xref: /freebsd/sys/compat/linuxkpi/common/src/linux_pci.c (revision c0a4a7bb942fd3302f0093e4353820916d3661d1)
1 /*-
2  * Copyright (c) 2015-2016 Mellanox Technologies, Ltd.
3  * All rights reserved.
4  * Copyright (c) 2020-2022 The FreeBSD Foundation
5  *
6  * Portions of this software were developed by Björn Zeeb
7  * under sponsorship from the FreeBSD Foundation.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice unmodified, this list of conditions, and the following
14  *    disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/bus.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/sysctl.h>
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/fcntl.h>
43 #include <sys/file.h>
44 #include <sys/filio.h>
45 #include <sys/pciio.h>
46 #include <sys/pctrie.h>
47 #include <sys/rwlock.h>
48 
49 #include <vm/vm.h>
50 #include <vm/pmap.h>
51 
52 #include <machine/stdarg.h>
53 
54 #include <dev/pci/pcivar.h>
55 #include <dev/pci/pci_private.h>
56 #include <dev/pci/pci_iov.h>
57 #include <dev/backlight/backlight.h>
58 
59 #include <linux/kernel.h>
60 #include <linux/kobject.h>
61 #include <linux/device.h>
62 #include <linux/slab.h>
63 #include <linux/module.h>
64 #include <linux/cdev.h>
65 #include <linux/file.h>
66 #include <linux/sysfs.h>
67 #include <linux/mm.h>
68 #include <linux/io.h>
69 #include <linux/vmalloc.h>
70 #include <linux/pci.h>
71 #include <linux/compat.h>
72 
73 #include <linux/backlight.h>
74 
75 #include "backlight_if.h"
76 #include "pcib_if.h"
77 
78 /* Undef the linux function macro defined in linux/pci.h */
79 #undef pci_get_class
80 
81 extern int linuxkpi_debug;
82 
83 SYSCTL_DECL(_compat_linuxkpi);
84 
85 static counter_u64_t lkpi_pci_nseg1_fail;
86 SYSCTL_COUNTER_U64(_compat_linuxkpi, OID_AUTO, lkpi_pci_nseg1_fail, CTLFLAG_RD,
87     &lkpi_pci_nseg1_fail, "Count of busdma mapping failures of single-segment");
88 
89 static device_probe_t linux_pci_probe;
90 static device_attach_t linux_pci_attach;
91 static device_detach_t linux_pci_detach;
92 static device_suspend_t linux_pci_suspend;
93 static device_resume_t linux_pci_resume;
94 static device_shutdown_t linux_pci_shutdown;
95 static pci_iov_init_t linux_pci_iov_init;
96 static pci_iov_uninit_t linux_pci_iov_uninit;
97 static pci_iov_add_vf_t linux_pci_iov_add_vf;
98 static int linux_backlight_get_status(device_t dev, struct backlight_props *props);
99 static int linux_backlight_update_status(device_t dev, struct backlight_props *props);
100 static int linux_backlight_get_info(device_t dev, struct backlight_info *info);
101 
102 static device_method_t pci_methods[] = {
103 	DEVMETHOD(device_probe, linux_pci_probe),
104 	DEVMETHOD(device_attach, linux_pci_attach),
105 	DEVMETHOD(device_detach, linux_pci_detach),
106 	DEVMETHOD(device_suspend, linux_pci_suspend),
107 	DEVMETHOD(device_resume, linux_pci_resume),
108 	DEVMETHOD(device_shutdown, linux_pci_shutdown),
109 	DEVMETHOD(pci_iov_init, linux_pci_iov_init),
110 	DEVMETHOD(pci_iov_uninit, linux_pci_iov_uninit),
111 	DEVMETHOD(pci_iov_add_vf, linux_pci_iov_add_vf),
112 
113 	/* backlight interface */
114 	DEVMETHOD(backlight_update_status, linux_backlight_update_status),
115 	DEVMETHOD(backlight_get_status, linux_backlight_get_status),
116 	DEVMETHOD(backlight_get_info, linux_backlight_get_info),
117 	DEVMETHOD_END
118 };
119 
120 const char *pci_power_names[] = {
121 	"UNKNOWN", "D0", "D1", "D2", "D3hot", "D3cold"
122 };
123 
124 struct linux_dma_priv {
125 	uint64_t	dma_mask;
126 	bus_dma_tag_t	dmat;
127 	uint64_t	dma_coherent_mask;
128 	bus_dma_tag_t	dmat_coherent;
129 	struct mtx	lock;
130 	struct pctrie	ptree;
131 };
132 #define	DMA_PRIV_LOCK(priv) mtx_lock(&(priv)->lock)
133 #define	DMA_PRIV_UNLOCK(priv) mtx_unlock(&(priv)->lock)
134 
135 static int
136 linux_pdev_dma_uninit(struct pci_dev *pdev)
137 {
138 	struct linux_dma_priv *priv;
139 
140 	priv = pdev->dev.dma_priv;
141 	if (priv->dmat)
142 		bus_dma_tag_destroy(priv->dmat);
143 	if (priv->dmat_coherent)
144 		bus_dma_tag_destroy(priv->dmat_coherent);
145 	mtx_destroy(&priv->lock);
146 	pdev->dev.dma_priv = NULL;
147 	free(priv, M_DEVBUF);
148 	return (0);
149 }
150 
151 static int
152 linux_pdev_dma_init(struct pci_dev *pdev)
153 {
154 	struct linux_dma_priv *priv;
155 	int error;
156 
157 	priv = malloc(sizeof(*priv), M_DEVBUF, M_WAITOK | M_ZERO);
158 
159 	mtx_init(&priv->lock, "lkpi-priv-dma", NULL, MTX_DEF);
160 	pctrie_init(&priv->ptree);
161 
162 	pdev->dev.dma_priv = priv;
163 
164 	/* Create a default DMA tags. */
165 	error = linux_dma_tag_init(&pdev->dev, DMA_BIT_MASK(64));
166 	if (error != 0)
167 		goto err;
168 	/* Coherent is lower 32bit only by default in Linux. */
169 	error = linux_dma_tag_init_coherent(&pdev->dev, DMA_BIT_MASK(32));
170 	if (error != 0)
171 		goto err;
172 
173 	return (error);
174 
175 err:
176 	linux_pdev_dma_uninit(pdev);
177 	return (error);
178 }
179 
180 int
181 linux_dma_tag_init(struct device *dev, u64 dma_mask)
182 {
183 	struct linux_dma_priv *priv;
184 	int error;
185 
186 	priv = dev->dma_priv;
187 
188 	if (priv->dmat) {
189 		if (priv->dma_mask == dma_mask)
190 			return (0);
191 
192 		bus_dma_tag_destroy(priv->dmat);
193 	}
194 
195 	priv->dma_mask = dma_mask;
196 
197 	error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
198 	    1, 0,			/* alignment, boundary */
199 	    dma_mask,			/* lowaddr */
200 	    BUS_SPACE_MAXADDR,		/* highaddr */
201 	    NULL, NULL,			/* filtfunc, filtfuncarg */
202 	    BUS_SPACE_MAXSIZE,		/* maxsize */
203 	    1,				/* nsegments */
204 	    BUS_SPACE_MAXSIZE,		/* maxsegsz */
205 	    0,				/* flags */
206 	    NULL, NULL,			/* lockfunc, lockfuncarg */
207 	    &priv->dmat);
208 	return (-error);
209 }
210 
211 int
212 linux_dma_tag_init_coherent(struct device *dev, u64 dma_mask)
213 {
214 	struct linux_dma_priv *priv;
215 	int error;
216 
217 	priv = dev->dma_priv;
218 
219 	if (priv->dmat_coherent) {
220 		if (priv->dma_coherent_mask == dma_mask)
221 			return (0);
222 
223 		bus_dma_tag_destroy(priv->dmat_coherent);
224 	}
225 
226 	priv->dma_coherent_mask = dma_mask;
227 
228 	error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
229 	    1, 0,			/* alignment, boundary */
230 	    dma_mask,			/* lowaddr */
231 	    BUS_SPACE_MAXADDR,		/* highaddr */
232 	    NULL, NULL,			/* filtfunc, filtfuncarg */
233 	    BUS_SPACE_MAXSIZE,		/* maxsize */
234 	    1,				/* nsegments */
235 	    BUS_SPACE_MAXSIZE,		/* maxsegsz */
236 	    0,				/* flags */
237 	    NULL, NULL,			/* lockfunc, lockfuncarg */
238 	    &priv->dmat_coherent);
239 	return (-error);
240 }
241 
242 static struct pci_driver *
243 linux_pci_find(device_t dev, const struct pci_device_id **idp)
244 {
245 	const struct pci_device_id *id;
246 	struct pci_driver *pdrv;
247 	uint16_t vendor;
248 	uint16_t device;
249 	uint16_t subvendor;
250 	uint16_t subdevice;
251 
252 	vendor = pci_get_vendor(dev);
253 	device = pci_get_device(dev);
254 	subvendor = pci_get_subvendor(dev);
255 	subdevice = pci_get_subdevice(dev);
256 
257 	spin_lock(&pci_lock);
258 	list_for_each_entry(pdrv, &pci_drivers, node) {
259 		for (id = pdrv->id_table; id->vendor != 0; id++) {
260 			if (vendor == id->vendor &&
261 			    (PCI_ANY_ID == id->device || device == id->device) &&
262 			    (PCI_ANY_ID == id->subvendor || subvendor == id->subvendor) &&
263 			    (PCI_ANY_ID == id->subdevice || subdevice == id->subdevice)) {
264 				*idp = id;
265 				spin_unlock(&pci_lock);
266 				return (pdrv);
267 			}
268 		}
269 	}
270 	spin_unlock(&pci_lock);
271 	return (NULL);
272 }
273 
274 struct pci_dev *
275 lkpi_pci_get_device(uint16_t vendor, uint16_t device, struct pci_dev *odev)
276 {
277 	struct pci_dev *pdev;
278 
279 	KASSERT(odev == NULL, ("%s: odev argument not yet supported\n", __func__));
280 
281 	spin_lock(&pci_lock);
282 	list_for_each_entry(pdev, &pci_devices, links) {
283 		if (pdev->vendor == vendor && pdev->device == device)
284 			break;
285 	}
286 	spin_unlock(&pci_lock);
287 
288 	return (pdev);
289 }
290 
291 static void
292 lkpi_pci_dev_release(struct device *dev)
293 {
294 
295 	lkpi_devres_release_free_list(dev);
296 	spin_lock_destroy(&dev->devres_lock);
297 }
298 
299 static void
300 lkpifill_pci_dev(device_t dev, struct pci_dev *pdev)
301 {
302 
303 	pdev->devfn = PCI_DEVFN(pci_get_slot(dev), pci_get_function(dev));
304 	pdev->vendor = pci_get_vendor(dev);
305 	pdev->device = pci_get_device(dev);
306 	pdev->subsystem_vendor = pci_get_subvendor(dev);
307 	pdev->subsystem_device = pci_get_subdevice(dev);
308 	pdev->class = pci_get_class(dev);
309 	pdev->revision = pci_get_revid(dev);
310 	pdev->bus = malloc(sizeof(*pdev->bus), M_DEVBUF, M_WAITOK | M_ZERO);
311 	/*
312 	 * This should be the upstream bridge; pci_upstream_bridge()
313 	 * handles that case on demand as otherwise we'll shadow the
314 	 * entire PCI hierarchy.
315 	 */
316 	pdev->bus->self = pdev;
317 	pdev->bus->number = pci_get_bus(dev);
318 	pdev->bus->domain = pci_get_domain(dev);
319 	pdev->dev.bsddev = dev;
320 	pdev->dev.parent = &linux_root_device;
321 	pdev->dev.release = lkpi_pci_dev_release;
322 	INIT_LIST_HEAD(&pdev->dev.irqents);
323 	kobject_init(&pdev->dev.kobj, &linux_dev_ktype);
324 	kobject_set_name(&pdev->dev.kobj, device_get_nameunit(dev));
325 	kobject_add(&pdev->dev.kobj, &linux_root_device.kobj,
326 	    kobject_name(&pdev->dev.kobj));
327 	spin_lock_init(&pdev->dev.devres_lock);
328 	INIT_LIST_HEAD(&pdev->dev.devres_head);
329 }
330 
331 static void
332 lkpinew_pci_dev_release(struct device *dev)
333 {
334 	struct pci_dev *pdev;
335 
336 	pdev = to_pci_dev(dev);
337 	if (pdev->root != NULL)
338 		pci_dev_put(pdev->root);
339 	if (pdev->bus->self != pdev)
340 		pci_dev_put(pdev->bus->self);
341 	free(pdev->bus, M_DEVBUF);
342 	if (pdev->msi_desc != NULL)
343 		free(pdev->msi_desc, M_DEVBUF);
344 	free(pdev, M_DEVBUF);
345 }
346 
347 struct pci_dev *
348 lkpinew_pci_dev(device_t dev)
349 {
350 	struct pci_dev *pdev;
351 
352 	pdev = malloc(sizeof(*pdev), M_DEVBUF, M_WAITOK|M_ZERO);
353 	lkpifill_pci_dev(dev, pdev);
354 	pdev->dev.release = lkpinew_pci_dev_release;
355 
356 	return (pdev);
357 }
358 
359 struct pci_dev *
360 lkpi_pci_get_class(unsigned int class, struct pci_dev *from)
361 {
362 	device_t dev;
363 	device_t devfrom = NULL;
364 	struct pci_dev *pdev;
365 
366 	if (from != NULL)
367 		devfrom = from->dev.bsddev;
368 
369 	dev = pci_find_class_from(class >> 16, (class >> 8) & 0xFF, devfrom);
370 	if (dev == NULL)
371 		return (NULL);
372 
373 	pdev = lkpinew_pci_dev(dev);
374 	return (pdev);
375 }
376 
377 struct pci_dev *
378 lkpi_pci_get_domain_bus_and_slot(int domain, unsigned int bus,
379     unsigned int devfn)
380 {
381 	device_t dev;
382 	struct pci_dev *pdev;
383 
384 	dev = pci_find_dbsf(domain, bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
385 	if (dev == NULL)
386 		return (NULL);
387 
388 	pdev = lkpinew_pci_dev(dev);
389 	return (pdev);
390 }
391 
392 static int
393 linux_pci_probe(device_t dev)
394 {
395 	const struct pci_device_id *id;
396 	struct pci_driver *pdrv;
397 
398 	if ((pdrv = linux_pci_find(dev, &id)) == NULL)
399 		return (ENXIO);
400 	if (device_get_driver(dev) != &pdrv->bsddriver)
401 		return (ENXIO);
402 	device_set_desc(dev, pdrv->name);
403 
404 	/* Assume BSS initialized (should never return BUS_PROBE_SPECIFIC). */
405 	if (pdrv->bsd_probe_return == 0)
406 		return (BUS_PROBE_DEFAULT);
407 	else
408 		return (pdrv->bsd_probe_return);
409 }
410 
411 static int
412 linux_pci_attach(device_t dev)
413 {
414 	const struct pci_device_id *id;
415 	struct pci_driver *pdrv;
416 	struct pci_dev *pdev;
417 
418 	pdrv = linux_pci_find(dev, &id);
419 	pdev = device_get_softc(dev);
420 
421 	MPASS(pdrv != NULL);
422 	MPASS(pdev != NULL);
423 
424 	return (linux_pci_attach_device(dev, pdrv, id, pdev));
425 }
426 
427 int
428 linux_pci_attach_device(device_t dev, struct pci_driver *pdrv,
429     const struct pci_device_id *id, struct pci_dev *pdev)
430 {
431 	struct resource_list_entry *rle;
432 	device_t parent;
433 	uintptr_t rid;
434 	int error;
435 	bool isdrm;
436 
437 	linux_set_current(curthread);
438 
439 	parent = device_get_parent(dev);
440 	isdrm = pdrv != NULL && pdrv->isdrm;
441 
442 	if (isdrm) {
443 		struct pci_devinfo *dinfo;
444 
445 		dinfo = device_get_ivars(parent);
446 		device_set_ivars(dev, dinfo);
447 	}
448 
449 	lkpifill_pci_dev(dev, pdev);
450 	if (isdrm)
451 		PCI_GET_ID(device_get_parent(parent), parent, PCI_ID_RID, &rid);
452 	else
453 		PCI_GET_ID(parent, dev, PCI_ID_RID, &rid);
454 	pdev->devfn = rid;
455 	pdev->pdrv = pdrv;
456 	rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 0, false);
457 	if (rle != NULL)
458 		pdev->dev.irq = rle->start;
459 	else
460 		pdev->dev.irq = LINUX_IRQ_INVALID;
461 	pdev->irq = pdev->dev.irq;
462 	error = linux_pdev_dma_init(pdev);
463 	if (error)
464 		goto out_dma_init;
465 
466 	TAILQ_INIT(&pdev->mmio);
467 
468 	spin_lock(&pci_lock);
469 	list_add(&pdev->links, &pci_devices);
470 	spin_unlock(&pci_lock);
471 
472 	if (pdrv != NULL) {
473 		error = pdrv->probe(pdev, id);
474 		if (error)
475 			goto out_probe;
476 	}
477 	return (0);
478 
479 out_probe:
480 	free(pdev->bus, M_DEVBUF);
481 	linux_pdev_dma_uninit(pdev);
482 out_dma_init:
483 	spin_lock(&pci_lock);
484 	list_del(&pdev->links);
485 	spin_unlock(&pci_lock);
486 	put_device(&pdev->dev);
487 	return (-error);
488 }
489 
490 static int
491 linux_pci_detach(device_t dev)
492 {
493 	struct pci_dev *pdev;
494 
495 	pdev = device_get_softc(dev);
496 
497 	MPASS(pdev != NULL);
498 
499 	device_set_desc(dev, NULL);
500 
501 	return (linux_pci_detach_device(pdev));
502 }
503 
504 int
505 linux_pci_detach_device(struct pci_dev *pdev)
506 {
507 
508 	linux_set_current(curthread);
509 
510 	if (pdev->pdrv != NULL)
511 		pdev->pdrv->remove(pdev);
512 
513 	if (pdev->root != NULL)
514 		pci_dev_put(pdev->root);
515 	free(pdev->bus, M_DEVBUF);
516 	linux_pdev_dma_uninit(pdev);
517 
518 	spin_lock(&pci_lock);
519 	list_del(&pdev->links);
520 	spin_unlock(&pci_lock);
521 	put_device(&pdev->dev);
522 
523 	return (0);
524 }
525 
526 static int
527 lkpi_pci_disable_dev(struct device *dev)
528 {
529 
530 	(void) pci_disable_io(dev->bsddev, SYS_RES_MEMORY);
531 	(void) pci_disable_io(dev->bsddev, SYS_RES_IOPORT);
532 	return (0);
533 }
534 
535 struct pci_devres *
536 lkpi_pci_devres_get_alloc(struct pci_dev *pdev)
537 {
538 	struct pci_devres *dr;
539 
540 	dr = lkpi_devres_find(&pdev->dev, lkpi_pci_devres_release, NULL, NULL);
541 	if (dr == NULL) {
542 		dr = lkpi_devres_alloc(lkpi_pci_devres_release, sizeof(*dr),
543 		    GFP_KERNEL | __GFP_ZERO);
544 		if (dr != NULL)
545 			lkpi_devres_add(&pdev->dev, dr);
546 	}
547 
548 	return (dr);
549 }
550 
551 void
552 lkpi_pci_devres_release(struct device *dev, void *p)
553 {
554 	struct pci_devres *dr;
555 	struct pci_dev *pdev;
556 	int bar;
557 
558 	pdev = to_pci_dev(dev);
559 	dr = p;
560 
561 	if (pdev->msix_enabled)
562 		lkpi_pci_disable_msix(pdev);
563         if (pdev->msi_enabled)
564 		lkpi_pci_disable_msi(pdev);
565 
566 	if (dr->enable_io && lkpi_pci_disable_dev(dev) == 0)
567 		dr->enable_io = false;
568 
569 	if (dr->region_mask == 0)
570 		return;
571 	for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
572 
573 		if ((dr->region_mask & (1 << bar)) == 0)
574 			continue;
575 		pci_release_region(pdev, bar);
576 	}
577 }
578 
579 struct pcim_iomap_devres *
580 lkpi_pcim_iomap_devres_find(struct pci_dev *pdev)
581 {
582 	struct pcim_iomap_devres *dr;
583 
584 	dr = lkpi_devres_find(&pdev->dev, lkpi_pcim_iomap_table_release,
585 	    NULL, NULL);
586 	if (dr == NULL) {
587 		dr = lkpi_devres_alloc(lkpi_pcim_iomap_table_release,
588 		    sizeof(*dr), GFP_KERNEL | __GFP_ZERO);
589 		if (dr != NULL)
590 			lkpi_devres_add(&pdev->dev, dr);
591 	}
592 
593 	if (dr == NULL)
594 		device_printf(pdev->dev.bsddev, "%s: NULL\n", __func__);
595 
596 	return (dr);
597 }
598 
599 void
600 lkpi_pcim_iomap_table_release(struct device *dev, void *p)
601 {
602 	struct pcim_iomap_devres *dr;
603 	struct pci_dev *pdev;
604 	int bar;
605 
606 	dr = p;
607 	pdev = to_pci_dev(dev);
608 	for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
609 
610 		if (dr->mmio_table[bar] == NULL)
611 			continue;
612 
613 		pci_iounmap(pdev, dr->mmio_table[bar]);
614 	}
615 }
616 
617 static int
618 linux_pci_suspend(device_t dev)
619 {
620 	const struct dev_pm_ops *pmops;
621 	struct pm_message pm = { };
622 	struct pci_dev *pdev;
623 	int error;
624 
625 	error = 0;
626 	linux_set_current(curthread);
627 	pdev = device_get_softc(dev);
628 	pmops = pdev->pdrv->driver.pm;
629 
630 	if (pdev->pdrv->suspend != NULL)
631 		error = -pdev->pdrv->suspend(pdev, pm);
632 	else if (pmops != NULL && pmops->suspend != NULL) {
633 		error = -pmops->suspend(&pdev->dev);
634 		if (error == 0 && pmops->suspend_late != NULL)
635 			error = -pmops->suspend_late(&pdev->dev);
636 	}
637 	return (error);
638 }
639 
640 static int
641 linux_pci_resume(device_t dev)
642 {
643 	const struct dev_pm_ops *pmops;
644 	struct pci_dev *pdev;
645 	int error;
646 
647 	error = 0;
648 	linux_set_current(curthread);
649 	pdev = device_get_softc(dev);
650 	pmops = pdev->pdrv->driver.pm;
651 
652 	if (pdev->pdrv->resume != NULL)
653 		error = -pdev->pdrv->resume(pdev);
654 	else if (pmops != NULL && pmops->resume != NULL) {
655 		if (pmops->resume_early != NULL)
656 			error = -pmops->resume_early(&pdev->dev);
657 		if (error == 0 && pmops->resume != NULL)
658 			error = -pmops->resume(&pdev->dev);
659 	}
660 	return (error);
661 }
662 
663 static int
664 linux_pci_shutdown(device_t dev)
665 {
666 	struct pci_dev *pdev;
667 
668 	linux_set_current(curthread);
669 	pdev = device_get_softc(dev);
670 	if (pdev->pdrv->shutdown != NULL)
671 		pdev->pdrv->shutdown(pdev);
672 	return (0);
673 }
674 
675 static int
676 linux_pci_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *pf_config)
677 {
678 	struct pci_dev *pdev;
679 	int error;
680 
681 	linux_set_current(curthread);
682 	pdev = device_get_softc(dev);
683 	if (pdev->pdrv->bsd_iov_init != NULL)
684 		error = pdev->pdrv->bsd_iov_init(dev, num_vfs, pf_config);
685 	else
686 		error = EINVAL;
687 	return (error);
688 }
689 
690 static void
691 linux_pci_iov_uninit(device_t dev)
692 {
693 	struct pci_dev *pdev;
694 
695 	linux_set_current(curthread);
696 	pdev = device_get_softc(dev);
697 	if (pdev->pdrv->bsd_iov_uninit != NULL)
698 		pdev->pdrv->bsd_iov_uninit(dev);
699 }
700 
701 static int
702 linux_pci_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *vf_config)
703 {
704 	struct pci_dev *pdev;
705 	int error;
706 
707 	linux_set_current(curthread);
708 	pdev = device_get_softc(dev);
709 	if (pdev->pdrv->bsd_iov_add_vf != NULL)
710 		error = pdev->pdrv->bsd_iov_add_vf(dev, vfnum, vf_config);
711 	else
712 		error = EINVAL;
713 	return (error);
714 }
715 
716 static int
717 _linux_pci_register_driver(struct pci_driver *pdrv, devclass_t dc)
718 {
719 	int error;
720 
721 	linux_set_current(curthread);
722 	spin_lock(&pci_lock);
723 	list_add(&pdrv->node, &pci_drivers);
724 	spin_unlock(&pci_lock);
725 	if (pdrv->bsddriver.name == NULL)
726 		pdrv->bsddriver.name = pdrv->name;
727 	pdrv->bsddriver.methods = pci_methods;
728 	pdrv->bsddriver.size = sizeof(struct pci_dev);
729 
730 	bus_topo_lock();
731 	error = devclass_add_driver(dc, &pdrv->bsddriver,
732 	    BUS_PASS_DEFAULT, &pdrv->bsdclass);
733 	bus_topo_unlock();
734 	return (-error);
735 }
736 
737 int
738 linux_pci_register_driver(struct pci_driver *pdrv)
739 {
740 	devclass_t dc;
741 
742 	dc = devclass_find("pci");
743 	if (dc == NULL)
744 		return (-ENXIO);
745 	pdrv->isdrm = false;
746 	return (_linux_pci_register_driver(pdrv, dc));
747 }
748 
749 struct resource_list_entry *
750 linux_pci_reserve_bar(struct pci_dev *pdev, struct resource_list *rl,
751     int type, int rid)
752 {
753 	device_t dev;
754 	struct resource *res;
755 
756 	KASSERT(type == SYS_RES_IOPORT || type == SYS_RES_MEMORY,
757 	    ("trying to reserve non-BAR type %d", type));
758 
759 	dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ?
760 	    device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev;
761 	res = pci_reserve_map(device_get_parent(dev), dev, type, &rid, 0, ~0,
762 	    1, 1, 0);
763 	if (res == NULL)
764 		return (NULL);
765 	return (resource_list_find(rl, type, rid));
766 }
767 
768 unsigned long
769 pci_resource_start(struct pci_dev *pdev, int bar)
770 {
771 	struct resource_list_entry *rle;
772 	rman_res_t newstart;
773 	device_t dev;
774 	int error;
775 
776 	if ((rle = linux_pci_get_bar(pdev, bar, true)) == NULL)
777 		return (0);
778 	dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ?
779 	    device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev;
780 	error = bus_translate_resource(dev, rle->type, rle->start, &newstart);
781 	if (error != 0) {
782 		device_printf(pdev->dev.bsddev,
783 		    "translate of %#jx failed: %d\n",
784 		    (uintmax_t)rle->start, error);
785 		return (0);
786 	}
787 	return (newstart);
788 }
789 
790 unsigned long
791 pci_resource_len(struct pci_dev *pdev, int bar)
792 {
793 	struct resource_list_entry *rle;
794 
795 	if ((rle = linux_pci_get_bar(pdev, bar, true)) == NULL)
796 		return (0);
797 	return (rle->count);
798 }
799 
800 int
801 pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
802 {
803 	struct resource *res;
804 	struct pci_devres *dr;
805 	struct pci_mmio_region *mmio;
806 	int rid;
807 	int type;
808 
809 	type = pci_resource_type(pdev, bar);
810 	if (type < 0)
811 		return (-ENODEV);
812 	rid = PCIR_BAR(bar);
813 	res = bus_alloc_resource_any(pdev->dev.bsddev, type, &rid,
814 	    RF_ACTIVE|RF_SHAREABLE);
815 	if (res == NULL) {
816 		device_printf(pdev->dev.bsddev, "%s: failed to alloc "
817 		    "bar %d type %d rid %d\n",
818 		    __func__, bar, type, PCIR_BAR(bar));
819 		return (-ENODEV);
820 	}
821 
822 	/*
823 	 * It seems there is an implicit devres tracking on these if the device
824 	 * is managed; otherwise the resources are not automatiaclly freed on
825 	 * FreeBSD/LinuxKPI tough they should be/are expected to be by Linux
826 	 * drivers.
827 	 */
828 	dr = lkpi_pci_devres_find(pdev);
829 	if (dr != NULL) {
830 		dr->region_mask |= (1 << bar);
831 		dr->region_table[bar] = res;
832 	}
833 
834 	/* Even if the device is not managed we need to track it for iomap. */
835 	mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO);
836 	mmio->rid = PCIR_BAR(bar);
837 	mmio->type = type;
838 	mmio->res = res;
839 	TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next);
840 
841 	return (0);
842 }
843 
844 struct resource *
845 _lkpi_pci_iomap(struct pci_dev *pdev, int bar, int mmio_size __unused)
846 {
847 	struct pci_mmio_region *mmio, *p;
848 	int type;
849 
850 	type = pci_resource_type(pdev, bar);
851 	if (type < 0) {
852 		device_printf(pdev->dev.bsddev, "%s: bar %d type %d\n",
853 		     __func__, bar, type);
854 		return (NULL);
855 	}
856 
857 	/*
858 	 * Check for duplicate mappings.
859 	 * This can happen if a driver calls pci_request_region() first.
860 	 */
861 	TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) {
862 		if (mmio->type == type && mmio->rid == PCIR_BAR(bar)) {
863 			return (mmio->res);
864 		}
865 	}
866 
867 	mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO);
868 	mmio->rid = PCIR_BAR(bar);
869 	mmio->type = type;
870 	mmio->res = bus_alloc_resource_any(pdev->dev.bsddev, mmio->type,
871 	    &mmio->rid, RF_ACTIVE|RF_SHAREABLE);
872 	if (mmio->res == NULL) {
873 		device_printf(pdev->dev.bsddev, "%s: failed to alloc "
874 		    "bar %d type %d rid %d\n",
875 		    __func__, bar, type, PCIR_BAR(bar));
876 		free(mmio, M_DEVBUF);
877 		return (NULL);
878 	}
879 	TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next);
880 
881 	return (mmio->res);
882 }
883 
884 int
885 linux_pci_register_drm_driver(struct pci_driver *pdrv)
886 {
887 	devclass_t dc;
888 
889 	dc = devclass_create("vgapci");
890 	if (dc == NULL)
891 		return (-ENXIO);
892 	pdrv->isdrm = true;
893 	pdrv->name = "drmn";
894 	return (_linux_pci_register_driver(pdrv, dc));
895 }
896 
897 void
898 linux_pci_unregister_driver(struct pci_driver *pdrv)
899 {
900 	devclass_t bus;
901 
902 	bus = devclass_find("pci");
903 
904 	spin_lock(&pci_lock);
905 	list_del(&pdrv->node);
906 	spin_unlock(&pci_lock);
907 	bus_topo_lock();
908 	if (bus != NULL)
909 		devclass_delete_driver(bus, &pdrv->bsddriver);
910 	bus_topo_unlock();
911 }
912 
913 void
914 linux_pci_unregister_drm_driver(struct pci_driver *pdrv)
915 {
916 	devclass_t bus;
917 
918 	bus = devclass_find("vgapci");
919 
920 	spin_lock(&pci_lock);
921 	list_del(&pdrv->node);
922 	spin_unlock(&pci_lock);
923 	bus_topo_lock();
924 	if (bus != NULL)
925 		devclass_delete_driver(bus, &pdrv->bsddriver);
926 	bus_topo_unlock();
927 }
928 
929 int
930 pci_alloc_irq_vectors(struct pci_dev *pdev, int minv, int maxv,
931     unsigned int flags)
932 {
933 	int error;
934 
935 	if (flags & PCI_IRQ_MSIX) {
936 		struct msix_entry *entries;
937 		int i;
938 
939 		entries = kcalloc(maxv, sizeof(*entries), GFP_KERNEL);
940 		if (entries == NULL) {
941 			error = -ENOMEM;
942 			goto out;
943 		}
944 		for (i = 0; i < maxv; ++i)
945 			entries[i].entry = i;
946 		error = pci_enable_msix(pdev, entries, maxv);
947 out:
948 		kfree(entries);
949 		if (error == 0 && pdev->msix_enabled)
950 			return (pdev->dev.irq_end - pdev->dev.irq_start);
951 	}
952 	if (flags & PCI_IRQ_MSI) {
953 		if (pci_msi_count(pdev->dev.bsddev) < minv)
954 			return (-ENOSPC);
955 		/* We only support 1 vector in pci_enable_msi() */
956 		if (minv != 1)
957 			return (-ENOSPC);
958 		error = pci_enable_msi(pdev);
959 		if (error == 0 && pdev->msi_enabled)
960 			return (pdev->dev.irq_end - pdev->dev.irq_start);
961 	}
962 	if (flags & PCI_IRQ_LEGACY) {
963 		if (pdev->irq)
964 			return (1);
965 	}
966 
967 	return (-EINVAL);
968 }
969 
970 struct msi_desc *
971 lkpi_pci_msi_desc_alloc(int irq)
972 {
973 	struct device *dev;
974 	struct pci_dev *pdev;
975 	struct msi_desc *desc;
976 	struct pci_devinfo *dinfo;
977 	struct pcicfg_msi *msi;
978 
979 	dev = linux_pci_find_irq_dev(irq);
980 	if (dev == NULL)
981 		return (NULL);
982 
983 	pdev = to_pci_dev(dev);
984 	if (pdev->msi_desc != NULL)
985 		return (pdev->msi_desc);
986 
987 	dinfo = device_get_ivars(dev->bsddev);
988 	msi = &dinfo->cfg.msi;
989 
990 	desc = malloc(sizeof(*desc), M_DEVBUF, M_WAITOK | M_ZERO);
991 
992 	desc->msi_attrib.is_64 =
993 	   (msi->msi_ctrl & PCIM_MSICTRL_64BIT) ? true : false;
994 	desc->msg.data = msi->msi_data;
995 
996 	return (desc);
997 }
998 
999 bool
1000 pci_device_is_present(struct pci_dev *pdev)
1001 {
1002 	device_t dev;
1003 
1004 	dev = pdev->dev.bsddev;
1005 
1006 	return (bus_child_present(dev));
1007 }
1008 
1009 CTASSERT(sizeof(dma_addr_t) <= sizeof(uint64_t));
1010 
1011 struct linux_dma_obj {
1012 	void		*vaddr;
1013 	uint64_t	dma_addr;
1014 	bus_dmamap_t	dmamap;
1015 	bus_dma_tag_t	dmat;
1016 };
1017 
1018 static uma_zone_t linux_dma_trie_zone;
1019 static uma_zone_t linux_dma_obj_zone;
1020 
1021 static void
1022 linux_dma_init(void *arg)
1023 {
1024 
1025 	linux_dma_trie_zone = uma_zcreate("linux_dma_pctrie",
1026 	    pctrie_node_size(), NULL, NULL, pctrie_zone_init, NULL,
1027 	    UMA_ALIGN_PTR, 0);
1028 	linux_dma_obj_zone = uma_zcreate("linux_dma_object",
1029 	    sizeof(struct linux_dma_obj), NULL, NULL, NULL, NULL,
1030 	    UMA_ALIGN_PTR, 0);
1031 	lkpi_pci_nseg1_fail = counter_u64_alloc(M_WAITOK);
1032 }
1033 SYSINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_init, NULL);
1034 
1035 static void
1036 linux_dma_uninit(void *arg)
1037 {
1038 
1039 	counter_u64_free(lkpi_pci_nseg1_fail);
1040 	uma_zdestroy(linux_dma_obj_zone);
1041 	uma_zdestroy(linux_dma_trie_zone);
1042 }
1043 SYSUNINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_uninit, NULL);
1044 
1045 static void *
1046 linux_dma_trie_alloc(struct pctrie *ptree)
1047 {
1048 
1049 	return (uma_zalloc(linux_dma_trie_zone, M_NOWAIT));
1050 }
1051 
1052 static void
1053 linux_dma_trie_free(struct pctrie *ptree, void *node)
1054 {
1055 
1056 	uma_zfree(linux_dma_trie_zone, node);
1057 }
1058 
1059 PCTRIE_DEFINE(LINUX_DMA, linux_dma_obj, dma_addr, linux_dma_trie_alloc,
1060     linux_dma_trie_free);
1061 
1062 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1063 static dma_addr_t
1064 linux_dma_map_phys_common(struct device *dev, vm_paddr_t phys, size_t len,
1065     bus_dma_tag_t dmat)
1066 {
1067 	struct linux_dma_priv *priv;
1068 	struct linux_dma_obj *obj;
1069 	int error, nseg;
1070 	bus_dma_segment_t seg;
1071 
1072 	priv = dev->dma_priv;
1073 
1074 	/*
1075 	 * If the resultant mapping will be entirely 1:1 with the
1076 	 * physical address, short-circuit the remainder of the
1077 	 * bus_dma API.  This avoids tracking collisions in the pctrie
1078 	 * with the additional benefit of reducing overhead.
1079 	 */
1080 	if (bus_dma_id_mapped(dmat, phys, len))
1081 		return (phys);
1082 
1083 	obj = uma_zalloc(linux_dma_obj_zone, M_NOWAIT);
1084 	if (obj == NULL) {
1085 		return (0);
1086 	}
1087 	obj->dmat = dmat;
1088 
1089 	DMA_PRIV_LOCK(priv);
1090 	if (bus_dmamap_create(obj->dmat, 0, &obj->dmamap) != 0) {
1091 		DMA_PRIV_UNLOCK(priv);
1092 		uma_zfree(linux_dma_obj_zone, obj);
1093 		return (0);
1094 	}
1095 
1096 	nseg = -1;
1097 	if (_bus_dmamap_load_phys(obj->dmat, obj->dmamap, phys, len,
1098 	    BUS_DMA_NOWAIT, &seg, &nseg) != 0) {
1099 		bus_dmamap_destroy(obj->dmat, obj->dmamap);
1100 		DMA_PRIV_UNLOCK(priv);
1101 		uma_zfree(linux_dma_obj_zone, obj);
1102 		counter_u64_add(lkpi_pci_nseg1_fail, 1);
1103 		if (linuxkpi_debug)
1104 			dump_stack();
1105 		return (0);
1106 	}
1107 
1108 	KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
1109 	obj->dma_addr = seg.ds_addr;
1110 
1111 	error = LINUX_DMA_PCTRIE_INSERT(&priv->ptree, obj);
1112 	if (error != 0) {
1113 		bus_dmamap_unload(obj->dmat, obj->dmamap);
1114 		bus_dmamap_destroy(obj->dmat, obj->dmamap);
1115 		DMA_PRIV_UNLOCK(priv);
1116 		uma_zfree(linux_dma_obj_zone, obj);
1117 		return (0);
1118 	}
1119 	DMA_PRIV_UNLOCK(priv);
1120 	return (obj->dma_addr);
1121 }
1122 #else
1123 static dma_addr_t
1124 linux_dma_map_phys_common(struct device *dev __unused, vm_paddr_t phys,
1125     size_t len __unused, bus_dma_tag_t dmat __unused)
1126 {
1127 	return (phys);
1128 }
1129 #endif
1130 
1131 dma_addr_t
1132 linux_dma_map_phys(struct device *dev, vm_paddr_t phys, size_t len)
1133 {
1134 	struct linux_dma_priv *priv;
1135 
1136 	priv = dev->dma_priv;
1137 	return (linux_dma_map_phys_common(dev, phys, len, priv->dmat));
1138 }
1139 
1140 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1141 void
1142 linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len)
1143 {
1144 	struct linux_dma_priv *priv;
1145 	struct linux_dma_obj *obj;
1146 
1147 	priv = dev->dma_priv;
1148 
1149 	if (pctrie_is_empty(&priv->ptree))
1150 		return;
1151 
1152 	DMA_PRIV_LOCK(priv);
1153 	obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
1154 	if (obj == NULL) {
1155 		DMA_PRIV_UNLOCK(priv);
1156 		return;
1157 	}
1158 	LINUX_DMA_PCTRIE_REMOVE(&priv->ptree, dma_addr);
1159 	bus_dmamap_unload(obj->dmat, obj->dmamap);
1160 	bus_dmamap_destroy(obj->dmat, obj->dmamap);
1161 	DMA_PRIV_UNLOCK(priv);
1162 
1163 	uma_zfree(linux_dma_obj_zone, obj);
1164 }
1165 #else
1166 void
1167 linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len)
1168 {
1169 }
1170 #endif
1171 
1172 void *
1173 linux_dma_alloc_coherent(struct device *dev, size_t size,
1174     dma_addr_t *dma_handle, gfp_t flag)
1175 {
1176 	struct linux_dma_priv *priv;
1177 	vm_paddr_t high;
1178 	size_t align;
1179 	void *mem;
1180 
1181 	if (dev == NULL || dev->dma_priv == NULL) {
1182 		*dma_handle = 0;
1183 		return (NULL);
1184 	}
1185 	priv = dev->dma_priv;
1186 	if (priv->dma_coherent_mask)
1187 		high = priv->dma_coherent_mask;
1188 	else
1189 		/* Coherent is lower 32bit only by default in Linux. */
1190 		high = BUS_SPACE_MAXADDR_32BIT;
1191 	align = PAGE_SIZE << get_order(size);
1192 	/* Always zero the allocation. */
1193 	flag |= M_ZERO;
1194 	mem = kmem_alloc_contig(size, flag & GFP_NATIVE_MASK, 0, high,
1195 	    align, 0, VM_MEMATTR_DEFAULT);
1196 	if (mem != NULL) {
1197 		*dma_handle = linux_dma_map_phys_common(dev, vtophys(mem), size,
1198 		    priv->dmat_coherent);
1199 		if (*dma_handle == 0) {
1200 			kmem_free(mem, size);
1201 			mem = NULL;
1202 		}
1203 	} else {
1204 		*dma_handle = 0;
1205 	}
1206 	return (mem);
1207 }
1208 
1209 struct lkpi_devres_dmam_coherent {
1210 	size_t size;
1211 	dma_addr_t *handle;
1212 	void *mem;
1213 };
1214 
1215 static void
1216 lkpi_dmam_free_coherent(struct device *dev, void *p)
1217 {
1218 	struct lkpi_devres_dmam_coherent *dr;
1219 
1220 	dr = p;
1221 	dma_free_coherent(dev, dr->size, dr->mem, *dr->handle);
1222 }
1223 
1224 void *
1225 linuxkpi_dmam_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
1226     gfp_t flag)
1227 {
1228 	struct lkpi_devres_dmam_coherent *dr;
1229 
1230 	dr = lkpi_devres_alloc(lkpi_dmam_free_coherent,
1231 	    sizeof(*dr), GFP_KERNEL | __GFP_ZERO);
1232 
1233 	if (dr == NULL)
1234 		return (NULL);
1235 
1236 	dr->size = size;
1237 	dr->mem = linux_dma_alloc_coherent(dev, size, dma_handle, flag);
1238 	dr->handle = dma_handle;
1239 	if (dr->mem == NULL) {
1240 		lkpi_devres_free(dr);
1241 		return (NULL);
1242 	}
1243 
1244 	lkpi_devres_add(dev, dr);
1245 	return (dr->mem);
1246 }
1247 
1248 void
1249 linuxkpi_dma_sync(struct device *dev, dma_addr_t dma_addr, size_t size,
1250     bus_dmasync_op_t op)
1251 {
1252 	struct linux_dma_priv *priv;
1253 	struct linux_dma_obj *obj;
1254 
1255 	priv = dev->dma_priv;
1256 
1257 	if (pctrie_is_empty(&priv->ptree))
1258 		return;
1259 
1260 	DMA_PRIV_LOCK(priv);
1261 	obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
1262 	if (obj == NULL) {
1263 		DMA_PRIV_UNLOCK(priv);
1264 		return;
1265 	}
1266 
1267 	bus_dmamap_sync(obj->dmat, obj->dmamap, op);
1268 	DMA_PRIV_UNLOCK(priv);
1269 }
1270 
1271 int
1272 linux_dma_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nents,
1273     enum dma_data_direction direction, unsigned long attrs __unused)
1274 {
1275 	struct linux_dma_priv *priv;
1276 	struct scatterlist *sg;
1277 	int i, nseg;
1278 	bus_dma_segment_t seg;
1279 
1280 	priv = dev->dma_priv;
1281 
1282 	DMA_PRIV_LOCK(priv);
1283 
1284 	/* create common DMA map in the first S/G entry */
1285 	if (bus_dmamap_create(priv->dmat, 0, &sgl->dma_map) != 0) {
1286 		DMA_PRIV_UNLOCK(priv);
1287 		return (0);
1288 	}
1289 
1290 	/* load all S/G list entries */
1291 	for_each_sg(sgl, sg, nents, i) {
1292 		nseg = -1;
1293 		if (_bus_dmamap_load_phys(priv->dmat, sgl->dma_map,
1294 		    sg_phys(sg), sg->length, BUS_DMA_NOWAIT,
1295 		    &seg, &nseg) != 0) {
1296 			bus_dmamap_unload(priv->dmat, sgl->dma_map);
1297 			bus_dmamap_destroy(priv->dmat, sgl->dma_map);
1298 			DMA_PRIV_UNLOCK(priv);
1299 			return (0);
1300 		}
1301 		KASSERT(nseg == 0,
1302 		    ("More than one segment (nseg=%d)", nseg + 1));
1303 
1304 		sg_dma_address(sg) = seg.ds_addr;
1305 	}
1306 
1307 	switch (direction) {
1308 	case DMA_BIDIRECTIONAL:
1309 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE);
1310 		break;
1311 	case DMA_TO_DEVICE:
1312 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD);
1313 		break;
1314 	case DMA_FROM_DEVICE:
1315 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE);
1316 		break;
1317 	default:
1318 		break;
1319 	}
1320 
1321 	DMA_PRIV_UNLOCK(priv);
1322 
1323 	return (nents);
1324 }
1325 
1326 void
1327 linux_dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sgl,
1328     int nents __unused, enum dma_data_direction direction,
1329     unsigned long attrs __unused)
1330 {
1331 	struct linux_dma_priv *priv;
1332 
1333 	priv = dev->dma_priv;
1334 
1335 	DMA_PRIV_LOCK(priv);
1336 
1337 	switch (direction) {
1338 	case DMA_BIDIRECTIONAL:
1339 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD);
1340 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD);
1341 		break;
1342 	case DMA_TO_DEVICE:
1343 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTWRITE);
1344 		break;
1345 	case DMA_FROM_DEVICE:
1346 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD);
1347 		break;
1348 	default:
1349 		break;
1350 	}
1351 
1352 	bus_dmamap_unload(priv->dmat, sgl->dma_map);
1353 	bus_dmamap_destroy(priv->dmat, sgl->dma_map);
1354 	DMA_PRIV_UNLOCK(priv);
1355 }
1356 
1357 struct dma_pool {
1358 	struct device  *pool_device;
1359 	uma_zone_t	pool_zone;
1360 	struct mtx	pool_lock;
1361 	bus_dma_tag_t	pool_dmat;
1362 	size_t		pool_entry_size;
1363 	struct pctrie	pool_ptree;
1364 };
1365 
1366 #define	DMA_POOL_LOCK(pool) mtx_lock(&(pool)->pool_lock)
1367 #define	DMA_POOL_UNLOCK(pool) mtx_unlock(&(pool)->pool_lock)
1368 
1369 static inline int
1370 dma_pool_obj_ctor(void *mem, int size, void *arg, int flags)
1371 {
1372 	struct linux_dma_obj *obj = mem;
1373 	struct dma_pool *pool = arg;
1374 	int error, nseg;
1375 	bus_dma_segment_t seg;
1376 
1377 	nseg = -1;
1378 	DMA_POOL_LOCK(pool);
1379 	error = _bus_dmamap_load_phys(pool->pool_dmat, obj->dmamap,
1380 	    vtophys(obj->vaddr), pool->pool_entry_size, BUS_DMA_NOWAIT,
1381 	    &seg, &nseg);
1382 	DMA_POOL_UNLOCK(pool);
1383 	if (error != 0) {
1384 		return (error);
1385 	}
1386 	KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
1387 	obj->dma_addr = seg.ds_addr;
1388 
1389 	return (0);
1390 }
1391 
1392 static void
1393 dma_pool_obj_dtor(void *mem, int size, void *arg)
1394 {
1395 	struct linux_dma_obj *obj = mem;
1396 	struct dma_pool *pool = arg;
1397 
1398 	DMA_POOL_LOCK(pool);
1399 	bus_dmamap_unload(pool->pool_dmat, obj->dmamap);
1400 	DMA_POOL_UNLOCK(pool);
1401 }
1402 
1403 static int
1404 dma_pool_obj_import(void *arg, void **store, int count, int domain __unused,
1405     int flags)
1406 {
1407 	struct dma_pool *pool = arg;
1408 	struct linux_dma_obj *obj;
1409 	int error, i;
1410 
1411 	for (i = 0; i < count; i++) {
1412 		obj = uma_zalloc(linux_dma_obj_zone, flags);
1413 		if (obj == NULL)
1414 			break;
1415 
1416 		error = bus_dmamem_alloc(pool->pool_dmat, &obj->vaddr,
1417 		    BUS_DMA_NOWAIT, &obj->dmamap);
1418 		if (error!= 0) {
1419 			uma_zfree(linux_dma_obj_zone, obj);
1420 			break;
1421 		}
1422 
1423 		store[i] = obj;
1424 	}
1425 
1426 	return (i);
1427 }
1428 
1429 static void
1430 dma_pool_obj_release(void *arg, void **store, int count)
1431 {
1432 	struct dma_pool *pool = arg;
1433 	struct linux_dma_obj *obj;
1434 	int i;
1435 
1436 	for (i = 0; i < count; i++) {
1437 		obj = store[i];
1438 		bus_dmamem_free(pool->pool_dmat, obj->vaddr, obj->dmamap);
1439 		uma_zfree(linux_dma_obj_zone, obj);
1440 	}
1441 }
1442 
1443 struct dma_pool *
1444 linux_dma_pool_create(char *name, struct device *dev, size_t size,
1445     size_t align, size_t boundary)
1446 {
1447 	struct linux_dma_priv *priv;
1448 	struct dma_pool *pool;
1449 
1450 	priv = dev->dma_priv;
1451 
1452 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1453 	pool->pool_device = dev;
1454 	pool->pool_entry_size = size;
1455 
1456 	if (bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
1457 	    align, boundary,		/* alignment, boundary */
1458 	    priv->dma_mask,		/* lowaddr */
1459 	    BUS_SPACE_MAXADDR,		/* highaddr */
1460 	    NULL, NULL,			/* filtfunc, filtfuncarg */
1461 	    size,			/* maxsize */
1462 	    1,				/* nsegments */
1463 	    size,			/* maxsegsz */
1464 	    0,				/* flags */
1465 	    NULL, NULL,			/* lockfunc, lockfuncarg */
1466 	    &pool->pool_dmat)) {
1467 		kfree(pool);
1468 		return (NULL);
1469 	}
1470 
1471 	pool->pool_zone = uma_zcache_create(name, -1, dma_pool_obj_ctor,
1472 	    dma_pool_obj_dtor, NULL, NULL, dma_pool_obj_import,
1473 	    dma_pool_obj_release, pool, 0);
1474 
1475 	mtx_init(&pool->pool_lock, "lkpi-dma-pool", NULL, MTX_DEF);
1476 	pctrie_init(&pool->pool_ptree);
1477 
1478 	return (pool);
1479 }
1480 
1481 void
1482 linux_dma_pool_destroy(struct dma_pool *pool)
1483 {
1484 
1485 	uma_zdestroy(pool->pool_zone);
1486 	bus_dma_tag_destroy(pool->pool_dmat);
1487 	mtx_destroy(&pool->pool_lock);
1488 	kfree(pool);
1489 }
1490 
1491 void
1492 lkpi_dmam_pool_destroy(struct device *dev, void *p)
1493 {
1494 	struct dma_pool *pool;
1495 
1496 	pool = *(struct dma_pool **)p;
1497 	LINUX_DMA_PCTRIE_RECLAIM(&pool->pool_ptree);
1498 	linux_dma_pool_destroy(pool);
1499 }
1500 
1501 void *
1502 linux_dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
1503     dma_addr_t *handle)
1504 {
1505 	struct linux_dma_obj *obj;
1506 
1507 	obj = uma_zalloc_arg(pool->pool_zone, pool, mem_flags & GFP_NATIVE_MASK);
1508 	if (obj == NULL)
1509 		return (NULL);
1510 
1511 	DMA_POOL_LOCK(pool);
1512 	if (LINUX_DMA_PCTRIE_INSERT(&pool->pool_ptree, obj) != 0) {
1513 		DMA_POOL_UNLOCK(pool);
1514 		uma_zfree_arg(pool->pool_zone, obj, pool);
1515 		return (NULL);
1516 	}
1517 	DMA_POOL_UNLOCK(pool);
1518 
1519 	*handle = obj->dma_addr;
1520 	return (obj->vaddr);
1521 }
1522 
1523 void
1524 linux_dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma_addr)
1525 {
1526 	struct linux_dma_obj *obj;
1527 
1528 	DMA_POOL_LOCK(pool);
1529 	obj = LINUX_DMA_PCTRIE_LOOKUP(&pool->pool_ptree, dma_addr);
1530 	if (obj == NULL) {
1531 		DMA_POOL_UNLOCK(pool);
1532 		return;
1533 	}
1534 	LINUX_DMA_PCTRIE_REMOVE(&pool->pool_ptree, dma_addr);
1535 	DMA_POOL_UNLOCK(pool);
1536 
1537 	uma_zfree_arg(pool->pool_zone, obj, pool);
1538 }
1539 
1540 static int
1541 linux_backlight_get_status(device_t dev, struct backlight_props *props)
1542 {
1543 	struct pci_dev *pdev;
1544 
1545 	linux_set_current(curthread);
1546 	pdev = device_get_softc(dev);
1547 
1548 	props->brightness = pdev->dev.bd->props.brightness;
1549 	props->brightness = props->brightness * 100 / pdev->dev.bd->props.max_brightness;
1550 	props->nlevels = 0;
1551 
1552 	return (0);
1553 }
1554 
1555 static int
1556 linux_backlight_get_info(device_t dev, struct backlight_info *info)
1557 {
1558 	struct pci_dev *pdev;
1559 
1560 	linux_set_current(curthread);
1561 	pdev = device_get_softc(dev);
1562 
1563 	info->type = BACKLIGHT_TYPE_PANEL;
1564 	strlcpy(info->name, pdev->dev.bd->name, BACKLIGHTMAXNAMELENGTH);
1565 	return (0);
1566 }
1567 
1568 static int
1569 linux_backlight_update_status(device_t dev, struct backlight_props *props)
1570 {
1571 	struct pci_dev *pdev;
1572 
1573 	linux_set_current(curthread);
1574 	pdev = device_get_softc(dev);
1575 
1576 	pdev->dev.bd->props.brightness = pdev->dev.bd->props.max_brightness *
1577 		props->brightness / 100;
1578 	pdev->dev.bd->props.power = props->brightness == 0 ?
1579 		4/* FB_BLANK_POWERDOWN */ : 0/* FB_BLANK_UNBLANK */;
1580 	return (pdev->dev.bd->ops->update_status(pdev->dev.bd));
1581 }
1582 
1583 struct backlight_device *
1584 linux_backlight_device_register(const char *name, struct device *dev,
1585     void *data, const struct backlight_ops *ops, struct backlight_properties *props)
1586 {
1587 
1588 	dev->bd = malloc(sizeof(*dev->bd), M_DEVBUF, M_WAITOK | M_ZERO);
1589 	dev->bd->ops = ops;
1590 	dev->bd->props.type = props->type;
1591 	dev->bd->props.max_brightness = props->max_brightness;
1592 	dev->bd->props.brightness = props->brightness;
1593 	dev->bd->props.power = props->power;
1594 	dev->bd->data = data;
1595 	dev->bd->dev = dev;
1596 	dev->bd->name = strdup(name, M_DEVBUF);
1597 
1598 	dev->backlight_dev = backlight_register(name, dev->bsddev);
1599 
1600 	return (dev->bd);
1601 }
1602 
1603 void
1604 linux_backlight_device_unregister(struct backlight_device *bd)
1605 {
1606 
1607 	backlight_destroy(bd->dev->backlight_dev);
1608 	free(bd->name, M_DEVBUF);
1609 	free(bd, M_DEVBUF);
1610 }
1611