/*- * Copyright (c) 2015-2016 Mellanox Technologies, Ltd. * All rights reserved. * Copyright (c) 2020-2022 The FreeBSD Foundation * * Portions of this software were developed by Björn Zeeb * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "backlight_if.h" #include "pcib_if.h" /* Undef the linux function macro defined in linux/pci.h */ #undef pci_get_class extern int linuxkpi_debug; SYSCTL_DECL(_compat_linuxkpi); static counter_u64_t lkpi_pci_nseg1_fail; SYSCTL_COUNTER_U64(_compat_linuxkpi, OID_AUTO, lkpi_pci_nseg1_fail, CTLFLAG_RD, &lkpi_pci_nseg1_fail, "Count of busdma mapping failures of single-segment"); static device_probe_t linux_pci_probe; static device_attach_t linux_pci_attach; static device_detach_t linux_pci_detach; static device_suspend_t linux_pci_suspend; static device_resume_t linux_pci_resume; static device_shutdown_t linux_pci_shutdown; static pci_iov_init_t linux_pci_iov_init; static pci_iov_uninit_t linux_pci_iov_uninit; static pci_iov_add_vf_t linux_pci_iov_add_vf; static int linux_backlight_get_status(device_t dev, struct backlight_props *props); static int linux_backlight_update_status(device_t dev, struct backlight_props *props); static int linux_backlight_get_info(device_t dev, struct backlight_info *info); static device_method_t pci_methods[] = { DEVMETHOD(device_probe, linux_pci_probe), DEVMETHOD(device_attach, linux_pci_attach), DEVMETHOD(device_detach, linux_pci_detach), DEVMETHOD(device_suspend, linux_pci_suspend), DEVMETHOD(device_resume, linux_pci_resume), DEVMETHOD(device_shutdown, linux_pci_shutdown), DEVMETHOD(pci_iov_init, linux_pci_iov_init), DEVMETHOD(pci_iov_uninit, linux_pci_iov_uninit), DEVMETHOD(pci_iov_add_vf, linux_pci_iov_add_vf), /* backlight interface */ DEVMETHOD(backlight_update_status, linux_backlight_update_status), DEVMETHOD(backlight_get_status, linux_backlight_get_status), DEVMETHOD(backlight_get_info, linux_backlight_get_info), DEVMETHOD_END }; const char *pci_power_names[] = { "UNKNOWN", "D0", "D1", "D2", "D3hot", "D3cold" }; struct linux_dma_priv { uint64_t dma_mask; bus_dma_tag_t dmat; uint64_t dma_coherent_mask; bus_dma_tag_t dmat_coherent; struct mtx lock; struct pctrie ptree; }; #define DMA_PRIV_LOCK(priv) mtx_lock(&(priv)->lock) #define DMA_PRIV_UNLOCK(priv) mtx_unlock(&(priv)->lock) static int linux_pdev_dma_uninit(struct pci_dev *pdev) { struct linux_dma_priv *priv; priv = pdev->dev.dma_priv; if (priv->dmat) bus_dma_tag_destroy(priv->dmat); if (priv->dmat_coherent) bus_dma_tag_destroy(priv->dmat_coherent); mtx_destroy(&priv->lock); pdev->dev.dma_priv = NULL; free(priv, M_DEVBUF); return (0); } static int linux_pdev_dma_init(struct pci_dev *pdev) { struct linux_dma_priv *priv; int error; priv = malloc(sizeof(*priv), M_DEVBUF, M_WAITOK | M_ZERO); mtx_init(&priv->lock, "lkpi-priv-dma", NULL, MTX_DEF); pctrie_init(&priv->ptree); pdev->dev.dma_priv = priv; /* Create a default DMA tags. */ error = linux_dma_tag_init(&pdev->dev, DMA_BIT_MASK(64)); if (error != 0) goto err; /* Coherent is lower 32bit only by default in Linux. */ error = linux_dma_tag_init_coherent(&pdev->dev, DMA_BIT_MASK(32)); if (error != 0) goto err; return (error); err: linux_pdev_dma_uninit(pdev); return (error); } int linux_dma_tag_init(struct device *dev, u64 dma_mask) { struct linux_dma_priv *priv; int error; priv = dev->dma_priv; if (priv->dmat) { if (priv->dma_mask == dma_mask) return (0); bus_dma_tag_destroy(priv->dmat); } priv->dma_mask = dma_mask; error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev), 1, 0, /* alignment, boundary */ dma_mask, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filtfunc, filtfuncarg */ BUS_SPACE_MAXSIZE, /* maxsize */ 1, /* nsegments */ BUS_SPACE_MAXSIZE, /* maxsegsz */ 0, /* flags */ NULL, NULL, /* lockfunc, lockfuncarg */ &priv->dmat); return (-error); } int linux_dma_tag_init_coherent(struct device *dev, u64 dma_mask) { struct linux_dma_priv *priv; int error; priv = dev->dma_priv; if (priv->dmat_coherent) { if (priv->dma_coherent_mask == dma_mask) return (0); bus_dma_tag_destroy(priv->dmat_coherent); } priv->dma_coherent_mask = dma_mask; error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev), 1, 0, /* alignment, boundary */ dma_mask, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filtfunc, filtfuncarg */ BUS_SPACE_MAXSIZE, /* maxsize */ 1, /* nsegments */ BUS_SPACE_MAXSIZE, /* maxsegsz */ 0, /* flags */ NULL, NULL, /* lockfunc, lockfuncarg */ &priv->dmat_coherent); return (-error); } static struct pci_driver * linux_pci_find(device_t dev, const struct pci_device_id **idp) { const struct pci_device_id *id; struct pci_driver *pdrv; uint16_t vendor; uint16_t device; uint16_t subvendor; uint16_t subdevice; vendor = pci_get_vendor(dev); device = pci_get_device(dev); subvendor = pci_get_subvendor(dev); subdevice = pci_get_subdevice(dev); spin_lock(&pci_lock); list_for_each_entry(pdrv, &pci_drivers, node) { for (id = pdrv->id_table; id->vendor != 0; id++) { if (vendor == id->vendor && (PCI_ANY_ID == id->device || device == id->device) && (PCI_ANY_ID == id->subvendor || subvendor == id->subvendor) && (PCI_ANY_ID == id->subdevice || subdevice == id->subdevice)) { *idp = id; spin_unlock(&pci_lock); return (pdrv); } } } spin_unlock(&pci_lock); return (NULL); } struct pci_dev * lkpi_pci_get_device(uint16_t vendor, uint16_t device, struct pci_dev *odev) { struct pci_dev *pdev; KASSERT(odev == NULL, ("%s: odev argument not yet supported\n", __func__)); spin_lock(&pci_lock); list_for_each_entry(pdev, &pci_devices, links) { if (pdev->vendor == vendor && pdev->device == device) break; } spin_unlock(&pci_lock); return (pdev); } static void lkpi_pci_dev_release(struct device *dev) { lkpi_devres_release_free_list(dev); spin_lock_destroy(&dev->devres_lock); } static void lkpifill_pci_dev(device_t dev, struct pci_dev *pdev) { pdev->devfn = PCI_DEVFN(pci_get_slot(dev), pci_get_function(dev)); pdev->vendor = pci_get_vendor(dev); pdev->device = pci_get_device(dev); pdev->subsystem_vendor = pci_get_subvendor(dev); pdev->subsystem_device = pci_get_subdevice(dev); pdev->class = pci_get_class(dev); pdev->revision = pci_get_revid(dev); pdev->bus = malloc(sizeof(*pdev->bus), M_DEVBUF, M_WAITOK | M_ZERO); /* * This should be the upstream bridge; pci_upstream_bridge() * handles that case on demand as otherwise we'll shadow the * entire PCI hierarchy. */ pdev->bus->self = pdev; pdev->bus->number = pci_get_bus(dev); pdev->bus->domain = pci_get_domain(dev); pdev->dev.bsddev = dev; pdev->dev.parent = &linux_root_device; pdev->dev.release = lkpi_pci_dev_release; INIT_LIST_HEAD(&pdev->dev.irqents); kobject_init(&pdev->dev.kobj, &linux_dev_ktype); kobject_set_name(&pdev->dev.kobj, device_get_nameunit(dev)); kobject_add(&pdev->dev.kobj, &linux_root_device.kobj, kobject_name(&pdev->dev.kobj)); spin_lock_init(&pdev->dev.devres_lock); INIT_LIST_HEAD(&pdev->dev.devres_head); } static void lkpinew_pci_dev_release(struct device *dev) { struct pci_dev *pdev; pdev = to_pci_dev(dev); if (pdev->root != NULL) pci_dev_put(pdev->root); if (pdev->bus->self != pdev) pci_dev_put(pdev->bus->self); free(pdev->bus, M_DEVBUF); if (pdev->msi_desc != NULL) free(pdev->msi_desc, M_DEVBUF); free(pdev, M_DEVBUF); } struct pci_dev * lkpinew_pci_dev(device_t dev) { struct pci_dev *pdev; pdev = malloc(sizeof(*pdev), M_DEVBUF, M_WAITOK|M_ZERO); lkpifill_pci_dev(dev, pdev); pdev->dev.release = lkpinew_pci_dev_release; return (pdev); } struct pci_dev * lkpi_pci_get_class(unsigned int class, struct pci_dev *from) { device_t dev; device_t devfrom = NULL; struct pci_dev *pdev; if (from != NULL) devfrom = from->dev.bsddev; dev = pci_find_class_from(class >> 16, (class >> 8) & 0xFF, devfrom); if (dev == NULL) return (NULL); pdev = lkpinew_pci_dev(dev); return (pdev); } struct pci_dev * lkpi_pci_get_domain_bus_and_slot(int domain, unsigned int bus, unsigned int devfn) { device_t dev; struct pci_dev *pdev; dev = pci_find_dbsf(domain, bus, PCI_SLOT(devfn), PCI_FUNC(devfn)); if (dev == NULL) return (NULL); pdev = lkpinew_pci_dev(dev); return (pdev); } static int linux_pci_probe(device_t dev) { const struct pci_device_id *id; struct pci_driver *pdrv; if ((pdrv = linux_pci_find(dev, &id)) == NULL) return (ENXIO); if (device_get_driver(dev) != &pdrv->bsddriver) return (ENXIO); device_set_desc(dev, pdrv->name); /* Assume BSS initialized (should never return BUS_PROBE_SPECIFIC). */ if (pdrv->bsd_probe_return == 0) return (BUS_PROBE_DEFAULT); else return (pdrv->bsd_probe_return); } static int linux_pci_attach(device_t dev) { const struct pci_device_id *id; struct pci_driver *pdrv; struct pci_dev *pdev; pdrv = linux_pci_find(dev, &id); pdev = device_get_softc(dev); MPASS(pdrv != NULL); MPASS(pdev != NULL); return (linux_pci_attach_device(dev, pdrv, id, pdev)); } int linux_pci_attach_device(device_t dev, struct pci_driver *pdrv, const struct pci_device_id *id, struct pci_dev *pdev) { struct resource_list_entry *rle; device_t parent; uintptr_t rid; int error; bool isdrm; linux_set_current(curthread); parent = device_get_parent(dev); isdrm = pdrv != NULL && pdrv->isdrm; if (isdrm) { struct pci_devinfo *dinfo; dinfo = device_get_ivars(parent); device_set_ivars(dev, dinfo); } lkpifill_pci_dev(dev, pdev); if (isdrm) PCI_GET_ID(device_get_parent(parent), parent, PCI_ID_RID, &rid); else PCI_GET_ID(parent, dev, PCI_ID_RID, &rid); pdev->devfn = rid; pdev->pdrv = pdrv; rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 0, false); if (rle != NULL) pdev->dev.irq = rle->start; else pdev->dev.irq = LINUX_IRQ_INVALID; pdev->irq = pdev->dev.irq; error = linux_pdev_dma_init(pdev); if (error) goto out_dma_init; TAILQ_INIT(&pdev->mmio); spin_lock(&pci_lock); list_add(&pdev->links, &pci_devices); spin_unlock(&pci_lock); if (pdrv != NULL) { error = pdrv->probe(pdev, id); if (error) goto out_probe; } return (0); out_probe: free(pdev->bus, M_DEVBUF); linux_pdev_dma_uninit(pdev); out_dma_init: spin_lock(&pci_lock); list_del(&pdev->links); spin_unlock(&pci_lock); put_device(&pdev->dev); return (-error); } static int linux_pci_detach(device_t dev) { struct pci_dev *pdev; pdev = device_get_softc(dev); MPASS(pdev != NULL); device_set_desc(dev, NULL); return (linux_pci_detach_device(pdev)); } int linux_pci_detach_device(struct pci_dev *pdev) { linux_set_current(curthread); if (pdev->pdrv != NULL) pdev->pdrv->remove(pdev); if (pdev->root != NULL) pci_dev_put(pdev->root); free(pdev->bus, M_DEVBUF); linux_pdev_dma_uninit(pdev); spin_lock(&pci_lock); list_del(&pdev->links); spin_unlock(&pci_lock); put_device(&pdev->dev); return (0); } static int lkpi_pci_disable_dev(struct device *dev) { (void) pci_disable_io(dev->bsddev, SYS_RES_MEMORY); (void) pci_disable_io(dev->bsddev, SYS_RES_IOPORT); return (0); } struct pci_devres * lkpi_pci_devres_get_alloc(struct pci_dev *pdev) { struct pci_devres *dr; dr = lkpi_devres_find(&pdev->dev, lkpi_pci_devres_release, NULL, NULL); if (dr == NULL) { dr = lkpi_devres_alloc(lkpi_pci_devres_release, sizeof(*dr), GFP_KERNEL | __GFP_ZERO); if (dr != NULL) lkpi_devres_add(&pdev->dev, dr); } return (dr); } void lkpi_pci_devres_release(struct device *dev, void *p) { struct pci_devres *dr; struct pci_dev *pdev; int bar; pdev = to_pci_dev(dev); dr = p; if (pdev->msix_enabled) lkpi_pci_disable_msix(pdev); if (pdev->msi_enabled) lkpi_pci_disable_msi(pdev); if (dr->enable_io && lkpi_pci_disable_dev(dev) == 0) dr->enable_io = false; if (dr->region_mask == 0) return; for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) { if ((dr->region_mask & (1 << bar)) == 0) continue; pci_release_region(pdev, bar); } } struct pcim_iomap_devres * lkpi_pcim_iomap_devres_find(struct pci_dev *pdev) { struct pcim_iomap_devres *dr; dr = lkpi_devres_find(&pdev->dev, lkpi_pcim_iomap_table_release, NULL, NULL); if (dr == NULL) { dr = lkpi_devres_alloc(lkpi_pcim_iomap_table_release, sizeof(*dr), GFP_KERNEL | __GFP_ZERO); if (dr != NULL) lkpi_devres_add(&pdev->dev, dr); } if (dr == NULL) device_printf(pdev->dev.bsddev, "%s: NULL\n", __func__); return (dr); } void lkpi_pcim_iomap_table_release(struct device *dev, void *p) { struct pcim_iomap_devres *dr; struct pci_dev *pdev; int bar; dr = p; pdev = to_pci_dev(dev); for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) { if (dr->mmio_table[bar] == NULL) continue; pci_iounmap(pdev, dr->mmio_table[bar]); } } static int linux_pci_suspend(device_t dev) { const struct dev_pm_ops *pmops; struct pm_message pm = { }; struct pci_dev *pdev; int error; error = 0; linux_set_current(curthread); pdev = device_get_softc(dev); pmops = pdev->pdrv->driver.pm; if (pdev->pdrv->suspend != NULL) error = -pdev->pdrv->suspend(pdev, pm); else if (pmops != NULL && pmops->suspend != NULL) { error = -pmops->suspend(&pdev->dev); if (error == 0 && pmops->suspend_late != NULL) error = -pmops->suspend_late(&pdev->dev); } return (error); } static int linux_pci_resume(device_t dev) { const struct dev_pm_ops *pmops; struct pci_dev *pdev; int error; error = 0; linux_set_current(curthread); pdev = device_get_softc(dev); pmops = pdev->pdrv->driver.pm; if (pdev->pdrv->resume != NULL) error = -pdev->pdrv->resume(pdev); else if (pmops != NULL && pmops->resume != NULL) { if (pmops->resume_early != NULL) error = -pmops->resume_early(&pdev->dev); if (error == 0 && pmops->resume != NULL) error = -pmops->resume(&pdev->dev); } return (error); } static int linux_pci_shutdown(device_t dev) { struct pci_dev *pdev; linux_set_current(curthread); pdev = device_get_softc(dev); if (pdev->pdrv->shutdown != NULL) pdev->pdrv->shutdown(pdev); return (0); } static int linux_pci_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *pf_config) { struct pci_dev *pdev; int error; linux_set_current(curthread); pdev = device_get_softc(dev); if (pdev->pdrv->bsd_iov_init != NULL) error = pdev->pdrv->bsd_iov_init(dev, num_vfs, pf_config); else error = EINVAL; return (error); } static void linux_pci_iov_uninit(device_t dev) { struct pci_dev *pdev; linux_set_current(curthread); pdev = device_get_softc(dev); if (pdev->pdrv->bsd_iov_uninit != NULL) pdev->pdrv->bsd_iov_uninit(dev); } static int linux_pci_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *vf_config) { struct pci_dev *pdev; int error; linux_set_current(curthread); pdev = device_get_softc(dev); if (pdev->pdrv->bsd_iov_add_vf != NULL) error = pdev->pdrv->bsd_iov_add_vf(dev, vfnum, vf_config); else error = EINVAL; return (error); } static int _linux_pci_register_driver(struct pci_driver *pdrv, devclass_t dc) { int error; linux_set_current(curthread); spin_lock(&pci_lock); list_add(&pdrv->node, &pci_drivers); spin_unlock(&pci_lock); if (pdrv->bsddriver.name == NULL) pdrv->bsddriver.name = pdrv->name; pdrv->bsddriver.methods = pci_methods; pdrv->bsddriver.size = sizeof(struct pci_dev); bus_topo_lock(); error = devclass_add_driver(dc, &pdrv->bsddriver, BUS_PASS_DEFAULT, &pdrv->bsdclass); bus_topo_unlock(); return (-error); } int linux_pci_register_driver(struct pci_driver *pdrv) { devclass_t dc; dc = devclass_find("pci"); if (dc == NULL) return (-ENXIO); pdrv->isdrm = false; return (_linux_pci_register_driver(pdrv, dc)); } struct resource_list_entry * linux_pci_reserve_bar(struct pci_dev *pdev, struct resource_list *rl, int type, int rid) { device_t dev; struct resource *res; KASSERT(type == SYS_RES_IOPORT || type == SYS_RES_MEMORY, ("trying to reserve non-BAR type %d", type)); dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ? device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev; res = pci_reserve_map(device_get_parent(dev), dev, type, &rid, 0, ~0, 1, 1, 0); if (res == NULL) return (NULL); return (resource_list_find(rl, type, rid)); } unsigned long pci_resource_start(struct pci_dev *pdev, int bar) { struct resource_list_entry *rle; rman_res_t newstart; device_t dev; int error; if ((rle = linux_pci_get_bar(pdev, bar, true)) == NULL) return (0); dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ? device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev; error = bus_translate_resource(dev, rle->type, rle->start, &newstart); if (error != 0) { device_printf(pdev->dev.bsddev, "translate of %#jx failed: %d\n", (uintmax_t)rle->start, error); return (0); } return (newstart); } unsigned long pci_resource_len(struct pci_dev *pdev, int bar) { struct resource_list_entry *rle; if ((rle = linux_pci_get_bar(pdev, bar, true)) == NULL) return (0); return (rle->count); } int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) { struct resource *res; struct pci_devres *dr; struct pci_mmio_region *mmio; int rid; int type; type = pci_resource_type(pdev, bar); if (type < 0) return (-ENODEV); rid = PCIR_BAR(bar); res = bus_alloc_resource_any(pdev->dev.bsddev, type, &rid, RF_ACTIVE|RF_SHAREABLE); if (res == NULL) { device_printf(pdev->dev.bsddev, "%s: failed to alloc " "bar %d type %d rid %d\n", __func__, bar, type, PCIR_BAR(bar)); return (-ENODEV); } /* * It seems there is an implicit devres tracking on these if the device * is managed; otherwise the resources are not automatiaclly freed on * FreeBSD/LinuxKPI tough they should be/are expected to be by Linux * drivers. */ dr = lkpi_pci_devres_find(pdev); if (dr != NULL) { dr->region_mask |= (1 << bar); dr->region_table[bar] = res; } /* Even if the device is not managed we need to track it for iomap. */ mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO); mmio->rid = PCIR_BAR(bar); mmio->type = type; mmio->res = res; TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next); return (0); } struct resource * _lkpi_pci_iomap(struct pci_dev *pdev, int bar, int mmio_size __unused) { struct pci_mmio_region *mmio, *p; int type; type = pci_resource_type(pdev, bar); if (type < 0) { device_printf(pdev->dev.bsddev, "%s: bar %d type %d\n", __func__, bar, type); return (NULL); } /* * Check for duplicate mappings. * This can happen if a driver calls pci_request_region() first. */ TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) { if (mmio->type == type && mmio->rid == PCIR_BAR(bar)) { return (mmio->res); } } mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO); mmio->rid = PCIR_BAR(bar); mmio->type = type; mmio->res = bus_alloc_resource_any(pdev->dev.bsddev, mmio->type, &mmio->rid, RF_ACTIVE|RF_SHAREABLE); if (mmio->res == NULL) { device_printf(pdev->dev.bsddev, "%s: failed to alloc " "bar %d type %d rid %d\n", __func__, bar, type, PCIR_BAR(bar)); free(mmio, M_DEVBUF); return (NULL); } TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next); return (mmio->res); } int linux_pci_register_drm_driver(struct pci_driver *pdrv) { devclass_t dc; dc = devclass_create("vgapci"); if (dc == NULL) return (-ENXIO); pdrv->isdrm = true; pdrv->name = "drmn"; return (_linux_pci_register_driver(pdrv, dc)); } void linux_pci_unregister_driver(struct pci_driver *pdrv) { devclass_t bus; bus = devclass_find("pci"); spin_lock(&pci_lock); list_del(&pdrv->node); spin_unlock(&pci_lock); bus_topo_lock(); if (bus != NULL) devclass_delete_driver(bus, &pdrv->bsddriver); bus_topo_unlock(); } void linux_pci_unregister_drm_driver(struct pci_driver *pdrv) { devclass_t bus; bus = devclass_find("vgapci"); spin_lock(&pci_lock); list_del(&pdrv->node); spin_unlock(&pci_lock); bus_topo_lock(); if (bus != NULL) devclass_delete_driver(bus, &pdrv->bsddriver); bus_topo_unlock(); } int pci_alloc_irq_vectors(struct pci_dev *pdev, int minv, int maxv, unsigned int flags) { int error; if (flags & PCI_IRQ_MSIX) { struct msix_entry *entries; int i; entries = kcalloc(maxv, sizeof(*entries), GFP_KERNEL); if (entries == NULL) { error = -ENOMEM; goto out; } for (i = 0; i < maxv; ++i) entries[i].entry = i; error = pci_enable_msix(pdev, entries, maxv); out: kfree(entries); if (error == 0 && pdev->msix_enabled) return (pdev->dev.irq_end - pdev->dev.irq_start); } if (flags & PCI_IRQ_MSI) { if (pci_msi_count(pdev->dev.bsddev) < minv) return (-ENOSPC); /* We only support 1 vector in pci_enable_msi() */ if (minv != 1) return (-ENOSPC); error = pci_enable_msi(pdev); if (error == 0 && pdev->msi_enabled) return (pdev->dev.irq_end - pdev->dev.irq_start); } if (flags & PCI_IRQ_LEGACY) { if (pdev->irq) return (1); } return (-EINVAL); } struct msi_desc * lkpi_pci_msi_desc_alloc(int irq) { struct device *dev; struct pci_dev *pdev; struct msi_desc *desc; struct pci_devinfo *dinfo; struct pcicfg_msi *msi; dev = linux_pci_find_irq_dev(irq); if (dev == NULL) return (NULL); pdev = to_pci_dev(dev); if (pdev->msi_desc != NULL) return (pdev->msi_desc); dinfo = device_get_ivars(dev->bsddev); msi = &dinfo->cfg.msi; desc = malloc(sizeof(*desc), M_DEVBUF, M_WAITOK | M_ZERO); desc->msi_attrib.is_64 = (msi->msi_ctrl & PCIM_MSICTRL_64BIT) ? true : false; desc->msg.data = msi->msi_data; return (desc); } bool pci_device_is_present(struct pci_dev *pdev) { device_t dev; dev = pdev->dev.bsddev; return (bus_child_present(dev)); } CTASSERT(sizeof(dma_addr_t) <= sizeof(uint64_t)); struct linux_dma_obj { void *vaddr; uint64_t dma_addr; bus_dmamap_t dmamap; bus_dma_tag_t dmat; }; static uma_zone_t linux_dma_trie_zone; static uma_zone_t linux_dma_obj_zone; static void linux_dma_init(void *arg) { linux_dma_trie_zone = uma_zcreate("linux_dma_pctrie", pctrie_node_size(), NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR, 0); linux_dma_obj_zone = uma_zcreate("linux_dma_object", sizeof(struct linux_dma_obj), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); lkpi_pci_nseg1_fail = counter_u64_alloc(M_WAITOK); } SYSINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_init, NULL); static void linux_dma_uninit(void *arg) { counter_u64_free(lkpi_pci_nseg1_fail); uma_zdestroy(linux_dma_obj_zone); uma_zdestroy(linux_dma_trie_zone); } SYSUNINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_uninit, NULL); static void * linux_dma_trie_alloc(struct pctrie *ptree) { return (uma_zalloc(linux_dma_trie_zone, M_NOWAIT)); } static void linux_dma_trie_free(struct pctrie *ptree, void *node) { uma_zfree(linux_dma_trie_zone, node); } PCTRIE_DEFINE(LINUX_DMA, linux_dma_obj, dma_addr, linux_dma_trie_alloc, linux_dma_trie_free); #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) static dma_addr_t linux_dma_map_phys_common(struct device *dev, vm_paddr_t phys, size_t len, bus_dma_tag_t dmat) { struct linux_dma_priv *priv; struct linux_dma_obj *obj; int error, nseg; bus_dma_segment_t seg; priv = dev->dma_priv; /* * If the resultant mapping will be entirely 1:1 with the * physical address, short-circuit the remainder of the * bus_dma API. This avoids tracking collisions in the pctrie * with the additional benefit of reducing overhead. */ if (bus_dma_id_mapped(dmat, phys, len)) return (phys); obj = uma_zalloc(linux_dma_obj_zone, M_NOWAIT); if (obj == NULL) { return (0); } obj->dmat = dmat; DMA_PRIV_LOCK(priv); if (bus_dmamap_create(obj->dmat, 0, &obj->dmamap) != 0) { DMA_PRIV_UNLOCK(priv); uma_zfree(linux_dma_obj_zone, obj); return (0); } nseg = -1; if (_bus_dmamap_load_phys(obj->dmat, obj->dmamap, phys, len, BUS_DMA_NOWAIT, &seg, &nseg) != 0) { bus_dmamap_destroy(obj->dmat, obj->dmamap); DMA_PRIV_UNLOCK(priv); uma_zfree(linux_dma_obj_zone, obj); counter_u64_add(lkpi_pci_nseg1_fail, 1); if (linuxkpi_debug) dump_stack(); return (0); } KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg)); obj->dma_addr = seg.ds_addr; error = LINUX_DMA_PCTRIE_INSERT(&priv->ptree, obj); if (error != 0) { bus_dmamap_unload(obj->dmat, obj->dmamap); bus_dmamap_destroy(obj->dmat, obj->dmamap); DMA_PRIV_UNLOCK(priv); uma_zfree(linux_dma_obj_zone, obj); return (0); } DMA_PRIV_UNLOCK(priv); return (obj->dma_addr); } #else static dma_addr_t linux_dma_map_phys_common(struct device *dev __unused, vm_paddr_t phys, size_t len __unused, bus_dma_tag_t dmat __unused) { return (phys); } #endif dma_addr_t linux_dma_map_phys(struct device *dev, vm_paddr_t phys, size_t len) { struct linux_dma_priv *priv; priv = dev->dma_priv; return (linux_dma_map_phys_common(dev, phys, len, priv->dmat)); } #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) void linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len) { struct linux_dma_priv *priv; struct linux_dma_obj *obj; priv = dev->dma_priv; if (pctrie_is_empty(&priv->ptree)) return; DMA_PRIV_LOCK(priv); obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr); if (obj == NULL) { DMA_PRIV_UNLOCK(priv); return; } LINUX_DMA_PCTRIE_REMOVE(&priv->ptree, dma_addr); bus_dmamap_unload(obj->dmat, obj->dmamap); bus_dmamap_destroy(obj->dmat, obj->dmamap); DMA_PRIV_UNLOCK(priv); uma_zfree(linux_dma_obj_zone, obj); } #else void linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len) { } #endif void * linux_dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag) { struct linux_dma_priv *priv; vm_paddr_t high; size_t align; void *mem; if (dev == NULL || dev->dma_priv == NULL) { *dma_handle = 0; return (NULL); } priv = dev->dma_priv; if (priv->dma_coherent_mask) high = priv->dma_coherent_mask; else /* Coherent is lower 32bit only by default in Linux. */ high = BUS_SPACE_MAXADDR_32BIT; align = PAGE_SIZE << get_order(size); /* Always zero the allocation. */ flag |= M_ZERO; mem = kmem_alloc_contig(size, flag & GFP_NATIVE_MASK, 0, high, align, 0, VM_MEMATTR_DEFAULT); if (mem != NULL) { *dma_handle = linux_dma_map_phys_common(dev, vtophys(mem), size, priv->dmat_coherent); if (*dma_handle == 0) { kmem_free(mem, size); mem = NULL; } } else { *dma_handle = 0; } return (mem); } struct lkpi_devres_dmam_coherent { size_t size; dma_addr_t *handle; void *mem; }; static void lkpi_dmam_free_coherent(struct device *dev, void *p) { struct lkpi_devres_dmam_coherent *dr; dr = p; dma_free_coherent(dev, dr->size, dr->mem, *dr->handle); } void * linuxkpi_dmam_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag) { struct lkpi_devres_dmam_coherent *dr; dr = lkpi_devres_alloc(lkpi_dmam_free_coherent, sizeof(*dr), GFP_KERNEL | __GFP_ZERO); if (dr == NULL) return (NULL); dr->size = size; dr->mem = linux_dma_alloc_coherent(dev, size, dma_handle, flag); dr->handle = dma_handle; if (dr->mem == NULL) { lkpi_devres_free(dr); return (NULL); } lkpi_devres_add(dev, dr); return (dr->mem); } void linuxkpi_dma_sync(struct device *dev, dma_addr_t dma_addr, size_t size, bus_dmasync_op_t op) { struct linux_dma_priv *priv; struct linux_dma_obj *obj; priv = dev->dma_priv; if (pctrie_is_empty(&priv->ptree)) return; DMA_PRIV_LOCK(priv); obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr); if (obj == NULL) { DMA_PRIV_UNLOCK(priv); return; } bus_dmamap_sync(obj->dmat, obj->dmamap, op); DMA_PRIV_UNLOCK(priv); } int linux_dma_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction direction, unsigned long attrs __unused) { struct linux_dma_priv *priv; struct scatterlist *sg; int i, nseg; bus_dma_segment_t seg; priv = dev->dma_priv; DMA_PRIV_LOCK(priv); /* create common DMA map in the first S/G entry */ if (bus_dmamap_create(priv->dmat, 0, &sgl->dma_map) != 0) { DMA_PRIV_UNLOCK(priv); return (0); } /* load all S/G list entries */ for_each_sg(sgl, sg, nents, i) { nseg = -1; if (_bus_dmamap_load_phys(priv->dmat, sgl->dma_map, sg_phys(sg), sg->length, BUS_DMA_NOWAIT, &seg, &nseg) != 0) { bus_dmamap_unload(priv->dmat, sgl->dma_map); bus_dmamap_destroy(priv->dmat, sgl->dma_map); DMA_PRIV_UNLOCK(priv); return (0); } KASSERT(nseg == 0, ("More than one segment (nseg=%d)", nseg + 1)); sg_dma_address(sg) = seg.ds_addr; } switch (direction) { case DMA_BIDIRECTIONAL: bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE); break; case DMA_TO_DEVICE: bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD); break; case DMA_FROM_DEVICE: bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE); break; default: break; } DMA_PRIV_UNLOCK(priv); return (nents); } void linux_dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sgl, int nents __unused, enum dma_data_direction direction, unsigned long attrs __unused) { struct linux_dma_priv *priv; priv = dev->dma_priv; DMA_PRIV_LOCK(priv); switch (direction) { case DMA_BIDIRECTIONAL: bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD); bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD); break; case DMA_TO_DEVICE: bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTWRITE); break; case DMA_FROM_DEVICE: bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD); break; default: break; } bus_dmamap_unload(priv->dmat, sgl->dma_map); bus_dmamap_destroy(priv->dmat, sgl->dma_map); DMA_PRIV_UNLOCK(priv); } struct dma_pool { struct device *pool_device; uma_zone_t pool_zone; struct mtx pool_lock; bus_dma_tag_t pool_dmat; size_t pool_entry_size; struct pctrie pool_ptree; }; #define DMA_POOL_LOCK(pool) mtx_lock(&(pool)->pool_lock) #define DMA_POOL_UNLOCK(pool) mtx_unlock(&(pool)->pool_lock) static inline int dma_pool_obj_ctor(void *mem, int size, void *arg, int flags) { struct linux_dma_obj *obj = mem; struct dma_pool *pool = arg; int error, nseg; bus_dma_segment_t seg; nseg = -1; DMA_POOL_LOCK(pool); error = _bus_dmamap_load_phys(pool->pool_dmat, obj->dmamap, vtophys(obj->vaddr), pool->pool_entry_size, BUS_DMA_NOWAIT, &seg, &nseg); DMA_POOL_UNLOCK(pool); if (error != 0) { return (error); } KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg)); obj->dma_addr = seg.ds_addr; return (0); } static void dma_pool_obj_dtor(void *mem, int size, void *arg) { struct linux_dma_obj *obj = mem; struct dma_pool *pool = arg; DMA_POOL_LOCK(pool); bus_dmamap_unload(pool->pool_dmat, obj->dmamap); DMA_POOL_UNLOCK(pool); } static int dma_pool_obj_import(void *arg, void **store, int count, int domain __unused, int flags) { struct dma_pool *pool = arg; struct linux_dma_obj *obj; int error, i; for (i = 0; i < count; i++) { obj = uma_zalloc(linux_dma_obj_zone, flags); if (obj == NULL) break; error = bus_dmamem_alloc(pool->pool_dmat, &obj->vaddr, BUS_DMA_NOWAIT, &obj->dmamap); if (error!= 0) { uma_zfree(linux_dma_obj_zone, obj); break; } store[i] = obj; } return (i); } static void dma_pool_obj_release(void *arg, void **store, int count) { struct dma_pool *pool = arg; struct linux_dma_obj *obj; int i; for (i = 0; i < count; i++) { obj = store[i]; bus_dmamem_free(pool->pool_dmat, obj->vaddr, obj->dmamap); uma_zfree(linux_dma_obj_zone, obj); } } struct dma_pool * linux_dma_pool_create(char *name, struct device *dev, size_t size, size_t align, size_t boundary) { struct linux_dma_priv *priv; struct dma_pool *pool; priv = dev->dma_priv; pool = kzalloc(sizeof(*pool), GFP_KERNEL); pool->pool_device = dev; pool->pool_entry_size = size; if (bus_dma_tag_create(bus_get_dma_tag(dev->bsddev), align, boundary, /* alignment, boundary */ priv->dma_mask, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filtfunc, filtfuncarg */ size, /* maxsize */ 1, /* nsegments */ size, /* maxsegsz */ 0, /* flags */ NULL, NULL, /* lockfunc, lockfuncarg */ &pool->pool_dmat)) { kfree(pool); return (NULL); } pool->pool_zone = uma_zcache_create(name, -1, dma_pool_obj_ctor, dma_pool_obj_dtor, NULL, NULL, dma_pool_obj_import, dma_pool_obj_release, pool, 0); mtx_init(&pool->pool_lock, "lkpi-dma-pool", NULL, MTX_DEF); pctrie_init(&pool->pool_ptree); return (pool); } void linux_dma_pool_destroy(struct dma_pool *pool) { uma_zdestroy(pool->pool_zone); bus_dma_tag_destroy(pool->pool_dmat); mtx_destroy(&pool->pool_lock); kfree(pool); } void lkpi_dmam_pool_destroy(struct device *dev, void *p) { struct dma_pool *pool; pool = *(struct dma_pool **)p; LINUX_DMA_PCTRIE_RECLAIM(&pool->pool_ptree); linux_dma_pool_destroy(pool); } void * linux_dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags, dma_addr_t *handle) { struct linux_dma_obj *obj; obj = uma_zalloc_arg(pool->pool_zone, pool, mem_flags & GFP_NATIVE_MASK); if (obj == NULL) return (NULL); DMA_POOL_LOCK(pool); if (LINUX_DMA_PCTRIE_INSERT(&pool->pool_ptree, obj) != 0) { DMA_POOL_UNLOCK(pool); uma_zfree_arg(pool->pool_zone, obj, pool); return (NULL); } DMA_POOL_UNLOCK(pool); *handle = obj->dma_addr; return (obj->vaddr); } void linux_dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma_addr) { struct linux_dma_obj *obj; DMA_POOL_LOCK(pool); obj = LINUX_DMA_PCTRIE_LOOKUP(&pool->pool_ptree, dma_addr); if (obj == NULL) { DMA_POOL_UNLOCK(pool); return; } LINUX_DMA_PCTRIE_REMOVE(&pool->pool_ptree, dma_addr); DMA_POOL_UNLOCK(pool); uma_zfree_arg(pool->pool_zone, obj, pool); } static int linux_backlight_get_status(device_t dev, struct backlight_props *props) { struct pci_dev *pdev; linux_set_current(curthread); pdev = device_get_softc(dev); props->brightness = pdev->dev.bd->props.brightness; props->brightness = props->brightness * 100 / pdev->dev.bd->props.max_brightness; props->nlevels = 0; return (0); } static int linux_backlight_get_info(device_t dev, struct backlight_info *info) { struct pci_dev *pdev; linux_set_current(curthread); pdev = device_get_softc(dev); info->type = BACKLIGHT_TYPE_PANEL; strlcpy(info->name, pdev->dev.bd->name, BACKLIGHTMAXNAMELENGTH); return (0); } static int linux_backlight_update_status(device_t dev, struct backlight_props *props) { struct pci_dev *pdev; linux_set_current(curthread); pdev = device_get_softc(dev); pdev->dev.bd->props.brightness = pdev->dev.bd->props.max_brightness * props->brightness / 100; pdev->dev.bd->props.power = props->brightness == 0 ? 4/* FB_BLANK_POWERDOWN */ : 0/* FB_BLANK_UNBLANK */; return (pdev->dev.bd->ops->update_status(pdev->dev.bd)); } struct backlight_device * linux_backlight_device_register(const char *name, struct device *dev, void *data, const struct backlight_ops *ops, struct backlight_properties *props) { dev->bd = malloc(sizeof(*dev->bd), M_DEVBUF, M_WAITOK | M_ZERO); dev->bd->ops = ops; dev->bd->props.type = props->type; dev->bd->props.max_brightness = props->max_brightness; dev->bd->props.brightness = props->brightness; dev->bd->props.power = props->power; dev->bd->data = data; dev->bd->dev = dev; dev->bd->name = strdup(name, M_DEVBUF); dev->backlight_dev = backlight_register(name, dev->bsddev); return (dev->bd); } void linux_backlight_device_unregister(struct backlight_device *bd) { backlight_destroy(bd->dev->backlight_dev); free(bd->name, M_DEVBUF); free(bd, M_DEVBUF); }