/* * Copyright 2009-2015 Samy Al Bahra. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef CK_PR_X86_64_H #define CK_PR_X86_64_H #ifndef CK_PR_H #error Do not include this file directly, use ck_pr.h #endif #include #include #include /* * The following represent supported atomic operations. * These operations may be emulated. */ #include "ck_f_pr.h" /* * Support for TSX extensions. */ #ifdef CK_MD_RTM_ENABLE #include "ck_pr_rtm.h" #endif /* Minimum requirements for the CK_PR interface are met. */ #define CK_F_PR #ifdef CK_MD_UMP #define CK_PR_LOCK_PREFIX #else #define CK_PR_LOCK_PREFIX "lock " #endif /* * Prevent speculative execution in busy-wait loops (P4 <=) or "predefined * delay". */ CK_CC_INLINE static void ck_pr_stall(void) { __asm__ __volatile__("pause" ::: "memory"); return; } #define CK_PR_FENCE(T, I) \ CK_CC_INLINE static void \ ck_pr_fence_strict_##T(void) \ { \ __asm__ __volatile__(I ::: "memory"); \ } /* Atomic operations are always serializing. */ CK_PR_FENCE(atomic, "") CK_PR_FENCE(atomic_store, "") CK_PR_FENCE(atomic_load, "") CK_PR_FENCE(store_atomic, "") CK_PR_FENCE(load_atomic, "") /* Traditional fence interface. */ CK_PR_FENCE(load, "lfence") CK_PR_FENCE(load_store, "mfence") CK_PR_FENCE(store, "sfence") CK_PR_FENCE(store_load, "mfence") CK_PR_FENCE(memory, "mfence") /* Below are stdatomic-style fences. */ /* * Provides load-store and store-store ordering. However, Intel specifies that * the WC memory model is relaxed. It is likely an sfence *is* sufficient (in * particular, stores are not re-ordered with respect to prior loads and it is * really just the stores that are subject to re-ordering). However, we take * the conservative route as the manuals are too ambiguous for my taste. */ CK_PR_FENCE(release, "mfence") /* * Provides load-load and load-store ordering. The lfence instruction ensures * all prior load operations are complete before any subsequent instructions * actually begin execution. However, the manual also ends up going to describe * WC memory as a relaxed model. */ CK_PR_FENCE(acquire, "mfence") CK_PR_FENCE(acqrel, "mfence") CK_PR_FENCE(lock, "mfence") CK_PR_FENCE(unlock, "mfence") #undef CK_PR_FENCE /* * Read for ownership. Older compilers will generate the 32-bit * 3DNow! variant which is binary compatible with x86-64 variant * of prefetchw. */ #ifndef CK_F_PR_RFO #define CK_F_PR_RFO CK_CC_INLINE static void ck_pr_rfo(const void *m) { __asm__ __volatile__("prefetchw (%0)" : : "r" (m) : "memory"); return; } #endif /* CK_F_PR_RFO */ /* * Atomic fetch-and-store operations. */ #define CK_PR_FAS(S, M, T, C, I) \ CK_CC_INLINE static T \ ck_pr_fas_##S(M *target, T v) \ { \ __asm__ __volatile__(I " %0, %1" \ : "+m" (*(C *)target), \ "+q" (v) \ : \ : "memory"); \ return v; \ } CK_PR_FAS(ptr, void, void *, uint64_t, "xchgq") #define CK_PR_FAS_S(S, T, I) CK_PR_FAS(S, T, T, T, I) #ifndef CK_PR_DISABLE_DOUBLE CK_PR_FAS_S(double, double, "xchgq") #endif CK_PR_FAS_S(char, char, "xchgb") CK_PR_FAS_S(uint, unsigned int, "xchgl") CK_PR_FAS_S(int, int, "xchgl") CK_PR_FAS_S(64, uint64_t, "xchgq") CK_PR_FAS_S(32, uint32_t, "xchgl") CK_PR_FAS_S(16, uint16_t, "xchgw") CK_PR_FAS_S(8, uint8_t, "xchgb") #undef CK_PR_FAS_S #undef CK_PR_FAS /* * Atomic load-from-memory operations. */ #define CK_PR_LOAD(S, M, T, C, I) \ CK_CC_INLINE static T \ ck_pr_md_load_##S(const M *target) \ { \ T r; \ __asm__ __volatile__(I " %1, %0" \ : "=q" (r) \ : "m" (*(const C *)target) \ : "memory"); \ return (r); \ } CK_PR_LOAD(ptr, void, void *, uint64_t, "movq") #define CK_PR_LOAD_S(S, T, I) CK_PR_LOAD(S, T, T, T, I) CK_PR_LOAD_S(char, char, "movb") CK_PR_LOAD_S(uint, unsigned int, "movl") CK_PR_LOAD_S(int, int, "movl") #ifndef CK_PR_DISABLE_DOUBLE CK_PR_LOAD_S(double, double, "movq") #endif CK_PR_LOAD_S(64, uint64_t, "movq") CK_PR_LOAD_S(32, uint32_t, "movl") CK_PR_LOAD_S(16, uint16_t, "movw") CK_PR_LOAD_S(8, uint8_t, "movb") #undef CK_PR_LOAD_S #undef CK_PR_LOAD CK_CC_INLINE static void ck_pr_load_64_2(const uint64_t target[2], uint64_t v[2]) { __asm__ __volatile__("movq %%rdx, %%rcx;" "movq %%rax, %%rbx;" CK_PR_LOCK_PREFIX "cmpxchg16b %2;" : "=a" (v[0]), "=d" (v[1]) : "m" (*(const uint64_t *)target) : "rbx", "rcx", "memory", "cc"); return; } CK_CC_INLINE static void ck_pr_load_ptr_2(const void *t, void *v) { ck_pr_load_64_2(CK_CPP_CAST(const uint64_t *, t), CK_CPP_CAST(uint64_t *, v)); return; } #define CK_PR_LOAD_2(S, W, T) \ CK_CC_INLINE static void \ ck_pr_md_load_##S##_##W(const T t[2], T v[2]) \ { \ ck_pr_load_64_2((const uint64_t *)(const void *)t, \ (uint64_t *)(void *)v); \ return; \ } CK_PR_LOAD_2(char, 16, char) CK_PR_LOAD_2(int, 4, int) CK_PR_LOAD_2(uint, 4, unsigned int) CK_PR_LOAD_2(32, 4, uint32_t) CK_PR_LOAD_2(16, 8, uint16_t) CK_PR_LOAD_2(8, 16, uint8_t) #undef CK_PR_LOAD_2 /* * Atomic store-to-memory operations. */ #define CK_PR_STORE_IMM(S, M, T, C, I, K) \ CK_CC_INLINE static void \ ck_pr_md_store_##S(M *target, T v) \ { \ __asm__ __volatile__(I " %1, %0" \ : "=m" (*(C *)target) \ : K "q" (v) \ : "memory"); \ return; \ } #define CK_PR_STORE(S, M, T, C, I) \ CK_CC_INLINE static void \ ck_pr_md_store_##S(M *target, T v) \ { \ __asm__ __volatile__(I " %1, %0" \ : "=m" (*(C *)target) \ : "q" (v) \ : "memory"); \ return; \ } CK_PR_STORE_IMM(ptr, void, const void *, uint64_t, "movq", CK_CC_IMM_U32) #ifndef CK_PR_DISABLE_DOUBLE CK_PR_STORE(double, double, double, double, "movq") #endif #define CK_PR_STORE_S(S, T, I, K) CK_PR_STORE_IMM(S, T, T, T, I, K) CK_PR_STORE_S(char, char, "movb", CK_CC_IMM_S32) CK_PR_STORE_S(int, int, "movl", CK_CC_IMM_S32) CK_PR_STORE_S(uint, unsigned int, "movl", CK_CC_IMM_U32) CK_PR_STORE_S(64, uint64_t, "movq", CK_CC_IMM_U32) CK_PR_STORE_S(32, uint32_t, "movl", CK_CC_IMM_U32) CK_PR_STORE_S(16, uint16_t, "movw", CK_CC_IMM_U32) CK_PR_STORE_S(8, uint8_t, "movb", CK_CC_IMM_U32) #undef CK_PR_STORE_S #undef CK_PR_STORE_IMM #undef CK_PR_STORE /* * Atomic fetch-and-add operations. */ #define CK_PR_FAA(S, M, T, C, I) \ CK_CC_INLINE static T \ ck_pr_faa_##S(M *target, T d) \ { \ __asm__ __volatile__(CK_PR_LOCK_PREFIX I " %1, %0" \ : "+m" (*(C *)target), \ "+q" (d) \ : \ : "memory", "cc"); \ return (d); \ } CK_PR_FAA(ptr, void, uintptr_t, uint64_t, "xaddq") #define CK_PR_FAA_S(S, T, I) CK_PR_FAA(S, T, T, T, I) CK_PR_FAA_S(char, char, "xaddb") CK_PR_FAA_S(uint, unsigned int, "xaddl") CK_PR_FAA_S(int, int, "xaddl") CK_PR_FAA_S(64, uint64_t, "xaddq") CK_PR_FAA_S(32, uint32_t, "xaddl") CK_PR_FAA_S(16, uint16_t, "xaddw") CK_PR_FAA_S(8, uint8_t, "xaddb") #undef CK_PR_FAA_S #undef CK_PR_FAA /* * Atomic store-only unary operations. */ #define CK_PR_UNARY(K, S, T, C, I) \ CK_PR_UNARY_R(K, S, T, C, I) \ CK_PR_UNARY_V(K, S, T, C, I) #define CK_PR_UNARY_R(K, S, T, C, I) \ CK_CC_INLINE static void \ ck_pr_##K##_##S(T *target) \ { \ __asm__ __volatile__(CK_PR_LOCK_PREFIX I " %0" \ : "+m" (*(C *)target) \ : \ : "memory", "cc"); \ return; \ } #define CK_PR_UNARY_V(K, S, T, C, I) \ CK_CC_INLINE static bool \ ck_pr_##K##_##S##_is_zero(T *target) \ { \ bool ret; \ __asm__ __volatile__(CK_PR_LOCK_PREFIX I " %0; setz %1" \ : "+m" (*(C *)target), \ "=rm" (ret) \ : \ : "memory", "cc"); \ return ret; \ } #define CK_PR_UNARY_S(K, S, T, I) CK_PR_UNARY(K, S, T, T, I) #define CK_PR_GENERATE(K) \ CK_PR_UNARY(K, ptr, void, uint64_t, #K "q") \ CK_PR_UNARY_S(K, char, char, #K "b") \ CK_PR_UNARY_S(K, int, int, #K "l") \ CK_PR_UNARY_S(K, uint, unsigned int, #K "l") \ CK_PR_UNARY_S(K, 64, uint64_t, #K "q") \ CK_PR_UNARY_S(K, 32, uint32_t, #K "l") \ CK_PR_UNARY_S(K, 16, uint16_t, #K "w") \ CK_PR_UNARY_S(K, 8, uint8_t, #K "b") CK_PR_GENERATE(inc) CK_PR_GENERATE(dec) CK_PR_GENERATE(neg) /* not does not affect condition flags. */ #undef CK_PR_UNARY_V #define CK_PR_UNARY_V(a, b, c, d, e) CK_PR_GENERATE(not) #undef CK_PR_GENERATE #undef CK_PR_UNARY_S #undef CK_PR_UNARY_V #undef CK_PR_UNARY_R #undef CK_PR_UNARY /* * Atomic store-only binary operations. */ #define CK_PR_BINARY(K, S, M, T, C, I, O) \ CK_CC_INLINE static void \ ck_pr_##K##_##S(M *target, T d) \ { \ __asm__ __volatile__(CK_PR_LOCK_PREFIX I " %1, %0" \ : "+m" (*(C *)target) \ : O "q" (d) \ : "memory", "cc"); \ return; \ } #define CK_PR_BINARY_S(K, S, T, I, O) CK_PR_BINARY(K, S, T, T, T, I, O) #define CK_PR_GENERATE(K) \ CK_PR_BINARY(K, ptr, void, uintptr_t, uint64_t, #K "q", CK_CC_IMM_U32) \ CK_PR_BINARY_S(K, char, char, #K "b", CK_CC_IMM_S32) \ CK_PR_BINARY_S(K, int, int, #K "l", CK_CC_IMM_S32) \ CK_PR_BINARY_S(K, uint, unsigned int, #K "l", CK_CC_IMM_U32) \ CK_PR_BINARY_S(K, 64, uint64_t, #K "q", CK_CC_IMM_U32) \ CK_PR_BINARY_S(K, 32, uint32_t, #K "l", CK_CC_IMM_U32) \ CK_PR_BINARY_S(K, 16, uint16_t, #K "w", CK_CC_IMM_U32) \ CK_PR_BINARY_S(K, 8, uint8_t, #K "b", CK_CC_IMM_U32) CK_PR_GENERATE(add) CK_PR_GENERATE(sub) CK_PR_GENERATE(and) CK_PR_GENERATE(or) CK_PR_GENERATE(xor) #undef CK_PR_GENERATE #undef CK_PR_BINARY_S #undef CK_PR_BINARY /* * Atomic compare and swap, with a variant that sets *v to the old value of target. */ #ifdef __GCC_ASM_FLAG_OUTPUTS__ #define CK_PR_CAS(S, M, T, C, I) \ CK_CC_INLINE static bool \ ck_pr_cas_##S(M *target, T compare, T set) \ { \ bool z; \ __asm__ __volatile__(CK_PR_LOCK_PREFIX I " %3, %0" \ : "+m" (*(C *)target), \ "=@ccz" (z), \ /* RAX is clobbered by cmpxchg. */ \ "+a" (compare) \ : "q" (set) \ : "memory", "cc"); \ return z; \ } \ \ CK_CC_INLINE static bool \ ck_pr_cas_##S##_value(M *target, T compare, T set, M *v) \ { \ bool z; \ __asm__ __volatile__(CK_PR_LOCK_PREFIX I " %3, %0;" \ : "+m" (*(C *)target), \ "=@ccz" (z), \ "+a" (compare) \ : "q" (set) \ : "memory", "cc"); \ *(T *)v = compare; \ return z; \ } #else #define CK_PR_CAS(S, M, T, C, I) \ CK_CC_INLINE static bool \ ck_pr_cas_##S(M *target, T compare, T set) \ { \ bool z; \ __asm__ __volatile__(CK_PR_LOCK_PREFIX I " %2, %0; setz %1" \ : "+m" (*(C *)target), \ "=a" (z) \ : "q" (set), \ "a" (compare) \ : "memory", "cc"); \ return z; \ } \ \ CK_CC_INLINE static bool \ ck_pr_cas_##S##_value(M *target, T compare, T set, M *v) \ { \ bool z; \ __asm__ __volatile__(CK_PR_LOCK_PREFIX I " %3, %0;" \ "setz %1;" \ : "+m" (*(C *)target), \ "=q" (z), \ "+a" (compare) \ : "q" (set) \ : "memory", "cc"); \ *(T *)v = compare; \ return z; \ } #endif CK_PR_CAS(ptr, void, void *, uint64_t, "cmpxchgq") #define CK_PR_CAS_S(S, T, I) CK_PR_CAS(S, T, T, T, I) CK_PR_CAS_S(char, char, "cmpxchgb") CK_PR_CAS_S(int, int, "cmpxchgl") CK_PR_CAS_S(uint, unsigned int, "cmpxchgl") #ifndef CK_PR_DISABLE_DOUBLE CK_PR_CAS_S(double, double, "cmpxchgq") #endif CK_PR_CAS_S(64, uint64_t, "cmpxchgq") CK_PR_CAS_S(32, uint32_t, "cmpxchgl") CK_PR_CAS_S(16, uint16_t, "cmpxchgw") CK_PR_CAS_S(8, uint8_t, "cmpxchgb") #undef CK_PR_CAS_S #undef CK_PR_CAS /* * Contrary to C-interface, alignment requirements are that of uint64_t[2]. */ CK_CC_INLINE static bool ck_pr_cas_64_2(uint64_t target[2], uint64_t compare[2], uint64_t set[2]) { bool z; __asm__ __volatile__("movq 0(%4), %%rax;" "movq 8(%4), %%rdx;" CK_PR_LOCK_PREFIX "cmpxchg16b %0; setz %1" : "+m" (*target), "=q" (z) : "b" (set[0]), "c" (set[1]), "q" (compare) : "memory", "cc", "%rax", "%rdx"); return z; } CK_CC_INLINE static bool ck_pr_cas_ptr_2(void *t, void *c, void *s) { return ck_pr_cas_64_2(CK_CPP_CAST(uint64_t *, t), CK_CPP_CAST(uint64_t *, c), CK_CPP_CAST(uint64_t *, s)); } CK_CC_INLINE static bool ck_pr_cas_64_2_value(uint64_t target[2], uint64_t compare[2], uint64_t set[2], uint64_t v[2]) { bool z; __asm__ __volatile__(CK_PR_LOCK_PREFIX "cmpxchg16b %0;" "setz %3" : "+m" (*target), "=a" (v[0]), "=d" (v[1]), "=q" (z) : "a" (compare[0]), "d" (compare[1]), "b" (set[0]), "c" (set[1]) : "memory", "cc"); return z; } CK_CC_INLINE static bool ck_pr_cas_ptr_2_value(void *t, void *c, void *s, void *v) { return ck_pr_cas_64_2_value(CK_CPP_CAST(uint64_t *,t), CK_CPP_CAST(uint64_t *,c), CK_CPP_CAST(uint64_t *,s), CK_CPP_CAST(uint64_t *,v)); } #define CK_PR_CAS_V(S, W, T) \ CK_CC_INLINE static bool \ ck_pr_cas_##S##_##W(T t[W], T c[W], T s[W]) \ { \ return ck_pr_cas_64_2((uint64_t *)(void *)t, \ (uint64_t *)(void *)c, \ (uint64_t *)(void *)s); \ } \ CK_CC_INLINE static bool \ ck_pr_cas_##S##_##W##_value(T *t, T c[W], T s[W], T *v) \ { \ return ck_pr_cas_64_2_value((uint64_t *)(void *)t, \ (uint64_t *)(void *)c, \ (uint64_t *)(void *)s, \ (uint64_t *)(void *)v); \ } #ifndef CK_PR_DISABLE_DOUBLE CK_PR_CAS_V(double, 2, double) #endif CK_PR_CAS_V(char, 16, char) CK_PR_CAS_V(int, 4, int) CK_PR_CAS_V(uint, 4, unsigned int) CK_PR_CAS_V(32, 4, uint32_t) CK_PR_CAS_V(16, 8, uint16_t) CK_PR_CAS_V(8, 16, uint8_t) #undef CK_PR_CAS_V /* * Atomic bit test operations. */ #define CK_PR_BT(K, S, T, P, C, I) \ CK_CC_INLINE static bool \ ck_pr_##K##_##S(T *target, unsigned int b) \ { \ bool c; \ __asm__ __volatile__(CK_PR_LOCK_PREFIX I "; setc %1" \ : "+m" (*(C *)target), \ "=q" (c) \ : "q" ((P)b) \ : "memory", "cc"); \ return c; \ } #define CK_PR_BT_S(K, S, T, I) CK_PR_BT(K, S, T, T, T, I) #define CK_PR_GENERATE(K) \ CK_PR_BT(K, ptr, void, uint64_t, uint64_t, #K "q %2, %0") \ CK_PR_BT_S(K, uint, unsigned int, #K "l %2, %0") \ CK_PR_BT_S(K, int, int, #K "l %2, %0") \ CK_PR_BT_S(K, 64, uint64_t, #K "q %2, %0") \ CK_PR_BT_S(K, 32, uint32_t, #K "l %2, %0") \ CK_PR_BT_S(K, 16, uint16_t, #K "w %w2, %0") CK_PR_GENERATE(btc) CK_PR_GENERATE(bts) CK_PR_GENERATE(btr) #undef CK_PR_GENERATE #undef CK_PR_BT #endif /* CK_PR_X86_64_H */