pr_cas_##S##_value(M *target, T compare, T set, M *v) \ 459 { \ 460 bool z; \ 461 __asm__ __volatile__(CK_PR_LOCK_PREFIX I " %3, %0;" \ 462 "setz %1;" \ 463 : "+m" (*(C *)target), \ 464 "=q" (z), \ 465 "+a" (compare) \ 466 : "q" (set) \ 467 : "memory", "cc"); \ 468 *(T *)v = compare; \ 469 return z; \ 470 } 471 #endif 472 473 CK_PR_CAS(ptr, void, void *, uint64_t, "cmpxchgq") 474 475 #define CK_PR_CAS_S(S, T, I) CK_PR_CAS(S, T, T, T, I) 476 477 CK_PR_CAS_S(char, char, "cmpxchgb") 478 CK_PR_CAS_S(int, int, "cmpxchgl") 479 CK_PR_CAS_S(uint, unsigned int, "cmpxchgl") 480 #ifndef CK_PR_DISABLE_DOUBLE 481 CK_PR_CAS_S(double, double, "cmpxchgq") 482 #endif 483 CK_PR_CAS_S(64, uint64_t, "cmpxchgq") 484 CK_PR_CAS_S(32, uint32_t, "cmpxchgl") 485 CK_PR_CAS_S(16, uint16_t, "cmpxchgw") 486 CK_PR_CAS_S(8, uint8_t, "cmpxchgb") 487 488 #undef CK_PR_CAS_S 489 #undef CK_PR_CAS 490 491 /* 492 * Contrary to C-interface, alignment requirements are that of uint64_t[2]. 493 */ 494 CK_CC_INLINE static bool 495 ck_pr_cas_64_2(uint64_t target[2], uint64_t compare[2], uint64_t set[2]) 496 { 497 bool z; 498 499 __asm__ __volatile__("movq 0(%4), %%rax;" 500 "movq 8(%4), %%rdx;" 501 CK_PR_LOCK_PREFIX "cmpxchg16b %0; setz %1" 502 : "+m" (*target), 503 "=q" (z) 504 : "b" (set[0]), 505 "c" (set[1]), 506 "q" (compare) 507 : "memory", "cc", "%rax", "%rdx"); 508 return z; 509 } 510 511 CK_CC_INLINE static bool 512 ck_pr_cas_ptr_2(void *t, void *c, void *s) 513 { 514 return ck_pr_cas_64_2(CK_CPP_CAST(uint64_t *, t), 515 CK_CPP_CAST(uint64_t *, c), 516 CK_CPP_CAST(uint64_t *, s)); 517 } 518 519 CK_CC_INLINE static bool 520 ck_pr_cas_64_2_value(uint64_t target[2], 521 uint64_t compare[2], 522 uint64_t set[2], 523 uint64_t v[2]) 524 { 525 bool z; 526 527 __asm__ __volatile__(CK_PR_LOCK_PREFIX "cmpxchg16b %0;" 528 "setz %3" 529 : "+m" (*target), 530 "=a" (v[0]), 531 "=d" (v[1]), 532 "=q" (z) 533 : "a" (compare[0]), 534 "d" (compare[1]), 535 "b" (set[0]), 536 "c" (set[1]) 537 : "memory", "cc"); 538 return z; 539 } 540 541 CK_CC_INLINE static bool 542 ck_pr_cas_ptr_2_value(void *t, void *c, void *s, void *v) 543 { 544 return ck_pr_cas_64_2_value(CK_CPP_CAST(uint64_t *,t), 545 CK_CPP_CAST(uint64_t *,c), 546 CK_CPP_CAST(uint64_t *,s), 547 CK_CPP_CAST(uint64_t *,v)); 548 } 549 550 #define CK_PR_CAS_V(S, W, T) \ 551 CK_CC_INLINE static bool \ 552 ck_pr_cas_##S##_##W(T t[W], T c[W], T s[W]) \ 553 { \ 554 return ck_pr_cas_64_2((uint64_t *)(void *)t, \ 555 (uint64_t *)(void *)c, \ 556 (uint64_t *)(void *)s); \ 557 } \ 558 CK_CC_INLINE static bool \ 559 ck_pr_cas_##S##_##W##_value(T *t, T c[W], T s[W], T *v) \ 560 { \ 561 return ck_pr_cas_64_2_value((uint64_t *)(void *)t, \ 562 (uint64_t *)(void *)c, \ 563 (uint64_t *)(void *)s, \ 564 (uint64_t *)(void *)v); \ 565 } 566 567 #ifndef CK_PR_DISABLE_DOUBLE 568 CK_PR_CAS_V(double, 2, double) 569 #endif 570 CK_PR_CAS_V(char, 16, char) 571 CK_PR_CAS_V(int, 4, int) 572 CK_PR_CAS_V(uint, 4, unsigned int) 573 CK_PR_CAS_V(32, 4, uint32_t) 574 CK_PR_CAS_V(16, 8, uint16_t) 575 CK_PR_CAS_V(8, 16, uint8_t) 576 577 #undef CK_PR_CAS_V 578 579 /* 580 * Atomic bit test operations. 581 */ 582 #define CK_PR_BT(K, S, T, P, C, I) \ 583 CK_CC_INLINE static bool \ 584 ck_pr_##K##_##S(T *target, unsigned int b) \ 585 { \ 586 bool c; \ 587 __asm__ __volatile__(CK_PR_LOCK_PREFIX I "; setc %1" \ 588 : "+m" (*(C *)target), \ 589 "=q" (c) \ 590 : "q" ((P)b) \ 591 : "memory", "cc"); \ 592 return c; \ 593 } 594 595 #define CK_PR_BT_S(K, S, T, I) CK_PR_BT(K, S, T, T, T, I) 596 597 #define CK_PR_GENERATE(K) \ 598 CK_PR_BT(K, ptr, void, uint64_t, uint64_t, #K "q %2, %0") \ 599 CK_PR_BT_S(K, uint, unsigned int, #K "l %2, %0") \ 600 CK_PR_BT_S(K, int, int, #K "l %2, %0") \ 601 CK_PR_BT_S(K, 64, uint64_t, #K "q %2, %0") \ 602 CK_PR_BT_S(K, 32, uint32_t, #K "l %2, %0") \ 603 CK_PR_BT_S(K, 16, uint16_t, #K "w %w2, %0") 604 605 CK_PR_GENERATE(btc) 606 CK_PR_GENERATE(bts) 607 CK_PR_GENERATE(btr) 608 609 #undef CK_PR_GENERATE 610 #undef CK_PR_BT 611 612 #endif /* CK_PR_X86_64_H */ 613 614