1 /*- 2 * Implementation of Utility functions for all SCSI device types. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 5 * 6 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 2003 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/types.h> 37 #include <sys/stdint.h> 38 39 #ifdef _KERNEL 40 #include "opt_scsi.h" 41 42 #include <sys/systm.h> 43 #include <sys/libkern.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/mutex.h> 48 #include <sys/sysctl.h> 49 #include <sys/ctype.h> 50 #else 51 #include <errno.h> 52 #include <stdio.h> 53 #include <stdlib.h> 54 #include <string.h> 55 #include <ctype.h> 56 #endif 57 58 #include <cam/cam.h> 59 #include <cam/cam_ccb.h> 60 #include <cam/cam_queue.h> 61 #include <cam/cam_xpt.h> 62 #include <cam/scsi/scsi_all.h> 63 #include <sys/ata.h> 64 #include <sys/sbuf.h> 65 66 #ifdef _KERNEL 67 #include <cam/cam_periph.h> 68 #include <cam/cam_xpt_sim.h> 69 #include <cam/cam_xpt_periph.h> 70 #include <cam/cam_xpt_internal.h> 71 #else 72 #include <camlib.h> 73 #include <stddef.h> 74 75 #ifndef FALSE 76 #define FALSE 0 77 #endif /* FALSE */ 78 #ifndef TRUE 79 #define TRUE 1 80 #endif /* TRUE */ 81 #define ERESTART -1 /* restart syscall */ 82 #define EJUSTRETURN -2 /* don't modify regs, just return */ 83 #endif /* !_KERNEL */ 84 85 /* 86 * This is the default number of milliseconds we wait for devices to settle 87 * after a SCSI bus reset. 88 */ 89 #ifndef SCSI_DELAY 90 #define SCSI_DELAY 2000 91 #endif 92 /* 93 * All devices need _some_ sort of bus settle delay, so we'll set it to 94 * a minimum value of 100ms. Note that this is pertinent only for SPI- 95 * not transport like Fibre Channel or iSCSI where 'delay' is completely 96 * meaningless. 97 */ 98 #ifndef SCSI_MIN_DELAY 99 #define SCSI_MIN_DELAY 100 100 #endif 101 /* 102 * Make sure the user isn't using seconds instead of milliseconds. 103 */ 104 #if (SCSI_DELAY < SCSI_MIN_DELAY && SCSI_DELAY != 0) 105 #error "SCSI_DELAY is in milliseconds, not seconds! Please use a larger value" 106 #endif 107 108 int scsi_delay; 109 110 static int ascentrycomp(const void *key, const void *member); 111 static int senseentrycomp(const void *key, const void *member); 112 static void fetchtableentries(int sense_key, int asc, int ascq, 113 struct scsi_inquiry_data *, 114 const struct sense_key_table_entry **, 115 const struct asc_table_entry **); 116 117 #ifdef _KERNEL 118 static void init_scsi_delay(void); 119 static int sysctl_scsi_delay(SYSCTL_HANDLER_ARGS); 120 static int set_scsi_delay(int delay); 121 #endif 122 123 #if !defined(SCSI_NO_OP_STRINGS) 124 125 #define D (1 << T_DIRECT) 126 #define T (1 << T_SEQUENTIAL) 127 #define L (1 << T_PRINTER) 128 #define P (1 << T_PROCESSOR) 129 #define W (1 << T_WORM) 130 #define R (1 << T_CDROM) 131 #define O (1 << T_OPTICAL) 132 #define M (1 << T_CHANGER) 133 #define A (1 << T_STORARRAY) 134 #define E (1 << T_ENCLOSURE) 135 #define B (1 << T_RBC) 136 #define K (1 << T_OCRW) 137 #define V (1 << T_ADC) 138 #define F (1 << T_OSD) 139 #define S (1 << T_SCANNER) 140 #define C (1 << T_COMM) 141 142 #define ALL (D | T | L | P | W | R | O | M | A | E | B | K | V | F | S | C) 143 144 static struct op_table_entry plextor_cd_ops[] = { 145 { 0xD8, R, "CD-DA READ" } 146 }; 147 148 static struct scsi_op_quirk_entry scsi_op_quirk_table[] = { 149 { 150 /* 151 * I believe that 0xD8 is the Plextor proprietary command 152 * to read CD-DA data. I'm not sure which Plextor CDROM 153 * models support the command, though. I know for sure 154 * that the 4X, 8X, and 12X models do, and presumably the 155 * 12-20X does. I don't know about any earlier models, 156 * though. If anyone has any more complete information, 157 * feel free to change this quirk entry. 158 */ 159 {T_CDROM, SIP_MEDIA_REMOVABLE, "PLEXTOR", "CD-ROM PX*", "*"}, 160 nitems(plextor_cd_ops), 161 plextor_cd_ops 162 } 163 }; 164 165 static struct op_table_entry scsi_op_codes[] = { 166 /* 167 * From: http://www.t10.org/lists/op-num.txt 168 * Modifications by Kenneth Merry (ken@FreeBSD.ORG) 169 * and Jung-uk Kim (jkim@FreeBSD.org) 170 * 171 * Note: order is important in this table, scsi_op_desc() currently 172 * depends on the opcodes in the table being in order to save 173 * search time. 174 * Note: scanner and comm. devices are carried over from the previous 175 * version because they were removed in the latest spec. 176 */ 177 /* File: OP-NUM.TXT 178 * 179 * SCSI Operation Codes 180 * Numeric Sorted Listing 181 * as of 5/26/15 182 * 183 * D - DIRECT ACCESS DEVICE (SBC-2) device column key 184 * .T - SEQUENTIAL ACCESS DEVICE (SSC-2) ----------------- 185 * . L - PRINTER DEVICE (SSC) M = Mandatory 186 * . P - PROCESSOR DEVICE (SPC) O = Optional 187 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) V = Vendor spec. 188 * . . R - CD/DVE DEVICE (MMC-3) Z = Obsolete 189 * . . O - OPTICAL MEMORY DEVICE (SBC-2) 190 * . . .M - MEDIA CHANGER DEVICE (SMC-2) 191 * . . . A - STORAGE ARRAY DEVICE (SCC-2) 192 * . . . .E - ENCLOSURE SERVICES DEVICE (SES) 193 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) 194 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) 195 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) 196 * . . . . .F - OBJECT-BASED STORAGE (OSD) 197 * OP DTLPWROMAEBKVF Description 198 * -- -------------- ---------------------------------------------- */ 199 /* 00 MMMMMMMMMMMMMM TEST UNIT READY */ 200 { 0x00, ALL, "TEST UNIT READY" }, 201 /* 01 M REWIND */ 202 { 0x01, T, "REWIND" }, 203 /* 01 Z V ZZZZ REZERO UNIT */ 204 { 0x01, D | W | R | O | M, "REZERO UNIT" }, 205 /* 02 VVVVVV V */ 206 /* 03 MMMMMMMMMMOMMM REQUEST SENSE */ 207 { 0x03, ALL, "REQUEST SENSE" }, 208 /* 04 M OO FORMAT UNIT */ 209 { 0x04, D | R | O, "FORMAT UNIT" }, 210 /* 04 O FORMAT MEDIUM */ 211 { 0x04, T, "FORMAT MEDIUM" }, 212 /* 04 O FORMAT */ 213 { 0x04, L, "FORMAT" }, 214 /* 05 VMVVVV V READ BLOCK LIMITS */ 215 { 0x05, T, "READ BLOCK LIMITS" }, 216 /* 06 VVVVVV V */ 217 /* 07 OVV O OV REASSIGN BLOCKS */ 218 { 0x07, D | W | O, "REASSIGN BLOCKS" }, 219 /* 07 O INITIALIZE ELEMENT STATUS */ 220 { 0x07, M, "INITIALIZE ELEMENT STATUS" }, 221 /* 08 MOV O OV READ(6) */ 222 { 0x08, D | T | W | O, "READ(6)" }, 223 /* 08 O RECEIVE */ 224 { 0x08, P, "RECEIVE" }, 225 /* 08 GET MESSAGE(6) */ 226 { 0x08, C, "GET MESSAGE(6)" }, 227 /* 09 VVVVVV V */ 228 /* 0A OO O OV WRITE(6) */ 229 { 0x0A, D | T | W | O, "WRITE(6)" }, 230 /* 0A M SEND(6) */ 231 { 0x0A, P, "SEND(6)" }, 232 /* 0A SEND MESSAGE(6) */ 233 { 0x0A, C, "SEND MESSAGE(6)" }, 234 /* 0A M PRINT */ 235 { 0x0A, L, "PRINT" }, 236 /* 0B Z ZOZV SEEK(6) */ 237 { 0x0B, D | W | R | O, "SEEK(6)" }, 238 /* 0B O SET CAPACITY */ 239 { 0x0B, T, "SET CAPACITY" }, 240 /* 0B O SLEW AND PRINT */ 241 { 0x0B, L, "SLEW AND PRINT" }, 242 /* 0C VVVVVV V */ 243 /* 0D VVVVVV V */ 244 /* 0E VVVVVV V */ 245 /* 0F VOVVVV V READ REVERSE(6) */ 246 { 0x0F, T, "READ REVERSE(6)" }, 247 /* 10 VM VVV WRITE FILEMARKS(6) */ 248 { 0x10, T, "WRITE FILEMARKS(6)" }, 249 /* 10 O SYNCHRONIZE BUFFER */ 250 { 0x10, L, "SYNCHRONIZE BUFFER" }, 251 /* 11 VMVVVV SPACE(6) */ 252 { 0x11, T, "SPACE(6)" }, 253 /* 12 MMMMMMMMMMMMMM INQUIRY */ 254 { 0x12, ALL, "INQUIRY" }, 255 /* 13 V VVVV */ 256 /* 13 O VERIFY(6) */ 257 { 0x13, T, "VERIFY(6)" }, 258 /* 14 VOOVVV RECOVER BUFFERED DATA */ 259 { 0x14, T | L, "RECOVER BUFFERED DATA" }, 260 /* 15 OMO O OOOO OO MODE SELECT(6) */ 261 { 0x15, ALL & ~(P | R | B | F), "MODE SELECT(6)" }, 262 /* 16 ZZMZO OOOZ O RESERVE(6) */ 263 { 0x16, ALL & ~(R | B | V | F | C), "RESERVE(6)" }, 264 /* 16 Z RESERVE ELEMENT(6) */ 265 { 0x16, M, "RESERVE ELEMENT(6)" }, 266 /* 17 ZZMZO OOOZ O RELEASE(6) */ 267 { 0x17, ALL & ~(R | B | V | F | C), "RELEASE(6)" }, 268 /* 17 Z RELEASE ELEMENT(6) */ 269 { 0x17, M, "RELEASE ELEMENT(6)" }, 270 /* 18 ZZZZOZO Z COPY */ 271 { 0x18, D | T | L | P | W | R | O | K | S, "COPY" }, 272 /* 19 VMVVVV ERASE(6) */ 273 { 0x19, T, "ERASE(6)" }, 274 /* 1A OMO O OOOO OO MODE SENSE(6) */ 275 { 0x1A, ALL & ~(P | R | B | F), "MODE SENSE(6)" }, 276 /* 1B O OOO O MO O START STOP UNIT */ 277 { 0x1B, D | W | R | O | A | B | K | F, "START STOP UNIT" }, 278 /* 1B O M LOAD UNLOAD */ 279 { 0x1B, T | V, "LOAD UNLOAD" }, 280 /* 1B SCAN */ 281 { 0x1B, S, "SCAN" }, 282 /* 1B O STOP PRINT */ 283 { 0x1B, L, "STOP PRINT" }, 284 /* 1B O OPEN/CLOSE IMPORT/EXPORT ELEMENT */ 285 { 0x1B, M, "OPEN/CLOSE IMPORT/EXPORT ELEMENT" }, 286 /* 1C OOOOO OOOM OOO RECEIVE DIAGNOSTIC RESULTS */ 287 { 0x1C, ALL & ~(R | B), "RECEIVE DIAGNOSTIC RESULTS" }, 288 /* 1D MMMMM MMOM MMM SEND DIAGNOSTIC */ 289 { 0x1D, ALL & ~(R | B), "SEND DIAGNOSTIC" }, 290 /* 1E OO OOOO O O PREVENT ALLOW MEDIUM REMOVAL */ 291 { 0x1E, D | T | W | R | O | M | K | F, "PREVENT ALLOW MEDIUM REMOVAL" }, 292 /* 1F */ 293 /* 20 V VVV V */ 294 /* 21 V VVV V */ 295 /* 22 V VVV V */ 296 /* 23 V V V V */ 297 /* 23 O READ FORMAT CAPACITIES */ 298 { 0x23, R, "READ FORMAT CAPACITIES" }, 299 /* 24 V VV SET WINDOW */ 300 { 0x24, S, "SET WINDOW" }, 301 /* 25 M M M M READ CAPACITY(10) */ 302 { 0x25, D | W | O | B, "READ CAPACITY(10)" }, 303 /* 25 O READ CAPACITY */ 304 { 0x25, R, "READ CAPACITY" }, 305 /* 25 M READ CARD CAPACITY */ 306 { 0x25, K, "READ CARD CAPACITY" }, 307 /* 25 GET WINDOW */ 308 { 0x25, S, "GET WINDOW" }, 309 /* 26 V VV */ 310 /* 27 V VV */ 311 /* 28 M MOM MM READ(10) */ 312 { 0x28, D | W | R | O | B | K | S, "READ(10)" }, 313 /* 28 GET MESSAGE(10) */ 314 { 0x28, C, "GET MESSAGE(10)" }, 315 /* 29 V VVO READ GENERATION */ 316 { 0x29, O, "READ GENERATION" }, 317 /* 2A O MOM MO WRITE(10) */ 318 { 0x2A, D | W | R | O | B | K, "WRITE(10)" }, 319 /* 2A SEND(10) */ 320 { 0x2A, S, "SEND(10)" }, 321 /* 2A SEND MESSAGE(10) */ 322 { 0x2A, C, "SEND MESSAGE(10)" }, 323 /* 2B Z OOO O SEEK(10) */ 324 { 0x2B, D | W | R | O | K, "SEEK(10)" }, 325 /* 2B O LOCATE(10) */ 326 { 0x2B, T, "LOCATE(10)" }, 327 /* 2B O POSITION TO ELEMENT */ 328 { 0x2B, M, "POSITION TO ELEMENT" }, 329 /* 2C V OO ERASE(10) */ 330 { 0x2C, R | O, "ERASE(10)" }, 331 /* 2D O READ UPDATED BLOCK */ 332 { 0x2D, O, "READ UPDATED BLOCK" }, 333 /* 2D V */ 334 /* 2E O OOO MO WRITE AND VERIFY(10) */ 335 { 0x2E, D | W | R | O | B | K, "WRITE AND VERIFY(10)" }, 336 /* 2F O OOO VERIFY(10) */ 337 { 0x2F, D | W | R | O, "VERIFY(10)" }, 338 /* 30 Z ZZZ SEARCH DATA HIGH(10) */ 339 { 0x30, D | W | R | O, "SEARCH DATA HIGH(10)" }, 340 /* 31 Z ZZZ SEARCH DATA EQUAL(10) */ 341 { 0x31, D | W | R | O, "SEARCH DATA EQUAL(10)" }, 342 /* 31 OBJECT POSITION */ 343 { 0x31, S, "OBJECT POSITION" }, 344 /* 32 Z ZZZ SEARCH DATA LOW(10) */ 345 { 0x32, D | W | R | O, "SEARCH DATA LOW(10)" }, 346 /* 33 Z OZO SET LIMITS(10) */ 347 { 0x33, D | W | R | O, "SET LIMITS(10)" }, 348 /* 34 O O O O PRE-FETCH(10) */ 349 { 0x34, D | W | O | K, "PRE-FETCH(10)" }, 350 /* 34 M READ POSITION */ 351 { 0x34, T, "READ POSITION" }, 352 /* 34 GET DATA BUFFER STATUS */ 353 { 0x34, S, "GET DATA BUFFER STATUS" }, 354 /* 35 O OOO MO SYNCHRONIZE CACHE(10) */ 355 { 0x35, D | W | R | O | B | K, "SYNCHRONIZE CACHE(10)" }, 356 /* 36 Z O O O LOCK UNLOCK CACHE(10) */ 357 { 0x36, D | W | O | K, "LOCK UNLOCK CACHE(10)" }, 358 /* 37 O O READ DEFECT DATA(10) */ 359 { 0x37, D | O, "READ DEFECT DATA(10)" }, 360 /* 37 O INITIALIZE ELEMENT STATUS WITH RANGE */ 361 { 0x37, M, "INITIALIZE ELEMENT STATUS WITH RANGE" }, 362 /* 38 O O O MEDIUM SCAN */ 363 { 0x38, W | O | K, "MEDIUM SCAN" }, 364 /* 39 ZZZZOZO Z COMPARE */ 365 { 0x39, D | T | L | P | W | R | O | K | S, "COMPARE" }, 366 /* 3A ZZZZOZO Z COPY AND VERIFY */ 367 { 0x3A, D | T | L | P | W | R | O | K | S, "COPY AND VERIFY" }, 368 /* 3B OOOOOOOOOOMOOO WRITE BUFFER */ 369 { 0x3B, ALL, "WRITE BUFFER" }, 370 /* 3C OOOOOOOOOO OOO READ BUFFER */ 371 { 0x3C, ALL & ~(B), "READ BUFFER" }, 372 /* 3D O UPDATE BLOCK */ 373 { 0x3D, O, "UPDATE BLOCK" }, 374 /* 3E O O O READ LONG(10) */ 375 { 0x3E, D | W | O, "READ LONG(10)" }, 376 /* 3F O O O WRITE LONG(10) */ 377 { 0x3F, D | W | O, "WRITE LONG(10)" }, 378 /* 40 ZZZZOZOZ CHANGE DEFINITION */ 379 { 0x40, D | T | L | P | W | R | O | M | S | C, "CHANGE DEFINITION" }, 380 /* 41 O WRITE SAME(10) */ 381 { 0x41, D, "WRITE SAME(10)" }, 382 /* 42 O UNMAP */ 383 { 0x42, D, "UNMAP" }, 384 /* 42 O READ SUB-CHANNEL */ 385 { 0x42, R, "READ SUB-CHANNEL" }, 386 /* 43 O READ TOC/PMA/ATIP */ 387 { 0x43, R, "READ TOC/PMA/ATIP" }, 388 /* 44 M M REPORT DENSITY SUPPORT */ 389 { 0x44, T | V, "REPORT DENSITY SUPPORT" }, 390 /* 44 READ HEADER */ 391 /* 45 O PLAY AUDIO(10) */ 392 { 0x45, R, "PLAY AUDIO(10)" }, 393 /* 46 M GET CONFIGURATION */ 394 { 0x46, R, "GET CONFIGURATION" }, 395 /* 47 O PLAY AUDIO MSF */ 396 { 0x47, R, "PLAY AUDIO MSF" }, 397 /* 48 O SANITIZE */ 398 { 0x48, D, "SANITIZE" }, 399 /* 49 */ 400 /* 4A M GET EVENT STATUS NOTIFICATION */ 401 { 0x4A, R, "GET EVENT STATUS NOTIFICATION" }, 402 /* 4B O PAUSE/RESUME */ 403 { 0x4B, R, "PAUSE/RESUME" }, 404 /* 4C OOOOO OOOO OOO LOG SELECT */ 405 { 0x4C, ALL & ~(R | B), "LOG SELECT" }, 406 /* 4D OOOOO OOOO OMO LOG SENSE */ 407 { 0x4D, ALL & ~(R | B), "LOG SENSE" }, 408 /* 4E O STOP PLAY/SCAN */ 409 { 0x4E, R, "STOP PLAY/SCAN" }, 410 /* 4F */ 411 /* 50 O XDWRITE(10) */ 412 { 0x50, D, "XDWRITE(10)" }, 413 /* 51 O XPWRITE(10) */ 414 { 0x51, D, "XPWRITE(10)" }, 415 /* 51 O READ DISC INFORMATION */ 416 { 0x51, R, "READ DISC INFORMATION" }, 417 /* 52 O XDREAD(10) */ 418 { 0x52, D, "XDREAD(10)" }, 419 /* 52 O READ TRACK INFORMATION */ 420 { 0x52, R, "READ TRACK INFORMATION" }, 421 /* 53 O RESERVE TRACK */ 422 { 0x53, R, "RESERVE TRACK" }, 423 /* 54 O SEND OPC INFORMATION */ 424 { 0x54, R, "SEND OPC INFORMATION" }, 425 /* 55 OOO OMOOOOMOMO MODE SELECT(10) */ 426 { 0x55, ALL & ~(P), "MODE SELECT(10)" }, 427 /* 56 ZZMZO OOOZ RESERVE(10) */ 428 { 0x56, ALL & ~(R | B | K | V | F | C), "RESERVE(10)" }, 429 /* 56 Z RESERVE ELEMENT(10) */ 430 { 0x56, M, "RESERVE ELEMENT(10)" }, 431 /* 57 ZZMZO OOOZ RELEASE(10) */ 432 { 0x57, ALL & ~(R | B | K | V | F | C), "RELEASE(10)" }, 433 /* 57 Z RELEASE ELEMENT(10) */ 434 { 0x57, M, "RELEASE ELEMENT(10)" }, 435 /* 58 O REPAIR TRACK */ 436 { 0x58, R, "REPAIR TRACK" }, 437 /* 59 */ 438 /* 5A OOO OMOOOOMOMO MODE SENSE(10) */ 439 { 0x5A, ALL & ~(P), "MODE SENSE(10)" }, 440 /* 5B O CLOSE TRACK/SESSION */ 441 { 0x5B, R, "CLOSE TRACK/SESSION" }, 442 /* 5C O READ BUFFER CAPACITY */ 443 { 0x5C, R, "READ BUFFER CAPACITY" }, 444 /* 5D O SEND CUE SHEET */ 445 { 0x5D, R, "SEND CUE SHEET" }, 446 /* 5E OOOOO OOOO M PERSISTENT RESERVE IN */ 447 { 0x5E, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE IN" }, 448 /* 5F OOOOO OOOO M PERSISTENT RESERVE OUT */ 449 { 0x5F, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE OUT" }, 450 /* 7E OO O OOOO O extended CDB */ 451 { 0x7E, D | T | R | M | A | E | B | V, "extended CDB" }, 452 /* 7F O M variable length CDB (more than 16 bytes) */ 453 { 0x7F, D | F, "variable length CDB (more than 16 bytes)" }, 454 /* 80 Z XDWRITE EXTENDED(16) */ 455 { 0x80, D, "XDWRITE EXTENDED(16)" }, 456 /* 80 M WRITE FILEMARKS(16) */ 457 { 0x80, T, "WRITE FILEMARKS(16)" }, 458 /* 81 Z REBUILD(16) */ 459 { 0x81, D, "REBUILD(16)" }, 460 /* 81 O READ REVERSE(16) */ 461 { 0x81, T, "READ REVERSE(16)" }, 462 /* 82 Z REGENERATE(16) */ 463 { 0x82, D, "REGENERATE(16)" }, 464 /* 83 OOOOO O OO EXTENDED COPY */ 465 { 0x83, D | T | L | P | W | O | K | V, "EXTENDED COPY" }, 466 /* 84 OOOOO O OO RECEIVE COPY RESULTS */ 467 { 0x84, D | T | L | P | W | O | K | V, "RECEIVE COPY RESULTS" }, 468 /* 85 O O O ATA COMMAND PASS THROUGH(16) */ 469 { 0x85, D | R | B, "ATA COMMAND PASS THROUGH(16)" }, 470 /* 86 OO OO OOOOOOO ACCESS CONTROL IN */ 471 { 0x86, ALL & ~(L | R | F), "ACCESS CONTROL IN" }, 472 /* 87 OO OO OOOOOOO ACCESS CONTROL OUT */ 473 { 0x87, ALL & ~(L | R | F), "ACCESS CONTROL OUT" }, 474 /* 88 MM O O O READ(16) */ 475 { 0x88, D | T | W | O | B, "READ(16)" }, 476 /* 89 O COMPARE AND WRITE*/ 477 { 0x89, D, "COMPARE AND WRITE" }, 478 /* 8A OM O O O WRITE(16) */ 479 { 0x8A, D | T | W | O | B, "WRITE(16)" }, 480 /* 8B O ORWRITE */ 481 { 0x8B, D, "ORWRITE" }, 482 /* 8C OO O OO O M READ ATTRIBUTE */ 483 { 0x8C, D | T | W | O | M | B | V, "READ ATTRIBUTE" }, 484 /* 8D OO O OO O O WRITE ATTRIBUTE */ 485 { 0x8D, D | T | W | O | M | B | V, "WRITE ATTRIBUTE" }, 486 /* 8E O O O O WRITE AND VERIFY(16) */ 487 { 0x8E, D | W | O | B, "WRITE AND VERIFY(16)" }, 488 /* 8F OO O O O VERIFY(16) */ 489 { 0x8F, D | T | W | O | B, "VERIFY(16)" }, 490 /* 90 O O O O PRE-FETCH(16) */ 491 { 0x90, D | W | O | B, "PRE-FETCH(16)" }, 492 /* 91 O O O O SYNCHRONIZE CACHE(16) */ 493 { 0x91, D | W | O | B, "SYNCHRONIZE CACHE(16)" }, 494 /* 91 O SPACE(16) */ 495 { 0x91, T, "SPACE(16)" }, 496 /* 92 Z O O LOCK UNLOCK CACHE(16) */ 497 { 0x92, D | W | O, "LOCK UNLOCK CACHE(16)" }, 498 /* 92 O LOCATE(16) */ 499 { 0x92, T, "LOCATE(16)" }, 500 /* 93 O WRITE SAME(16) */ 501 { 0x93, D, "WRITE SAME(16)" }, 502 /* 93 M ERASE(16) */ 503 { 0x93, T, "ERASE(16)" }, 504 /* 94 O ZBC OUT */ 505 { 0x94, ALL, "ZBC OUT" }, 506 /* 95 O ZBC IN */ 507 { 0x95, ALL, "ZBC IN" }, 508 /* 96 */ 509 /* 97 */ 510 /* 98 */ 511 /* 99 */ 512 /* 9A O WRITE STREAM(16) */ 513 { 0x9A, D, "WRITE STREAM(16)" }, 514 /* 9B OOOOOOOOOO OOO READ BUFFER(16) */ 515 { 0x9B, ALL & ~(B) , "READ BUFFER(16)" }, 516 /* 9C O WRITE ATOMIC(16) */ 517 { 0x9C, D, "WRITE ATOMIC(16)" }, 518 /* 9D SERVICE ACTION BIDIRECTIONAL */ 519 { 0x9D, ALL, "SERVICE ACTION BIDIRECTIONAL" }, 520 /* XXX KDM ALL for this? op-num.txt defines it for none.. */ 521 /* 9E SERVICE ACTION IN(16) */ 522 { 0x9E, ALL, "SERVICE ACTION IN(16)" }, 523 /* 9F M SERVICE ACTION OUT(16) */ 524 { 0x9F, ALL, "SERVICE ACTION OUT(16)" }, 525 /* A0 MMOOO OMMM OMO REPORT LUNS */ 526 { 0xA0, ALL & ~(R | B), "REPORT LUNS" }, 527 /* A1 O BLANK */ 528 { 0xA1, R, "BLANK" }, 529 /* A1 O O ATA COMMAND PASS THROUGH(12) */ 530 { 0xA1, D | B, "ATA COMMAND PASS THROUGH(12)" }, 531 /* A2 OO O O SECURITY PROTOCOL IN */ 532 { 0xA2, D | T | R | V, "SECURITY PROTOCOL IN" }, 533 /* A3 OOO O OOMOOOM MAINTENANCE (IN) */ 534 { 0xA3, ALL & ~(P | R | F), "MAINTENANCE (IN)" }, 535 /* A3 O SEND KEY */ 536 { 0xA3, R, "SEND KEY" }, 537 /* A4 OOO O OOOOOOO MAINTENANCE (OUT) */ 538 { 0xA4, ALL & ~(P | R | F), "MAINTENANCE (OUT)" }, 539 /* A4 O REPORT KEY */ 540 { 0xA4, R, "REPORT KEY" }, 541 /* A5 O O OM MOVE MEDIUM */ 542 { 0xA5, T | W | O | M, "MOVE MEDIUM" }, 543 /* A5 O PLAY AUDIO(12) */ 544 { 0xA5, R, "PLAY AUDIO(12)" }, 545 /* A6 O EXCHANGE MEDIUM */ 546 { 0xA6, M, "EXCHANGE MEDIUM" }, 547 /* A6 O LOAD/UNLOAD C/DVD */ 548 { 0xA6, R, "LOAD/UNLOAD C/DVD" }, 549 /* A7 ZZ O O MOVE MEDIUM ATTACHED */ 550 { 0xA7, D | T | W | O, "MOVE MEDIUM ATTACHED" }, 551 /* A7 O SET READ AHEAD */ 552 { 0xA7, R, "SET READ AHEAD" }, 553 /* A8 O OOO READ(12) */ 554 { 0xA8, D | W | R | O, "READ(12)" }, 555 /* A8 GET MESSAGE(12) */ 556 { 0xA8, C, "GET MESSAGE(12)" }, 557 /* A9 O SERVICE ACTION OUT(12) */ 558 { 0xA9, V, "SERVICE ACTION OUT(12)" }, 559 /* AA O OOO WRITE(12) */ 560 { 0xAA, D | W | R | O, "WRITE(12)" }, 561 /* AA SEND MESSAGE(12) */ 562 { 0xAA, C, "SEND MESSAGE(12)" }, 563 /* AB O O SERVICE ACTION IN(12) */ 564 { 0xAB, R | V, "SERVICE ACTION IN(12)" }, 565 /* AC O ERASE(12) */ 566 { 0xAC, O, "ERASE(12)" }, 567 /* AC O GET PERFORMANCE */ 568 { 0xAC, R, "GET PERFORMANCE" }, 569 /* AD O READ DVD STRUCTURE */ 570 { 0xAD, R, "READ DVD STRUCTURE" }, 571 /* AE O O O WRITE AND VERIFY(12) */ 572 { 0xAE, D | W | O, "WRITE AND VERIFY(12)" }, 573 /* AF O OZO VERIFY(12) */ 574 { 0xAF, D | W | R | O, "VERIFY(12)" }, 575 /* B0 ZZZ SEARCH DATA HIGH(12) */ 576 { 0xB0, W | R | O, "SEARCH DATA HIGH(12)" }, 577 /* B1 ZZZ SEARCH DATA EQUAL(12) */ 578 { 0xB1, W | R | O, "SEARCH DATA EQUAL(12)" }, 579 /* B2 ZZZ SEARCH DATA LOW(12) */ 580 { 0xB2, W | R | O, "SEARCH DATA LOW(12)" }, 581 /* B3 Z OZO SET LIMITS(12) */ 582 { 0xB3, D | W | R | O, "SET LIMITS(12)" }, 583 /* B4 ZZ OZO READ ELEMENT STATUS ATTACHED */ 584 { 0xB4, D | T | W | R | O, "READ ELEMENT STATUS ATTACHED" }, 585 /* B5 OO O O SECURITY PROTOCOL OUT */ 586 { 0xB5, D | T | R | V, "SECURITY PROTOCOL OUT" }, 587 /* B5 O REQUEST VOLUME ELEMENT ADDRESS */ 588 { 0xB5, M, "REQUEST VOLUME ELEMENT ADDRESS" }, 589 /* B6 O SEND VOLUME TAG */ 590 { 0xB6, M, "SEND VOLUME TAG" }, 591 /* B6 O SET STREAMING */ 592 { 0xB6, R, "SET STREAMING" }, 593 /* B7 O O READ DEFECT DATA(12) */ 594 { 0xB7, D | O, "READ DEFECT DATA(12)" }, 595 /* B8 O OZOM READ ELEMENT STATUS */ 596 { 0xB8, T | W | R | O | M, "READ ELEMENT STATUS" }, 597 /* B9 O READ CD MSF */ 598 { 0xB9, R, "READ CD MSF" }, 599 /* BA O O OOMO REDUNDANCY GROUP (IN) */ 600 { 0xBA, D | W | O | M | A | E, "REDUNDANCY GROUP (IN)" }, 601 /* BA O SCAN */ 602 { 0xBA, R, "SCAN" }, 603 /* BB O O OOOO REDUNDANCY GROUP (OUT) */ 604 { 0xBB, D | W | O | M | A | E, "REDUNDANCY GROUP (OUT)" }, 605 /* BB O SET CD SPEED */ 606 { 0xBB, R, "SET CD SPEED" }, 607 /* BC O O OOMO SPARE (IN) */ 608 { 0xBC, D | W | O | M | A | E, "SPARE (IN)" }, 609 /* BD O O OOOO SPARE (OUT) */ 610 { 0xBD, D | W | O | M | A | E, "SPARE (OUT)" }, 611 /* BD O MECHANISM STATUS */ 612 { 0xBD, R, "MECHANISM STATUS" }, 613 /* BE O O OOMO VOLUME SET (IN) */ 614 { 0xBE, D | W | O | M | A | E, "VOLUME SET (IN)" }, 615 /* BE O READ CD */ 616 { 0xBE, R, "READ CD" }, 617 /* BF O O OOOO VOLUME SET (OUT) */ 618 { 0xBF, D | W | O | M | A | E, "VOLUME SET (OUT)" }, 619 /* BF O SEND DVD STRUCTURE */ 620 { 0xBF, R, "SEND DVD STRUCTURE" } 621 }; 622 623 const char * 624 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data) 625 { 626 caddr_t match; 627 int i, j; 628 u_int32_t opmask; 629 u_int16_t pd_type; 630 int num_ops[2]; 631 struct op_table_entry *table[2]; 632 int num_tables; 633 634 /* 635 * If we've got inquiry data, use it to determine what type of 636 * device we're dealing with here. Otherwise, assume direct 637 * access. 638 */ 639 if (inq_data == NULL) { 640 pd_type = T_DIRECT; 641 match = NULL; 642 } else { 643 pd_type = SID_TYPE(inq_data); 644 645 match = cam_quirkmatch((caddr_t)inq_data, 646 (caddr_t)scsi_op_quirk_table, 647 nitems(scsi_op_quirk_table), 648 sizeof(*scsi_op_quirk_table), 649 scsi_inquiry_match); 650 } 651 652 if (match != NULL) { 653 table[0] = ((struct scsi_op_quirk_entry *)match)->op_table; 654 num_ops[0] = ((struct scsi_op_quirk_entry *)match)->num_ops; 655 table[1] = scsi_op_codes; 656 num_ops[1] = nitems(scsi_op_codes); 657 num_tables = 2; 658 } else { 659 /* 660 * If this is true, we have a vendor specific opcode that 661 * wasn't covered in the quirk table. 662 */ 663 if ((opcode > 0xBF) || ((opcode > 0x5F) && (opcode < 0x80))) 664 return("Vendor Specific Command"); 665 666 table[0] = scsi_op_codes; 667 num_ops[0] = nitems(scsi_op_codes); 668 num_tables = 1; 669 } 670 671 /* RBC is 'Simplified' Direct Access Device */ 672 if (pd_type == T_RBC) 673 pd_type = T_DIRECT; 674 675 /* 676 * Host managed drives are direct access for the most part. 677 */ 678 if (pd_type == T_ZBC_HM) 679 pd_type = T_DIRECT; 680 681 /* Map NODEVICE to Direct Access Device to handle REPORT LUNS, etc. */ 682 if (pd_type == T_NODEVICE) 683 pd_type = T_DIRECT; 684 685 opmask = 1 << pd_type; 686 687 for (j = 0; j < num_tables; j++) { 688 for (i = 0;i < num_ops[j] && table[j][i].opcode <= opcode; i++){ 689 if ((table[j][i].opcode == opcode) 690 && ((table[j][i].opmask & opmask) != 0)) 691 return(table[j][i].desc); 692 } 693 } 694 695 /* 696 * If we can't find a match for the command in the table, we just 697 * assume it's a vendor specifc command. 698 */ 699 return("Vendor Specific Command"); 700 701 } 702 703 #else /* SCSI_NO_OP_STRINGS */ 704 705 const char * 706 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data) 707 { 708 return(""); 709 } 710 711 #endif 712 713 714 #if !defined(SCSI_NO_SENSE_STRINGS) 715 #define SST(asc, ascq, action, desc) \ 716 asc, ascq, action, desc 717 #else 718 const char empty_string[] = ""; 719 720 #define SST(asc, ascq, action, desc) \ 721 asc, ascq, action, empty_string 722 #endif 723 724 const struct sense_key_table_entry sense_key_table[] = 725 { 726 { SSD_KEY_NO_SENSE, SS_NOP, "NO SENSE" }, 727 { SSD_KEY_RECOVERED_ERROR, SS_NOP|SSQ_PRINT_SENSE, "RECOVERED ERROR" }, 728 { SSD_KEY_NOT_READY, SS_RDEF, "NOT READY" }, 729 { SSD_KEY_MEDIUM_ERROR, SS_RDEF, "MEDIUM ERROR" }, 730 { SSD_KEY_HARDWARE_ERROR, SS_RDEF, "HARDWARE FAILURE" }, 731 { SSD_KEY_ILLEGAL_REQUEST, SS_FATAL|EINVAL, "ILLEGAL REQUEST" }, 732 { SSD_KEY_UNIT_ATTENTION, SS_FATAL|ENXIO, "UNIT ATTENTION" }, 733 { SSD_KEY_DATA_PROTECT, SS_FATAL|EACCES, "DATA PROTECT" }, 734 { SSD_KEY_BLANK_CHECK, SS_FATAL|ENOSPC, "BLANK CHECK" }, 735 { SSD_KEY_Vendor_Specific, SS_FATAL|EIO, "Vendor Specific" }, 736 { SSD_KEY_COPY_ABORTED, SS_FATAL|EIO, "COPY ABORTED" }, 737 { SSD_KEY_ABORTED_COMMAND, SS_RDEF, "ABORTED COMMAND" }, 738 { SSD_KEY_EQUAL, SS_NOP, "EQUAL" }, 739 { SSD_KEY_VOLUME_OVERFLOW, SS_FATAL|EIO, "VOLUME OVERFLOW" }, 740 { SSD_KEY_MISCOMPARE, SS_NOP, "MISCOMPARE" }, 741 { SSD_KEY_COMPLETED, SS_NOP, "COMPLETED" } 742 }; 743 744 static struct asc_table_entry quantum_fireball_entries[] = { 745 { SST(0x04, 0x0b, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 746 "Logical unit not ready, initializing cmd. required") } 747 }; 748 749 static struct asc_table_entry sony_mo_entries[] = { 750 { SST(0x04, 0x00, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 751 "Logical unit not ready, cause not reportable") } 752 }; 753 754 static struct asc_table_entry hgst_entries[] = { 755 { SST(0x04, 0xF0, SS_RDEF, 756 "Vendor Unique - Logical Unit Not Ready") }, 757 { SST(0x0A, 0x01, SS_RDEF, 758 "Unrecovered Super Certification Log Write Error") }, 759 { SST(0x0A, 0x02, SS_RDEF, 760 "Unrecovered Super Certification Log Read Error") }, 761 { SST(0x15, 0x03, SS_RDEF, 762 "Unrecovered Sector Error") }, 763 { SST(0x3E, 0x04, SS_RDEF, 764 "Unrecovered Self-Test Hard-Cache Test Fail") }, 765 { SST(0x3E, 0x05, SS_RDEF, 766 "Unrecovered Self-Test OTF-Cache Fail") }, 767 { SST(0x40, 0x00, SS_RDEF, 768 "Unrecovered SAT No Buffer Overflow Error") }, 769 { SST(0x40, 0x01, SS_RDEF, 770 "Unrecovered SAT Buffer Overflow Error") }, 771 { SST(0x40, 0x02, SS_RDEF, 772 "Unrecovered SAT No Buffer Overflow With ECS Fault") }, 773 { SST(0x40, 0x03, SS_RDEF, 774 "Unrecovered SAT Buffer Overflow With ECS Fault") }, 775 { SST(0x40, 0x81, SS_RDEF, 776 "DRAM Failure") }, 777 { SST(0x44, 0x0B, SS_RDEF, 778 "Vendor Unique - Internal Target Failure") }, 779 { SST(0x44, 0xF2, SS_RDEF, 780 "Vendor Unique - Internal Target Failure") }, 781 { SST(0x44, 0xF6, SS_RDEF, 782 "Vendor Unique - Internal Target Failure") }, 783 { SST(0x44, 0xF9, SS_RDEF, 784 "Vendor Unique - Internal Target Failure") }, 785 { SST(0x44, 0xFA, SS_RDEF, 786 "Vendor Unique - Internal Target Failure") }, 787 { SST(0x5D, 0x22, SS_RDEF, 788 "Extreme Over-Temperature Warning") }, 789 { SST(0x5D, 0x50, SS_RDEF, 790 "Load/Unload cycle Count Warning") }, 791 { SST(0x81, 0x00, SS_RDEF, 792 "Vendor Unique - Internal Logic Error") }, 793 { SST(0x85, 0x00, SS_RDEF, 794 "Vendor Unique - Internal Key Seed Error") }, 795 }; 796 797 static struct asc_table_entry seagate_entries[] = { 798 { SST(0x04, 0xF0, SS_RDEF, 799 "Logical Unit Not Ready, super certify in Progress") }, 800 { SST(0x08, 0x86, SS_RDEF, 801 "Write Fault Data Corruption") }, 802 { SST(0x09, 0x0D, SS_RDEF, 803 "Tracking Failure") }, 804 { SST(0x09, 0x0E, SS_RDEF, 805 "ETF Failure") }, 806 { SST(0x0B, 0x5D, SS_RDEF, 807 "Pre-SMART Warning") }, 808 { SST(0x0B, 0x85, SS_RDEF, 809 "5V Voltage Warning") }, 810 { SST(0x0B, 0x8C, SS_RDEF, 811 "12V Voltage Warning") }, 812 { SST(0x0C, 0xFF, SS_RDEF, 813 "Write Error - Too many error recovery revs") }, 814 { SST(0x11, 0xFF, SS_RDEF, 815 "Unrecovered Read Error - Too many error recovery revs") }, 816 { SST(0x19, 0x0E, SS_RDEF, 817 "Fewer than 1/2 defect list copies") }, 818 { SST(0x20, 0xF3, SS_RDEF, 819 "Illegal CDB linked to skip mask cmd") }, 820 { SST(0x24, 0xF0, SS_RDEF, 821 "Illegal byte in CDB, LBA not matching") }, 822 { SST(0x24, 0xF1, SS_RDEF, 823 "Illegal byte in CDB, LEN not matching") }, 824 { SST(0x24, 0xF2, SS_RDEF, 825 "Mask not matching transfer length") }, 826 { SST(0x24, 0xF3, SS_RDEF, 827 "Drive formatted without plist") }, 828 { SST(0x26, 0x95, SS_RDEF, 829 "Invalid Field Parameter - CAP File") }, 830 { SST(0x26, 0x96, SS_RDEF, 831 "Invalid Field Parameter - RAP File") }, 832 { SST(0x26, 0x97, SS_RDEF, 833 "Invalid Field Parameter - TMS Firmware Tag") }, 834 { SST(0x26, 0x98, SS_RDEF, 835 "Invalid Field Parameter - Check Sum") }, 836 { SST(0x26, 0x99, SS_RDEF, 837 "Invalid Field Parameter - Firmware Tag") }, 838 { SST(0x29, 0x08, SS_RDEF, 839 "Write Log Dump data") }, 840 { SST(0x29, 0x09, SS_RDEF, 841 "Write Log Dump data") }, 842 { SST(0x29, 0x0A, SS_RDEF, 843 "Reserved disk space") }, 844 { SST(0x29, 0x0B, SS_RDEF, 845 "SDBP") }, 846 { SST(0x29, 0x0C, SS_RDEF, 847 "SDBP") }, 848 { SST(0x31, 0x91, SS_RDEF, 849 "Format Corrupted World Wide Name (WWN) is Invalid") }, 850 { SST(0x32, 0x03, SS_RDEF, 851 "Defect List - Length exceeds Command Allocated Length") }, 852 { SST(0x33, 0x00, SS_RDEF, 853 "Flash not ready for access") }, 854 { SST(0x3F, 0x70, SS_RDEF, 855 "Invalid RAP block") }, 856 { SST(0x3F, 0x71, SS_RDEF, 857 "RAP/ETF mismatch") }, 858 { SST(0x3F, 0x90, SS_RDEF, 859 "Invalid CAP block") }, 860 { SST(0x3F, 0x91, SS_RDEF, 861 "World Wide Name (WWN) Mismatch") }, 862 { SST(0x40, 0x01, SS_RDEF, 863 "DRAM Parity Error") }, 864 { SST(0x40, 0x02, SS_RDEF, 865 "DRAM Parity Error") }, 866 { SST(0x42, 0x0A, SS_RDEF, 867 "Loopback Test") }, 868 { SST(0x42, 0x0B, SS_RDEF, 869 "Loopback Test") }, 870 { SST(0x44, 0xF2, SS_RDEF, 871 "Compare error during data integrity check") }, 872 { SST(0x44, 0xF6, SS_RDEF, 873 "Unrecoverable error during data integrity check") }, 874 { SST(0x47, 0x80, SS_RDEF, 875 "Fibre Channel Sequence Error") }, 876 { SST(0x4E, 0x01, SS_RDEF, 877 "Information Unit Too Short") }, 878 { SST(0x80, 0x00, SS_RDEF, 879 "General Firmware Error / Command Timeout") }, 880 { SST(0x80, 0x01, SS_RDEF, 881 "Command Timeout") }, 882 { SST(0x80, 0x02, SS_RDEF, 883 "Command Timeout") }, 884 { SST(0x80, 0x80, SS_RDEF, 885 "FC FIFO Error During Read Transfer") }, 886 { SST(0x80, 0x81, SS_RDEF, 887 "FC FIFO Error During Write Transfer") }, 888 { SST(0x80, 0x82, SS_RDEF, 889 "DISC FIFO Error During Read Transfer") }, 890 { SST(0x80, 0x83, SS_RDEF, 891 "DISC FIFO Error During Write Transfer") }, 892 { SST(0x80, 0x84, SS_RDEF, 893 "LBA Seeded LRC Error on Read") }, 894 { SST(0x80, 0x85, SS_RDEF, 895 "LBA Seeded LRC Error on Write") }, 896 { SST(0x80, 0x86, SS_RDEF, 897 "IOEDC Error on Read") }, 898 { SST(0x80, 0x87, SS_RDEF, 899 "IOEDC Error on Write") }, 900 { SST(0x80, 0x88, SS_RDEF, 901 "Host Parity Check Failed") }, 902 { SST(0x80, 0x89, SS_RDEF, 903 "IOEDC error on read detected by formatter") }, 904 { SST(0x80, 0x8A, SS_RDEF, 905 "Host Parity Errors / Host FIFO Initialization Failed") }, 906 { SST(0x80, 0x8B, SS_RDEF, 907 "Host Parity Errors") }, 908 { SST(0x80, 0x8C, SS_RDEF, 909 "Host Parity Errors") }, 910 { SST(0x80, 0x8D, SS_RDEF, 911 "Host Parity Errors") }, 912 { SST(0x81, 0x00, SS_RDEF, 913 "LA Check Failed") }, 914 { SST(0x82, 0x00, SS_RDEF, 915 "Internal client detected insufficient buffer") }, 916 { SST(0x84, 0x00, SS_RDEF, 917 "Scheduled Diagnostic And Repair") }, 918 }; 919 920 static struct scsi_sense_quirk_entry sense_quirk_table[] = { 921 { 922 /* 923 * XXX The Quantum Fireball ST and SE like to return 0x04 0x0b 924 * when they really should return 0x04 0x02. 925 */ 926 {T_DIRECT, SIP_MEDIA_FIXED, "QUANTUM", "FIREBALL S*", "*"}, 927 /*num_sense_keys*/0, 928 nitems(quantum_fireball_entries), 929 /*sense key entries*/NULL, 930 quantum_fireball_entries 931 }, 932 { 933 /* 934 * This Sony MO drive likes to return 0x04, 0x00 when it 935 * isn't spun up. 936 */ 937 {T_DIRECT, SIP_MEDIA_REMOVABLE, "SONY", "SMO-*", "*"}, 938 /*num_sense_keys*/0, 939 nitems(sony_mo_entries), 940 /*sense key entries*/NULL, 941 sony_mo_entries 942 }, 943 { 944 /* 945 * HGST vendor-specific error codes 946 */ 947 {T_DIRECT, SIP_MEDIA_FIXED, "HGST", "*", "*"}, 948 /*num_sense_keys*/0, 949 nitems(hgst_entries), 950 /*sense key entries*/NULL, 951 hgst_entries 952 }, 953 { 954 /* 955 * SEAGATE vendor-specific error codes 956 */ 957 {T_DIRECT, SIP_MEDIA_FIXED, "SEAGATE", "*", "*"}, 958 /*num_sense_keys*/0, 959 nitems(seagate_entries), 960 /*sense key entries*/NULL, 961 seagate_entries 962 } 963 }; 964 965 const u_int sense_quirk_table_size = nitems(sense_quirk_table); 966 967 static struct asc_table_entry asc_table[] = { 968 /* 969 * From: http://www.t10.org/lists/asc-num.txt 970 * Modifications by Jung-uk Kim (jkim@FreeBSD.org) 971 */ 972 /* 973 * File: ASC-NUM.TXT 974 * 975 * SCSI ASC/ASCQ Assignments 976 * Numeric Sorted Listing 977 * as of 8/12/15 978 * 979 * D - DIRECT ACCESS DEVICE (SBC-2) device column key 980 * .T - SEQUENTIAL ACCESS DEVICE (SSC) ------------------- 981 * . L - PRINTER DEVICE (SSC) blank = reserved 982 * . P - PROCESSOR DEVICE (SPC) not blank = allowed 983 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) 984 * . . R - CD DEVICE (MMC) 985 * . . O - OPTICAL MEMORY DEVICE (SBC-2) 986 * . . .M - MEDIA CHANGER DEVICE (SMC) 987 * . . . A - STORAGE ARRAY DEVICE (SCC) 988 * . . . E - ENCLOSURE SERVICES DEVICE (SES) 989 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) 990 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) 991 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) 992 * . . . . .F - OBJECT-BASED STORAGE (OSD) 993 * DTLPWROMAEBKVF 994 * ASC ASCQ Action 995 * Description 996 */ 997 /* DTLPWROMAEBKVF */ 998 { SST(0x00, 0x00, SS_NOP, 999 "No additional sense information") }, 1000 /* T */ 1001 { SST(0x00, 0x01, SS_RDEF, 1002 "Filemark detected") }, 1003 /* T */ 1004 { SST(0x00, 0x02, SS_RDEF, 1005 "End-of-partition/medium detected") }, 1006 /* T */ 1007 { SST(0x00, 0x03, SS_RDEF, 1008 "Setmark detected") }, 1009 /* T */ 1010 { SST(0x00, 0x04, SS_RDEF, 1011 "Beginning-of-partition/medium detected") }, 1012 /* TL */ 1013 { SST(0x00, 0x05, SS_RDEF, 1014 "End-of-data detected") }, 1015 /* DTLPWROMAEBKVF */ 1016 { SST(0x00, 0x06, SS_RDEF, 1017 "I/O process terminated") }, 1018 /* T */ 1019 { SST(0x00, 0x07, SS_RDEF, /* XXX TBD */ 1020 "Programmable early warning detected") }, 1021 /* R */ 1022 { SST(0x00, 0x11, SS_FATAL | EBUSY, 1023 "Audio play operation in progress") }, 1024 /* R */ 1025 { SST(0x00, 0x12, SS_NOP, 1026 "Audio play operation paused") }, 1027 /* R */ 1028 { SST(0x00, 0x13, SS_NOP, 1029 "Audio play operation successfully completed") }, 1030 /* R */ 1031 { SST(0x00, 0x14, SS_RDEF, 1032 "Audio play operation stopped due to error") }, 1033 /* R */ 1034 { SST(0x00, 0x15, SS_NOP, 1035 "No current audio status to return") }, 1036 /* DTLPWROMAEBKVF */ 1037 { SST(0x00, 0x16, SS_FATAL | EBUSY, 1038 "Operation in progress") }, 1039 /* DTL WROMAEBKVF */ 1040 { SST(0x00, 0x17, SS_RDEF, 1041 "Cleaning requested") }, 1042 /* T */ 1043 { SST(0x00, 0x18, SS_RDEF, /* XXX TBD */ 1044 "Erase operation in progress") }, 1045 /* T */ 1046 { SST(0x00, 0x19, SS_RDEF, /* XXX TBD */ 1047 "Locate operation in progress") }, 1048 /* T */ 1049 { SST(0x00, 0x1A, SS_RDEF, /* XXX TBD */ 1050 "Rewind operation in progress") }, 1051 /* T */ 1052 { SST(0x00, 0x1B, SS_RDEF, /* XXX TBD */ 1053 "Set capacity operation in progress") }, 1054 /* T */ 1055 { SST(0x00, 0x1C, SS_RDEF, /* XXX TBD */ 1056 "Verify operation in progress") }, 1057 /* DT B */ 1058 { SST(0x00, 0x1D, SS_NOP, 1059 "ATA pass through information available") }, 1060 /* DT R MAEBKV */ 1061 { SST(0x00, 0x1E, SS_RDEF, /* XXX TBD */ 1062 "Conflicting SA creation request") }, 1063 /* DT B */ 1064 { SST(0x00, 0x1F, SS_RDEF, /* XXX TBD */ 1065 "Logical unit transitioning to another power condition") }, 1066 /* DT P B */ 1067 { SST(0x00, 0x20, SS_NOP, 1068 "Extended copy information available") }, 1069 /* D */ 1070 { SST(0x00, 0x21, SS_RDEF, /* XXX TBD */ 1071 "Atomic command aborted due to ACA") }, 1072 /* D W O BK */ 1073 { SST(0x01, 0x00, SS_RDEF, 1074 "No index/sector signal") }, 1075 /* D WRO BK */ 1076 { SST(0x02, 0x00, SS_RDEF, 1077 "No seek complete") }, 1078 /* DTL W O BK */ 1079 { SST(0x03, 0x00, SS_RDEF, 1080 "Peripheral device write fault") }, 1081 /* T */ 1082 { SST(0x03, 0x01, SS_RDEF, 1083 "No write current") }, 1084 /* T */ 1085 { SST(0x03, 0x02, SS_RDEF, 1086 "Excessive write errors") }, 1087 /* DTLPWROMAEBKVF */ 1088 { SST(0x04, 0x00, SS_RDEF, 1089 "Logical unit not ready, cause not reportable") }, 1090 /* DTLPWROMAEBKVF */ 1091 { SST(0x04, 0x01, SS_WAIT | EBUSY, 1092 "Logical unit is in process of becoming ready") }, 1093 /* DTLPWROMAEBKVF */ 1094 { SST(0x04, 0x02, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 1095 "Logical unit not ready, initializing command required") }, 1096 /* DTLPWROMAEBKVF */ 1097 { SST(0x04, 0x03, SS_FATAL | ENXIO, 1098 "Logical unit not ready, manual intervention required") }, 1099 /* DTL RO B */ 1100 { SST(0x04, 0x04, SS_FATAL | EBUSY, 1101 "Logical unit not ready, format in progress") }, 1102 /* DT W O A BK F */ 1103 { SST(0x04, 0x05, SS_FATAL | EBUSY, 1104 "Logical unit not ready, rebuild in progress") }, 1105 /* DT W O A BK */ 1106 { SST(0x04, 0x06, SS_FATAL | EBUSY, 1107 "Logical unit not ready, recalculation in progress") }, 1108 /* DTLPWROMAEBKVF */ 1109 { SST(0x04, 0x07, SS_FATAL | EBUSY, 1110 "Logical unit not ready, operation in progress") }, 1111 /* R */ 1112 { SST(0x04, 0x08, SS_FATAL | EBUSY, 1113 "Logical unit not ready, long write in progress") }, 1114 /* DTLPWROMAEBKVF */ 1115 { SST(0x04, 0x09, SS_FATAL | EBUSY, 1116 "Logical unit not ready, self-test in progress") }, 1117 /* DTLPWROMAEBKVF */ 1118 { SST(0x04, 0x0A, SS_WAIT | ENXIO, 1119 "Logical unit not accessible, asymmetric access state transition")}, 1120 /* DTLPWROMAEBKVF */ 1121 { SST(0x04, 0x0B, SS_FATAL | ENXIO, 1122 "Logical unit not accessible, target port in standby state") }, 1123 /* DTLPWROMAEBKVF */ 1124 { SST(0x04, 0x0C, SS_FATAL | ENXIO, 1125 "Logical unit not accessible, target port in unavailable state") }, 1126 /* F */ 1127 { SST(0x04, 0x0D, SS_RDEF, /* XXX TBD */ 1128 "Logical unit not ready, structure check required") }, 1129 /* DTL WR MAEBKVF */ 1130 { SST(0x04, 0x0E, SS_RDEF, /* XXX TBD */ 1131 "Logical unit not ready, security session in progress") }, 1132 /* DT WROM B */ 1133 { SST(0x04, 0x10, SS_FATAL | ENODEV, 1134 "Logical unit not ready, auxiliary memory not accessible") }, 1135 /* DT WRO AEB VF */ 1136 { SST(0x04, 0x11, SS_WAIT | ENXIO, 1137 "Logical unit not ready, notify (enable spinup) required") }, 1138 /* M V */ 1139 { SST(0x04, 0x12, SS_FATAL | ENXIO, 1140 "Logical unit not ready, offline") }, 1141 /* DT R MAEBKV */ 1142 { SST(0x04, 0x13, SS_WAIT | EBUSY, 1143 "Logical unit not ready, SA creation in progress") }, 1144 /* D B */ 1145 { SST(0x04, 0x14, SS_WAIT | ENOSPC, 1146 "Logical unit not ready, space allocation in progress") }, 1147 /* M */ 1148 { SST(0x04, 0x15, SS_FATAL | ENXIO, 1149 "Logical unit not ready, robotics disabled") }, 1150 /* M */ 1151 { SST(0x04, 0x16, SS_FATAL | ENXIO, 1152 "Logical unit not ready, configuration required") }, 1153 /* M */ 1154 { SST(0x04, 0x17, SS_FATAL | ENXIO, 1155 "Logical unit not ready, calibration required") }, 1156 /* M */ 1157 { SST(0x04, 0x18, SS_FATAL | ENXIO, 1158 "Logical unit not ready, a door is open") }, 1159 /* M */ 1160 { SST(0x04, 0x19, SS_FATAL | ENODEV, 1161 "Logical unit not ready, operating in sequential mode") }, 1162 /* DT B */ 1163 { SST(0x04, 0x1A, SS_WAIT | EBUSY, 1164 "Logical unit not ready, START/STOP UNIT command in progress") }, 1165 /* D B */ 1166 { SST(0x04, 0x1B, SS_WAIT | EBUSY, 1167 "Logical unit not ready, sanitize in progress") }, 1168 /* DT MAEB */ 1169 { SST(0x04, 0x1C, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 1170 "Logical unit not ready, additional power use not yet granted") }, 1171 /* D */ 1172 { SST(0x04, 0x1D, SS_WAIT | EBUSY, 1173 "Logical unit not ready, configuration in progress") }, 1174 /* D */ 1175 { SST(0x04, 0x1E, SS_FATAL | ENXIO, 1176 "Logical unit not ready, microcode activation required") }, 1177 /* DTLPWROMAEBKVF */ 1178 { SST(0x04, 0x1F, SS_FATAL | ENXIO, 1179 "Logical unit not ready, microcode download required") }, 1180 /* DTLPWROMAEBKVF */ 1181 { SST(0x04, 0x20, SS_FATAL | ENXIO, 1182 "Logical unit not ready, logical unit reset required") }, 1183 /* DTLPWROMAEBKVF */ 1184 { SST(0x04, 0x21, SS_FATAL | ENXIO, 1185 "Logical unit not ready, hard reset required") }, 1186 /* DTLPWROMAEBKVF */ 1187 { SST(0x04, 0x22, SS_FATAL | ENXIO, 1188 "Logical unit not ready, power cycle required") }, 1189 /* D */ 1190 { SST(0x04, 0x23, SS_FATAL | ENXIO, 1191 "Logical unit not ready, affiliation required") }, 1192 /* D */ 1193 { SST(0x04, 0x24, SS_FATAL | EBUSY, 1194 "Depopulation in progress") }, 1195 /* DTL WROMAEBKVF */ 1196 { SST(0x05, 0x00, SS_RDEF, 1197 "Logical unit does not respond to selection") }, 1198 /* D WROM BK */ 1199 { SST(0x06, 0x00, SS_RDEF, 1200 "No reference position found") }, 1201 /* DTL WROM BK */ 1202 { SST(0x07, 0x00, SS_RDEF, 1203 "Multiple peripheral devices selected") }, 1204 /* DTL WROMAEBKVF */ 1205 { SST(0x08, 0x00, SS_RDEF, 1206 "Logical unit communication failure") }, 1207 /* DTL WROMAEBKVF */ 1208 { SST(0x08, 0x01, SS_RDEF, 1209 "Logical unit communication time-out") }, 1210 /* DTL WROMAEBKVF */ 1211 { SST(0x08, 0x02, SS_RDEF, 1212 "Logical unit communication parity error") }, 1213 /* DT ROM BK */ 1214 { SST(0x08, 0x03, SS_RDEF, 1215 "Logical unit communication CRC error (Ultra-DMA/32)") }, 1216 /* DTLPWRO K */ 1217 { SST(0x08, 0x04, SS_RDEF, /* XXX TBD */ 1218 "Unreachable copy target") }, 1219 /* DT WRO B */ 1220 { SST(0x09, 0x00, SS_RDEF, 1221 "Track following error") }, 1222 /* WRO K */ 1223 { SST(0x09, 0x01, SS_RDEF, 1224 "Tracking servo failure") }, 1225 /* WRO K */ 1226 { SST(0x09, 0x02, SS_RDEF, 1227 "Focus servo failure") }, 1228 /* WRO */ 1229 { SST(0x09, 0x03, SS_RDEF, 1230 "Spindle servo failure") }, 1231 /* DT WRO B */ 1232 { SST(0x09, 0x04, SS_RDEF, 1233 "Head select fault") }, 1234 /* DT RO B */ 1235 { SST(0x09, 0x05, SS_RDEF, 1236 "Vibration induced tracking error") }, 1237 /* DTLPWROMAEBKVF */ 1238 { SST(0x0A, 0x00, SS_FATAL | ENOSPC, 1239 "Error log overflow") }, 1240 /* DTLPWROMAEBKVF */ 1241 { SST(0x0B, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1242 "Warning") }, 1243 /* DTLPWROMAEBKVF */ 1244 { SST(0x0B, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1245 "Warning - specified temperature exceeded") }, 1246 /* DTLPWROMAEBKVF */ 1247 { SST(0x0B, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1248 "Warning - enclosure degraded") }, 1249 /* DTLPWROMAEBKVF */ 1250 { SST(0x0B, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1251 "Warning - background self-test failed") }, 1252 /* DTLPWRO AEBKVF */ 1253 { SST(0x0B, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1254 "Warning - background pre-scan detected medium error") }, 1255 /* DTLPWRO AEBKVF */ 1256 { SST(0x0B, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1257 "Warning - background medium scan detected medium error") }, 1258 /* DTLPWROMAEBKVF */ 1259 { SST(0x0B, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1260 "Warning - non-volatile cache now volatile") }, 1261 /* DTLPWROMAEBKVF */ 1262 { SST(0x0B, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1263 "Warning - degraded power to non-volatile cache") }, 1264 /* DTLPWROMAEBKVF */ 1265 { SST(0x0B, 0x08, SS_NOP | SSQ_PRINT_SENSE, 1266 "Warning - power loss expected") }, 1267 /* D */ 1268 { SST(0x0B, 0x09, SS_NOP | SSQ_PRINT_SENSE, 1269 "Warning - device statistics notification available") }, 1270 /* DTLPWROMAEBKVF */ 1271 { SST(0x0B, 0x0A, SS_NOP | SSQ_PRINT_SENSE, 1272 "Warning - High critical temperature limit exceeded") }, 1273 /* DTLPWROMAEBKVF */ 1274 { SST(0x0B, 0x0B, SS_NOP | SSQ_PRINT_SENSE, 1275 "Warning - Low critical temperature limit exceeded") }, 1276 /* DTLPWROMAEBKVF */ 1277 { SST(0x0B, 0x0C, SS_NOP | SSQ_PRINT_SENSE, 1278 "Warning - High operating temperature limit exceeded") }, 1279 /* DTLPWROMAEBKVF */ 1280 { SST(0x0B, 0x0D, SS_NOP | SSQ_PRINT_SENSE, 1281 "Warning - Low operating temperature limit exceeded") }, 1282 /* DTLPWROMAEBKVF */ 1283 { SST(0x0B, 0x0E, SS_NOP | SSQ_PRINT_SENSE, 1284 "Warning - High citical humidity limit exceeded") }, 1285 /* DTLPWROMAEBKVF */ 1286 { SST(0x0B, 0x0F, SS_NOP | SSQ_PRINT_SENSE, 1287 "Warning - Low citical humidity limit exceeded") }, 1288 /* DTLPWROMAEBKVF */ 1289 { SST(0x0B, 0x10, SS_NOP | SSQ_PRINT_SENSE, 1290 "Warning - High operating humidity limit exceeded") }, 1291 /* DTLPWROMAEBKVF */ 1292 { SST(0x0B, 0x11, SS_NOP | SSQ_PRINT_SENSE, 1293 "Warning - Low operating humidity limit exceeded") }, 1294 /* T R */ 1295 { SST(0x0C, 0x00, SS_RDEF, 1296 "Write error") }, 1297 /* K */ 1298 { SST(0x0C, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1299 "Write error - recovered with auto reallocation") }, 1300 /* D W O BK */ 1301 { SST(0x0C, 0x02, SS_RDEF, 1302 "Write error - auto reallocation failed") }, 1303 /* D W O BK */ 1304 { SST(0x0C, 0x03, SS_RDEF, 1305 "Write error - recommend reassignment") }, 1306 /* DT W O B */ 1307 { SST(0x0C, 0x04, SS_RDEF, 1308 "Compression check miscompare error") }, 1309 /* DT W O B */ 1310 { SST(0x0C, 0x05, SS_RDEF, 1311 "Data expansion occurred during compression") }, 1312 /* DT W O B */ 1313 { SST(0x0C, 0x06, SS_RDEF, 1314 "Block not compressible") }, 1315 /* R */ 1316 { SST(0x0C, 0x07, SS_RDEF, 1317 "Write error - recovery needed") }, 1318 /* R */ 1319 { SST(0x0C, 0x08, SS_RDEF, 1320 "Write error - recovery failed") }, 1321 /* R */ 1322 { SST(0x0C, 0x09, SS_RDEF, 1323 "Write error - loss of streaming") }, 1324 /* R */ 1325 { SST(0x0C, 0x0A, SS_RDEF, 1326 "Write error - padding blocks added") }, 1327 /* DT WROM B */ 1328 { SST(0x0C, 0x0B, SS_RDEF, /* XXX TBD */ 1329 "Auxiliary memory write error") }, 1330 /* DTLPWRO AEBKVF */ 1331 { SST(0x0C, 0x0C, SS_RDEF, /* XXX TBD */ 1332 "Write error - unexpected unsolicited data") }, 1333 /* DTLPWRO AEBKVF */ 1334 { SST(0x0C, 0x0D, SS_RDEF, /* XXX TBD */ 1335 "Write error - not enough unsolicited data") }, 1336 /* DT W O BK */ 1337 { SST(0x0C, 0x0E, SS_RDEF, /* XXX TBD */ 1338 "Multiple write errors") }, 1339 /* R */ 1340 { SST(0x0C, 0x0F, SS_RDEF, /* XXX TBD */ 1341 "Defects in error window") }, 1342 /* D */ 1343 { SST(0x0C, 0x10, SS_RDEF, /* XXX TBD */ 1344 "Incomplete multiple atomic write operations") }, 1345 /* D */ 1346 { SST(0x0C, 0x11, SS_RDEF, /* XXX TBD */ 1347 "Write error - recovery scan needed") }, 1348 /* D */ 1349 { SST(0x0C, 0x12, SS_RDEF, /* XXX TBD */ 1350 "Write error - insufficient zone resources") }, 1351 /* DTLPWRO A K */ 1352 { SST(0x0D, 0x00, SS_RDEF, /* XXX TBD */ 1353 "Error detected by third party temporary initiator") }, 1354 /* DTLPWRO A K */ 1355 { SST(0x0D, 0x01, SS_RDEF, /* XXX TBD */ 1356 "Third party device failure") }, 1357 /* DTLPWRO A K */ 1358 { SST(0x0D, 0x02, SS_RDEF, /* XXX TBD */ 1359 "Copy target device not reachable") }, 1360 /* DTLPWRO A K */ 1361 { SST(0x0D, 0x03, SS_RDEF, /* XXX TBD */ 1362 "Incorrect copy target device type") }, 1363 /* DTLPWRO A K */ 1364 { SST(0x0D, 0x04, SS_RDEF, /* XXX TBD */ 1365 "Copy target device data underrun") }, 1366 /* DTLPWRO A K */ 1367 { SST(0x0D, 0x05, SS_RDEF, /* XXX TBD */ 1368 "Copy target device data overrun") }, 1369 /* DT PWROMAEBK F */ 1370 { SST(0x0E, 0x00, SS_RDEF, /* XXX TBD */ 1371 "Invalid information unit") }, 1372 /* DT PWROMAEBK F */ 1373 { SST(0x0E, 0x01, SS_RDEF, /* XXX TBD */ 1374 "Information unit too short") }, 1375 /* DT PWROMAEBK F */ 1376 { SST(0x0E, 0x02, SS_RDEF, /* XXX TBD */ 1377 "Information unit too long") }, 1378 /* DT P R MAEBK F */ 1379 { SST(0x0E, 0x03, SS_FATAL | EINVAL, 1380 "Invalid field in command information unit") }, 1381 /* D W O BK */ 1382 { SST(0x10, 0x00, SS_RDEF, 1383 "ID CRC or ECC error") }, 1384 /* DT W O */ 1385 { SST(0x10, 0x01, SS_RDEF, /* XXX TBD */ 1386 "Logical block guard check failed") }, 1387 /* DT W O */ 1388 { SST(0x10, 0x02, SS_RDEF, /* XXX TBD */ 1389 "Logical block application tag check failed") }, 1390 /* DT W O */ 1391 { SST(0x10, 0x03, SS_RDEF, /* XXX TBD */ 1392 "Logical block reference tag check failed") }, 1393 /* T */ 1394 { SST(0x10, 0x04, SS_RDEF, /* XXX TBD */ 1395 "Logical block protection error on recovered buffer data") }, 1396 /* T */ 1397 { SST(0x10, 0x05, SS_RDEF, /* XXX TBD */ 1398 "Logical block protection method error") }, 1399 /* DT WRO BK */ 1400 { SST(0x11, 0x00, SS_FATAL|EIO, 1401 "Unrecovered read error") }, 1402 /* DT WRO BK */ 1403 { SST(0x11, 0x01, SS_FATAL|EIO, 1404 "Read retries exhausted") }, 1405 /* DT WRO BK */ 1406 { SST(0x11, 0x02, SS_FATAL|EIO, 1407 "Error too long to correct") }, 1408 /* DT W O BK */ 1409 { SST(0x11, 0x03, SS_FATAL|EIO, 1410 "Multiple read errors") }, 1411 /* D W O BK */ 1412 { SST(0x11, 0x04, SS_FATAL|EIO, 1413 "Unrecovered read error - auto reallocate failed") }, 1414 /* WRO B */ 1415 { SST(0x11, 0x05, SS_FATAL|EIO, 1416 "L-EC uncorrectable error") }, 1417 /* WRO B */ 1418 { SST(0x11, 0x06, SS_FATAL|EIO, 1419 "CIRC unrecovered error") }, 1420 /* W O B */ 1421 { SST(0x11, 0x07, SS_RDEF, 1422 "Data re-synchronization error") }, 1423 /* T */ 1424 { SST(0x11, 0x08, SS_RDEF, 1425 "Incomplete block read") }, 1426 /* T */ 1427 { SST(0x11, 0x09, SS_RDEF, 1428 "No gap found") }, 1429 /* DT O BK */ 1430 { SST(0x11, 0x0A, SS_RDEF, 1431 "Miscorrected error") }, 1432 /* D W O BK */ 1433 { SST(0x11, 0x0B, SS_FATAL|EIO, 1434 "Unrecovered read error - recommend reassignment") }, 1435 /* D W O BK */ 1436 { SST(0x11, 0x0C, SS_FATAL|EIO, 1437 "Unrecovered read error - recommend rewrite the data") }, 1438 /* DT WRO B */ 1439 { SST(0x11, 0x0D, SS_RDEF, 1440 "De-compression CRC error") }, 1441 /* DT WRO B */ 1442 { SST(0x11, 0x0E, SS_RDEF, 1443 "Cannot decompress using declared algorithm") }, 1444 /* R */ 1445 { SST(0x11, 0x0F, SS_RDEF, 1446 "Error reading UPC/EAN number") }, 1447 /* R */ 1448 { SST(0x11, 0x10, SS_RDEF, 1449 "Error reading ISRC number") }, 1450 /* R */ 1451 { SST(0x11, 0x11, SS_RDEF, 1452 "Read error - loss of streaming") }, 1453 /* DT WROM B */ 1454 { SST(0x11, 0x12, SS_RDEF, /* XXX TBD */ 1455 "Auxiliary memory read error") }, 1456 /* DTLPWRO AEBKVF */ 1457 { SST(0x11, 0x13, SS_RDEF, /* XXX TBD */ 1458 "Read error - failed retransmission request") }, 1459 /* D */ 1460 { SST(0x11, 0x14, SS_RDEF, /* XXX TBD */ 1461 "Read error - LBA marked bad by application client") }, 1462 /* D */ 1463 { SST(0x11, 0x15, SS_FATAL | EIO, 1464 "Write after sanitize required") }, 1465 /* D W O BK */ 1466 { SST(0x12, 0x00, SS_RDEF, 1467 "Address mark not found for ID field") }, 1468 /* D W O BK */ 1469 { SST(0x13, 0x00, SS_RDEF, 1470 "Address mark not found for data field") }, 1471 /* DTL WRO BK */ 1472 { SST(0x14, 0x00, SS_RDEF, 1473 "Recorded entity not found") }, 1474 /* DT WRO BK */ 1475 { SST(0x14, 0x01, SS_RDEF, 1476 "Record not found") }, 1477 /* T */ 1478 { SST(0x14, 0x02, SS_RDEF, 1479 "Filemark or setmark not found") }, 1480 /* T */ 1481 { SST(0x14, 0x03, SS_RDEF, 1482 "End-of-data not found") }, 1483 /* T */ 1484 { SST(0x14, 0x04, SS_RDEF, 1485 "Block sequence error") }, 1486 /* DT W O BK */ 1487 { SST(0x14, 0x05, SS_RDEF, 1488 "Record not found - recommend reassignment") }, 1489 /* DT W O BK */ 1490 { SST(0x14, 0x06, SS_RDEF, 1491 "Record not found - data auto-reallocated") }, 1492 /* T */ 1493 { SST(0x14, 0x07, SS_RDEF, /* XXX TBD */ 1494 "Locate operation failure") }, 1495 /* DTL WROM BK */ 1496 { SST(0x15, 0x00, SS_RDEF, 1497 "Random positioning error") }, 1498 /* DTL WROM BK */ 1499 { SST(0x15, 0x01, SS_RDEF, 1500 "Mechanical positioning error") }, 1501 /* DT WRO BK */ 1502 { SST(0x15, 0x02, SS_RDEF, 1503 "Positioning error detected by read of medium") }, 1504 /* D W O BK */ 1505 { SST(0x16, 0x00, SS_RDEF, 1506 "Data synchronization mark error") }, 1507 /* D W O BK */ 1508 { SST(0x16, 0x01, SS_RDEF, 1509 "Data sync error - data rewritten") }, 1510 /* D W O BK */ 1511 { SST(0x16, 0x02, SS_RDEF, 1512 "Data sync error - recommend rewrite") }, 1513 /* D W O BK */ 1514 { SST(0x16, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1515 "Data sync error - data auto-reallocated") }, 1516 /* D W O BK */ 1517 { SST(0x16, 0x04, SS_RDEF, 1518 "Data sync error - recommend reassignment") }, 1519 /* DT WRO BK */ 1520 { SST(0x17, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1521 "Recovered data with no error correction applied") }, 1522 /* DT WRO BK */ 1523 { SST(0x17, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1524 "Recovered data with retries") }, 1525 /* DT WRO BK */ 1526 { SST(0x17, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1527 "Recovered data with positive head offset") }, 1528 /* DT WRO BK */ 1529 { SST(0x17, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1530 "Recovered data with negative head offset") }, 1531 /* WRO B */ 1532 { SST(0x17, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1533 "Recovered data with retries and/or CIRC applied") }, 1534 /* D WRO BK */ 1535 { SST(0x17, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1536 "Recovered data using previous sector ID") }, 1537 /* D W O BK */ 1538 { SST(0x17, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1539 "Recovered data without ECC - data auto-reallocated") }, 1540 /* D WRO BK */ 1541 { SST(0x17, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1542 "Recovered data without ECC - recommend reassignment") }, 1543 /* D WRO BK */ 1544 { SST(0x17, 0x08, SS_NOP | SSQ_PRINT_SENSE, 1545 "Recovered data without ECC - recommend rewrite") }, 1546 /* D WRO BK */ 1547 { SST(0x17, 0x09, SS_NOP | SSQ_PRINT_SENSE, 1548 "Recovered data without ECC - data rewritten") }, 1549 /* DT WRO BK */ 1550 { SST(0x18, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1551 "Recovered data with error correction applied") }, 1552 /* D WRO BK */ 1553 { SST(0x18, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1554 "Recovered data with error corr. & retries applied") }, 1555 /* D WRO BK */ 1556 { SST(0x18, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1557 "Recovered data - data auto-reallocated") }, 1558 /* R */ 1559 { SST(0x18, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1560 "Recovered data with CIRC") }, 1561 /* R */ 1562 { SST(0x18, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1563 "Recovered data with L-EC") }, 1564 /* D WRO BK */ 1565 { SST(0x18, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1566 "Recovered data - recommend reassignment") }, 1567 /* D WRO BK */ 1568 { SST(0x18, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1569 "Recovered data - recommend rewrite") }, 1570 /* D W O BK */ 1571 { SST(0x18, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1572 "Recovered data with ECC - data rewritten") }, 1573 /* R */ 1574 { SST(0x18, 0x08, SS_RDEF, /* XXX TBD */ 1575 "Recovered data with linking") }, 1576 /* D O K */ 1577 { SST(0x19, 0x00, SS_RDEF, 1578 "Defect list error") }, 1579 /* D O K */ 1580 { SST(0x19, 0x01, SS_RDEF, 1581 "Defect list not available") }, 1582 /* D O K */ 1583 { SST(0x19, 0x02, SS_RDEF, 1584 "Defect list error in primary list") }, 1585 /* D O K */ 1586 { SST(0x19, 0x03, SS_RDEF, 1587 "Defect list error in grown list") }, 1588 /* DTLPWROMAEBKVF */ 1589 { SST(0x1A, 0x00, SS_RDEF, 1590 "Parameter list length error") }, 1591 /* DTLPWROMAEBKVF */ 1592 { SST(0x1B, 0x00, SS_RDEF, 1593 "Synchronous data transfer error") }, 1594 /* D O BK */ 1595 { SST(0x1C, 0x00, SS_RDEF, 1596 "Defect list not found") }, 1597 /* D O BK */ 1598 { SST(0x1C, 0x01, SS_RDEF, 1599 "Primary defect list not found") }, 1600 /* D O BK */ 1601 { SST(0x1C, 0x02, SS_RDEF, 1602 "Grown defect list not found") }, 1603 /* DT WRO BK */ 1604 { SST(0x1D, 0x00, SS_FATAL, 1605 "Miscompare during verify operation") }, 1606 /* D B */ 1607 { SST(0x1D, 0x01, SS_RDEF, /* XXX TBD */ 1608 "Miscomparable verify of unmapped LBA") }, 1609 /* D W O BK */ 1610 { SST(0x1E, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1611 "Recovered ID with ECC correction") }, 1612 /* D O K */ 1613 { SST(0x1F, 0x00, SS_RDEF, 1614 "Partial defect list transfer") }, 1615 /* DTLPWROMAEBKVF */ 1616 { SST(0x20, 0x00, SS_FATAL | EINVAL, 1617 "Invalid command operation code") }, 1618 /* DT PWROMAEBK */ 1619 { SST(0x20, 0x01, SS_RDEF, /* XXX TBD */ 1620 "Access denied - initiator pending-enrolled") }, 1621 /* DT PWROMAEBK */ 1622 { SST(0x20, 0x02, SS_FATAL | EPERM, 1623 "Access denied - no access rights") }, 1624 /* DT PWROMAEBK */ 1625 { SST(0x20, 0x03, SS_RDEF, /* XXX TBD */ 1626 "Access denied - invalid mgmt ID key") }, 1627 /* T */ 1628 { SST(0x20, 0x04, SS_RDEF, /* XXX TBD */ 1629 "Illegal command while in write capable state") }, 1630 /* T */ 1631 { SST(0x20, 0x05, SS_RDEF, /* XXX TBD */ 1632 "Obsolete") }, 1633 /* T */ 1634 { SST(0x20, 0x06, SS_RDEF, /* XXX TBD */ 1635 "Illegal command while in explicit address mode") }, 1636 /* T */ 1637 { SST(0x20, 0x07, SS_RDEF, /* XXX TBD */ 1638 "Illegal command while in implicit address mode") }, 1639 /* DT PWROMAEBK */ 1640 { SST(0x20, 0x08, SS_RDEF, /* XXX TBD */ 1641 "Access denied - enrollment conflict") }, 1642 /* DT PWROMAEBK */ 1643 { SST(0x20, 0x09, SS_RDEF, /* XXX TBD */ 1644 "Access denied - invalid LU identifier") }, 1645 /* DT PWROMAEBK */ 1646 { SST(0x20, 0x0A, SS_RDEF, /* XXX TBD */ 1647 "Access denied - invalid proxy token") }, 1648 /* DT PWROMAEBK */ 1649 { SST(0x20, 0x0B, SS_RDEF, /* XXX TBD */ 1650 "Access denied - ACL LUN conflict") }, 1651 /* T */ 1652 { SST(0x20, 0x0C, SS_FATAL | EINVAL, 1653 "Illegal command when not in append-only mode") }, 1654 /* DT WRO BK */ 1655 { SST(0x21, 0x00, SS_FATAL | EINVAL, 1656 "Logical block address out of range") }, 1657 /* DT WROM BK */ 1658 { SST(0x21, 0x01, SS_FATAL | EINVAL, 1659 "Invalid element address") }, 1660 /* R */ 1661 { SST(0x21, 0x02, SS_RDEF, /* XXX TBD */ 1662 "Invalid address for write") }, 1663 /* R */ 1664 { SST(0x21, 0x03, SS_RDEF, /* XXX TBD */ 1665 "Invalid write crossing layer jump") }, 1666 /* D */ 1667 { SST(0x21, 0x04, SS_RDEF, /* XXX TBD */ 1668 "Unaligned write command") }, 1669 /* D */ 1670 { SST(0x21, 0x05, SS_RDEF, /* XXX TBD */ 1671 "Write boundary violation") }, 1672 /* D */ 1673 { SST(0x21, 0x06, SS_RDEF, /* XXX TBD */ 1674 "Attempt to read invalid data") }, 1675 /* D */ 1676 { SST(0x21, 0x07, SS_RDEF, /* XXX TBD */ 1677 "Read boundary violation") }, 1678 /* D */ 1679 { SST(0x22, 0x00, SS_FATAL | EINVAL, 1680 "Illegal function (use 20 00, 24 00, or 26 00)") }, 1681 /* DT P B */ 1682 { SST(0x23, 0x00, SS_FATAL | EINVAL, 1683 "Invalid token operation, cause not reportable") }, 1684 /* DT P B */ 1685 { SST(0x23, 0x01, SS_FATAL | EINVAL, 1686 "Invalid token operation, unsupported token type") }, 1687 /* DT P B */ 1688 { SST(0x23, 0x02, SS_FATAL | EINVAL, 1689 "Invalid token operation, remote token usage not supported") }, 1690 /* DT P B */ 1691 { SST(0x23, 0x03, SS_FATAL | EINVAL, 1692 "Invalid token operation, remote ROD token creation not supported") }, 1693 /* DT P B */ 1694 { SST(0x23, 0x04, SS_FATAL | EINVAL, 1695 "Invalid token operation, token unknown") }, 1696 /* DT P B */ 1697 { SST(0x23, 0x05, SS_FATAL | EINVAL, 1698 "Invalid token operation, token corrupt") }, 1699 /* DT P B */ 1700 { SST(0x23, 0x06, SS_FATAL | EINVAL, 1701 "Invalid token operation, token revoked") }, 1702 /* DT P B */ 1703 { SST(0x23, 0x07, SS_FATAL | EINVAL, 1704 "Invalid token operation, token expired") }, 1705 /* DT P B */ 1706 { SST(0x23, 0x08, SS_FATAL | EINVAL, 1707 "Invalid token operation, token cancelled") }, 1708 /* DT P B */ 1709 { SST(0x23, 0x09, SS_FATAL | EINVAL, 1710 "Invalid token operation, token deleted") }, 1711 /* DT P B */ 1712 { SST(0x23, 0x0A, SS_FATAL | EINVAL, 1713 "Invalid token operation, invalid token length") }, 1714 /* DTLPWROMAEBKVF */ 1715 { SST(0x24, 0x00, SS_FATAL | EINVAL, 1716 "Invalid field in CDB") }, 1717 /* DTLPWRO AEBKVF */ 1718 { SST(0x24, 0x01, SS_RDEF, /* XXX TBD */ 1719 "CDB decryption error") }, 1720 /* T */ 1721 { SST(0x24, 0x02, SS_RDEF, /* XXX TBD */ 1722 "Obsolete") }, 1723 /* T */ 1724 { SST(0x24, 0x03, SS_RDEF, /* XXX TBD */ 1725 "Obsolete") }, 1726 /* F */ 1727 { SST(0x24, 0x04, SS_RDEF, /* XXX TBD */ 1728 "Security audit value frozen") }, 1729 /* F */ 1730 { SST(0x24, 0x05, SS_RDEF, /* XXX TBD */ 1731 "Security working key frozen") }, 1732 /* F */ 1733 { SST(0x24, 0x06, SS_RDEF, /* XXX TBD */ 1734 "NONCE not unique") }, 1735 /* F */ 1736 { SST(0x24, 0x07, SS_RDEF, /* XXX TBD */ 1737 "NONCE timestamp out of range") }, 1738 /* DT R MAEBKV */ 1739 { SST(0x24, 0x08, SS_RDEF, /* XXX TBD */ 1740 "Invalid XCDB") }, 1741 /* DTLPWROMAEBKVF */ 1742 { SST(0x25, 0x00, SS_FATAL | ENXIO | SSQ_LOST, 1743 "Logical unit not supported") }, 1744 /* DTLPWROMAEBKVF */ 1745 { SST(0x26, 0x00, SS_FATAL | EINVAL, 1746 "Invalid field in parameter list") }, 1747 /* DTLPWROMAEBKVF */ 1748 { SST(0x26, 0x01, SS_FATAL | EINVAL, 1749 "Parameter not supported") }, 1750 /* DTLPWROMAEBKVF */ 1751 { SST(0x26, 0x02, SS_FATAL | EINVAL, 1752 "Parameter value invalid") }, 1753 /* DTLPWROMAE K */ 1754 { SST(0x26, 0x03, SS_FATAL | EINVAL, 1755 "Threshold parameters not supported") }, 1756 /* DTLPWROMAEBKVF */ 1757 { SST(0x26, 0x04, SS_FATAL | EINVAL, 1758 "Invalid release of persistent reservation") }, 1759 /* DTLPWRO A BK */ 1760 { SST(0x26, 0x05, SS_RDEF, /* XXX TBD */ 1761 "Data decryption error") }, 1762 /* DTLPWRO K */ 1763 { SST(0x26, 0x06, SS_FATAL | EINVAL, 1764 "Too many target descriptors") }, 1765 /* DTLPWRO K */ 1766 { SST(0x26, 0x07, SS_FATAL | EINVAL, 1767 "Unsupported target descriptor type code") }, 1768 /* DTLPWRO K */ 1769 { SST(0x26, 0x08, SS_FATAL | EINVAL, 1770 "Too many segment descriptors") }, 1771 /* DTLPWRO K */ 1772 { SST(0x26, 0x09, SS_FATAL | EINVAL, 1773 "Unsupported segment descriptor type code") }, 1774 /* DTLPWRO K */ 1775 { SST(0x26, 0x0A, SS_FATAL | EINVAL, 1776 "Unexpected inexact segment") }, 1777 /* DTLPWRO K */ 1778 { SST(0x26, 0x0B, SS_FATAL | EINVAL, 1779 "Inline data length exceeded") }, 1780 /* DTLPWRO K */ 1781 { SST(0x26, 0x0C, SS_FATAL | EINVAL, 1782 "Invalid operation for copy source or destination") }, 1783 /* DTLPWRO K */ 1784 { SST(0x26, 0x0D, SS_FATAL | EINVAL, 1785 "Copy segment granularity violation") }, 1786 /* DT PWROMAEBK */ 1787 { SST(0x26, 0x0E, SS_RDEF, /* XXX TBD */ 1788 "Invalid parameter while port is enabled") }, 1789 /* F */ 1790 { SST(0x26, 0x0F, SS_RDEF, /* XXX TBD */ 1791 "Invalid data-out buffer integrity check value") }, 1792 /* T */ 1793 { SST(0x26, 0x10, SS_RDEF, /* XXX TBD */ 1794 "Data decryption key fail limit reached") }, 1795 /* T */ 1796 { SST(0x26, 0x11, SS_RDEF, /* XXX TBD */ 1797 "Incomplete key-associated data set") }, 1798 /* T */ 1799 { SST(0x26, 0x12, SS_RDEF, /* XXX TBD */ 1800 "Vendor specific key reference not found") }, 1801 /* D */ 1802 { SST(0x26, 0x13, SS_RDEF, /* XXX TBD */ 1803 "Application tag mode page is invalid") }, 1804 /* DT WRO BK */ 1805 { SST(0x27, 0x00, SS_FATAL | EACCES, 1806 "Write protected") }, 1807 /* DT WRO BK */ 1808 { SST(0x27, 0x01, SS_FATAL | EACCES, 1809 "Hardware write protected") }, 1810 /* DT WRO BK */ 1811 { SST(0x27, 0x02, SS_FATAL | EACCES, 1812 "Logical unit software write protected") }, 1813 /* T R */ 1814 { SST(0x27, 0x03, SS_FATAL | EACCES, 1815 "Associated write protect") }, 1816 /* T R */ 1817 { SST(0x27, 0x04, SS_FATAL | EACCES, 1818 "Persistent write protect") }, 1819 /* T R */ 1820 { SST(0x27, 0x05, SS_FATAL | EACCES, 1821 "Permanent write protect") }, 1822 /* R F */ 1823 { SST(0x27, 0x06, SS_RDEF, /* XXX TBD */ 1824 "Conditional write protect") }, 1825 /* D B */ 1826 { SST(0x27, 0x07, SS_FATAL | ENOSPC, 1827 "Space allocation failed write protect") }, 1828 /* D */ 1829 { SST(0x27, 0x08, SS_FATAL | EACCES, 1830 "Zone is read only") }, 1831 /* DTLPWROMAEBKVF */ 1832 { SST(0x28, 0x00, SS_FATAL | ENXIO, 1833 "Not ready to ready change, medium may have changed") }, 1834 /* DT WROM B */ 1835 { SST(0x28, 0x01, SS_FATAL | ENXIO, 1836 "Import or export element accessed") }, 1837 /* R */ 1838 { SST(0x28, 0x02, SS_RDEF, /* XXX TBD */ 1839 "Format-layer may have changed") }, 1840 /* M */ 1841 { SST(0x28, 0x03, SS_RDEF, /* XXX TBD */ 1842 "Import/export element accessed, medium changed") }, 1843 /* 1844 * XXX JGibbs - All of these should use the same errno, but I don't 1845 * think ENXIO is the correct choice. Should we borrow from 1846 * the networking errnos? ECONNRESET anyone? 1847 */ 1848 /* DTLPWROMAEBKVF */ 1849 { SST(0x29, 0x00, SS_FATAL | ENXIO, 1850 "Power on, reset, or bus device reset occurred") }, 1851 /* DTLPWROMAEBKVF */ 1852 { SST(0x29, 0x01, SS_RDEF, 1853 "Power on occurred") }, 1854 /* DTLPWROMAEBKVF */ 1855 { SST(0x29, 0x02, SS_RDEF, 1856 "SCSI bus reset occurred") }, 1857 /* DTLPWROMAEBKVF */ 1858 { SST(0x29, 0x03, SS_RDEF, 1859 "Bus device reset function occurred") }, 1860 /* DTLPWROMAEBKVF */ 1861 { SST(0x29, 0x04, SS_RDEF, 1862 "Device internal reset") }, 1863 /* DTLPWROMAEBKVF */ 1864 { SST(0x29, 0x05, SS_RDEF, 1865 "Transceiver mode changed to single-ended") }, 1866 /* DTLPWROMAEBKVF */ 1867 { SST(0x29, 0x06, SS_RDEF, 1868 "Transceiver mode changed to LVD") }, 1869 /* DTLPWROMAEBKVF */ 1870 { SST(0x29, 0x07, SS_RDEF, /* XXX TBD */ 1871 "I_T nexus loss occurred") }, 1872 /* DTL WROMAEBKVF */ 1873 { SST(0x2A, 0x00, SS_RDEF, 1874 "Parameters changed") }, 1875 /* DTL WROMAEBKVF */ 1876 { SST(0x2A, 0x01, SS_RDEF, 1877 "Mode parameters changed") }, 1878 /* DTL WROMAE K */ 1879 { SST(0x2A, 0x02, SS_RDEF, 1880 "Log parameters changed") }, 1881 /* DTLPWROMAE K */ 1882 { SST(0x2A, 0x03, SS_RDEF, 1883 "Reservations preempted") }, 1884 /* DTLPWROMAE */ 1885 { SST(0x2A, 0x04, SS_RDEF, /* XXX TBD */ 1886 "Reservations released") }, 1887 /* DTLPWROMAE */ 1888 { SST(0x2A, 0x05, SS_RDEF, /* XXX TBD */ 1889 "Registrations preempted") }, 1890 /* DTLPWROMAEBKVF */ 1891 { SST(0x2A, 0x06, SS_RDEF, /* XXX TBD */ 1892 "Asymmetric access state changed") }, 1893 /* DTLPWROMAEBKVF */ 1894 { SST(0x2A, 0x07, SS_RDEF, /* XXX TBD */ 1895 "Implicit asymmetric access state transition failed") }, 1896 /* DT WROMAEBKVF */ 1897 { SST(0x2A, 0x08, SS_RDEF, /* XXX TBD */ 1898 "Priority changed") }, 1899 /* D */ 1900 { SST(0x2A, 0x09, SS_RDEF, /* XXX TBD */ 1901 "Capacity data has changed") }, 1902 /* DT */ 1903 { SST(0x2A, 0x0A, SS_RDEF, /* XXX TBD */ 1904 "Error history I_T nexus cleared") }, 1905 /* DT */ 1906 { SST(0x2A, 0x0B, SS_RDEF, /* XXX TBD */ 1907 "Error history snapshot released") }, 1908 /* F */ 1909 { SST(0x2A, 0x0C, SS_RDEF, /* XXX TBD */ 1910 "Error recovery attributes have changed") }, 1911 /* T */ 1912 { SST(0x2A, 0x0D, SS_RDEF, /* XXX TBD */ 1913 "Data encryption capabilities changed") }, 1914 /* DT M E V */ 1915 { SST(0x2A, 0x10, SS_RDEF, /* XXX TBD */ 1916 "Timestamp changed") }, 1917 /* T */ 1918 { SST(0x2A, 0x11, SS_RDEF, /* XXX TBD */ 1919 "Data encryption parameters changed by another I_T nexus") }, 1920 /* T */ 1921 { SST(0x2A, 0x12, SS_RDEF, /* XXX TBD */ 1922 "Data encryption parameters changed by vendor specific event") }, 1923 /* T */ 1924 { SST(0x2A, 0x13, SS_RDEF, /* XXX TBD */ 1925 "Data encryption key instance counter has changed") }, 1926 /* DT R MAEBKV */ 1927 { SST(0x2A, 0x14, SS_RDEF, /* XXX TBD */ 1928 "SA creation capabilities data has changed") }, 1929 /* T M V */ 1930 { SST(0x2A, 0x15, SS_RDEF, /* XXX TBD */ 1931 "Medium removal prevention preempted") }, 1932 /* DTLPWRO K */ 1933 { SST(0x2B, 0x00, SS_RDEF, 1934 "Copy cannot execute since host cannot disconnect") }, 1935 /* DTLPWROMAEBKVF */ 1936 { SST(0x2C, 0x00, SS_RDEF, 1937 "Command sequence error") }, 1938 /* */ 1939 { SST(0x2C, 0x01, SS_RDEF, 1940 "Too many windows specified") }, 1941 /* */ 1942 { SST(0x2C, 0x02, SS_RDEF, 1943 "Invalid combination of windows specified") }, 1944 /* R */ 1945 { SST(0x2C, 0x03, SS_RDEF, 1946 "Current program area is not empty") }, 1947 /* R */ 1948 { SST(0x2C, 0x04, SS_RDEF, 1949 "Current program area is empty") }, 1950 /* B */ 1951 { SST(0x2C, 0x05, SS_RDEF, /* XXX TBD */ 1952 "Illegal power condition request") }, 1953 /* R */ 1954 { SST(0x2C, 0x06, SS_RDEF, /* XXX TBD */ 1955 "Persistent prevent conflict") }, 1956 /* DTLPWROMAEBKVF */ 1957 { SST(0x2C, 0x07, SS_RDEF, /* XXX TBD */ 1958 "Previous busy status") }, 1959 /* DTLPWROMAEBKVF */ 1960 { SST(0x2C, 0x08, SS_RDEF, /* XXX TBD */ 1961 "Previous task set full status") }, 1962 /* DTLPWROM EBKVF */ 1963 { SST(0x2C, 0x09, SS_RDEF, /* XXX TBD */ 1964 "Previous reservation conflict status") }, 1965 /* F */ 1966 { SST(0x2C, 0x0A, SS_RDEF, /* XXX TBD */ 1967 "Partition or collection contains user objects") }, 1968 /* T */ 1969 { SST(0x2C, 0x0B, SS_RDEF, /* XXX TBD */ 1970 "Not reserved") }, 1971 /* D */ 1972 { SST(0x2C, 0x0C, SS_RDEF, /* XXX TBD */ 1973 "ORWRITE generation does not match") }, 1974 /* D */ 1975 { SST(0x2C, 0x0D, SS_RDEF, /* XXX TBD */ 1976 "Reset write pointer not allowed") }, 1977 /* D */ 1978 { SST(0x2C, 0x0E, SS_RDEF, /* XXX TBD */ 1979 "Zone is offline") }, 1980 /* D */ 1981 { SST(0x2C, 0x0F, SS_RDEF, /* XXX TBD */ 1982 "Stream not open") }, 1983 /* D */ 1984 { SST(0x2C, 0x10, SS_RDEF, /* XXX TBD */ 1985 "Unwritten data in zone") }, 1986 /* T */ 1987 { SST(0x2D, 0x00, SS_RDEF, 1988 "Overwrite error on update in place") }, 1989 /* R */ 1990 { SST(0x2E, 0x00, SS_RDEF, /* XXX TBD */ 1991 "Insufficient time for operation") }, 1992 /* D */ 1993 { SST(0x2E, 0x01, SS_RDEF, /* XXX TBD */ 1994 "Command timeout before processing") }, 1995 /* D */ 1996 { SST(0x2E, 0x02, SS_RDEF, /* XXX TBD */ 1997 "Command timeout during processing") }, 1998 /* D */ 1999 { SST(0x2E, 0x03, SS_RDEF, /* XXX TBD */ 2000 "Command timeout during processing due to error recovery") }, 2001 /* DTLPWROMAEBKVF */ 2002 { SST(0x2F, 0x00, SS_RDEF, 2003 "Commands cleared by another initiator") }, 2004 /* D */ 2005 { SST(0x2F, 0x01, SS_RDEF, /* XXX TBD */ 2006 "Commands cleared by power loss notification") }, 2007 /* DTLPWROMAEBKVF */ 2008 { SST(0x2F, 0x02, SS_RDEF, /* XXX TBD */ 2009 "Commands cleared by device server") }, 2010 /* DTLPWROMAEBKVF */ 2011 { SST(0x2F, 0x03, SS_RDEF, /* XXX TBD */ 2012 "Some commands cleared by queuing layer event") }, 2013 /* DT WROM BK */ 2014 { SST(0x30, 0x00, SS_RDEF, 2015 "Incompatible medium installed") }, 2016 /* DT WRO BK */ 2017 { SST(0x30, 0x01, SS_RDEF, 2018 "Cannot read medium - unknown format") }, 2019 /* DT WRO BK */ 2020 { SST(0x30, 0x02, SS_RDEF, 2021 "Cannot read medium - incompatible format") }, 2022 /* DT R K */ 2023 { SST(0x30, 0x03, SS_RDEF, 2024 "Cleaning cartridge installed") }, 2025 /* DT WRO BK */ 2026 { SST(0x30, 0x04, SS_RDEF, 2027 "Cannot write medium - unknown format") }, 2028 /* DT WRO BK */ 2029 { SST(0x30, 0x05, SS_RDEF, 2030 "Cannot write medium - incompatible format") }, 2031 /* DT WRO B */ 2032 { SST(0x30, 0x06, SS_RDEF, 2033 "Cannot format medium - incompatible medium") }, 2034 /* DTL WROMAEBKVF */ 2035 { SST(0x30, 0x07, SS_RDEF, 2036 "Cleaning failure") }, 2037 /* R */ 2038 { SST(0x30, 0x08, SS_RDEF, 2039 "Cannot write - application code mismatch") }, 2040 /* R */ 2041 { SST(0x30, 0x09, SS_RDEF, 2042 "Current session not fixated for append") }, 2043 /* DT WRO AEBK */ 2044 { SST(0x30, 0x0A, SS_RDEF, /* XXX TBD */ 2045 "Cleaning request rejected") }, 2046 /* T */ 2047 { SST(0x30, 0x0C, SS_RDEF, /* XXX TBD */ 2048 "WORM medium - overwrite attempted") }, 2049 /* T */ 2050 { SST(0x30, 0x0D, SS_RDEF, /* XXX TBD */ 2051 "WORM medium - integrity check") }, 2052 /* R */ 2053 { SST(0x30, 0x10, SS_RDEF, /* XXX TBD */ 2054 "Medium not formatted") }, 2055 /* M */ 2056 { SST(0x30, 0x11, SS_RDEF, /* XXX TBD */ 2057 "Incompatible volume type") }, 2058 /* M */ 2059 { SST(0x30, 0x12, SS_RDEF, /* XXX TBD */ 2060 "Incompatible volume qualifier") }, 2061 /* M */ 2062 { SST(0x30, 0x13, SS_RDEF, /* XXX TBD */ 2063 "Cleaning volume expired") }, 2064 /* DT WRO BK */ 2065 { SST(0x31, 0x00, SS_FATAL | ENXIO, 2066 "Medium format corrupted") }, 2067 /* D L RO B */ 2068 { SST(0x31, 0x01, SS_RDEF, 2069 "Format command failed") }, 2070 /* R */ 2071 { SST(0x31, 0x02, SS_RDEF, /* XXX TBD */ 2072 "Zoned formatting failed due to spare linking") }, 2073 /* D B */ 2074 { SST(0x31, 0x03, SS_FATAL | EIO, 2075 "SANITIZE command failed") }, 2076 /* D W O BK */ 2077 { SST(0x32, 0x00, SS_RDEF, 2078 "No defect spare location available") }, 2079 /* D W O BK */ 2080 { SST(0x32, 0x01, SS_RDEF, 2081 "Defect list update failure") }, 2082 /* T */ 2083 { SST(0x33, 0x00, SS_RDEF, 2084 "Tape length error") }, 2085 /* DTLPWROMAEBKVF */ 2086 { SST(0x34, 0x00, SS_RDEF, 2087 "Enclosure failure") }, 2088 /* DTLPWROMAEBKVF */ 2089 { SST(0x35, 0x00, SS_RDEF, 2090 "Enclosure services failure") }, 2091 /* DTLPWROMAEBKVF */ 2092 { SST(0x35, 0x01, SS_RDEF, 2093 "Unsupported enclosure function") }, 2094 /* DTLPWROMAEBKVF */ 2095 { SST(0x35, 0x02, SS_RDEF, 2096 "Enclosure services unavailable") }, 2097 /* DTLPWROMAEBKVF */ 2098 { SST(0x35, 0x03, SS_RDEF, 2099 "Enclosure services transfer failure") }, 2100 /* DTLPWROMAEBKVF */ 2101 { SST(0x35, 0x04, SS_RDEF, 2102 "Enclosure services transfer refused") }, 2103 /* DTL WROMAEBKVF */ 2104 { SST(0x35, 0x05, SS_RDEF, /* XXX TBD */ 2105 "Enclosure services checksum error") }, 2106 /* L */ 2107 { SST(0x36, 0x00, SS_RDEF, 2108 "Ribbon, ink, or toner failure") }, 2109 /* DTL WROMAEBKVF */ 2110 { SST(0x37, 0x00, SS_RDEF, 2111 "Rounded parameter") }, 2112 /* B */ 2113 { SST(0x38, 0x00, SS_RDEF, /* XXX TBD */ 2114 "Event status notification") }, 2115 /* B */ 2116 { SST(0x38, 0x02, SS_RDEF, /* XXX TBD */ 2117 "ESN - power management class event") }, 2118 /* B */ 2119 { SST(0x38, 0x04, SS_RDEF, /* XXX TBD */ 2120 "ESN - media class event") }, 2121 /* B */ 2122 { SST(0x38, 0x06, SS_RDEF, /* XXX TBD */ 2123 "ESN - device busy class event") }, 2124 /* D */ 2125 { SST(0x38, 0x07, SS_RDEF, /* XXX TBD */ 2126 "Thin provisioning soft threshold reached") }, 2127 /* DTL WROMAE K */ 2128 { SST(0x39, 0x00, SS_RDEF, 2129 "Saving parameters not supported") }, 2130 /* DTL WROM BK */ 2131 { SST(0x3A, 0x00, SS_FATAL | ENXIO, 2132 "Medium not present") }, 2133 /* DT WROM BK */ 2134 { SST(0x3A, 0x01, SS_FATAL | ENXIO, 2135 "Medium not present - tray closed") }, 2136 /* DT WROM BK */ 2137 { SST(0x3A, 0x02, SS_FATAL | ENXIO, 2138 "Medium not present - tray open") }, 2139 /* DT WROM B */ 2140 { SST(0x3A, 0x03, SS_RDEF, /* XXX TBD */ 2141 "Medium not present - loadable") }, 2142 /* DT WRO B */ 2143 { SST(0x3A, 0x04, SS_RDEF, /* XXX TBD */ 2144 "Medium not present - medium auxiliary memory accessible") }, 2145 /* TL */ 2146 { SST(0x3B, 0x00, SS_RDEF, 2147 "Sequential positioning error") }, 2148 /* T */ 2149 { SST(0x3B, 0x01, SS_RDEF, 2150 "Tape position error at beginning-of-medium") }, 2151 /* T */ 2152 { SST(0x3B, 0x02, SS_RDEF, 2153 "Tape position error at end-of-medium") }, 2154 /* L */ 2155 { SST(0x3B, 0x03, SS_RDEF, 2156 "Tape or electronic vertical forms unit not ready") }, 2157 /* L */ 2158 { SST(0x3B, 0x04, SS_RDEF, 2159 "Slew failure") }, 2160 /* L */ 2161 { SST(0x3B, 0x05, SS_RDEF, 2162 "Paper jam") }, 2163 /* L */ 2164 { SST(0x3B, 0x06, SS_RDEF, 2165 "Failed to sense top-of-form") }, 2166 /* L */ 2167 { SST(0x3B, 0x07, SS_RDEF, 2168 "Failed to sense bottom-of-form") }, 2169 /* T */ 2170 { SST(0x3B, 0x08, SS_RDEF, 2171 "Reposition error") }, 2172 /* */ 2173 { SST(0x3B, 0x09, SS_RDEF, 2174 "Read past end of medium") }, 2175 /* */ 2176 { SST(0x3B, 0x0A, SS_RDEF, 2177 "Read past beginning of medium") }, 2178 /* */ 2179 { SST(0x3B, 0x0B, SS_RDEF, 2180 "Position past end of medium") }, 2181 /* T */ 2182 { SST(0x3B, 0x0C, SS_RDEF, 2183 "Position past beginning of medium") }, 2184 /* DT WROM BK */ 2185 { SST(0x3B, 0x0D, SS_FATAL | ENOSPC, 2186 "Medium destination element full") }, 2187 /* DT WROM BK */ 2188 { SST(0x3B, 0x0E, SS_RDEF, 2189 "Medium source element empty") }, 2190 /* R */ 2191 { SST(0x3B, 0x0F, SS_RDEF, 2192 "End of medium reached") }, 2193 /* DT WROM BK */ 2194 { SST(0x3B, 0x11, SS_RDEF, 2195 "Medium magazine not accessible") }, 2196 /* DT WROM BK */ 2197 { SST(0x3B, 0x12, SS_RDEF, 2198 "Medium magazine removed") }, 2199 /* DT WROM BK */ 2200 { SST(0x3B, 0x13, SS_RDEF, 2201 "Medium magazine inserted") }, 2202 /* DT WROM BK */ 2203 { SST(0x3B, 0x14, SS_RDEF, 2204 "Medium magazine locked") }, 2205 /* DT WROM BK */ 2206 { SST(0x3B, 0x15, SS_RDEF, 2207 "Medium magazine unlocked") }, 2208 /* R */ 2209 { SST(0x3B, 0x16, SS_RDEF, /* XXX TBD */ 2210 "Mechanical positioning or changer error") }, 2211 /* F */ 2212 { SST(0x3B, 0x17, SS_RDEF, /* XXX TBD */ 2213 "Read past end of user object") }, 2214 /* M */ 2215 { SST(0x3B, 0x18, SS_RDEF, /* XXX TBD */ 2216 "Element disabled") }, 2217 /* M */ 2218 { SST(0x3B, 0x19, SS_RDEF, /* XXX TBD */ 2219 "Element enabled") }, 2220 /* M */ 2221 { SST(0x3B, 0x1A, SS_RDEF, /* XXX TBD */ 2222 "Data transfer device removed") }, 2223 /* M */ 2224 { SST(0x3B, 0x1B, SS_RDEF, /* XXX TBD */ 2225 "Data transfer device inserted") }, 2226 /* T */ 2227 { SST(0x3B, 0x1C, SS_RDEF, /* XXX TBD */ 2228 "Too many logical objects on partition to support operation") }, 2229 /* DTLPWROMAE K */ 2230 { SST(0x3D, 0x00, SS_RDEF, 2231 "Invalid bits in IDENTIFY message") }, 2232 /* DTLPWROMAEBKVF */ 2233 { SST(0x3E, 0x00, SS_RDEF, 2234 "Logical unit has not self-configured yet") }, 2235 /* DTLPWROMAEBKVF */ 2236 { SST(0x3E, 0x01, SS_RDEF, 2237 "Logical unit failure") }, 2238 /* DTLPWROMAEBKVF */ 2239 { SST(0x3E, 0x02, SS_RDEF, 2240 "Timeout on logical unit") }, 2241 /* DTLPWROMAEBKVF */ 2242 { SST(0x3E, 0x03, SS_RDEF, /* XXX TBD */ 2243 "Logical unit failed self-test") }, 2244 /* DTLPWROMAEBKVF */ 2245 { SST(0x3E, 0x04, SS_RDEF, /* XXX TBD */ 2246 "Logical unit unable to update self-test log") }, 2247 /* DTLPWROMAEBKVF */ 2248 { SST(0x3F, 0x00, SS_RDEF, 2249 "Target operating conditions have changed") }, 2250 /* DTLPWROMAEBKVF */ 2251 { SST(0x3F, 0x01, SS_RDEF, 2252 "Microcode has been changed") }, 2253 /* DTLPWROM BK */ 2254 { SST(0x3F, 0x02, SS_RDEF, 2255 "Changed operating definition") }, 2256 /* DTLPWROMAEBKVF */ 2257 { SST(0x3F, 0x03, SS_RDEF, 2258 "INQUIRY data has changed") }, 2259 /* DT WROMAEBK */ 2260 { SST(0x3F, 0x04, SS_RDEF, 2261 "Component device attached") }, 2262 /* DT WROMAEBK */ 2263 { SST(0x3F, 0x05, SS_RDEF, 2264 "Device identifier changed") }, 2265 /* DT WROMAEB */ 2266 { SST(0x3F, 0x06, SS_RDEF, 2267 "Redundancy group created or modified") }, 2268 /* DT WROMAEB */ 2269 { SST(0x3F, 0x07, SS_RDEF, 2270 "Redundancy group deleted") }, 2271 /* DT WROMAEB */ 2272 { SST(0x3F, 0x08, SS_RDEF, 2273 "Spare created or modified") }, 2274 /* DT WROMAEB */ 2275 { SST(0x3F, 0x09, SS_RDEF, 2276 "Spare deleted") }, 2277 /* DT WROMAEBK */ 2278 { SST(0x3F, 0x0A, SS_RDEF, 2279 "Volume set created or modified") }, 2280 /* DT WROMAEBK */ 2281 { SST(0x3F, 0x0B, SS_RDEF, 2282 "Volume set deleted") }, 2283 /* DT WROMAEBK */ 2284 { SST(0x3F, 0x0C, SS_RDEF, 2285 "Volume set deassigned") }, 2286 /* DT WROMAEBK */ 2287 { SST(0x3F, 0x0D, SS_RDEF, 2288 "Volume set reassigned") }, 2289 /* DTLPWROMAE */ 2290 { SST(0x3F, 0x0E, SS_RDEF | SSQ_RESCAN , 2291 "Reported LUNs data has changed") }, 2292 /* DTLPWROMAEBKVF */ 2293 { SST(0x3F, 0x0F, SS_RDEF, /* XXX TBD */ 2294 "Echo buffer overwritten") }, 2295 /* DT WROM B */ 2296 { SST(0x3F, 0x10, SS_RDEF, /* XXX TBD */ 2297 "Medium loadable") }, 2298 /* DT WROM B */ 2299 { SST(0x3F, 0x11, SS_RDEF, /* XXX TBD */ 2300 "Medium auxiliary memory accessible") }, 2301 /* DTLPWR MAEBK F */ 2302 { SST(0x3F, 0x12, SS_RDEF, /* XXX TBD */ 2303 "iSCSI IP address added") }, 2304 /* DTLPWR MAEBK F */ 2305 { SST(0x3F, 0x13, SS_RDEF, /* XXX TBD */ 2306 "iSCSI IP address removed") }, 2307 /* DTLPWR MAEBK F */ 2308 { SST(0x3F, 0x14, SS_RDEF, /* XXX TBD */ 2309 "iSCSI IP address changed") }, 2310 /* DTLPWR MAEBK */ 2311 { SST(0x3F, 0x15, SS_RDEF, /* XXX TBD */ 2312 "Inspect referrals sense descriptors") }, 2313 /* DTLPWROMAEBKVF */ 2314 { SST(0x3F, 0x16, SS_RDEF, /* XXX TBD */ 2315 "Microcode has been changed without reset") }, 2316 /* D */ 2317 { SST(0x3F, 0x17, SS_RDEF, /* XXX TBD */ 2318 "Zone transition to full") }, 2319 /* D */ 2320 { SST(0x40, 0x00, SS_RDEF, 2321 "RAM failure") }, /* deprecated - use 40 NN instead */ 2322 /* DTLPWROMAEBKVF */ 2323 { SST(0x40, 0x80, SS_RDEF, 2324 "Diagnostic failure: ASCQ = Component ID") }, 2325 /* DTLPWROMAEBKVF */ 2326 { SST(0x40, 0xFF, SS_RDEF | SSQ_RANGE, 2327 NULL) }, /* Range 0x80->0xFF */ 2328 /* D */ 2329 { SST(0x41, 0x00, SS_RDEF, 2330 "Data path failure") }, /* deprecated - use 40 NN instead */ 2331 /* D */ 2332 { SST(0x42, 0x00, SS_RDEF, 2333 "Power-on or self-test failure") }, 2334 /* deprecated - use 40 NN instead */ 2335 /* DTLPWROMAEBKVF */ 2336 { SST(0x43, 0x00, SS_RDEF, 2337 "Message error") }, 2338 /* DTLPWROMAEBKVF */ 2339 { SST(0x44, 0x00, SS_FATAL | EIO, 2340 "Internal target failure") }, 2341 /* DT P MAEBKVF */ 2342 { SST(0x44, 0x01, SS_RDEF, /* XXX TBD */ 2343 "Persistent reservation information lost") }, 2344 /* DT B */ 2345 { SST(0x44, 0x71, SS_RDEF, /* XXX TBD */ 2346 "ATA device failed set features") }, 2347 /* DTLPWROMAEBKVF */ 2348 { SST(0x45, 0x00, SS_RDEF, 2349 "Select or reselect failure") }, 2350 /* DTLPWROM BK */ 2351 { SST(0x46, 0x00, SS_RDEF, 2352 "Unsuccessful soft reset") }, 2353 /* DTLPWROMAEBKVF */ 2354 { SST(0x47, 0x00, SS_RDEF, 2355 "SCSI parity error") }, 2356 /* DTLPWROMAEBKVF */ 2357 { SST(0x47, 0x01, SS_RDEF, /* XXX TBD */ 2358 "Data phase CRC error detected") }, 2359 /* DTLPWROMAEBKVF */ 2360 { SST(0x47, 0x02, SS_RDEF, /* XXX TBD */ 2361 "SCSI parity error detected during ST data phase") }, 2362 /* DTLPWROMAEBKVF */ 2363 { SST(0x47, 0x03, SS_RDEF, /* XXX TBD */ 2364 "Information unit iuCRC error detected") }, 2365 /* DTLPWROMAEBKVF */ 2366 { SST(0x47, 0x04, SS_RDEF, /* XXX TBD */ 2367 "Asynchronous information protection error detected") }, 2368 /* DTLPWROMAEBKVF */ 2369 { SST(0x47, 0x05, SS_RDEF, /* XXX TBD */ 2370 "Protocol service CRC error") }, 2371 /* DT MAEBKVF */ 2372 { SST(0x47, 0x06, SS_RDEF, /* XXX TBD */ 2373 "PHY test function in progress") }, 2374 /* DT PWROMAEBK */ 2375 { SST(0x47, 0x7F, SS_RDEF, /* XXX TBD */ 2376 "Some commands cleared by iSCSI protocol event") }, 2377 /* DTLPWROMAEBKVF */ 2378 { SST(0x48, 0x00, SS_RDEF, 2379 "Initiator detected error message received") }, 2380 /* DTLPWROMAEBKVF */ 2381 { SST(0x49, 0x00, SS_RDEF, 2382 "Invalid message error") }, 2383 /* DTLPWROMAEBKVF */ 2384 { SST(0x4A, 0x00, SS_RDEF, 2385 "Command phase error") }, 2386 /* DTLPWROMAEBKVF */ 2387 { SST(0x4B, 0x00, SS_RDEF, 2388 "Data phase error") }, 2389 /* DT PWROMAEBK */ 2390 { SST(0x4B, 0x01, SS_RDEF, /* XXX TBD */ 2391 "Invalid target port transfer tag received") }, 2392 /* DT PWROMAEBK */ 2393 { SST(0x4B, 0x02, SS_RDEF, /* XXX TBD */ 2394 "Too much write data") }, 2395 /* DT PWROMAEBK */ 2396 { SST(0x4B, 0x03, SS_RDEF, /* XXX TBD */ 2397 "ACK/NAK timeout") }, 2398 /* DT PWROMAEBK */ 2399 { SST(0x4B, 0x04, SS_RDEF, /* XXX TBD */ 2400 "NAK received") }, 2401 /* DT PWROMAEBK */ 2402 { SST(0x4B, 0x05, SS_RDEF, /* XXX TBD */ 2403 "Data offset error") }, 2404 /* DT PWROMAEBK */ 2405 { SST(0x4B, 0x06, SS_RDEF, /* XXX TBD */ 2406 "Initiator response timeout") }, 2407 /* DT PWROMAEBK F */ 2408 { SST(0x4B, 0x07, SS_RDEF, /* XXX TBD */ 2409 "Connection lost") }, 2410 /* DT PWROMAEBK F */ 2411 { SST(0x4B, 0x08, SS_RDEF, /* XXX TBD */ 2412 "Data-in buffer overflow - data buffer size") }, 2413 /* DT PWROMAEBK F */ 2414 { SST(0x4B, 0x09, SS_RDEF, /* XXX TBD */ 2415 "Data-in buffer overflow - data buffer descriptor area") }, 2416 /* DT PWROMAEBK F */ 2417 { SST(0x4B, 0x0A, SS_RDEF, /* XXX TBD */ 2418 "Data-in buffer error") }, 2419 /* DT PWROMAEBK F */ 2420 { SST(0x4B, 0x0B, SS_RDEF, /* XXX TBD */ 2421 "Data-out buffer overflow - data buffer size") }, 2422 /* DT PWROMAEBK F */ 2423 { SST(0x4B, 0x0C, SS_RDEF, /* XXX TBD */ 2424 "Data-out buffer overflow - data buffer descriptor area") }, 2425 /* DT PWROMAEBK F */ 2426 { SST(0x4B, 0x0D, SS_RDEF, /* XXX TBD */ 2427 "Data-out buffer error") }, 2428 /* DT PWROMAEBK F */ 2429 { SST(0x4B, 0x0E, SS_RDEF, /* XXX TBD */ 2430 "PCIe fabric error") }, 2431 /* DT PWROMAEBK F */ 2432 { SST(0x4B, 0x0F, SS_RDEF, /* XXX TBD */ 2433 "PCIe completion timeout") }, 2434 /* DT PWROMAEBK F */ 2435 { SST(0x4B, 0x10, SS_RDEF, /* XXX TBD */ 2436 "PCIe completer abort") }, 2437 /* DT PWROMAEBK F */ 2438 { SST(0x4B, 0x11, SS_RDEF, /* XXX TBD */ 2439 "PCIe poisoned TLP received") }, 2440 /* DT PWROMAEBK F */ 2441 { SST(0x4B, 0x12, SS_RDEF, /* XXX TBD */ 2442 "PCIe ECRC check failed") }, 2443 /* DT PWROMAEBK F */ 2444 { SST(0x4B, 0x13, SS_RDEF, /* XXX TBD */ 2445 "PCIe unsupported request") }, 2446 /* DT PWROMAEBK F */ 2447 { SST(0x4B, 0x14, SS_RDEF, /* XXX TBD */ 2448 "PCIe ACS violation") }, 2449 /* DT PWROMAEBK F */ 2450 { SST(0x4B, 0x15, SS_RDEF, /* XXX TBD */ 2451 "PCIe TLP prefix blocket") }, 2452 /* DTLPWROMAEBKVF */ 2453 { SST(0x4C, 0x00, SS_RDEF, 2454 "Logical unit failed self-configuration") }, 2455 /* DTLPWROMAEBKVF */ 2456 { SST(0x4D, 0x00, SS_RDEF, 2457 "Tagged overlapped commands: ASCQ = Queue tag ID") }, 2458 /* DTLPWROMAEBKVF */ 2459 { SST(0x4D, 0xFF, SS_RDEF | SSQ_RANGE, 2460 NULL) }, /* Range 0x00->0xFF */ 2461 /* DTLPWROMAEBKVF */ 2462 { SST(0x4E, 0x00, SS_RDEF, 2463 "Overlapped commands attempted") }, 2464 /* T */ 2465 { SST(0x50, 0x00, SS_RDEF, 2466 "Write append error") }, 2467 /* T */ 2468 { SST(0x50, 0x01, SS_RDEF, 2469 "Write append position error") }, 2470 /* T */ 2471 { SST(0x50, 0x02, SS_RDEF, 2472 "Position error related to timing") }, 2473 /* T RO */ 2474 { SST(0x51, 0x00, SS_RDEF, 2475 "Erase failure") }, 2476 /* R */ 2477 { SST(0x51, 0x01, SS_RDEF, /* XXX TBD */ 2478 "Erase failure - incomplete erase operation detected") }, 2479 /* T */ 2480 { SST(0x52, 0x00, SS_RDEF, 2481 "Cartridge fault") }, 2482 /* DTL WROM BK */ 2483 { SST(0x53, 0x00, SS_RDEF, 2484 "Media load or eject failed") }, 2485 /* T */ 2486 { SST(0x53, 0x01, SS_RDEF, 2487 "Unload tape failure") }, 2488 /* DT WROM BK */ 2489 { SST(0x53, 0x02, SS_RDEF, 2490 "Medium removal prevented") }, 2491 /* M */ 2492 { SST(0x53, 0x03, SS_RDEF, /* XXX TBD */ 2493 "Medium removal prevented by data transfer element") }, 2494 /* T */ 2495 { SST(0x53, 0x04, SS_RDEF, /* XXX TBD */ 2496 "Medium thread or unthread failure") }, 2497 /* M */ 2498 { SST(0x53, 0x05, SS_RDEF, /* XXX TBD */ 2499 "Volume identifier invalid") }, 2500 /* T */ 2501 { SST(0x53, 0x06, SS_RDEF, /* XXX TBD */ 2502 "Volume identifier missing") }, 2503 /* M */ 2504 { SST(0x53, 0x07, SS_RDEF, /* XXX TBD */ 2505 "Duplicate volume identifier") }, 2506 /* M */ 2507 { SST(0x53, 0x08, SS_RDEF, /* XXX TBD */ 2508 "Element status unknown") }, 2509 /* M */ 2510 { SST(0x53, 0x09, SS_RDEF, /* XXX TBD */ 2511 "Data transfer device error - load failed") }, 2512 /* M */ 2513 { SST(0x53, 0x0A, SS_RDEF, /* XXX TBD */ 2514 "Data transfer device error - unload failed") }, 2515 /* M */ 2516 { SST(0x53, 0x0B, SS_RDEF, /* XXX TBD */ 2517 "Data transfer device error - unload missing") }, 2518 /* M */ 2519 { SST(0x53, 0x0C, SS_RDEF, /* XXX TBD */ 2520 "Data transfer device error - eject failed") }, 2521 /* M */ 2522 { SST(0x53, 0x0D, SS_RDEF, /* XXX TBD */ 2523 "Data transfer device error - library communication failed") }, 2524 /* P */ 2525 { SST(0x54, 0x00, SS_RDEF, 2526 "SCSI to host system interface failure") }, 2527 /* P */ 2528 { SST(0x55, 0x00, SS_RDEF, 2529 "System resource failure") }, 2530 /* D O BK */ 2531 { SST(0x55, 0x01, SS_FATAL | ENOSPC, 2532 "System buffer full") }, 2533 /* DTLPWROMAE K */ 2534 { SST(0x55, 0x02, SS_RDEF, /* XXX TBD */ 2535 "Insufficient reservation resources") }, 2536 /* DTLPWROMAE K */ 2537 { SST(0x55, 0x03, SS_RDEF, /* XXX TBD */ 2538 "Insufficient resources") }, 2539 /* DTLPWROMAE K */ 2540 { SST(0x55, 0x04, SS_RDEF, /* XXX TBD */ 2541 "Insufficient registration resources") }, 2542 /* DT PWROMAEBK */ 2543 { SST(0x55, 0x05, SS_RDEF, /* XXX TBD */ 2544 "Insufficient access control resources") }, 2545 /* DT WROM B */ 2546 { SST(0x55, 0x06, SS_RDEF, /* XXX TBD */ 2547 "Auxiliary memory out of space") }, 2548 /* F */ 2549 { SST(0x55, 0x07, SS_RDEF, /* XXX TBD */ 2550 "Quota error") }, 2551 /* T */ 2552 { SST(0x55, 0x08, SS_RDEF, /* XXX TBD */ 2553 "Maximum number of supplemental decryption keys exceeded") }, 2554 /* M */ 2555 { SST(0x55, 0x09, SS_RDEF, /* XXX TBD */ 2556 "Medium auxiliary memory not accessible") }, 2557 /* M */ 2558 { SST(0x55, 0x0A, SS_RDEF, /* XXX TBD */ 2559 "Data currently unavailable") }, 2560 /* DTLPWROMAEBKVF */ 2561 { SST(0x55, 0x0B, SS_RDEF, /* XXX TBD */ 2562 "Insufficient power for operation") }, 2563 /* DT P B */ 2564 { SST(0x55, 0x0C, SS_RDEF, /* XXX TBD */ 2565 "Insufficient resources to create ROD") }, 2566 /* DT P B */ 2567 { SST(0x55, 0x0D, SS_RDEF, /* XXX TBD */ 2568 "Insufficient resources to create ROD token") }, 2569 /* D */ 2570 { SST(0x55, 0x0E, SS_RDEF, /* XXX TBD */ 2571 "Insufficient zone resources") }, 2572 /* D */ 2573 { SST(0x55, 0x0F, SS_RDEF, /* XXX TBD */ 2574 "Insufficient zone resources to complete write") }, 2575 /* D */ 2576 { SST(0x55, 0x10, SS_RDEF, /* XXX TBD */ 2577 "Maximum number of streams open") }, 2578 /* R */ 2579 { SST(0x57, 0x00, SS_RDEF, 2580 "Unable to recover table-of-contents") }, 2581 /* O */ 2582 { SST(0x58, 0x00, SS_RDEF, 2583 "Generation does not exist") }, 2584 /* O */ 2585 { SST(0x59, 0x00, SS_RDEF, 2586 "Updated block read") }, 2587 /* DTLPWRO BK */ 2588 { SST(0x5A, 0x00, SS_RDEF, 2589 "Operator request or state change input") }, 2590 /* DT WROM BK */ 2591 { SST(0x5A, 0x01, SS_RDEF, 2592 "Operator medium removal request") }, 2593 /* DT WRO A BK */ 2594 { SST(0x5A, 0x02, SS_RDEF, 2595 "Operator selected write protect") }, 2596 /* DT WRO A BK */ 2597 { SST(0x5A, 0x03, SS_RDEF, 2598 "Operator selected write permit") }, 2599 /* DTLPWROM K */ 2600 { SST(0x5B, 0x00, SS_RDEF, 2601 "Log exception") }, 2602 /* DTLPWROM K */ 2603 { SST(0x5B, 0x01, SS_RDEF, 2604 "Threshold condition met") }, 2605 /* DTLPWROM K */ 2606 { SST(0x5B, 0x02, SS_RDEF, 2607 "Log counter at maximum") }, 2608 /* DTLPWROM K */ 2609 { SST(0x5B, 0x03, SS_RDEF, 2610 "Log list codes exhausted") }, 2611 /* D O */ 2612 { SST(0x5C, 0x00, SS_RDEF, 2613 "RPL status change") }, 2614 /* D O */ 2615 { SST(0x5C, 0x01, SS_NOP | SSQ_PRINT_SENSE, 2616 "Spindles synchronized") }, 2617 /* D O */ 2618 { SST(0x5C, 0x02, SS_RDEF, 2619 "Spindles not synchronized") }, 2620 /* DTLPWROMAEBKVF */ 2621 { SST(0x5D, 0x00, SS_NOP | SSQ_PRINT_SENSE, 2622 "Failure prediction threshold exceeded") }, 2623 /* R B */ 2624 { SST(0x5D, 0x01, SS_NOP | SSQ_PRINT_SENSE, 2625 "Media failure prediction threshold exceeded") }, 2626 /* R */ 2627 { SST(0x5D, 0x02, SS_NOP | SSQ_PRINT_SENSE, 2628 "Logical unit failure prediction threshold exceeded") }, 2629 /* R */ 2630 { SST(0x5D, 0x03, SS_NOP | SSQ_PRINT_SENSE, 2631 "Spare area exhaustion prediction threshold exceeded") }, 2632 /* D B */ 2633 { SST(0x5D, 0x10, SS_NOP | SSQ_PRINT_SENSE, 2634 "Hardware impending failure general hard drive failure") }, 2635 /* D B */ 2636 { SST(0x5D, 0x11, SS_NOP | SSQ_PRINT_SENSE, 2637 "Hardware impending failure drive error rate too high") }, 2638 /* D B */ 2639 { SST(0x5D, 0x12, SS_NOP | SSQ_PRINT_SENSE, 2640 "Hardware impending failure data error rate too high") }, 2641 /* D B */ 2642 { SST(0x5D, 0x13, SS_NOP | SSQ_PRINT_SENSE, 2643 "Hardware impending failure seek error rate too high") }, 2644 /* D B */ 2645 { SST(0x5D, 0x14, SS_NOP | SSQ_PRINT_SENSE, 2646 "Hardware impending failure too many block reassigns") }, 2647 /* D B */ 2648 { SST(0x5D, 0x15, SS_NOP | SSQ_PRINT_SENSE, 2649 "Hardware impending failure access times too high") }, 2650 /* D B */ 2651 { SST(0x5D, 0x16, SS_NOP | SSQ_PRINT_SENSE, 2652 "Hardware impending failure start unit times too high") }, 2653 /* D B */ 2654 { SST(0x5D, 0x17, SS_NOP | SSQ_PRINT_SENSE, 2655 "Hardware impending failure channel parametrics") }, 2656 /* D B */ 2657 { SST(0x5D, 0x18, SS_NOP | SSQ_PRINT_SENSE, 2658 "Hardware impending failure controller detected") }, 2659 /* D B */ 2660 { SST(0x5D, 0x19, SS_NOP | SSQ_PRINT_SENSE, 2661 "Hardware impending failure throughput performance") }, 2662 /* D B */ 2663 { SST(0x5D, 0x1A, SS_NOP | SSQ_PRINT_SENSE, 2664 "Hardware impending failure seek time performance") }, 2665 /* D B */ 2666 { SST(0x5D, 0x1B, SS_NOP | SSQ_PRINT_SENSE, 2667 "Hardware impending failure spin-up retry count") }, 2668 /* D B */ 2669 { SST(0x5D, 0x1C, SS_NOP | SSQ_PRINT_SENSE, 2670 "Hardware impending failure drive calibration retry count") }, 2671 /* D B */ 2672 { SST(0x5D, 0x1D, SS_NOP | SSQ_PRINT_SENSE, 2673 "Hardware impending failure power loss protection circuit") }, 2674 /* D B */ 2675 { SST(0x5D, 0x20, SS_NOP | SSQ_PRINT_SENSE, 2676 "Controller impending failure general hard drive failure") }, 2677 /* D B */ 2678 { SST(0x5D, 0x21, SS_NOP | SSQ_PRINT_SENSE, 2679 "Controller impending failure drive error rate too high") }, 2680 /* D B */ 2681 { SST(0x5D, 0x22, SS_NOP | SSQ_PRINT_SENSE, 2682 "Controller impending failure data error rate too high") }, 2683 /* D B */ 2684 { SST(0x5D, 0x23, SS_NOP | SSQ_PRINT_SENSE, 2685 "Controller impending failure seek error rate too high") }, 2686 /* D B */ 2687 { SST(0x5D, 0x24, SS_NOP | SSQ_PRINT_SENSE, 2688 "Controller impending failure too many block reassigns") }, 2689 /* D B */ 2690 { SST(0x5D, 0x25, SS_NOP | SSQ_PRINT_SENSE, 2691 "Controller impending failure access times too high") }, 2692 /* D B */ 2693 { SST(0x5D, 0x26, SS_NOP | SSQ_PRINT_SENSE, 2694 "Controller impending failure start unit times too high") }, 2695 /* D B */ 2696 { SST(0x5D, 0x27, SS_NOP | SSQ_PRINT_SENSE, 2697 "Controller impending failure channel parametrics") }, 2698 /* D B */ 2699 { SST(0x5D, 0x28, SS_NOP | SSQ_PRINT_SENSE, 2700 "Controller impending failure controller detected") }, 2701 /* D B */ 2702 { SST(0x5D, 0x29, SS_NOP | SSQ_PRINT_SENSE, 2703 "Controller impending failure throughput performance") }, 2704 /* D B */ 2705 { SST(0x5D, 0x2A, SS_NOP | SSQ_PRINT_SENSE, 2706 "Controller impending failure seek time performance") }, 2707 /* D B */ 2708 { SST(0x5D, 0x2B, SS_NOP | SSQ_PRINT_SENSE, 2709 "Controller impending failure spin-up retry count") }, 2710 /* D B */ 2711 { SST(0x5D, 0x2C, SS_NOP | SSQ_PRINT_SENSE, 2712 "Controller impending failure drive calibration retry count") }, 2713 /* D B */ 2714 { SST(0x5D, 0x30, SS_NOP | SSQ_PRINT_SENSE, 2715 "Data channel impending failure general hard drive failure") }, 2716 /* D B */ 2717 { SST(0x5D, 0x31, SS_NOP | SSQ_PRINT_SENSE, 2718 "Data channel impending failure drive error rate too high") }, 2719 /* D B */ 2720 { SST(0x5D, 0x32, SS_NOP | SSQ_PRINT_SENSE, 2721 "Data channel impending failure data error rate too high") }, 2722 /* D B */ 2723 { SST(0x5D, 0x33, SS_NOP | SSQ_PRINT_SENSE, 2724 "Data channel impending failure seek error rate too high") }, 2725 /* D B */ 2726 { SST(0x5D, 0x34, SS_NOP | SSQ_PRINT_SENSE, 2727 "Data channel impending failure too many block reassigns") }, 2728 /* D B */ 2729 { SST(0x5D, 0x35, SS_NOP | SSQ_PRINT_SENSE, 2730 "Data channel impending failure access times too high") }, 2731 /* D B */ 2732 { SST(0x5D, 0x36, SS_NOP | SSQ_PRINT_SENSE, 2733 "Data channel impending failure start unit times too high") }, 2734 /* D B */ 2735 { SST(0x5D, 0x37, SS_NOP | SSQ_PRINT_SENSE, 2736 "Data channel impending failure channel parametrics") }, 2737 /* D B */ 2738 { SST(0x5D, 0x38, SS_NOP | SSQ_PRINT_SENSE, 2739 "Data channel impending failure controller detected") }, 2740 /* D B */ 2741 { SST(0x5D, 0x39, SS_NOP | SSQ_PRINT_SENSE, 2742 "Data channel impending failure throughput performance") }, 2743 /* D B */ 2744 { SST(0x5D, 0x3A, SS_NOP | SSQ_PRINT_SENSE, 2745 "Data channel impending failure seek time performance") }, 2746 /* D B */ 2747 { SST(0x5D, 0x3B, SS_NOP | SSQ_PRINT_SENSE, 2748 "Data channel impending failure spin-up retry count") }, 2749 /* D B */ 2750 { SST(0x5D, 0x3C, SS_NOP | SSQ_PRINT_SENSE, 2751 "Data channel impending failure drive calibration retry count") }, 2752 /* D B */ 2753 { SST(0x5D, 0x40, SS_NOP | SSQ_PRINT_SENSE, 2754 "Servo impending failure general hard drive failure") }, 2755 /* D B */ 2756 { SST(0x5D, 0x41, SS_NOP | SSQ_PRINT_SENSE, 2757 "Servo impending failure drive error rate too high") }, 2758 /* D B */ 2759 { SST(0x5D, 0x42, SS_NOP | SSQ_PRINT_SENSE, 2760 "Servo impending failure data error rate too high") }, 2761 /* D B */ 2762 { SST(0x5D, 0x43, SS_NOP | SSQ_PRINT_SENSE, 2763 "Servo impending failure seek error rate too high") }, 2764 /* D B */ 2765 { SST(0x5D, 0x44, SS_NOP | SSQ_PRINT_SENSE, 2766 "Servo impending failure too many block reassigns") }, 2767 /* D B */ 2768 { SST(0x5D, 0x45, SS_NOP | SSQ_PRINT_SENSE, 2769 "Servo impending failure access times too high") }, 2770 /* D B */ 2771 { SST(0x5D, 0x46, SS_NOP | SSQ_PRINT_SENSE, 2772 "Servo impending failure start unit times too high") }, 2773 /* D B */ 2774 { SST(0x5D, 0x47, SS_NOP | SSQ_PRINT_SENSE, 2775 "Servo impending failure channel parametrics") }, 2776 /* D B */ 2777 { SST(0x5D, 0x48, SS_NOP | SSQ_PRINT_SENSE, 2778 "Servo impending failure controller detected") }, 2779 /* D B */ 2780 { SST(0x5D, 0x49, SS_NOP | SSQ_PRINT_SENSE, 2781 "Servo impending failure throughput performance") }, 2782 /* D B */ 2783 { SST(0x5D, 0x4A, SS_NOP | SSQ_PRINT_SENSE, 2784 "Servo impending failure seek time performance") }, 2785 /* D B */ 2786 { SST(0x5D, 0x4B, SS_NOP | SSQ_PRINT_SENSE, 2787 "Servo impending failure spin-up retry count") }, 2788 /* D B */ 2789 { SST(0x5D, 0x4C, SS_NOP | SSQ_PRINT_SENSE, 2790 "Servo impending failure drive calibration retry count") }, 2791 /* D B */ 2792 { SST(0x5D, 0x50, SS_NOP | SSQ_PRINT_SENSE, 2793 "Spindle impending failure general hard drive failure") }, 2794 /* D B */ 2795 { SST(0x5D, 0x51, SS_NOP | SSQ_PRINT_SENSE, 2796 "Spindle impending failure drive error rate too high") }, 2797 /* D B */ 2798 { SST(0x5D, 0x52, SS_NOP | SSQ_PRINT_SENSE, 2799 "Spindle impending failure data error rate too high") }, 2800 /* D B */ 2801 { SST(0x5D, 0x53, SS_NOP | SSQ_PRINT_SENSE, 2802 "Spindle impending failure seek error rate too high") }, 2803 /* D B */ 2804 { SST(0x5D, 0x54, SS_NOP | SSQ_PRINT_SENSE, 2805 "Spindle impending failure too many block reassigns") }, 2806 /* D B */ 2807 { SST(0x5D, 0x55, SS_NOP | SSQ_PRINT_SENSE, 2808 "Spindle impending failure access times too high") }, 2809 /* D B */ 2810 { SST(0x5D, 0x56, SS_NOP | SSQ_PRINT_SENSE, 2811 "Spindle impending failure start unit times too high") }, 2812 /* D B */ 2813 { SST(0x5D, 0x57, SS_NOP | SSQ_PRINT_SENSE, 2814 "Spindle impending failure channel parametrics") }, 2815 /* D B */ 2816 { SST(0x5D, 0x58, SS_NOP | SSQ_PRINT_SENSE, 2817 "Spindle impending failure controller detected") }, 2818 /* D B */ 2819 { SST(0x5D, 0x59, SS_NOP | SSQ_PRINT_SENSE, 2820 "Spindle impending failure throughput performance") }, 2821 /* D B */ 2822 { SST(0x5D, 0x5A, SS_NOP | SSQ_PRINT_SENSE, 2823 "Spindle impending failure seek time performance") }, 2824 /* D B */ 2825 { SST(0x5D, 0x5B, SS_NOP | SSQ_PRINT_SENSE, 2826 "Spindle impending failure spin-up retry count") }, 2827 /* D B */ 2828 { SST(0x5D, 0x5C, SS_NOP | SSQ_PRINT_SENSE, 2829 "Spindle impending failure drive calibration retry count") }, 2830 /* D B */ 2831 { SST(0x5D, 0x60, SS_NOP | SSQ_PRINT_SENSE, 2832 "Firmware impending failure general hard drive failure") }, 2833 /* D B */ 2834 { SST(0x5D, 0x61, SS_NOP | SSQ_PRINT_SENSE, 2835 "Firmware impending failure drive error rate too high") }, 2836 /* D B */ 2837 { SST(0x5D, 0x62, SS_NOP | SSQ_PRINT_SENSE, 2838 "Firmware impending failure data error rate too high") }, 2839 /* D B */ 2840 { SST(0x5D, 0x63, SS_NOP | SSQ_PRINT_SENSE, 2841 "Firmware impending failure seek error rate too high") }, 2842 /* D B */ 2843 { SST(0x5D, 0x64, SS_NOP | SSQ_PRINT_SENSE, 2844 "Firmware impending failure too many block reassigns") }, 2845 /* D B */ 2846 { SST(0x5D, 0x65, SS_NOP | SSQ_PRINT_SENSE, 2847 "Firmware impending failure access times too high") }, 2848 /* D B */ 2849 { SST(0x5D, 0x66, SS_NOP | SSQ_PRINT_SENSE, 2850 "Firmware impending failure start unit times too high") }, 2851 /* D B */ 2852 { SST(0x5D, 0x67, SS_NOP | SSQ_PRINT_SENSE, 2853 "Firmware impending failure channel parametrics") }, 2854 /* D B */ 2855 { SST(0x5D, 0x68, SS_NOP | SSQ_PRINT_SENSE, 2856 "Firmware impending failure controller detected") }, 2857 /* D B */ 2858 { SST(0x5D, 0x69, SS_NOP | SSQ_PRINT_SENSE, 2859 "Firmware impending failure throughput performance") }, 2860 /* D B */ 2861 { SST(0x5D, 0x6A, SS_NOP | SSQ_PRINT_SENSE, 2862 "Firmware impending failure seek time performance") }, 2863 /* D B */ 2864 { SST(0x5D, 0x6B, SS_NOP | SSQ_PRINT_SENSE, 2865 "Firmware impending failure spin-up retry count") }, 2866 /* D B */ 2867 { SST(0x5D, 0x6C, SS_NOP | SSQ_PRINT_SENSE, 2868 "Firmware impending failure drive calibration retry count") }, 2869 /* D B */ 2870 { SST(0x5D, 0x73, SS_NOP | SSQ_PRINT_SENSE, 2871 "Media impending failure endurance limit met") }, 2872 /* DTLPWROMAEBKVF */ 2873 { SST(0x5D, 0xFF, SS_NOP | SSQ_PRINT_SENSE, 2874 "Failure prediction threshold exceeded (false)") }, 2875 /* DTLPWRO A K */ 2876 { SST(0x5E, 0x00, SS_RDEF, 2877 "Low power condition on") }, 2878 /* DTLPWRO A K */ 2879 { SST(0x5E, 0x01, SS_RDEF, 2880 "Idle condition activated by timer") }, 2881 /* DTLPWRO A K */ 2882 { SST(0x5E, 0x02, SS_RDEF, 2883 "Standby condition activated by timer") }, 2884 /* DTLPWRO A K */ 2885 { SST(0x5E, 0x03, SS_RDEF, 2886 "Idle condition activated by command") }, 2887 /* DTLPWRO A K */ 2888 { SST(0x5E, 0x04, SS_RDEF, 2889 "Standby condition activated by command") }, 2890 /* DTLPWRO A K */ 2891 { SST(0x5E, 0x05, SS_RDEF, 2892 "Idle-B condition activated by timer") }, 2893 /* DTLPWRO A K */ 2894 { SST(0x5E, 0x06, SS_RDEF, 2895 "Idle-B condition activated by command") }, 2896 /* DTLPWRO A K */ 2897 { SST(0x5E, 0x07, SS_RDEF, 2898 "Idle-C condition activated by timer") }, 2899 /* DTLPWRO A K */ 2900 { SST(0x5E, 0x08, SS_RDEF, 2901 "Idle-C condition activated by command") }, 2902 /* DTLPWRO A K */ 2903 { SST(0x5E, 0x09, SS_RDEF, 2904 "Standby-Y condition activated by timer") }, 2905 /* DTLPWRO A K */ 2906 { SST(0x5E, 0x0A, SS_RDEF, 2907 "Standby-Y condition activated by command") }, 2908 /* B */ 2909 { SST(0x5E, 0x41, SS_RDEF, /* XXX TBD */ 2910 "Power state change to active") }, 2911 /* B */ 2912 { SST(0x5E, 0x42, SS_RDEF, /* XXX TBD */ 2913 "Power state change to idle") }, 2914 /* B */ 2915 { SST(0x5E, 0x43, SS_RDEF, /* XXX TBD */ 2916 "Power state change to standby") }, 2917 /* B */ 2918 { SST(0x5E, 0x45, SS_RDEF, /* XXX TBD */ 2919 "Power state change to sleep") }, 2920 /* BK */ 2921 { SST(0x5E, 0x47, SS_RDEF, /* XXX TBD */ 2922 "Power state change to device control") }, 2923 /* */ 2924 { SST(0x60, 0x00, SS_RDEF, 2925 "Lamp failure") }, 2926 /* */ 2927 { SST(0x61, 0x00, SS_RDEF, 2928 "Video acquisition error") }, 2929 /* */ 2930 { SST(0x61, 0x01, SS_RDEF, 2931 "Unable to acquire video") }, 2932 /* */ 2933 { SST(0x61, 0x02, SS_RDEF, 2934 "Out of focus") }, 2935 /* */ 2936 { SST(0x62, 0x00, SS_RDEF, 2937 "Scan head positioning error") }, 2938 /* R */ 2939 { SST(0x63, 0x00, SS_RDEF, 2940 "End of user area encountered on this track") }, 2941 /* R */ 2942 { SST(0x63, 0x01, SS_FATAL | ENOSPC, 2943 "Packet does not fit in available space") }, 2944 /* R */ 2945 { SST(0x64, 0x00, SS_FATAL | ENXIO, 2946 "Illegal mode for this track") }, 2947 /* R */ 2948 { SST(0x64, 0x01, SS_RDEF, 2949 "Invalid packet size") }, 2950 /* DTLPWROMAEBKVF */ 2951 { SST(0x65, 0x00, SS_RDEF, 2952 "Voltage fault") }, 2953 /* */ 2954 { SST(0x66, 0x00, SS_RDEF, 2955 "Automatic document feeder cover up") }, 2956 /* */ 2957 { SST(0x66, 0x01, SS_RDEF, 2958 "Automatic document feeder lift up") }, 2959 /* */ 2960 { SST(0x66, 0x02, SS_RDEF, 2961 "Document jam in automatic document feeder") }, 2962 /* */ 2963 { SST(0x66, 0x03, SS_RDEF, 2964 "Document miss feed automatic in document feeder") }, 2965 /* A */ 2966 { SST(0x67, 0x00, SS_RDEF, 2967 "Configuration failure") }, 2968 /* A */ 2969 { SST(0x67, 0x01, SS_RDEF, 2970 "Configuration of incapable logical units failed") }, 2971 /* A */ 2972 { SST(0x67, 0x02, SS_RDEF, 2973 "Add logical unit failed") }, 2974 /* A */ 2975 { SST(0x67, 0x03, SS_RDEF, 2976 "Modification of logical unit failed") }, 2977 /* A */ 2978 { SST(0x67, 0x04, SS_RDEF, 2979 "Exchange of logical unit failed") }, 2980 /* A */ 2981 { SST(0x67, 0x05, SS_RDEF, 2982 "Remove of logical unit failed") }, 2983 /* A */ 2984 { SST(0x67, 0x06, SS_RDEF, 2985 "Attachment of logical unit failed") }, 2986 /* A */ 2987 { SST(0x67, 0x07, SS_RDEF, 2988 "Creation of logical unit failed") }, 2989 /* A */ 2990 { SST(0x67, 0x08, SS_RDEF, /* XXX TBD */ 2991 "Assign failure occurred") }, 2992 /* A */ 2993 { SST(0x67, 0x09, SS_RDEF, /* XXX TBD */ 2994 "Multiply assigned logical unit") }, 2995 /* DTLPWROMAEBKVF */ 2996 { SST(0x67, 0x0A, SS_RDEF, /* XXX TBD */ 2997 "Set target port groups command failed") }, 2998 /* DT B */ 2999 { SST(0x67, 0x0B, SS_RDEF, /* XXX TBD */ 3000 "ATA device feature not enabled") }, 3001 /* A */ 3002 { SST(0x68, 0x00, SS_RDEF, 3003 "Logical unit not configured") }, 3004 /* D */ 3005 { SST(0x68, 0x01, SS_RDEF, 3006 "Subsidiary logical unit not configured") }, 3007 /* A */ 3008 { SST(0x69, 0x00, SS_RDEF, 3009 "Data loss on logical unit") }, 3010 /* A */ 3011 { SST(0x69, 0x01, SS_RDEF, 3012 "Multiple logical unit failures") }, 3013 /* A */ 3014 { SST(0x69, 0x02, SS_RDEF, 3015 "Parity/data mismatch") }, 3016 /* A */ 3017 { SST(0x6A, 0x00, SS_RDEF, 3018 "Informational, refer to log") }, 3019 /* A */ 3020 { SST(0x6B, 0x00, SS_RDEF, 3021 "State change has occurred") }, 3022 /* A */ 3023 { SST(0x6B, 0x01, SS_RDEF, 3024 "Redundancy level got better") }, 3025 /* A */ 3026 { SST(0x6B, 0x02, SS_RDEF, 3027 "Redundancy level got worse") }, 3028 /* A */ 3029 { SST(0x6C, 0x00, SS_RDEF, 3030 "Rebuild failure occurred") }, 3031 /* A */ 3032 { SST(0x6D, 0x00, SS_RDEF, 3033 "Recalculate failure occurred") }, 3034 /* A */ 3035 { SST(0x6E, 0x00, SS_RDEF, 3036 "Command to logical unit failed") }, 3037 /* R */ 3038 { SST(0x6F, 0x00, SS_RDEF, /* XXX TBD */ 3039 "Copy protection key exchange failure - authentication failure") }, 3040 /* R */ 3041 { SST(0x6F, 0x01, SS_RDEF, /* XXX TBD */ 3042 "Copy protection key exchange failure - key not present") }, 3043 /* R */ 3044 { SST(0x6F, 0x02, SS_RDEF, /* XXX TBD */ 3045 "Copy protection key exchange failure - key not established") }, 3046 /* R */ 3047 { SST(0x6F, 0x03, SS_RDEF, /* XXX TBD */ 3048 "Read of scrambled sector without authentication") }, 3049 /* R */ 3050 { SST(0x6F, 0x04, SS_RDEF, /* XXX TBD */ 3051 "Media region code is mismatched to logical unit region") }, 3052 /* R */ 3053 { SST(0x6F, 0x05, SS_RDEF, /* XXX TBD */ 3054 "Drive region must be permanent/region reset count error") }, 3055 /* R */ 3056 { SST(0x6F, 0x06, SS_RDEF, /* XXX TBD */ 3057 "Insufficient block count for binding NONCE recording") }, 3058 /* R */ 3059 { SST(0x6F, 0x07, SS_RDEF, /* XXX TBD */ 3060 "Conflict in binding NONCE recording") }, 3061 /* T */ 3062 { SST(0x70, 0x00, SS_RDEF, 3063 "Decompression exception short: ASCQ = Algorithm ID") }, 3064 /* T */ 3065 { SST(0x70, 0xFF, SS_RDEF | SSQ_RANGE, 3066 NULL) }, /* Range 0x00 -> 0xFF */ 3067 /* T */ 3068 { SST(0x71, 0x00, SS_RDEF, 3069 "Decompression exception long: ASCQ = Algorithm ID") }, 3070 /* T */ 3071 { SST(0x71, 0xFF, SS_RDEF | SSQ_RANGE, 3072 NULL) }, /* Range 0x00 -> 0xFF */ 3073 /* R */ 3074 { SST(0x72, 0x00, SS_RDEF, 3075 "Session fixation error") }, 3076 /* R */ 3077 { SST(0x72, 0x01, SS_RDEF, 3078 "Session fixation error writing lead-in") }, 3079 /* R */ 3080 { SST(0x72, 0x02, SS_RDEF, 3081 "Session fixation error writing lead-out") }, 3082 /* R */ 3083 { SST(0x72, 0x03, SS_RDEF, 3084 "Session fixation error - incomplete track in session") }, 3085 /* R */ 3086 { SST(0x72, 0x04, SS_RDEF, 3087 "Empty or partially written reserved track") }, 3088 /* R */ 3089 { SST(0x72, 0x05, SS_RDEF, /* XXX TBD */ 3090 "No more track reservations allowed") }, 3091 /* R */ 3092 { SST(0x72, 0x06, SS_RDEF, /* XXX TBD */ 3093 "RMZ extension is not allowed") }, 3094 /* R */ 3095 { SST(0x72, 0x07, SS_RDEF, /* XXX TBD */ 3096 "No more test zone extensions are allowed") }, 3097 /* R */ 3098 { SST(0x73, 0x00, SS_RDEF, 3099 "CD control error") }, 3100 /* R */ 3101 { SST(0x73, 0x01, SS_RDEF, 3102 "Power calibration area almost full") }, 3103 /* R */ 3104 { SST(0x73, 0x02, SS_FATAL | ENOSPC, 3105 "Power calibration area is full") }, 3106 /* R */ 3107 { SST(0x73, 0x03, SS_RDEF, 3108 "Power calibration area error") }, 3109 /* R */ 3110 { SST(0x73, 0x04, SS_RDEF, 3111 "Program memory area update failure") }, 3112 /* R */ 3113 { SST(0x73, 0x05, SS_RDEF, 3114 "Program memory area is full") }, 3115 /* R */ 3116 { SST(0x73, 0x06, SS_RDEF, /* XXX TBD */ 3117 "RMA/PMA is almost full") }, 3118 /* R */ 3119 { SST(0x73, 0x10, SS_RDEF, /* XXX TBD */ 3120 "Current power calibration area almost full") }, 3121 /* R */ 3122 { SST(0x73, 0x11, SS_RDEF, /* XXX TBD */ 3123 "Current power calibration area is full") }, 3124 /* R */ 3125 { SST(0x73, 0x17, SS_RDEF, /* XXX TBD */ 3126 "RDZ is full") }, 3127 /* T */ 3128 { SST(0x74, 0x00, SS_RDEF, /* XXX TBD */ 3129 "Security error") }, 3130 /* T */ 3131 { SST(0x74, 0x01, SS_RDEF, /* XXX TBD */ 3132 "Unable to decrypt data") }, 3133 /* T */ 3134 { SST(0x74, 0x02, SS_RDEF, /* XXX TBD */ 3135 "Unencrypted data encountered while decrypting") }, 3136 /* T */ 3137 { SST(0x74, 0x03, SS_RDEF, /* XXX TBD */ 3138 "Incorrect data encryption key") }, 3139 /* T */ 3140 { SST(0x74, 0x04, SS_RDEF, /* XXX TBD */ 3141 "Cryptographic integrity validation failed") }, 3142 /* T */ 3143 { SST(0x74, 0x05, SS_RDEF, /* XXX TBD */ 3144 "Error decrypting data") }, 3145 /* T */ 3146 { SST(0x74, 0x06, SS_RDEF, /* XXX TBD */ 3147 "Unknown signature verification key") }, 3148 /* T */ 3149 { SST(0x74, 0x07, SS_RDEF, /* XXX TBD */ 3150 "Encryption parameters not useable") }, 3151 /* DT R M E VF */ 3152 { SST(0x74, 0x08, SS_RDEF, /* XXX TBD */ 3153 "Digital signature validation failure") }, 3154 /* T */ 3155 { SST(0x74, 0x09, SS_RDEF, /* XXX TBD */ 3156 "Encryption mode mismatch on read") }, 3157 /* T */ 3158 { SST(0x74, 0x0A, SS_RDEF, /* XXX TBD */ 3159 "Encrypted block not raw read enabled") }, 3160 /* T */ 3161 { SST(0x74, 0x0B, SS_RDEF, /* XXX TBD */ 3162 "Incorrect encryption parameters") }, 3163 /* DT R MAEBKV */ 3164 { SST(0x74, 0x0C, SS_RDEF, /* XXX TBD */ 3165 "Unable to decrypt parameter list") }, 3166 /* T */ 3167 { SST(0x74, 0x0D, SS_RDEF, /* XXX TBD */ 3168 "Encryption algorithm disabled") }, 3169 /* DT R MAEBKV */ 3170 { SST(0x74, 0x10, SS_RDEF, /* XXX TBD */ 3171 "SA creation parameter value invalid") }, 3172 /* DT R MAEBKV */ 3173 { SST(0x74, 0x11, SS_RDEF, /* XXX TBD */ 3174 "SA creation parameter value rejected") }, 3175 /* DT R MAEBKV */ 3176 { SST(0x74, 0x12, SS_RDEF, /* XXX TBD */ 3177 "Invalid SA usage") }, 3178 /* T */ 3179 { SST(0x74, 0x21, SS_RDEF, /* XXX TBD */ 3180 "Data encryption configuration prevented") }, 3181 /* DT R MAEBKV */ 3182 { SST(0x74, 0x30, SS_RDEF, /* XXX TBD */ 3183 "SA creation parameter not supported") }, 3184 /* DT R MAEBKV */ 3185 { SST(0x74, 0x40, SS_RDEF, /* XXX TBD */ 3186 "Authentication failed") }, 3187 /* V */ 3188 { SST(0x74, 0x61, SS_RDEF, /* XXX TBD */ 3189 "External data encryption key manager access error") }, 3190 /* V */ 3191 { SST(0x74, 0x62, SS_RDEF, /* XXX TBD */ 3192 "External data encryption key manager error") }, 3193 /* V */ 3194 { SST(0x74, 0x63, SS_RDEF, /* XXX TBD */ 3195 "External data encryption key not found") }, 3196 /* V */ 3197 { SST(0x74, 0x64, SS_RDEF, /* XXX TBD */ 3198 "External data encryption request not authorized") }, 3199 /* T */ 3200 { SST(0x74, 0x6E, SS_RDEF, /* XXX TBD */ 3201 "External data encryption control timeout") }, 3202 /* T */ 3203 { SST(0x74, 0x6F, SS_RDEF, /* XXX TBD */ 3204 "External data encryption control error") }, 3205 /* DT R M E V */ 3206 { SST(0x74, 0x71, SS_FATAL | EACCES, 3207 "Logical unit access not authorized") }, 3208 /* D */ 3209 { SST(0x74, 0x79, SS_FATAL | EACCES, 3210 "Security conflict in translated device") } 3211 }; 3212 3213 const u_int asc_table_size = nitems(asc_table); 3214 3215 struct asc_key 3216 { 3217 int asc; 3218 int ascq; 3219 }; 3220 3221 static int 3222 ascentrycomp(const void *key, const void *member) 3223 { 3224 int asc; 3225 int ascq; 3226 const struct asc_table_entry *table_entry; 3227 3228 asc = ((const struct asc_key *)key)->asc; 3229 ascq = ((const struct asc_key *)key)->ascq; 3230 table_entry = (const struct asc_table_entry *)member; 3231 3232 if (asc >= table_entry->asc) { 3233 3234 if (asc > table_entry->asc) 3235 return (1); 3236 3237 if (ascq <= table_entry->ascq) { 3238 /* Check for ranges */ 3239 if (ascq == table_entry->ascq 3240 || ((table_entry->action & SSQ_RANGE) != 0 3241 && ascq >= (table_entry - 1)->ascq)) 3242 return (0); 3243 return (-1); 3244 } 3245 return (1); 3246 } 3247 return (-1); 3248 } 3249 3250 static int 3251 senseentrycomp(const void *key, const void *member) 3252 { 3253 int sense_key; 3254 const struct sense_key_table_entry *table_entry; 3255 3256 sense_key = *((const int *)key); 3257 table_entry = (const struct sense_key_table_entry *)member; 3258 3259 if (sense_key >= table_entry->sense_key) { 3260 if (sense_key == table_entry->sense_key) 3261 return (0); 3262 return (1); 3263 } 3264 return (-1); 3265 } 3266 3267 static void 3268 fetchtableentries(int sense_key, int asc, int ascq, 3269 struct scsi_inquiry_data *inq_data, 3270 const struct sense_key_table_entry **sense_entry, 3271 const struct asc_table_entry **asc_entry) 3272 { 3273 caddr_t match; 3274 const struct asc_table_entry *asc_tables[2]; 3275 const struct sense_key_table_entry *sense_tables[2]; 3276 struct asc_key asc_ascq; 3277 size_t asc_tables_size[2]; 3278 size_t sense_tables_size[2]; 3279 int num_asc_tables; 3280 int num_sense_tables; 3281 int i; 3282 3283 /* Default to failure */ 3284 *sense_entry = NULL; 3285 *asc_entry = NULL; 3286 match = NULL; 3287 if (inq_data != NULL) 3288 match = cam_quirkmatch((caddr_t)inq_data, 3289 (caddr_t)sense_quirk_table, 3290 sense_quirk_table_size, 3291 sizeof(*sense_quirk_table), 3292 scsi_inquiry_match); 3293 3294 if (match != NULL) { 3295 struct scsi_sense_quirk_entry *quirk; 3296 3297 quirk = (struct scsi_sense_quirk_entry *)match; 3298 asc_tables[0] = quirk->asc_info; 3299 asc_tables_size[0] = quirk->num_ascs; 3300 asc_tables[1] = asc_table; 3301 asc_tables_size[1] = asc_table_size; 3302 num_asc_tables = 2; 3303 sense_tables[0] = quirk->sense_key_info; 3304 sense_tables_size[0] = quirk->num_sense_keys; 3305 sense_tables[1] = sense_key_table; 3306 sense_tables_size[1] = nitems(sense_key_table); 3307 num_sense_tables = 2; 3308 } else { 3309 asc_tables[0] = asc_table; 3310 asc_tables_size[0] = asc_table_size; 3311 num_asc_tables = 1; 3312 sense_tables[0] = sense_key_table; 3313 sense_tables_size[0] = nitems(sense_key_table); 3314 num_sense_tables = 1; 3315 } 3316 3317 asc_ascq.asc = asc; 3318 asc_ascq.ascq = ascq; 3319 for (i = 0; i < num_asc_tables; i++) { 3320 void *found_entry; 3321 3322 found_entry = bsearch(&asc_ascq, asc_tables[i], 3323 asc_tables_size[i], 3324 sizeof(**asc_tables), 3325 ascentrycomp); 3326 3327 if (found_entry) { 3328 *asc_entry = (struct asc_table_entry *)found_entry; 3329 break; 3330 } 3331 } 3332 3333 for (i = 0; i < num_sense_tables; i++) { 3334 void *found_entry; 3335 3336 found_entry = bsearch(&sense_key, sense_tables[i], 3337 sense_tables_size[i], 3338 sizeof(**sense_tables), 3339 senseentrycomp); 3340 3341 if (found_entry) { 3342 *sense_entry = 3343 (struct sense_key_table_entry *)found_entry; 3344 break; 3345 } 3346 } 3347 } 3348 3349 void 3350 scsi_sense_desc(int sense_key, int asc, int ascq, 3351 struct scsi_inquiry_data *inq_data, 3352 const char **sense_key_desc, const char **asc_desc) 3353 { 3354 const struct asc_table_entry *asc_entry; 3355 const struct sense_key_table_entry *sense_entry; 3356 3357 fetchtableentries(sense_key, asc, ascq, 3358 inq_data, 3359 &sense_entry, 3360 &asc_entry); 3361 3362 if (sense_entry != NULL) 3363 *sense_key_desc = sense_entry->desc; 3364 else 3365 *sense_key_desc = "Invalid Sense Key"; 3366 3367 if (asc_entry != NULL) 3368 *asc_desc = asc_entry->desc; 3369 else if (asc >= 0x80 && asc <= 0xff) 3370 *asc_desc = "Vendor Specific ASC"; 3371 else if (ascq >= 0x80 && ascq <= 0xff) 3372 *asc_desc = "Vendor Specific ASCQ"; 3373 else 3374 *asc_desc = "Reserved ASC/ASCQ pair"; 3375 } 3376 3377 /* 3378 * Given sense and device type information, return the appropriate action. 3379 * If we do not understand the specific error as identified by the ASC/ASCQ 3380 * pair, fall back on the more generic actions derived from the sense key. 3381 */ 3382 scsi_sense_action 3383 scsi_error_action(struct ccb_scsiio *csio, struct scsi_inquiry_data *inq_data, 3384 u_int32_t sense_flags) 3385 { 3386 const struct asc_table_entry *asc_entry; 3387 const struct sense_key_table_entry *sense_entry; 3388 int error_code, sense_key, asc, ascq; 3389 scsi_sense_action action; 3390 3391 if (!scsi_extract_sense_ccb((union ccb *)csio, 3392 &error_code, &sense_key, &asc, &ascq)) { 3393 action = SS_RDEF; 3394 } else if ((error_code == SSD_DEFERRED_ERROR) 3395 || (error_code == SSD_DESC_DEFERRED_ERROR)) { 3396 /* 3397 * XXX dufault@FreeBSD.org 3398 * This error doesn't relate to the command associated 3399 * with this request sense. A deferred error is an error 3400 * for a command that has already returned GOOD status 3401 * (see SCSI2 8.2.14.2). 3402 * 3403 * By my reading of that section, it looks like the current 3404 * command has been cancelled, we should now clean things up 3405 * (hopefully recovering any lost data) and then retry the 3406 * current command. There are two easy choices, both wrong: 3407 * 3408 * 1. Drop through (like we had been doing), thus treating 3409 * this as if the error were for the current command and 3410 * return and stop the current command. 3411 * 3412 * 2. Issue a retry (like I made it do) thus hopefully 3413 * recovering the current transfer, and ignoring the 3414 * fact that we've dropped a command. 3415 * 3416 * These should probably be handled in a device specific 3417 * sense handler or punted back up to a user mode daemon 3418 */ 3419 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; 3420 } else { 3421 fetchtableentries(sense_key, asc, ascq, 3422 inq_data, 3423 &sense_entry, 3424 &asc_entry); 3425 3426 /* 3427 * Override the 'No additional Sense' entry (0,0) 3428 * with the error action of the sense key. 3429 */ 3430 if (asc_entry != NULL 3431 && (asc != 0 || ascq != 0)) 3432 action = asc_entry->action; 3433 else if (sense_entry != NULL) 3434 action = sense_entry->action; 3435 else 3436 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; 3437 3438 if (sense_key == SSD_KEY_RECOVERED_ERROR) { 3439 /* 3440 * The action succeeded but the device wants 3441 * the user to know that some recovery action 3442 * was required. 3443 */ 3444 action &= ~(SS_MASK|SSQ_MASK|SS_ERRMASK); 3445 action |= SS_NOP|SSQ_PRINT_SENSE; 3446 } else if (sense_key == SSD_KEY_ILLEGAL_REQUEST) { 3447 if ((sense_flags & SF_QUIET_IR) != 0) 3448 action &= ~SSQ_PRINT_SENSE; 3449 } else if (sense_key == SSD_KEY_UNIT_ATTENTION) { 3450 if ((sense_flags & SF_RETRY_UA) != 0 3451 && (action & SS_MASK) == SS_FAIL) { 3452 action &= ~(SS_MASK|SSQ_MASK); 3453 action |= SS_RETRY|SSQ_DECREMENT_COUNT| 3454 SSQ_PRINT_SENSE; 3455 } 3456 action |= SSQ_UA; 3457 } 3458 } 3459 if ((action & SS_MASK) >= SS_START && 3460 (sense_flags & SF_NO_RECOVERY)) { 3461 action &= ~SS_MASK; 3462 action |= SS_FAIL; 3463 } else if ((action & SS_MASK) == SS_RETRY && 3464 (sense_flags & SF_NO_RETRY)) { 3465 action &= ~SS_MASK; 3466 action |= SS_FAIL; 3467 } 3468 if ((sense_flags & SF_PRINT_ALWAYS) != 0) 3469 action |= SSQ_PRINT_SENSE; 3470 else if ((sense_flags & SF_NO_PRINT) != 0) 3471 action &= ~SSQ_PRINT_SENSE; 3472 3473 return (action); 3474 } 3475 3476 char * 3477 scsi_cdb_string(u_int8_t *cdb_ptr, char *cdb_string, size_t len) 3478 { 3479 struct sbuf sb; 3480 int error; 3481 3482 if (len == 0) 3483 return (""); 3484 3485 sbuf_new(&sb, cdb_string, len, SBUF_FIXEDLEN); 3486 3487 scsi_cdb_sbuf(cdb_ptr, &sb); 3488 3489 /* ENOMEM just means that the fixed buffer is full, OK to ignore */ 3490 error = sbuf_finish(&sb); 3491 if (error != 0 && error != ENOMEM) 3492 return (""); 3493 3494 return(sbuf_data(&sb)); 3495 } 3496 3497 void 3498 scsi_cdb_sbuf(u_int8_t *cdb_ptr, struct sbuf *sb) 3499 { 3500 u_int8_t cdb_len; 3501 int i; 3502 3503 if (cdb_ptr == NULL) 3504 return; 3505 3506 /* 3507 * This is taken from the SCSI-3 draft spec. 3508 * (T10/1157D revision 0.3) 3509 * The top 3 bits of an opcode are the group code. The next 5 bits 3510 * are the command code. 3511 * Group 0: six byte commands 3512 * Group 1: ten byte commands 3513 * Group 2: ten byte commands 3514 * Group 3: reserved 3515 * Group 4: sixteen byte commands 3516 * Group 5: twelve byte commands 3517 * Group 6: vendor specific 3518 * Group 7: vendor specific 3519 */ 3520 switch((*cdb_ptr >> 5) & 0x7) { 3521 case 0: 3522 cdb_len = 6; 3523 break; 3524 case 1: 3525 case 2: 3526 cdb_len = 10; 3527 break; 3528 case 3: 3529 case 6: 3530 case 7: 3531 /* in this case, just print out the opcode */ 3532 cdb_len = 1; 3533 break; 3534 case 4: 3535 cdb_len = 16; 3536 break; 3537 case 5: 3538 cdb_len = 12; 3539 break; 3540 } 3541 3542 for (i = 0; i < cdb_len; i++) 3543 sbuf_printf(sb, "%02hhx ", cdb_ptr[i]); 3544 3545 return; 3546 } 3547 3548 const char * 3549 scsi_status_string(struct ccb_scsiio *csio) 3550 { 3551 switch(csio->scsi_status) { 3552 case SCSI_STATUS_OK: 3553 return("OK"); 3554 case SCSI_STATUS_CHECK_COND: 3555 return("Check Condition"); 3556 case SCSI_STATUS_BUSY: 3557 return("Busy"); 3558 case SCSI_STATUS_INTERMED: 3559 return("Intermediate"); 3560 case SCSI_STATUS_INTERMED_COND_MET: 3561 return("Intermediate-Condition Met"); 3562 case SCSI_STATUS_RESERV_CONFLICT: 3563 return("Reservation Conflict"); 3564 case SCSI_STATUS_CMD_TERMINATED: 3565 return("Command Terminated"); 3566 case SCSI_STATUS_QUEUE_FULL: 3567 return("Queue Full"); 3568 case SCSI_STATUS_ACA_ACTIVE: 3569 return("ACA Active"); 3570 case SCSI_STATUS_TASK_ABORTED: 3571 return("Task Aborted"); 3572 default: { 3573 static char unkstr[64]; 3574 snprintf(unkstr, sizeof(unkstr), "Unknown %#x", 3575 csio->scsi_status); 3576 return(unkstr); 3577 } 3578 } 3579 } 3580 3581 /* 3582 * scsi_command_string() returns 0 for success and -1 for failure. 3583 */ 3584 #ifdef _KERNEL 3585 int 3586 scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb) 3587 #else /* !_KERNEL */ 3588 int 3589 scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio, 3590 struct sbuf *sb) 3591 #endif /* _KERNEL/!_KERNEL */ 3592 { 3593 struct scsi_inquiry_data *inq_data; 3594 #ifdef _KERNEL 3595 struct ccb_getdev *cgd; 3596 #endif /* _KERNEL */ 3597 3598 #ifdef _KERNEL 3599 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) 3600 return(-1); 3601 /* 3602 * Get the device information. 3603 */ 3604 xpt_setup_ccb(&cgd->ccb_h, 3605 csio->ccb_h.path, 3606 CAM_PRIORITY_NORMAL); 3607 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 3608 xpt_action((union ccb *)cgd); 3609 3610 /* 3611 * If the device is unconfigured, just pretend that it is a hard 3612 * drive. scsi_op_desc() needs this. 3613 */ 3614 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) 3615 cgd->inq_data.device = T_DIRECT; 3616 3617 inq_data = &cgd->inq_data; 3618 3619 #else /* !_KERNEL */ 3620 3621 inq_data = &device->inq_data; 3622 3623 #endif /* _KERNEL/!_KERNEL */ 3624 3625 sbuf_printf(sb, "%s. CDB: ", 3626 scsi_op_desc(scsiio_cdb_ptr(csio)[0], inq_data)); 3627 scsi_cdb_sbuf(scsiio_cdb_ptr(csio), sb); 3628 3629 #ifdef _KERNEL 3630 xpt_free_ccb((union ccb *)cgd); 3631 #endif 3632 3633 return(0); 3634 } 3635 3636 /* 3637 * Iterate over sense descriptors. Each descriptor is passed into iter_func(). 3638 * If iter_func() returns 0, list traversal continues. If iter_func() 3639 * returns non-zero, list traversal is stopped. 3640 */ 3641 void 3642 scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len, 3643 int (*iter_func)(struct scsi_sense_data_desc *sense, 3644 u_int, struct scsi_sense_desc_header *, 3645 void *), void *arg) 3646 { 3647 int cur_pos; 3648 int desc_len; 3649 3650 /* 3651 * First make sure the extra length field is present. 3652 */ 3653 if (SSD_DESC_IS_PRESENT(sense, sense_len, extra_len) == 0) 3654 return; 3655 3656 /* 3657 * The length of data actually returned may be different than the 3658 * extra_len recorded in the structure. 3659 */ 3660 desc_len = sense_len -offsetof(struct scsi_sense_data_desc, sense_desc); 3661 3662 /* 3663 * Limit this further by the extra length reported, and the maximum 3664 * allowed extra length. 3665 */ 3666 desc_len = MIN(desc_len, MIN(sense->extra_len, SSD_EXTRA_MAX)); 3667 3668 /* 3669 * Subtract the size of the header from the descriptor length. 3670 * This is to ensure that we have at least the header left, so we 3671 * don't have to check that inside the loop. This can wind up 3672 * being a negative value. 3673 */ 3674 desc_len -= sizeof(struct scsi_sense_desc_header); 3675 3676 for (cur_pos = 0; cur_pos < desc_len;) { 3677 struct scsi_sense_desc_header *header; 3678 3679 header = (struct scsi_sense_desc_header *) 3680 &sense->sense_desc[cur_pos]; 3681 3682 /* 3683 * Check to make sure we have the entire descriptor. We 3684 * don't call iter_func() unless we do. 3685 * 3686 * Note that although cur_pos is at the beginning of the 3687 * descriptor, desc_len already has the header length 3688 * subtracted. So the comparison of the length in the 3689 * header (which does not include the header itself) to 3690 * desc_len - cur_pos is correct. 3691 */ 3692 if (header->length > (desc_len - cur_pos)) 3693 break; 3694 3695 if (iter_func(sense, sense_len, header, arg) != 0) 3696 break; 3697 3698 cur_pos += sizeof(*header) + header->length; 3699 } 3700 } 3701 3702 struct scsi_find_desc_info { 3703 uint8_t desc_type; 3704 struct scsi_sense_desc_header *header; 3705 }; 3706 3707 static int 3708 scsi_find_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, 3709 struct scsi_sense_desc_header *header, void *arg) 3710 { 3711 struct scsi_find_desc_info *desc_info; 3712 3713 desc_info = (struct scsi_find_desc_info *)arg; 3714 3715 if (header->desc_type == desc_info->desc_type) { 3716 desc_info->header = header; 3717 3718 /* We found the descriptor, tell the iterator to stop. */ 3719 return (1); 3720 } else 3721 return (0); 3722 } 3723 3724 /* 3725 * Given a descriptor type, return a pointer to it if it is in the sense 3726 * data and not truncated. Avoiding truncating sense data will simplify 3727 * things significantly for the caller. 3728 */ 3729 uint8_t * 3730 scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len, 3731 uint8_t desc_type) 3732 { 3733 struct scsi_find_desc_info desc_info; 3734 3735 desc_info.desc_type = desc_type; 3736 desc_info.header = NULL; 3737 3738 scsi_desc_iterate(sense, sense_len, scsi_find_desc_func, &desc_info); 3739 3740 return ((uint8_t *)desc_info.header); 3741 } 3742 3743 /* 3744 * Fill in SCSI descriptor sense data with the specified parameters. 3745 */ 3746 static void 3747 scsi_set_sense_data_desc_va(struct scsi_sense_data *sense_data, 3748 u_int *sense_len, scsi_sense_data_type sense_format, int current_error, 3749 int sense_key, int asc, int ascq, va_list ap) 3750 { 3751 struct scsi_sense_data_desc *sense; 3752 scsi_sense_elem_type elem_type; 3753 int space, len; 3754 uint8_t *desc, *data; 3755 3756 memset(sense_data, 0, sizeof(*sense_data)); 3757 sense = (struct scsi_sense_data_desc *)sense_data; 3758 if (current_error != 0) 3759 sense->error_code = SSD_DESC_CURRENT_ERROR; 3760 else 3761 sense->error_code = SSD_DESC_DEFERRED_ERROR; 3762 sense->sense_key = sense_key; 3763 sense->add_sense_code = asc; 3764 sense->add_sense_code_qual = ascq; 3765 sense->flags = 0; 3766 3767 desc = &sense->sense_desc[0]; 3768 space = *sense_len - offsetof(struct scsi_sense_data_desc, sense_desc); 3769 while ((elem_type = va_arg(ap, scsi_sense_elem_type)) != 3770 SSD_ELEM_NONE) { 3771 if (elem_type >= SSD_ELEM_MAX) { 3772 printf("%s: invalid sense type %d\n", __func__, 3773 elem_type); 3774 break; 3775 } 3776 len = va_arg(ap, int); 3777 data = va_arg(ap, uint8_t *); 3778 3779 switch (elem_type) { 3780 case SSD_ELEM_SKIP: 3781 break; 3782 case SSD_ELEM_DESC: 3783 if (space < len) { 3784 sense->flags |= SSDD_SDAT_OVFL; 3785 break; 3786 } 3787 bcopy(data, desc, len); 3788 desc += len; 3789 space -= len; 3790 break; 3791 case SSD_ELEM_SKS: { 3792 struct scsi_sense_sks *sks = (void *)desc; 3793 3794 if (len > sizeof(sks->sense_key_spec)) 3795 break; 3796 if (space < sizeof(*sks)) { 3797 sense->flags |= SSDD_SDAT_OVFL; 3798 break; 3799 } 3800 sks->desc_type = SSD_DESC_SKS; 3801 sks->length = sizeof(*sks) - 3802 (offsetof(struct scsi_sense_sks, length) + 1); 3803 bcopy(data, &sks->sense_key_spec, len); 3804 desc += sizeof(*sks); 3805 space -= sizeof(*sks); 3806 break; 3807 } 3808 case SSD_ELEM_COMMAND: { 3809 struct scsi_sense_command *cmd = (void *)desc; 3810 3811 if (len > sizeof(cmd->command_info)) 3812 break; 3813 if (space < sizeof(*cmd)) { 3814 sense->flags |= SSDD_SDAT_OVFL; 3815 break; 3816 } 3817 cmd->desc_type = SSD_DESC_COMMAND; 3818 cmd->length = sizeof(*cmd) - 3819 (offsetof(struct scsi_sense_command, length) + 1); 3820 bcopy(data, &cmd->command_info[ 3821 sizeof(cmd->command_info) - len], len); 3822 desc += sizeof(*cmd); 3823 space -= sizeof(*cmd); 3824 break; 3825 } 3826 case SSD_ELEM_INFO: { 3827 struct scsi_sense_info *info = (void *)desc; 3828 3829 if (len > sizeof(info->info)) 3830 break; 3831 if (space < sizeof(*info)) { 3832 sense->flags |= SSDD_SDAT_OVFL; 3833 break; 3834 } 3835 info->desc_type = SSD_DESC_INFO; 3836 info->length = sizeof(*info) - 3837 (offsetof(struct scsi_sense_info, length) + 1); 3838 info->byte2 = SSD_INFO_VALID; 3839 bcopy(data, &info->info[sizeof(info->info) - len], len); 3840 desc += sizeof(*info); 3841 space -= sizeof(*info); 3842 break; 3843 } 3844 case SSD_ELEM_FRU: { 3845 struct scsi_sense_fru *fru = (void *)desc; 3846 3847 if (len > sizeof(fru->fru)) 3848 break; 3849 if (space < sizeof(*fru)) { 3850 sense->flags |= SSDD_SDAT_OVFL; 3851 break; 3852 } 3853 fru->desc_type = SSD_DESC_FRU; 3854 fru->length = sizeof(*fru) - 3855 (offsetof(struct scsi_sense_fru, length) + 1); 3856 fru->fru = *data; 3857 desc += sizeof(*fru); 3858 space -= sizeof(*fru); 3859 break; 3860 } 3861 case SSD_ELEM_STREAM: { 3862 struct scsi_sense_stream *stream = (void *)desc; 3863 3864 if (len > sizeof(stream->byte3)) 3865 break; 3866 if (space < sizeof(*stream)) { 3867 sense->flags |= SSDD_SDAT_OVFL; 3868 break; 3869 } 3870 stream->desc_type = SSD_DESC_STREAM; 3871 stream->length = sizeof(*stream) - 3872 (offsetof(struct scsi_sense_stream, length) + 1); 3873 stream->byte3 = *data; 3874 desc += sizeof(*stream); 3875 space -= sizeof(*stream); 3876 break; 3877 } 3878 default: 3879 /* 3880 * We shouldn't get here, but if we do, do nothing. 3881 * We've already consumed the arguments above. 3882 */ 3883 break; 3884 } 3885 } 3886 sense->extra_len = desc - &sense->sense_desc[0]; 3887 *sense_len = offsetof(struct scsi_sense_data_desc, extra_len) + 1 + 3888 sense->extra_len; 3889 } 3890 3891 /* 3892 * Fill in SCSI fixed sense data with the specified parameters. 3893 */ 3894 static void 3895 scsi_set_sense_data_fixed_va(struct scsi_sense_data *sense_data, 3896 u_int *sense_len, scsi_sense_data_type sense_format, int current_error, 3897 int sense_key, int asc, int ascq, va_list ap) 3898 { 3899 struct scsi_sense_data_fixed *sense; 3900 scsi_sense_elem_type elem_type; 3901 uint8_t *data; 3902 int len; 3903 3904 memset(sense_data, 0, sizeof(*sense_data)); 3905 sense = (struct scsi_sense_data_fixed *)sense_data; 3906 if (current_error != 0) 3907 sense->error_code = SSD_CURRENT_ERROR; 3908 else 3909 sense->error_code = SSD_DEFERRED_ERROR; 3910 sense->flags = sense_key & SSD_KEY; 3911 sense->extra_len = 0; 3912 if (*sense_len >= 13) { 3913 sense->add_sense_code = asc; 3914 sense->extra_len = MAX(sense->extra_len, 5); 3915 } else 3916 sense->flags |= SSD_SDAT_OVFL; 3917 if (*sense_len >= 14) { 3918 sense->add_sense_code_qual = ascq; 3919 sense->extra_len = MAX(sense->extra_len, 6); 3920 } else 3921 sense->flags |= SSD_SDAT_OVFL; 3922 3923 while ((elem_type = va_arg(ap, scsi_sense_elem_type)) != 3924 SSD_ELEM_NONE) { 3925 if (elem_type >= SSD_ELEM_MAX) { 3926 printf("%s: invalid sense type %d\n", __func__, 3927 elem_type); 3928 break; 3929 } 3930 len = va_arg(ap, int); 3931 data = va_arg(ap, uint8_t *); 3932 3933 switch (elem_type) { 3934 case SSD_ELEM_SKIP: 3935 break; 3936 case SSD_ELEM_SKS: 3937 if (len > sizeof(sense->sense_key_spec)) 3938 break; 3939 if (*sense_len < 18) { 3940 sense->flags |= SSD_SDAT_OVFL; 3941 break; 3942 } 3943 bcopy(data, &sense->sense_key_spec[0], len); 3944 sense->extra_len = MAX(sense->extra_len, 10); 3945 break; 3946 case SSD_ELEM_COMMAND: 3947 if (*sense_len < 12) { 3948 sense->flags |= SSD_SDAT_OVFL; 3949 break; 3950 } 3951 if (len > sizeof(sense->cmd_spec_info)) { 3952 data += len - sizeof(sense->cmd_spec_info); 3953 len = sizeof(sense->cmd_spec_info); 3954 } 3955 bcopy(data, &sense->cmd_spec_info[ 3956 sizeof(sense->cmd_spec_info) - len], len); 3957 sense->extra_len = MAX(sense->extra_len, 4); 3958 break; 3959 case SSD_ELEM_INFO: 3960 /* Set VALID bit only if no overflow. */ 3961 sense->error_code |= SSD_ERRCODE_VALID; 3962 while (len > sizeof(sense->info)) { 3963 if (data[0] != 0) 3964 sense->error_code &= ~SSD_ERRCODE_VALID; 3965 data ++; 3966 len --; 3967 } 3968 bcopy(data, &sense->info[sizeof(sense->info) - len], len); 3969 break; 3970 case SSD_ELEM_FRU: 3971 if (*sense_len < 15) { 3972 sense->flags |= SSD_SDAT_OVFL; 3973 break; 3974 } 3975 sense->fru = *data; 3976 sense->extra_len = MAX(sense->extra_len, 7); 3977 break; 3978 case SSD_ELEM_STREAM: 3979 sense->flags |= *data & 3980 (SSD_ILI | SSD_EOM | SSD_FILEMARK); 3981 break; 3982 default: 3983 3984 /* 3985 * We can't handle that in fixed format. Skip it. 3986 */ 3987 break; 3988 } 3989 } 3990 *sense_len = offsetof(struct scsi_sense_data_fixed, extra_len) + 1 + 3991 sense->extra_len; 3992 } 3993 3994 /* 3995 * Fill in SCSI sense data with the specified parameters. This routine can 3996 * fill in either fixed or descriptor type sense data. 3997 */ 3998 void 3999 scsi_set_sense_data_va(struct scsi_sense_data *sense_data, u_int *sense_len, 4000 scsi_sense_data_type sense_format, int current_error, 4001 int sense_key, int asc, int ascq, va_list ap) 4002 { 4003 4004 if (*sense_len > SSD_FULL_SIZE) 4005 *sense_len = SSD_FULL_SIZE; 4006 if (sense_format == SSD_TYPE_DESC) 4007 scsi_set_sense_data_desc_va(sense_data, sense_len, 4008 sense_format, current_error, sense_key, asc, ascq, ap); 4009 else 4010 scsi_set_sense_data_fixed_va(sense_data, sense_len, 4011 sense_format, current_error, sense_key, asc, ascq, ap); 4012 } 4013 4014 void 4015 scsi_set_sense_data(struct scsi_sense_data *sense_data, 4016 scsi_sense_data_type sense_format, int current_error, 4017 int sense_key, int asc, int ascq, ...) 4018 { 4019 va_list ap; 4020 u_int sense_len = SSD_FULL_SIZE; 4021 4022 va_start(ap, ascq); 4023 scsi_set_sense_data_va(sense_data, &sense_len, sense_format, 4024 current_error, sense_key, asc, ascq, ap); 4025 va_end(ap); 4026 } 4027 4028 void 4029 scsi_set_sense_data_len(struct scsi_sense_data *sense_data, u_int *sense_len, 4030 scsi_sense_data_type sense_format, int current_error, 4031 int sense_key, int asc, int ascq, ...) 4032 { 4033 va_list ap; 4034 4035 va_start(ap, ascq); 4036 scsi_set_sense_data_va(sense_data, sense_len, sense_format, 4037 current_error, sense_key, asc, ascq, ap); 4038 va_end(ap); 4039 } 4040 4041 /* 4042 * Get sense information for three similar sense data types. 4043 */ 4044 int 4045 scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len, 4046 uint8_t info_type, uint64_t *info, int64_t *signed_info) 4047 { 4048 scsi_sense_data_type sense_type; 4049 4050 if (sense_len == 0) 4051 goto bailout; 4052 4053 sense_type = scsi_sense_type(sense_data); 4054 4055 switch (sense_type) { 4056 case SSD_TYPE_DESC: { 4057 struct scsi_sense_data_desc *sense; 4058 uint8_t *desc; 4059 4060 sense = (struct scsi_sense_data_desc *)sense_data; 4061 4062 desc = scsi_find_desc(sense, sense_len, info_type); 4063 if (desc == NULL) 4064 goto bailout; 4065 4066 switch (info_type) { 4067 case SSD_DESC_INFO: { 4068 struct scsi_sense_info *info_desc; 4069 4070 info_desc = (struct scsi_sense_info *)desc; 4071 4072 if ((info_desc->byte2 & SSD_INFO_VALID) == 0) 4073 goto bailout; 4074 4075 *info = scsi_8btou64(info_desc->info); 4076 if (signed_info != NULL) 4077 *signed_info = *info; 4078 break; 4079 } 4080 case SSD_DESC_COMMAND: { 4081 struct scsi_sense_command *cmd_desc; 4082 4083 cmd_desc = (struct scsi_sense_command *)desc; 4084 4085 *info = scsi_8btou64(cmd_desc->command_info); 4086 if (signed_info != NULL) 4087 *signed_info = *info; 4088 break; 4089 } 4090 case SSD_DESC_FRU: { 4091 struct scsi_sense_fru *fru_desc; 4092 4093 fru_desc = (struct scsi_sense_fru *)desc; 4094 4095 if (fru_desc->fru == 0) 4096 goto bailout; 4097 4098 *info = fru_desc->fru; 4099 if (signed_info != NULL) 4100 *signed_info = (int8_t)fru_desc->fru; 4101 break; 4102 } 4103 default: 4104 goto bailout; 4105 break; 4106 } 4107 break; 4108 } 4109 case SSD_TYPE_FIXED: { 4110 struct scsi_sense_data_fixed *sense; 4111 4112 sense = (struct scsi_sense_data_fixed *)sense_data; 4113 4114 switch (info_type) { 4115 case SSD_DESC_INFO: { 4116 uint32_t info_val; 4117 4118 if ((sense->error_code & SSD_ERRCODE_VALID) == 0) 4119 goto bailout; 4120 4121 if (SSD_FIXED_IS_PRESENT(sense, sense_len, info) == 0) 4122 goto bailout; 4123 4124 info_val = scsi_4btoul(sense->info); 4125 4126 *info = info_val; 4127 if (signed_info != NULL) 4128 *signed_info = (int32_t)info_val; 4129 break; 4130 } 4131 case SSD_DESC_COMMAND: { 4132 uint32_t cmd_val; 4133 4134 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, 4135 cmd_spec_info) == 0) 4136 || (SSD_FIXED_IS_FILLED(sense, cmd_spec_info) == 0)) 4137 goto bailout; 4138 4139 cmd_val = scsi_4btoul(sense->cmd_spec_info); 4140 if (cmd_val == 0) 4141 goto bailout; 4142 4143 *info = cmd_val; 4144 if (signed_info != NULL) 4145 *signed_info = (int32_t)cmd_val; 4146 break; 4147 } 4148 case SSD_DESC_FRU: 4149 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, fru) == 0) 4150 || (SSD_FIXED_IS_FILLED(sense, fru) == 0)) 4151 goto bailout; 4152 4153 if (sense->fru == 0) 4154 goto bailout; 4155 4156 *info = sense->fru; 4157 if (signed_info != NULL) 4158 *signed_info = (int8_t)sense->fru; 4159 break; 4160 default: 4161 goto bailout; 4162 break; 4163 } 4164 break; 4165 } 4166 default: 4167 goto bailout; 4168 break; 4169 } 4170 4171 return (0); 4172 bailout: 4173 return (1); 4174 } 4175 4176 int 4177 scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks) 4178 { 4179 scsi_sense_data_type sense_type; 4180 4181 if (sense_len == 0) 4182 goto bailout; 4183 4184 sense_type = scsi_sense_type(sense_data); 4185 4186 switch (sense_type) { 4187 case SSD_TYPE_DESC: { 4188 struct scsi_sense_data_desc *sense; 4189 struct scsi_sense_sks *desc; 4190 4191 sense = (struct scsi_sense_data_desc *)sense_data; 4192 4193 desc = (struct scsi_sense_sks *)scsi_find_desc(sense, sense_len, 4194 SSD_DESC_SKS); 4195 if (desc == NULL) 4196 goto bailout; 4197 4198 if ((desc->sense_key_spec[0] & SSD_SKS_VALID) == 0) 4199 goto bailout; 4200 4201 bcopy(desc->sense_key_spec, sks, sizeof(desc->sense_key_spec)); 4202 break; 4203 } 4204 case SSD_TYPE_FIXED: { 4205 struct scsi_sense_data_fixed *sense; 4206 4207 sense = (struct scsi_sense_data_fixed *)sense_data; 4208 4209 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, sense_key_spec)== 0) 4210 || (SSD_FIXED_IS_FILLED(sense, sense_key_spec) == 0)) 4211 goto bailout; 4212 4213 if ((sense->sense_key_spec[0] & SSD_SCS_VALID) == 0) 4214 goto bailout; 4215 4216 bcopy(sense->sense_key_spec, sks,sizeof(sense->sense_key_spec)); 4217 break; 4218 } 4219 default: 4220 goto bailout; 4221 break; 4222 } 4223 return (0); 4224 bailout: 4225 return (1); 4226 } 4227 4228 /* 4229 * Provide a common interface for fixed and descriptor sense to detect 4230 * whether we have block-specific sense information. It is clear by the 4231 * presence of the block descriptor in descriptor mode, but we have to 4232 * infer from the inquiry data and ILI bit in fixed mode. 4233 */ 4234 int 4235 scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len, 4236 struct scsi_inquiry_data *inq_data, uint8_t *block_bits) 4237 { 4238 scsi_sense_data_type sense_type; 4239 4240 if (inq_data != NULL) { 4241 switch (SID_TYPE(inq_data)) { 4242 case T_DIRECT: 4243 case T_RBC: 4244 case T_ZBC_HM: 4245 break; 4246 default: 4247 goto bailout; 4248 break; 4249 } 4250 } 4251 4252 sense_type = scsi_sense_type(sense_data); 4253 4254 switch (sense_type) { 4255 case SSD_TYPE_DESC: { 4256 struct scsi_sense_data_desc *sense; 4257 struct scsi_sense_block *block; 4258 4259 sense = (struct scsi_sense_data_desc *)sense_data; 4260 4261 block = (struct scsi_sense_block *)scsi_find_desc(sense, 4262 sense_len, SSD_DESC_BLOCK); 4263 if (block == NULL) 4264 goto bailout; 4265 4266 *block_bits = block->byte3; 4267 break; 4268 } 4269 case SSD_TYPE_FIXED: { 4270 struct scsi_sense_data_fixed *sense; 4271 4272 sense = (struct scsi_sense_data_fixed *)sense_data; 4273 4274 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) 4275 goto bailout; 4276 4277 *block_bits = sense->flags & SSD_ILI; 4278 break; 4279 } 4280 default: 4281 goto bailout; 4282 break; 4283 } 4284 return (0); 4285 bailout: 4286 return (1); 4287 } 4288 4289 int 4290 scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len, 4291 struct scsi_inquiry_data *inq_data, uint8_t *stream_bits) 4292 { 4293 scsi_sense_data_type sense_type; 4294 4295 if (inq_data != NULL) { 4296 switch (SID_TYPE(inq_data)) { 4297 case T_SEQUENTIAL: 4298 break; 4299 default: 4300 goto bailout; 4301 break; 4302 } 4303 } 4304 4305 sense_type = scsi_sense_type(sense_data); 4306 4307 switch (sense_type) { 4308 case SSD_TYPE_DESC: { 4309 struct scsi_sense_data_desc *sense; 4310 struct scsi_sense_stream *stream; 4311 4312 sense = (struct scsi_sense_data_desc *)sense_data; 4313 4314 stream = (struct scsi_sense_stream *)scsi_find_desc(sense, 4315 sense_len, SSD_DESC_STREAM); 4316 if (stream == NULL) 4317 goto bailout; 4318 4319 *stream_bits = stream->byte3; 4320 break; 4321 } 4322 case SSD_TYPE_FIXED: { 4323 struct scsi_sense_data_fixed *sense; 4324 4325 sense = (struct scsi_sense_data_fixed *)sense_data; 4326 4327 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) 4328 goto bailout; 4329 4330 *stream_bits = sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK); 4331 break; 4332 } 4333 default: 4334 goto bailout; 4335 break; 4336 } 4337 return (0); 4338 bailout: 4339 return (1); 4340 } 4341 4342 void 4343 scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, 4344 struct scsi_inquiry_data *inq_data, uint64_t info) 4345 { 4346 sbuf_printf(sb, "Info: %#jx", info); 4347 } 4348 4349 void 4350 scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, 4351 struct scsi_inquiry_data *inq_data, uint64_t csi) 4352 { 4353 sbuf_printf(sb, "Command Specific Info: %#jx", csi); 4354 } 4355 4356 4357 void 4358 scsi_progress_sbuf(struct sbuf *sb, uint16_t progress) 4359 { 4360 sbuf_printf(sb, "Progress: %d%% (%d/%d) complete", 4361 (progress * 100) / SSD_SKS_PROGRESS_DENOM, 4362 progress, SSD_SKS_PROGRESS_DENOM); 4363 } 4364 4365 /* 4366 * Returns 1 for failure (i.e. SKS isn't valid) and 0 for success. 4367 */ 4368 int 4369 scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks) 4370 { 4371 4372 switch (sense_key) { 4373 case SSD_KEY_ILLEGAL_REQUEST: { 4374 struct scsi_sense_sks_field *field; 4375 int bad_command; 4376 char tmpstr[40]; 4377 4378 /*Field Pointer*/ 4379 field = (struct scsi_sense_sks_field *)sks; 4380 4381 if (field->byte0 & SSD_SKS_FIELD_CMD) 4382 bad_command = 1; 4383 else 4384 bad_command = 0; 4385 4386 tmpstr[0] = '\0'; 4387 4388 /* Bit pointer is valid */ 4389 if (field->byte0 & SSD_SKS_BPV) 4390 snprintf(tmpstr, sizeof(tmpstr), "bit %d ", 4391 field->byte0 & SSD_SKS_BIT_VALUE); 4392 4393 sbuf_printf(sb, "%s byte %d %sis invalid", 4394 bad_command ? "Command" : "Data", 4395 scsi_2btoul(field->field), tmpstr); 4396 break; 4397 } 4398 case SSD_KEY_UNIT_ATTENTION: { 4399 struct scsi_sense_sks_overflow *overflow; 4400 4401 overflow = (struct scsi_sense_sks_overflow *)sks; 4402 4403 /*UA Condition Queue Overflow*/ 4404 sbuf_printf(sb, "Unit Attention Condition Queue %s", 4405 (overflow->byte0 & SSD_SKS_OVERFLOW_SET) ? 4406 "Overflowed" : "Did Not Overflow??"); 4407 break; 4408 } 4409 case SSD_KEY_RECOVERED_ERROR: 4410 case SSD_KEY_HARDWARE_ERROR: 4411 case SSD_KEY_MEDIUM_ERROR: { 4412 struct scsi_sense_sks_retry *retry; 4413 4414 /*Actual Retry Count*/ 4415 retry = (struct scsi_sense_sks_retry *)sks; 4416 4417 sbuf_printf(sb, "Actual Retry Count: %d", 4418 scsi_2btoul(retry->actual_retry_count)); 4419 break; 4420 } 4421 case SSD_KEY_NO_SENSE: 4422 case SSD_KEY_NOT_READY: { 4423 struct scsi_sense_sks_progress *progress; 4424 int progress_val; 4425 4426 /*Progress Indication*/ 4427 progress = (struct scsi_sense_sks_progress *)sks; 4428 progress_val = scsi_2btoul(progress->progress); 4429 4430 scsi_progress_sbuf(sb, progress_val); 4431 break; 4432 } 4433 case SSD_KEY_COPY_ABORTED: { 4434 struct scsi_sense_sks_segment *segment; 4435 char tmpstr[40]; 4436 4437 /*Segment Pointer*/ 4438 segment = (struct scsi_sense_sks_segment *)sks; 4439 4440 tmpstr[0] = '\0'; 4441 4442 if (segment->byte0 & SSD_SKS_SEGMENT_BPV) 4443 snprintf(tmpstr, sizeof(tmpstr), "bit %d ", 4444 segment->byte0 & SSD_SKS_SEGMENT_BITPTR); 4445 4446 sbuf_printf(sb, "%s byte %d %sis invalid", (segment->byte0 & 4447 SSD_SKS_SEGMENT_SD) ? "Segment" : "Data", 4448 scsi_2btoul(segment->field), tmpstr); 4449 break; 4450 } 4451 default: 4452 sbuf_printf(sb, "Sense Key Specific: %#x,%#x", sks[0], 4453 scsi_2btoul(&sks[1])); 4454 break; 4455 } 4456 4457 return (0); 4458 } 4459 4460 void 4461 scsi_fru_sbuf(struct sbuf *sb, uint64_t fru) 4462 { 4463 sbuf_printf(sb, "Field Replaceable Unit: %d", (int)fru); 4464 } 4465 4466 void 4467 scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits) 4468 { 4469 int need_comma; 4470 4471 need_comma = 0; 4472 /* 4473 * XXX KDM this needs more descriptive decoding. 4474 */ 4475 sbuf_printf(sb, "Stream Command Sense Data: "); 4476 if (stream_bits & SSD_DESC_STREAM_FM) { 4477 sbuf_printf(sb, "Filemark"); 4478 need_comma = 1; 4479 } 4480 4481 if (stream_bits & SSD_DESC_STREAM_EOM) { 4482 sbuf_printf(sb, "%sEOM", (need_comma) ? "," : ""); 4483 need_comma = 1; 4484 } 4485 4486 if (stream_bits & SSD_DESC_STREAM_ILI) 4487 sbuf_printf(sb, "%sILI", (need_comma) ? "," : ""); 4488 } 4489 4490 void 4491 scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits) 4492 { 4493 4494 sbuf_printf(sb, "Block Command Sense Data: "); 4495 if (block_bits & SSD_DESC_BLOCK_ILI) 4496 sbuf_printf(sb, "ILI"); 4497 } 4498 4499 void 4500 scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4501 u_int sense_len, uint8_t *cdb, int cdb_len, 4502 struct scsi_inquiry_data *inq_data, 4503 struct scsi_sense_desc_header *header) 4504 { 4505 struct scsi_sense_info *info; 4506 4507 info = (struct scsi_sense_info *)header; 4508 4509 if ((info->byte2 & SSD_INFO_VALID) == 0) 4510 return; 4511 4512 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(info->info)); 4513 } 4514 4515 void 4516 scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4517 u_int sense_len, uint8_t *cdb, int cdb_len, 4518 struct scsi_inquiry_data *inq_data, 4519 struct scsi_sense_desc_header *header) 4520 { 4521 struct scsi_sense_command *command; 4522 4523 command = (struct scsi_sense_command *)header; 4524 4525 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, 4526 scsi_8btou64(command->command_info)); 4527 } 4528 4529 void 4530 scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4531 u_int sense_len, uint8_t *cdb, int cdb_len, 4532 struct scsi_inquiry_data *inq_data, 4533 struct scsi_sense_desc_header *header) 4534 { 4535 struct scsi_sense_sks *sks; 4536 int error_code, sense_key, asc, ascq; 4537 4538 sks = (struct scsi_sense_sks *)header; 4539 4540 if ((sks->sense_key_spec[0] & SSD_SKS_VALID) == 0) 4541 return; 4542 4543 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, 4544 &asc, &ascq, /*show_errors*/ 1); 4545 4546 scsi_sks_sbuf(sb, sense_key, sks->sense_key_spec); 4547 } 4548 4549 void 4550 scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4551 u_int sense_len, uint8_t *cdb, int cdb_len, 4552 struct scsi_inquiry_data *inq_data, 4553 struct scsi_sense_desc_header *header) 4554 { 4555 struct scsi_sense_fru *fru; 4556 4557 fru = (struct scsi_sense_fru *)header; 4558 4559 if (fru->fru == 0) 4560 return; 4561 4562 scsi_fru_sbuf(sb, (uint64_t)fru->fru); 4563 } 4564 4565 void 4566 scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4567 u_int sense_len, uint8_t *cdb, int cdb_len, 4568 struct scsi_inquiry_data *inq_data, 4569 struct scsi_sense_desc_header *header) 4570 { 4571 struct scsi_sense_stream *stream; 4572 4573 stream = (struct scsi_sense_stream *)header; 4574 scsi_stream_sbuf(sb, stream->byte3); 4575 } 4576 4577 void 4578 scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4579 u_int sense_len, uint8_t *cdb, int cdb_len, 4580 struct scsi_inquiry_data *inq_data, 4581 struct scsi_sense_desc_header *header) 4582 { 4583 struct scsi_sense_block *block; 4584 4585 block = (struct scsi_sense_block *)header; 4586 scsi_block_sbuf(sb, block->byte3); 4587 } 4588 4589 void 4590 scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4591 u_int sense_len, uint8_t *cdb, int cdb_len, 4592 struct scsi_inquiry_data *inq_data, 4593 struct scsi_sense_desc_header *header) 4594 { 4595 struct scsi_sense_progress *progress; 4596 const char *sense_key_desc; 4597 const char *asc_desc; 4598 int progress_val; 4599 4600 progress = (struct scsi_sense_progress *)header; 4601 4602 /* 4603 * Get descriptions for the sense key, ASC, and ASCQ in the 4604 * progress descriptor. These could be different than the values 4605 * in the overall sense data. 4606 */ 4607 scsi_sense_desc(progress->sense_key, progress->add_sense_code, 4608 progress->add_sense_code_qual, inq_data, 4609 &sense_key_desc, &asc_desc); 4610 4611 progress_val = scsi_2btoul(progress->progress); 4612 4613 /* 4614 * The progress indicator is for the operation described by the 4615 * sense key, ASC, and ASCQ in the descriptor. 4616 */ 4617 sbuf_cat(sb, sense_key_desc); 4618 sbuf_printf(sb, " asc:%x,%x (%s): ", progress->add_sense_code, 4619 progress->add_sense_code_qual, asc_desc); 4620 scsi_progress_sbuf(sb, progress_val); 4621 } 4622 4623 void 4624 scsi_sense_ata_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4625 u_int sense_len, uint8_t *cdb, int cdb_len, 4626 struct scsi_inquiry_data *inq_data, 4627 struct scsi_sense_desc_header *header) 4628 { 4629 struct scsi_sense_ata_ret_desc *res; 4630 4631 res = (struct scsi_sense_ata_ret_desc *)header; 4632 4633 sbuf_printf(sb, "ATA status: %02x (%s%s%s%s%s%s%s%s), ", 4634 res->status, 4635 (res->status & 0x80) ? "BSY " : "", 4636 (res->status & 0x40) ? "DRDY " : "", 4637 (res->status & 0x20) ? "DF " : "", 4638 (res->status & 0x10) ? "SERV " : "", 4639 (res->status & 0x08) ? "DRQ " : "", 4640 (res->status & 0x04) ? "CORR " : "", 4641 (res->status & 0x02) ? "IDX " : "", 4642 (res->status & 0x01) ? "ERR" : ""); 4643 if (res->status & 1) { 4644 sbuf_printf(sb, "error: %02x (%s%s%s%s%s%s%s%s), ", 4645 res->error, 4646 (res->error & 0x80) ? "ICRC " : "", 4647 (res->error & 0x40) ? "UNC " : "", 4648 (res->error & 0x20) ? "MC " : "", 4649 (res->error & 0x10) ? "IDNF " : "", 4650 (res->error & 0x08) ? "MCR " : "", 4651 (res->error & 0x04) ? "ABRT " : "", 4652 (res->error & 0x02) ? "NM " : "", 4653 (res->error & 0x01) ? "ILI" : ""); 4654 } 4655 4656 if (res->flags & SSD_DESC_ATA_FLAG_EXTEND) { 4657 sbuf_printf(sb, "count: %02x%02x, ", 4658 res->count_15_8, res->count_7_0); 4659 sbuf_printf(sb, "LBA: %02x%02x%02x%02x%02x%02x, ", 4660 res->lba_47_40, res->lba_39_32, res->lba_31_24, 4661 res->lba_23_16, res->lba_15_8, res->lba_7_0); 4662 } else { 4663 sbuf_printf(sb, "count: %02x, ", res->count_7_0); 4664 sbuf_printf(sb, "LBA: %02x%02x%02x, ", 4665 res->lba_23_16, res->lba_15_8, res->lba_7_0); 4666 } 4667 sbuf_printf(sb, "device: %02x, ", res->device); 4668 } 4669 4670 void 4671 scsi_sense_forwarded_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4672 u_int sense_len, uint8_t *cdb, int cdb_len, 4673 struct scsi_inquiry_data *inq_data, 4674 struct scsi_sense_desc_header *header) 4675 { 4676 struct scsi_sense_forwarded *forwarded; 4677 const char *sense_key_desc; 4678 const char *asc_desc; 4679 int error_code, sense_key, asc, ascq; 4680 4681 forwarded = (struct scsi_sense_forwarded *)header; 4682 scsi_extract_sense_len((struct scsi_sense_data *)forwarded->sense_data, 4683 forwarded->length - 2, &error_code, &sense_key, &asc, &ascq, 1); 4684 scsi_sense_desc(sense_key, asc, ascq, NULL, &sense_key_desc, &asc_desc); 4685 4686 sbuf_printf(sb, "Forwarded sense: %s asc:%x,%x (%s): ", 4687 sense_key_desc, asc, ascq, asc_desc); 4688 } 4689 4690 /* 4691 * Generic sense descriptor printing routine. This is used when we have 4692 * not yet implemented a specific printing routine for this descriptor. 4693 */ 4694 void 4695 scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4696 u_int sense_len, uint8_t *cdb, int cdb_len, 4697 struct scsi_inquiry_data *inq_data, 4698 struct scsi_sense_desc_header *header) 4699 { 4700 int i; 4701 uint8_t *buf_ptr; 4702 4703 sbuf_printf(sb, "Descriptor %#x:", header->desc_type); 4704 4705 buf_ptr = (uint8_t *)&header[1]; 4706 4707 for (i = 0; i < header->length; i++, buf_ptr++) 4708 sbuf_printf(sb, " %02x", *buf_ptr); 4709 } 4710 4711 /* 4712 * Keep this list in numeric order. This speeds the array traversal. 4713 */ 4714 struct scsi_sense_desc_printer { 4715 uint8_t desc_type; 4716 /* 4717 * The function arguments here are the superset of what is needed 4718 * to print out various different descriptors. Command and 4719 * information descriptors need inquiry data and command type. 4720 * Sense key specific descriptors need the sense key. 4721 * 4722 * The sense, cdb, and inquiry data arguments may be NULL, but the 4723 * information printed may not be fully decoded as a result. 4724 */ 4725 void (*print_func)(struct sbuf *sb, struct scsi_sense_data *sense, 4726 u_int sense_len, uint8_t *cdb, int cdb_len, 4727 struct scsi_inquiry_data *inq_data, 4728 struct scsi_sense_desc_header *header); 4729 } scsi_sense_printers[] = { 4730 {SSD_DESC_INFO, scsi_sense_info_sbuf}, 4731 {SSD_DESC_COMMAND, scsi_sense_command_sbuf}, 4732 {SSD_DESC_SKS, scsi_sense_sks_sbuf}, 4733 {SSD_DESC_FRU, scsi_sense_fru_sbuf}, 4734 {SSD_DESC_STREAM, scsi_sense_stream_sbuf}, 4735 {SSD_DESC_BLOCK, scsi_sense_block_sbuf}, 4736 {SSD_DESC_ATA, scsi_sense_ata_sbuf}, 4737 {SSD_DESC_PROGRESS, scsi_sense_progress_sbuf}, 4738 {SSD_DESC_FORWARDED, scsi_sense_forwarded_sbuf} 4739 }; 4740 4741 void 4742 scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4743 u_int sense_len, uint8_t *cdb, int cdb_len, 4744 struct scsi_inquiry_data *inq_data, 4745 struct scsi_sense_desc_header *header) 4746 { 4747 u_int i; 4748 4749 for (i = 0; i < nitems(scsi_sense_printers); i++) { 4750 struct scsi_sense_desc_printer *printer; 4751 4752 printer = &scsi_sense_printers[i]; 4753 4754 /* 4755 * The list is sorted, so quit if we've passed our 4756 * descriptor number. 4757 */ 4758 if (printer->desc_type > header->desc_type) 4759 break; 4760 4761 if (printer->desc_type != header->desc_type) 4762 continue; 4763 4764 printer->print_func(sb, sense, sense_len, cdb, cdb_len, 4765 inq_data, header); 4766 4767 return; 4768 } 4769 4770 /* 4771 * No specific printing routine, so use the generic routine. 4772 */ 4773 scsi_sense_generic_sbuf(sb, sense, sense_len, cdb, cdb_len, 4774 inq_data, header); 4775 } 4776 4777 scsi_sense_data_type 4778 scsi_sense_type(struct scsi_sense_data *sense_data) 4779 { 4780 switch (sense_data->error_code & SSD_ERRCODE) { 4781 case SSD_DESC_CURRENT_ERROR: 4782 case SSD_DESC_DEFERRED_ERROR: 4783 return (SSD_TYPE_DESC); 4784 break; 4785 case SSD_CURRENT_ERROR: 4786 case SSD_DEFERRED_ERROR: 4787 return (SSD_TYPE_FIXED); 4788 break; 4789 default: 4790 break; 4791 } 4792 4793 return (SSD_TYPE_NONE); 4794 } 4795 4796 struct scsi_print_sense_info { 4797 struct sbuf *sb; 4798 char *path_str; 4799 uint8_t *cdb; 4800 int cdb_len; 4801 struct scsi_inquiry_data *inq_data; 4802 }; 4803 4804 static int 4805 scsi_print_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, 4806 struct scsi_sense_desc_header *header, void *arg) 4807 { 4808 struct scsi_print_sense_info *print_info; 4809 4810 print_info = (struct scsi_print_sense_info *)arg; 4811 4812 switch (header->desc_type) { 4813 case SSD_DESC_INFO: 4814 case SSD_DESC_FRU: 4815 case SSD_DESC_COMMAND: 4816 case SSD_DESC_SKS: 4817 case SSD_DESC_BLOCK: 4818 case SSD_DESC_STREAM: 4819 /* 4820 * We have already printed these descriptors, if they are 4821 * present. 4822 */ 4823 break; 4824 default: { 4825 sbuf_printf(print_info->sb, "%s", print_info->path_str); 4826 scsi_sense_desc_sbuf(print_info->sb, 4827 (struct scsi_sense_data *)sense, sense_len, 4828 print_info->cdb, print_info->cdb_len, 4829 print_info->inq_data, header); 4830 sbuf_printf(print_info->sb, "\n"); 4831 break; 4832 } 4833 } 4834 4835 /* 4836 * Tell the iterator that we want to see more descriptors if they 4837 * are present. 4838 */ 4839 return (0); 4840 } 4841 4842 void 4843 scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len, 4844 struct sbuf *sb, char *path_str, 4845 struct scsi_inquiry_data *inq_data, uint8_t *cdb, 4846 int cdb_len) 4847 { 4848 int error_code, sense_key, asc, ascq; 4849 4850 sbuf_cat(sb, path_str); 4851 4852 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, 4853 &asc, &ascq, /*show_errors*/ 1); 4854 4855 sbuf_printf(sb, "SCSI sense: "); 4856 switch (error_code) { 4857 case SSD_DEFERRED_ERROR: 4858 case SSD_DESC_DEFERRED_ERROR: 4859 sbuf_printf(sb, "Deferred error: "); 4860 4861 /* FALLTHROUGH */ 4862 case SSD_CURRENT_ERROR: 4863 case SSD_DESC_CURRENT_ERROR: 4864 { 4865 struct scsi_sense_data_desc *desc_sense; 4866 struct scsi_print_sense_info print_info; 4867 const char *sense_key_desc; 4868 const char *asc_desc; 4869 uint8_t sks[3]; 4870 uint64_t val; 4871 uint8_t bits; 4872 4873 /* 4874 * Get descriptions for the sense key, ASC, and ASCQ. If 4875 * these aren't present in the sense data (i.e. the sense 4876 * data isn't long enough), the -1 values that 4877 * scsi_extract_sense_len() returns will yield default 4878 * or error descriptions. 4879 */ 4880 scsi_sense_desc(sense_key, asc, ascq, inq_data, 4881 &sense_key_desc, &asc_desc); 4882 4883 /* 4884 * We first print the sense key and ASC/ASCQ. 4885 */ 4886 sbuf_cat(sb, sense_key_desc); 4887 sbuf_printf(sb, " asc:%x,%x (%s)\n", asc, ascq, asc_desc); 4888 4889 /* 4890 * Print any block or stream device-specific information. 4891 */ 4892 if (scsi_get_block_info(sense, sense_len, inq_data, 4893 &bits) == 0 && bits != 0) { 4894 sbuf_cat(sb, path_str); 4895 scsi_block_sbuf(sb, bits); 4896 sbuf_printf(sb, "\n"); 4897 } else if (scsi_get_stream_info(sense, sense_len, inq_data, 4898 &bits) == 0 && bits != 0) { 4899 sbuf_cat(sb, path_str); 4900 scsi_stream_sbuf(sb, bits); 4901 sbuf_printf(sb, "\n"); 4902 } 4903 4904 /* 4905 * Print the info field. 4906 */ 4907 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, 4908 &val, NULL) == 0) { 4909 sbuf_cat(sb, path_str); 4910 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, val); 4911 sbuf_printf(sb, "\n"); 4912 } 4913 4914 /* 4915 * Print the FRU. 4916 */ 4917 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_FRU, 4918 &val, NULL) == 0) { 4919 sbuf_cat(sb, path_str); 4920 scsi_fru_sbuf(sb, val); 4921 sbuf_printf(sb, "\n"); 4922 } 4923 4924 /* 4925 * Print any command-specific information. 4926 */ 4927 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_COMMAND, 4928 &val, NULL) == 0) { 4929 sbuf_cat(sb, path_str); 4930 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, val); 4931 sbuf_printf(sb, "\n"); 4932 } 4933 4934 /* 4935 * Print out any sense-key-specific information. 4936 */ 4937 if (scsi_get_sks(sense, sense_len, sks) == 0) { 4938 sbuf_cat(sb, path_str); 4939 scsi_sks_sbuf(sb, sense_key, sks); 4940 sbuf_printf(sb, "\n"); 4941 } 4942 4943 /* 4944 * If this is fixed sense, we're done. If we have 4945 * descriptor sense, we might have more information 4946 * available. 4947 */ 4948 if (scsi_sense_type(sense) != SSD_TYPE_DESC) 4949 break; 4950 4951 desc_sense = (struct scsi_sense_data_desc *)sense; 4952 4953 print_info.sb = sb; 4954 print_info.path_str = path_str; 4955 print_info.cdb = cdb; 4956 print_info.cdb_len = cdb_len; 4957 print_info.inq_data = inq_data; 4958 4959 /* 4960 * Print any sense descriptors that we have not already printed. 4961 */ 4962 scsi_desc_iterate(desc_sense, sense_len, scsi_print_desc_func, 4963 &print_info); 4964 break; 4965 4966 } 4967 case -1: 4968 /* 4969 * scsi_extract_sense_len() sets values to -1 if the 4970 * show_errors flag is set and they aren't present in the 4971 * sense data. This means that sense_len is 0. 4972 */ 4973 sbuf_printf(sb, "No sense data present\n"); 4974 break; 4975 default: { 4976 sbuf_printf(sb, "Error code 0x%x", error_code); 4977 if (sense->error_code & SSD_ERRCODE_VALID) { 4978 struct scsi_sense_data_fixed *fixed_sense; 4979 4980 fixed_sense = (struct scsi_sense_data_fixed *)sense; 4981 4982 if (SSD_FIXED_IS_PRESENT(fixed_sense, sense_len, info)){ 4983 uint32_t info; 4984 4985 info = scsi_4btoul(fixed_sense->info); 4986 4987 sbuf_printf(sb, " at block no. %d (decimal)", 4988 info); 4989 } 4990 } 4991 sbuf_printf(sb, "\n"); 4992 break; 4993 } 4994 } 4995 } 4996 4997 /* 4998 * scsi_sense_sbuf() returns 0 for success and -1 for failure. 4999 */ 5000 #ifdef _KERNEL 5001 int 5002 scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb, 5003 scsi_sense_string_flags flags) 5004 #else /* !_KERNEL */ 5005 int 5006 scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio, 5007 struct sbuf *sb, scsi_sense_string_flags flags) 5008 #endif /* _KERNEL/!_KERNEL */ 5009 { 5010 struct scsi_sense_data *sense; 5011 struct scsi_inquiry_data *inq_data; 5012 #ifdef _KERNEL 5013 struct ccb_getdev *cgd; 5014 #endif /* _KERNEL */ 5015 char path_str[64]; 5016 5017 #ifndef _KERNEL 5018 if (device == NULL) 5019 return(-1); 5020 #endif /* !_KERNEL */ 5021 if ((csio == NULL) || (sb == NULL)) 5022 return(-1); 5023 5024 /* 5025 * If the CDB is a physical address, we can't deal with it.. 5026 */ 5027 if ((csio->ccb_h.flags & CAM_CDB_PHYS) != 0) 5028 flags &= ~SSS_FLAG_PRINT_COMMAND; 5029 5030 #ifdef _KERNEL 5031 xpt_path_string(csio->ccb_h.path, path_str, sizeof(path_str)); 5032 #else /* !_KERNEL */ 5033 cam_path_string(device, path_str, sizeof(path_str)); 5034 #endif /* _KERNEL/!_KERNEL */ 5035 5036 #ifdef _KERNEL 5037 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) 5038 return(-1); 5039 /* 5040 * Get the device information. 5041 */ 5042 xpt_setup_ccb(&cgd->ccb_h, 5043 csio->ccb_h.path, 5044 CAM_PRIORITY_NORMAL); 5045 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 5046 xpt_action((union ccb *)cgd); 5047 5048 /* 5049 * If the device is unconfigured, just pretend that it is a hard 5050 * drive. scsi_op_desc() needs this. 5051 */ 5052 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) 5053 cgd->inq_data.device = T_DIRECT; 5054 5055 inq_data = &cgd->inq_data; 5056 5057 #else /* !_KERNEL */ 5058 5059 inq_data = &device->inq_data; 5060 5061 #endif /* _KERNEL/!_KERNEL */ 5062 5063 sense = NULL; 5064 5065 if (flags & SSS_FLAG_PRINT_COMMAND) { 5066 5067 sbuf_cat(sb, path_str); 5068 5069 #ifdef _KERNEL 5070 scsi_command_string(csio, sb); 5071 #else /* !_KERNEL */ 5072 scsi_command_string(device, csio, sb); 5073 #endif /* _KERNEL/!_KERNEL */ 5074 sbuf_printf(sb, "\n"); 5075 } 5076 5077 /* 5078 * If the sense data is a physical pointer, forget it. 5079 */ 5080 if (csio->ccb_h.flags & CAM_SENSE_PTR) { 5081 if (csio->ccb_h.flags & CAM_SENSE_PHYS) { 5082 #ifdef _KERNEL 5083 xpt_free_ccb((union ccb*)cgd); 5084 #endif /* _KERNEL/!_KERNEL */ 5085 return(-1); 5086 } else { 5087 /* 5088 * bcopy the pointer to avoid unaligned access 5089 * errors on finicky architectures. We don't 5090 * ensure that the sense data is pointer aligned. 5091 */ 5092 bcopy((struct scsi_sense_data **)&csio->sense_data, 5093 &sense, sizeof(struct scsi_sense_data *)); 5094 } 5095 } else { 5096 /* 5097 * If the physical sense flag is set, but the sense pointer 5098 * is not also set, we assume that the user is an idiot and 5099 * return. (Well, okay, it could be that somehow, the 5100 * entire csio is physical, but we would have probably core 5101 * dumped on one of the bogus pointer deferences above 5102 * already.) 5103 */ 5104 if (csio->ccb_h.flags & CAM_SENSE_PHYS) { 5105 #ifdef _KERNEL 5106 xpt_free_ccb((union ccb*)cgd); 5107 #endif /* _KERNEL/!_KERNEL */ 5108 return(-1); 5109 } else 5110 sense = &csio->sense_data; 5111 } 5112 5113 scsi_sense_only_sbuf(sense, csio->sense_len - csio->sense_resid, sb, 5114 path_str, inq_data, scsiio_cdb_ptr(csio), csio->cdb_len); 5115 5116 #ifdef _KERNEL 5117 xpt_free_ccb((union ccb*)cgd); 5118 #endif /* _KERNEL/!_KERNEL */ 5119 return(0); 5120 } 5121 5122 5123 5124 #ifdef _KERNEL 5125 char * 5126 scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len) 5127 #else /* !_KERNEL */ 5128 char * 5129 scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio, 5130 char *str, int str_len) 5131 #endif /* _KERNEL/!_KERNEL */ 5132 { 5133 struct sbuf sb; 5134 5135 sbuf_new(&sb, str, str_len, 0); 5136 5137 #ifdef _KERNEL 5138 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); 5139 #else /* !_KERNEL */ 5140 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); 5141 #endif /* _KERNEL/!_KERNEL */ 5142 5143 sbuf_finish(&sb); 5144 5145 return(sbuf_data(&sb)); 5146 } 5147 5148 #ifdef _KERNEL 5149 void 5150 scsi_sense_print(struct ccb_scsiio *csio) 5151 { 5152 struct sbuf sb; 5153 char str[512]; 5154 5155 sbuf_new(&sb, str, sizeof(str), 0); 5156 5157 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); 5158 5159 sbuf_finish(&sb); 5160 5161 sbuf_putbuf(&sb); 5162 } 5163 5164 #else /* !_KERNEL */ 5165 void 5166 scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio, 5167 FILE *ofile) 5168 { 5169 struct sbuf sb; 5170 char str[512]; 5171 5172 if ((device == NULL) || (csio == NULL) || (ofile == NULL)) 5173 return; 5174 5175 sbuf_new(&sb, str, sizeof(str), 0); 5176 5177 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); 5178 5179 sbuf_finish(&sb); 5180 5181 fprintf(ofile, "%s", sbuf_data(&sb)); 5182 } 5183 5184 #endif /* _KERNEL/!_KERNEL */ 5185 5186 /* 5187 * Extract basic sense information. This is backward-compatible with the 5188 * previous implementation. For new implementations, 5189 * scsi_extract_sense_len() is recommended. 5190 */ 5191 void 5192 scsi_extract_sense(struct scsi_sense_data *sense_data, int *error_code, 5193 int *sense_key, int *asc, int *ascq) 5194 { 5195 scsi_extract_sense_len(sense_data, sizeof(*sense_data), error_code, 5196 sense_key, asc, ascq, /*show_errors*/ 0); 5197 } 5198 5199 /* 5200 * Extract basic sense information from SCSI I/O CCB structure. 5201 */ 5202 int 5203 scsi_extract_sense_ccb(union ccb *ccb, 5204 int *error_code, int *sense_key, int *asc, int *ascq) 5205 { 5206 struct scsi_sense_data *sense_data; 5207 5208 /* Make sure there are some sense data we can access. */ 5209 if (ccb->ccb_h.func_code != XPT_SCSI_IO || 5210 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_SCSI_STATUS_ERROR || 5211 (ccb->csio.scsi_status != SCSI_STATUS_CHECK_COND) || 5212 (ccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0 || 5213 (ccb->ccb_h.flags & CAM_SENSE_PHYS)) 5214 return (0); 5215 5216 if (ccb->ccb_h.flags & CAM_SENSE_PTR) 5217 bcopy((struct scsi_sense_data **)&ccb->csio.sense_data, 5218 &sense_data, sizeof(struct scsi_sense_data *)); 5219 else 5220 sense_data = &ccb->csio.sense_data; 5221 scsi_extract_sense_len(sense_data, 5222 ccb->csio.sense_len - ccb->csio.sense_resid, 5223 error_code, sense_key, asc, ascq, 1); 5224 if (*error_code == -1) 5225 return (0); 5226 return (1); 5227 } 5228 5229 /* 5230 * Extract basic sense information. If show_errors is set, sense values 5231 * will be set to -1 if they are not present. 5232 */ 5233 void 5234 scsi_extract_sense_len(struct scsi_sense_data *sense_data, u_int sense_len, 5235 int *error_code, int *sense_key, int *asc, int *ascq, 5236 int show_errors) 5237 { 5238 /* 5239 * If we have no length, we have no sense. 5240 */ 5241 if (sense_len == 0) { 5242 if (show_errors == 0) { 5243 *error_code = 0; 5244 *sense_key = 0; 5245 *asc = 0; 5246 *ascq = 0; 5247 } else { 5248 *error_code = -1; 5249 *sense_key = -1; 5250 *asc = -1; 5251 *ascq = -1; 5252 } 5253 return; 5254 } 5255 5256 *error_code = sense_data->error_code & SSD_ERRCODE; 5257 5258 switch (*error_code) { 5259 case SSD_DESC_CURRENT_ERROR: 5260 case SSD_DESC_DEFERRED_ERROR: { 5261 struct scsi_sense_data_desc *sense; 5262 5263 sense = (struct scsi_sense_data_desc *)sense_data; 5264 5265 if (SSD_DESC_IS_PRESENT(sense, sense_len, sense_key)) 5266 *sense_key = sense->sense_key & SSD_KEY; 5267 else 5268 *sense_key = (show_errors) ? -1 : 0; 5269 5270 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code)) 5271 *asc = sense->add_sense_code; 5272 else 5273 *asc = (show_errors) ? -1 : 0; 5274 5275 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code_qual)) 5276 *ascq = sense->add_sense_code_qual; 5277 else 5278 *ascq = (show_errors) ? -1 : 0; 5279 break; 5280 } 5281 case SSD_CURRENT_ERROR: 5282 case SSD_DEFERRED_ERROR: 5283 default: { 5284 struct scsi_sense_data_fixed *sense; 5285 5286 sense = (struct scsi_sense_data_fixed *)sense_data; 5287 5288 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags)) 5289 *sense_key = sense->flags & SSD_KEY; 5290 else 5291 *sense_key = (show_errors) ? -1 : 0; 5292 5293 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, add_sense_code)) 5294 && (SSD_FIXED_IS_FILLED(sense, add_sense_code))) 5295 *asc = sense->add_sense_code; 5296 else 5297 *asc = (show_errors) ? -1 : 0; 5298 5299 if ((SSD_FIXED_IS_PRESENT(sense, sense_len,add_sense_code_qual)) 5300 && (SSD_FIXED_IS_FILLED(sense, add_sense_code_qual))) 5301 *ascq = sense->add_sense_code_qual; 5302 else 5303 *ascq = (show_errors) ? -1 : 0; 5304 break; 5305 } 5306 } 5307 } 5308 5309 int 5310 scsi_get_sense_key(struct scsi_sense_data *sense_data, u_int sense_len, 5311 int show_errors) 5312 { 5313 int error_code, sense_key, asc, ascq; 5314 5315 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5316 &sense_key, &asc, &ascq, show_errors); 5317 5318 return (sense_key); 5319 } 5320 5321 int 5322 scsi_get_asc(struct scsi_sense_data *sense_data, u_int sense_len, 5323 int show_errors) 5324 { 5325 int error_code, sense_key, asc, ascq; 5326 5327 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5328 &sense_key, &asc, &ascq, show_errors); 5329 5330 return (asc); 5331 } 5332 5333 int 5334 scsi_get_ascq(struct scsi_sense_data *sense_data, u_int sense_len, 5335 int show_errors) 5336 { 5337 int error_code, sense_key, asc, ascq; 5338 5339 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5340 &sense_key, &asc, &ascq, show_errors); 5341 5342 return (ascq); 5343 } 5344 5345 /* 5346 * This function currently requires at least 36 bytes, or 5347 * SHORT_INQUIRY_LENGTH, worth of data to function properly. If this 5348 * function needs more or less data in the future, another length should be 5349 * defined in scsi_all.h to indicate the minimum amount of data necessary 5350 * for this routine to function properly. 5351 */ 5352 void 5353 scsi_print_inquiry_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data) 5354 { 5355 u_int8_t type; 5356 char *dtype, *qtype; 5357 5358 type = SID_TYPE(inq_data); 5359 5360 /* 5361 * Figure out basic device type and qualifier. 5362 */ 5363 if (SID_QUAL_IS_VENDOR_UNIQUE(inq_data)) { 5364 qtype = " (vendor-unique qualifier)"; 5365 } else { 5366 switch (SID_QUAL(inq_data)) { 5367 case SID_QUAL_LU_CONNECTED: 5368 qtype = ""; 5369 break; 5370 5371 case SID_QUAL_LU_OFFLINE: 5372 qtype = " (offline)"; 5373 break; 5374 5375 case SID_QUAL_RSVD: 5376 qtype = " (reserved qualifier)"; 5377 break; 5378 default: 5379 case SID_QUAL_BAD_LU: 5380 qtype = " (LUN not supported)"; 5381 break; 5382 } 5383 } 5384 5385 switch (type) { 5386 case T_DIRECT: 5387 dtype = "Direct Access"; 5388 break; 5389 case T_SEQUENTIAL: 5390 dtype = "Sequential Access"; 5391 break; 5392 case T_PRINTER: 5393 dtype = "Printer"; 5394 break; 5395 case T_PROCESSOR: 5396 dtype = "Processor"; 5397 break; 5398 case T_WORM: 5399 dtype = "WORM"; 5400 break; 5401 case T_CDROM: 5402 dtype = "CD-ROM"; 5403 break; 5404 case T_SCANNER: 5405 dtype = "Scanner"; 5406 break; 5407 case T_OPTICAL: 5408 dtype = "Optical"; 5409 break; 5410 case T_CHANGER: 5411 dtype = "Changer"; 5412 break; 5413 case T_COMM: 5414 dtype = "Communication"; 5415 break; 5416 case T_STORARRAY: 5417 dtype = "Storage Array"; 5418 break; 5419 case T_ENCLOSURE: 5420 dtype = "Enclosure Services"; 5421 break; 5422 case T_RBC: 5423 dtype = "Simplified Direct Access"; 5424 break; 5425 case T_OCRW: 5426 dtype = "Optical Card Read/Write"; 5427 break; 5428 case T_OSD: 5429 dtype = "Object-Based Storage"; 5430 break; 5431 case T_ADC: 5432 dtype = "Automation/Drive Interface"; 5433 break; 5434 case T_ZBC_HM: 5435 dtype = "Host Managed Zoned Block"; 5436 break; 5437 case T_NODEVICE: 5438 dtype = "Uninstalled"; 5439 break; 5440 default: 5441 dtype = "unknown"; 5442 break; 5443 } 5444 5445 scsi_print_inquiry_short_sbuf(sb, inq_data); 5446 5447 sbuf_printf(sb, "%s %s ", SID_IS_REMOVABLE(inq_data) ? "Removable" : "Fixed", dtype); 5448 5449 if (SID_ANSI_REV(inq_data) == SCSI_REV_0) 5450 sbuf_printf(sb, "SCSI "); 5451 else if (SID_ANSI_REV(inq_data) <= SCSI_REV_SPC) { 5452 sbuf_printf(sb, "SCSI-%d ", SID_ANSI_REV(inq_data)); 5453 } else { 5454 sbuf_printf(sb, "SPC-%d SCSI ", SID_ANSI_REV(inq_data) - 2); 5455 } 5456 sbuf_printf(sb, "device%s\n", qtype); 5457 } 5458 5459 void 5460 scsi_print_inquiry(struct scsi_inquiry_data *inq_data) 5461 { 5462 struct sbuf sb; 5463 char buffer[120]; 5464 5465 sbuf_new(&sb, buffer, 120, SBUF_FIXEDLEN); 5466 scsi_print_inquiry_sbuf(&sb, inq_data); 5467 sbuf_finish(&sb); 5468 sbuf_putbuf(&sb); 5469 } 5470 5471 void 5472 scsi_print_inquiry_short_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data) 5473 { 5474 5475 sbuf_printf(sb, "<"); 5476 cam_strvis_sbuf(sb, inq_data->vendor, sizeof(inq_data->vendor), 0); 5477 sbuf_printf(sb, " "); 5478 cam_strvis_sbuf(sb, inq_data->product, sizeof(inq_data->product), 0); 5479 sbuf_printf(sb, " "); 5480 cam_strvis_sbuf(sb, inq_data->revision, sizeof(inq_data->revision), 0); 5481 sbuf_printf(sb, "> "); 5482 } 5483 5484 void 5485 scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data) 5486 { 5487 struct sbuf sb; 5488 char buffer[84]; 5489 5490 sbuf_new(&sb, buffer, 84, SBUF_FIXEDLEN); 5491 scsi_print_inquiry_short_sbuf(&sb, inq_data); 5492 sbuf_finish(&sb); 5493 sbuf_putbuf(&sb); 5494 } 5495 5496 /* 5497 * Table of syncrates that don't follow the "divisible by 4" 5498 * rule. This table will be expanded in future SCSI specs. 5499 */ 5500 static struct { 5501 u_int period_factor; 5502 u_int period; /* in 100ths of ns */ 5503 } scsi_syncrates[] = { 5504 { 0x08, 625 }, /* FAST-160 */ 5505 { 0x09, 1250 }, /* FAST-80 */ 5506 { 0x0a, 2500 }, /* FAST-40 40MHz */ 5507 { 0x0b, 3030 }, /* FAST-40 33MHz */ 5508 { 0x0c, 5000 } /* FAST-20 */ 5509 }; 5510 5511 /* 5512 * Return the frequency in kHz corresponding to the given 5513 * sync period factor. 5514 */ 5515 u_int 5516 scsi_calc_syncsrate(u_int period_factor) 5517 { 5518 u_int i; 5519 u_int num_syncrates; 5520 5521 /* 5522 * It's a bug if period is zero, but if it is anyway, don't 5523 * die with a divide fault- instead return something which 5524 * 'approximates' async 5525 */ 5526 if (period_factor == 0) { 5527 return (3300); 5528 } 5529 5530 num_syncrates = nitems(scsi_syncrates); 5531 /* See if the period is in the "exception" table */ 5532 for (i = 0; i < num_syncrates; i++) { 5533 5534 if (period_factor == scsi_syncrates[i].period_factor) { 5535 /* Period in kHz */ 5536 return (100000000 / scsi_syncrates[i].period); 5537 } 5538 } 5539 5540 /* 5541 * Wasn't in the table, so use the standard 5542 * 4 times conversion. 5543 */ 5544 return (10000000 / (period_factor * 4 * 10)); 5545 } 5546 5547 /* 5548 * Return the SCSI sync parameter that corresponds to 5549 * the passed in period in 10ths of ns. 5550 */ 5551 u_int 5552 scsi_calc_syncparam(u_int period) 5553 { 5554 u_int i; 5555 u_int num_syncrates; 5556 5557 if (period == 0) 5558 return (~0); /* Async */ 5559 5560 /* Adjust for exception table being in 100ths. */ 5561 period *= 10; 5562 num_syncrates = nitems(scsi_syncrates); 5563 /* See if the period is in the "exception" table */ 5564 for (i = 0; i < num_syncrates; i++) { 5565 5566 if (period <= scsi_syncrates[i].period) { 5567 /* Period in 100ths of ns */ 5568 return (scsi_syncrates[i].period_factor); 5569 } 5570 } 5571 5572 /* 5573 * Wasn't in the table, so use the standard 5574 * 1/4 period in ns conversion. 5575 */ 5576 return (period/400); 5577 } 5578 5579 int 5580 scsi_devid_is_naa_ieee_reg(uint8_t *bufp) 5581 { 5582 struct scsi_vpd_id_descriptor *descr; 5583 struct scsi_vpd_id_naa_basic *naa; 5584 int n; 5585 5586 descr = (struct scsi_vpd_id_descriptor *)bufp; 5587 naa = (struct scsi_vpd_id_naa_basic *)descr->identifier; 5588 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5589 return 0; 5590 if (descr->length < sizeof(struct scsi_vpd_id_naa_ieee_reg)) 5591 return 0; 5592 n = naa->naa >> SVPD_ID_NAA_NAA_SHIFT; 5593 if (n != SVPD_ID_NAA_LOCAL_REG && n != SVPD_ID_NAA_IEEE_REG) 5594 return 0; 5595 return 1; 5596 } 5597 5598 int 5599 scsi_devid_is_sas_target(uint8_t *bufp) 5600 { 5601 struct scsi_vpd_id_descriptor *descr; 5602 5603 descr = (struct scsi_vpd_id_descriptor *)bufp; 5604 if (!scsi_devid_is_naa_ieee_reg(bufp)) 5605 return 0; 5606 if ((descr->id_type & SVPD_ID_PIV) == 0) /* proto field reserved */ 5607 return 0; 5608 if ((descr->proto_codeset >> SVPD_ID_PROTO_SHIFT) != SCSI_PROTO_SAS) 5609 return 0; 5610 return 1; 5611 } 5612 5613 int 5614 scsi_devid_is_lun_eui64(uint8_t *bufp) 5615 { 5616 struct scsi_vpd_id_descriptor *descr; 5617 5618 descr = (struct scsi_vpd_id_descriptor *)bufp; 5619 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5620 return 0; 5621 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_EUI64) 5622 return 0; 5623 return 1; 5624 } 5625 5626 int 5627 scsi_devid_is_lun_naa(uint8_t *bufp) 5628 { 5629 struct scsi_vpd_id_descriptor *descr; 5630 5631 descr = (struct scsi_vpd_id_descriptor *)bufp; 5632 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5633 return 0; 5634 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5635 return 0; 5636 return 1; 5637 } 5638 5639 int 5640 scsi_devid_is_lun_t10(uint8_t *bufp) 5641 { 5642 struct scsi_vpd_id_descriptor *descr; 5643 5644 descr = (struct scsi_vpd_id_descriptor *)bufp; 5645 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5646 return 0; 5647 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_T10) 5648 return 0; 5649 return 1; 5650 } 5651 5652 int 5653 scsi_devid_is_lun_name(uint8_t *bufp) 5654 { 5655 struct scsi_vpd_id_descriptor *descr; 5656 5657 descr = (struct scsi_vpd_id_descriptor *)bufp; 5658 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5659 return 0; 5660 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_SCSI_NAME) 5661 return 0; 5662 return 1; 5663 } 5664 5665 int 5666 scsi_devid_is_lun_md5(uint8_t *bufp) 5667 { 5668 struct scsi_vpd_id_descriptor *descr; 5669 5670 descr = (struct scsi_vpd_id_descriptor *)bufp; 5671 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5672 return 0; 5673 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_MD5_LUN_ID) 5674 return 0; 5675 return 1; 5676 } 5677 5678 int 5679 scsi_devid_is_lun_uuid(uint8_t *bufp) 5680 { 5681 struct scsi_vpd_id_descriptor *descr; 5682 5683 descr = (struct scsi_vpd_id_descriptor *)bufp; 5684 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5685 return 0; 5686 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_UUID) 5687 return 0; 5688 return 1; 5689 } 5690 5691 int 5692 scsi_devid_is_port_naa(uint8_t *bufp) 5693 { 5694 struct scsi_vpd_id_descriptor *descr; 5695 5696 descr = (struct scsi_vpd_id_descriptor *)bufp; 5697 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_PORT) 5698 return 0; 5699 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5700 return 0; 5701 return 1; 5702 } 5703 5704 struct scsi_vpd_id_descriptor * 5705 scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len, 5706 scsi_devid_checkfn_t ck_fn) 5707 { 5708 uint8_t *desc_buf_end; 5709 5710 desc_buf_end = (uint8_t *)desc + len; 5711 5712 for (; desc->identifier <= desc_buf_end && 5713 desc->identifier + desc->length <= desc_buf_end; 5714 desc = (struct scsi_vpd_id_descriptor *)(desc->identifier 5715 + desc->length)) { 5716 5717 if (ck_fn == NULL || ck_fn((uint8_t *)desc) != 0) 5718 return (desc); 5719 } 5720 return (NULL); 5721 } 5722 5723 struct scsi_vpd_id_descriptor * 5724 scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t page_len, 5725 scsi_devid_checkfn_t ck_fn) 5726 { 5727 uint32_t len; 5728 5729 if (page_len < sizeof(*id)) 5730 return (NULL); 5731 len = MIN(scsi_2btoul(id->length), page_len - sizeof(*id)); 5732 return (scsi_get_devid_desc((struct scsi_vpd_id_descriptor *) 5733 id->desc_list, len, ck_fn)); 5734 } 5735 5736 int 5737 scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr, 5738 uint32_t valid_len) 5739 { 5740 switch (hdr->format_protocol & SCSI_TRN_PROTO_MASK) { 5741 case SCSI_PROTO_FC: { 5742 struct scsi_transportid_fcp *fcp; 5743 uint64_t n_port_name; 5744 5745 fcp = (struct scsi_transportid_fcp *)hdr; 5746 5747 n_port_name = scsi_8btou64(fcp->n_port_name); 5748 5749 sbuf_printf(sb, "FCP address: 0x%.16jx",(uintmax_t)n_port_name); 5750 break; 5751 } 5752 case SCSI_PROTO_SPI: { 5753 struct scsi_transportid_spi *spi; 5754 5755 spi = (struct scsi_transportid_spi *)hdr; 5756 5757 sbuf_printf(sb, "SPI address: %u,%u", 5758 scsi_2btoul(spi->scsi_addr), 5759 scsi_2btoul(spi->rel_trgt_port_id)); 5760 break; 5761 } 5762 case SCSI_PROTO_SSA: 5763 /* 5764 * XXX KDM there is no transport ID defined in SPC-4 for 5765 * SSA. 5766 */ 5767 break; 5768 case SCSI_PROTO_1394: { 5769 struct scsi_transportid_1394 *sbp; 5770 uint64_t eui64; 5771 5772 sbp = (struct scsi_transportid_1394 *)hdr; 5773 5774 eui64 = scsi_8btou64(sbp->eui64); 5775 sbuf_printf(sb, "SBP address: 0x%.16jx", (uintmax_t)eui64); 5776 break; 5777 } 5778 case SCSI_PROTO_RDMA: { 5779 struct scsi_transportid_rdma *rdma; 5780 unsigned int i; 5781 5782 rdma = (struct scsi_transportid_rdma *)hdr; 5783 5784 sbuf_printf(sb, "RDMA address: 0x"); 5785 for (i = 0; i < sizeof(rdma->initiator_port_id); i++) 5786 sbuf_printf(sb, "%02x", rdma->initiator_port_id[i]); 5787 break; 5788 } 5789 case SCSI_PROTO_ISCSI: { 5790 uint32_t add_len, i; 5791 uint8_t *iscsi_name = NULL; 5792 int nul_found = 0; 5793 5794 sbuf_printf(sb, "iSCSI address: "); 5795 if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) == 5796 SCSI_TRN_ISCSI_FORMAT_DEVICE) { 5797 struct scsi_transportid_iscsi_device *dev; 5798 5799 dev = (struct scsi_transportid_iscsi_device *)hdr; 5800 5801 /* 5802 * Verify how much additional data we really have. 5803 */ 5804 add_len = scsi_2btoul(dev->additional_length); 5805 add_len = MIN(add_len, valid_len - 5806 __offsetof(struct scsi_transportid_iscsi_device, 5807 iscsi_name)); 5808 iscsi_name = &dev->iscsi_name[0]; 5809 5810 } else if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) == 5811 SCSI_TRN_ISCSI_FORMAT_PORT) { 5812 struct scsi_transportid_iscsi_port *port; 5813 5814 port = (struct scsi_transportid_iscsi_port *)hdr; 5815 5816 add_len = scsi_2btoul(port->additional_length); 5817 add_len = MIN(add_len, valid_len - 5818 __offsetof(struct scsi_transportid_iscsi_port, 5819 iscsi_name)); 5820 iscsi_name = &port->iscsi_name[0]; 5821 } else { 5822 sbuf_printf(sb, "unknown format %x", 5823 (hdr->format_protocol & 5824 SCSI_TRN_FORMAT_MASK) >> 5825 SCSI_TRN_FORMAT_SHIFT); 5826 break; 5827 } 5828 if (add_len == 0) { 5829 sbuf_printf(sb, "not enough data"); 5830 break; 5831 } 5832 /* 5833 * This is supposed to be a NUL-terminated ASCII 5834 * string, but you never know. So we're going to 5835 * check. We need to do this because there is no 5836 * sbuf equivalent of strncat(). 5837 */ 5838 for (i = 0; i < add_len; i++) { 5839 if (iscsi_name[i] == '\0') { 5840 nul_found = 1; 5841 break; 5842 } 5843 } 5844 /* 5845 * If there is a NUL in the name, we can just use 5846 * sbuf_cat(). Otherwise we need to use sbuf_bcat(). 5847 */ 5848 if (nul_found != 0) 5849 sbuf_cat(sb, iscsi_name); 5850 else 5851 sbuf_bcat(sb, iscsi_name, add_len); 5852 break; 5853 } 5854 case SCSI_PROTO_SAS: { 5855 struct scsi_transportid_sas *sas; 5856 uint64_t sas_addr; 5857 5858 sas = (struct scsi_transportid_sas *)hdr; 5859 5860 sas_addr = scsi_8btou64(sas->sas_address); 5861 sbuf_printf(sb, "SAS address: 0x%.16jx", (uintmax_t)sas_addr); 5862 break; 5863 } 5864 case SCSI_PROTO_ADITP: 5865 case SCSI_PROTO_ATA: 5866 case SCSI_PROTO_UAS: 5867 /* 5868 * No Transport ID format for ADI, ATA or USB is defined in 5869 * SPC-4. 5870 */ 5871 sbuf_printf(sb, "No known Transport ID format for protocol " 5872 "%#x", hdr->format_protocol & SCSI_TRN_PROTO_MASK); 5873 break; 5874 case SCSI_PROTO_SOP: { 5875 struct scsi_transportid_sop *sop; 5876 struct scsi_sop_routing_id_norm *rid; 5877 5878 sop = (struct scsi_transportid_sop *)hdr; 5879 rid = (struct scsi_sop_routing_id_norm *)sop->routing_id; 5880 5881 /* 5882 * Note that there is no alternate format specified in SPC-4 5883 * for the PCIe routing ID, so we don't really have a way 5884 * to know whether the second byte of the routing ID is 5885 * a device and function or just a function. So we just 5886 * assume bus,device,function. 5887 */ 5888 sbuf_printf(sb, "SOP Routing ID: %u,%u,%u", 5889 rid->bus, rid->devfunc >> SCSI_TRN_SOP_DEV_SHIFT, 5890 rid->devfunc & SCSI_TRN_SOP_FUNC_NORM_MAX); 5891 break; 5892 } 5893 case SCSI_PROTO_NONE: 5894 default: 5895 sbuf_printf(sb, "Unknown protocol %#x", 5896 hdr->format_protocol & SCSI_TRN_PROTO_MASK); 5897 break; 5898 } 5899 5900 return (0); 5901 } 5902 5903 struct scsi_nv scsi_proto_map[] = { 5904 { "fcp", SCSI_PROTO_FC }, 5905 { "spi", SCSI_PROTO_SPI }, 5906 { "ssa", SCSI_PROTO_SSA }, 5907 { "sbp", SCSI_PROTO_1394 }, 5908 { "1394", SCSI_PROTO_1394 }, 5909 { "srp", SCSI_PROTO_RDMA }, 5910 { "rdma", SCSI_PROTO_RDMA }, 5911 { "iscsi", SCSI_PROTO_ISCSI }, 5912 { "iqn", SCSI_PROTO_ISCSI }, 5913 { "sas", SCSI_PROTO_SAS }, 5914 { "aditp", SCSI_PROTO_ADITP }, 5915 { "ata", SCSI_PROTO_ATA }, 5916 { "uas", SCSI_PROTO_UAS }, 5917 { "usb", SCSI_PROTO_UAS }, 5918 { "sop", SCSI_PROTO_SOP } 5919 }; 5920 5921 const char * 5922 scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value) 5923 { 5924 int i; 5925 5926 for (i = 0; i < num_table_entries; i++) { 5927 if (table[i].value == value) 5928 return (table[i].name); 5929 } 5930 5931 return (NULL); 5932 } 5933 5934 /* 5935 * Given a name/value table, find a value matching the given name. 5936 * Return values: 5937 * SCSI_NV_FOUND - match found 5938 * SCSI_NV_AMBIGUOUS - more than one match, none of them exact 5939 * SCSI_NV_NOT_FOUND - no match found 5940 */ 5941 scsi_nv_status 5942 scsi_get_nv(struct scsi_nv *table, int num_table_entries, 5943 char *name, int *table_entry, scsi_nv_flags flags) 5944 { 5945 int i, num_matches = 0; 5946 5947 for (i = 0; i < num_table_entries; i++) { 5948 size_t table_len, name_len; 5949 5950 table_len = strlen(table[i].name); 5951 name_len = strlen(name); 5952 5953 if ((((flags & SCSI_NV_FLAG_IG_CASE) != 0) 5954 && (strncasecmp(table[i].name, name, name_len) == 0)) 5955 || (((flags & SCSI_NV_FLAG_IG_CASE) == 0) 5956 && (strncmp(table[i].name, name, name_len) == 0))) { 5957 *table_entry = i; 5958 5959 /* 5960 * Check for an exact match. If we have the same 5961 * number of characters in the table as the argument, 5962 * and we already know they're the same, we have 5963 * an exact match. 5964 */ 5965 if (table_len == name_len) 5966 return (SCSI_NV_FOUND); 5967 5968 /* 5969 * Otherwise, bump up the number of matches. We'll 5970 * see later how many we have. 5971 */ 5972 num_matches++; 5973 } 5974 } 5975 5976 if (num_matches > 1) 5977 return (SCSI_NV_AMBIGUOUS); 5978 else if (num_matches == 1) 5979 return (SCSI_NV_FOUND); 5980 else 5981 return (SCSI_NV_NOT_FOUND); 5982 } 5983 5984 /* 5985 * Parse transport IDs for Fibre Channel, 1394 and SAS. Since these are 5986 * all 64-bit numbers, the code is similar. 5987 */ 5988 int 5989 scsi_parse_transportid_64bit(int proto_id, char *id_str, 5990 struct scsi_transportid_header **hdr, 5991 unsigned int *alloc_len, 5992 #ifdef _KERNEL 5993 struct malloc_type *type, int flags, 5994 #endif 5995 char *error_str, int error_str_len) 5996 { 5997 uint64_t value; 5998 char *endptr; 5999 int retval; 6000 size_t alloc_size; 6001 6002 retval = 0; 6003 6004 value = strtouq(id_str, &endptr, 0); 6005 if (*endptr != '\0') { 6006 if (error_str != NULL) { 6007 snprintf(error_str, error_str_len, "%s: error " 6008 "parsing ID %s, 64-bit number required", 6009 __func__, id_str); 6010 } 6011 retval = 1; 6012 goto bailout; 6013 } 6014 6015 switch (proto_id) { 6016 case SCSI_PROTO_FC: 6017 alloc_size = sizeof(struct scsi_transportid_fcp); 6018 break; 6019 case SCSI_PROTO_1394: 6020 alloc_size = sizeof(struct scsi_transportid_1394); 6021 break; 6022 case SCSI_PROTO_SAS: 6023 alloc_size = sizeof(struct scsi_transportid_sas); 6024 break; 6025 default: 6026 if (error_str != NULL) { 6027 snprintf(error_str, error_str_len, "%s: unsupported " 6028 "protocol %d", __func__, proto_id); 6029 } 6030 retval = 1; 6031 goto bailout; 6032 break; /* NOTREACHED */ 6033 } 6034 #ifdef _KERNEL 6035 *hdr = malloc(alloc_size, type, flags); 6036 #else /* _KERNEL */ 6037 *hdr = malloc(alloc_size); 6038 #endif /*_KERNEL */ 6039 if (*hdr == NULL) { 6040 if (error_str != NULL) { 6041 snprintf(error_str, error_str_len, "%s: unable to " 6042 "allocate %zu bytes", __func__, alloc_size); 6043 } 6044 retval = 1; 6045 goto bailout; 6046 } 6047 6048 *alloc_len = alloc_size; 6049 6050 bzero(*hdr, alloc_size); 6051 6052 switch (proto_id) { 6053 case SCSI_PROTO_FC: { 6054 struct scsi_transportid_fcp *fcp; 6055 6056 fcp = (struct scsi_transportid_fcp *)(*hdr); 6057 fcp->format_protocol = SCSI_PROTO_FC | 6058 SCSI_TRN_FCP_FORMAT_DEFAULT; 6059 scsi_u64to8b(value, fcp->n_port_name); 6060 break; 6061 } 6062 case SCSI_PROTO_1394: { 6063 struct scsi_transportid_1394 *sbp; 6064 6065 sbp = (struct scsi_transportid_1394 *)(*hdr); 6066 sbp->format_protocol = SCSI_PROTO_1394 | 6067 SCSI_TRN_1394_FORMAT_DEFAULT; 6068 scsi_u64to8b(value, sbp->eui64); 6069 break; 6070 } 6071 case SCSI_PROTO_SAS: { 6072 struct scsi_transportid_sas *sas; 6073 6074 sas = (struct scsi_transportid_sas *)(*hdr); 6075 sas->format_protocol = SCSI_PROTO_SAS | 6076 SCSI_TRN_SAS_FORMAT_DEFAULT; 6077 scsi_u64to8b(value, sas->sas_address); 6078 break; 6079 } 6080 default: 6081 break; 6082 } 6083 bailout: 6084 return (retval); 6085 } 6086 6087 /* 6088 * Parse a SPI (Parallel SCSI) address of the form: id,rel_tgt_port 6089 */ 6090 int 6091 scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr, 6092 unsigned int *alloc_len, 6093 #ifdef _KERNEL 6094 struct malloc_type *type, int flags, 6095 #endif 6096 char *error_str, int error_str_len) 6097 { 6098 unsigned long scsi_addr, target_port; 6099 struct scsi_transportid_spi *spi; 6100 char *tmpstr, *endptr; 6101 int retval; 6102 6103 retval = 0; 6104 6105 tmpstr = strsep(&id_str, ","); 6106 if (tmpstr == NULL) { 6107 if (error_str != NULL) { 6108 snprintf(error_str, error_str_len, 6109 "%s: no ID found", __func__); 6110 } 6111 retval = 1; 6112 goto bailout; 6113 } 6114 scsi_addr = strtoul(tmpstr, &endptr, 0); 6115 if (*endptr != '\0') { 6116 if (error_str != NULL) { 6117 snprintf(error_str, error_str_len, "%s: error " 6118 "parsing SCSI ID %s, number required", 6119 __func__, tmpstr); 6120 } 6121 retval = 1; 6122 goto bailout; 6123 } 6124 6125 if (id_str == NULL) { 6126 if (error_str != NULL) { 6127 snprintf(error_str, error_str_len, "%s: no relative " 6128 "target port found", __func__); 6129 } 6130 retval = 1; 6131 goto bailout; 6132 } 6133 6134 target_port = strtoul(id_str, &endptr, 0); 6135 if (*endptr != '\0') { 6136 if (error_str != NULL) { 6137 snprintf(error_str, error_str_len, "%s: error " 6138 "parsing relative target port %s, number " 6139 "required", __func__, id_str); 6140 } 6141 retval = 1; 6142 goto bailout; 6143 } 6144 #ifdef _KERNEL 6145 spi = malloc(sizeof(*spi), type, flags); 6146 #else 6147 spi = malloc(sizeof(*spi)); 6148 #endif 6149 if (spi == NULL) { 6150 if (error_str != NULL) { 6151 snprintf(error_str, error_str_len, "%s: unable to " 6152 "allocate %zu bytes", __func__, 6153 sizeof(*spi)); 6154 } 6155 retval = 1; 6156 goto bailout; 6157 } 6158 *alloc_len = sizeof(*spi); 6159 bzero(spi, sizeof(*spi)); 6160 6161 spi->format_protocol = SCSI_PROTO_SPI | SCSI_TRN_SPI_FORMAT_DEFAULT; 6162 scsi_ulto2b(scsi_addr, spi->scsi_addr); 6163 scsi_ulto2b(target_port, spi->rel_trgt_port_id); 6164 6165 *hdr = (struct scsi_transportid_header *)spi; 6166 bailout: 6167 return (retval); 6168 } 6169 6170 /* 6171 * Parse an RDMA/SRP Initiator Port ID string. This is 32 hexadecimal digits, 6172 * optionally prefixed by "0x" or "0X". 6173 */ 6174 int 6175 scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr, 6176 unsigned int *alloc_len, 6177 #ifdef _KERNEL 6178 struct malloc_type *type, int flags, 6179 #endif 6180 char *error_str, int error_str_len) 6181 { 6182 struct scsi_transportid_rdma *rdma; 6183 int retval; 6184 size_t id_len, rdma_id_size; 6185 uint8_t rdma_id[SCSI_TRN_RDMA_PORT_LEN]; 6186 char *tmpstr; 6187 unsigned int i, j; 6188 6189 retval = 0; 6190 id_len = strlen(id_str); 6191 rdma_id_size = SCSI_TRN_RDMA_PORT_LEN; 6192 6193 /* 6194 * Check the size. It needs to be either 32 or 34 characters long. 6195 */ 6196 if ((id_len != (rdma_id_size * 2)) 6197 && (id_len != ((rdma_id_size * 2) + 2))) { 6198 if (error_str != NULL) { 6199 snprintf(error_str, error_str_len, "%s: RDMA ID " 6200 "must be 32 hex digits (0x prefix " 6201 "optional), only %zu seen", __func__, id_len); 6202 } 6203 retval = 1; 6204 goto bailout; 6205 } 6206 6207 tmpstr = id_str; 6208 /* 6209 * If the user gave us 34 characters, the string needs to start 6210 * with '0x'. 6211 */ 6212 if (id_len == ((rdma_id_size * 2) + 2)) { 6213 if ((tmpstr[0] == '0') 6214 && ((tmpstr[1] == 'x') || (tmpstr[1] == 'X'))) { 6215 tmpstr += 2; 6216 } else { 6217 if (error_str != NULL) { 6218 snprintf(error_str, error_str_len, "%s: RDMA " 6219 "ID prefix, if used, must be \"0x\", " 6220 "got %s", __func__, tmpstr); 6221 } 6222 retval = 1; 6223 goto bailout; 6224 } 6225 } 6226 bzero(rdma_id, sizeof(rdma_id)); 6227 6228 /* 6229 * Convert ASCII hex into binary bytes. There is no standard 6230 * 128-bit integer type, and so no strtou128t() routine to convert 6231 * from hex into a large integer. In the end, we're not going to 6232 * an integer, but rather to a byte array, so that and the fact 6233 * that we require the user to give us 32 hex digits simplifies the 6234 * logic. 6235 */ 6236 for (i = 0; i < (rdma_id_size * 2); i++) { 6237 int cur_shift; 6238 unsigned char c; 6239 6240 /* Increment the byte array one for every 2 hex digits */ 6241 j = i >> 1; 6242 6243 /* 6244 * The first digit in every pair is the most significant 6245 * 4 bits. The second is the least significant 4 bits. 6246 */ 6247 if ((i % 2) == 0) 6248 cur_shift = 4; 6249 else 6250 cur_shift = 0; 6251 6252 c = tmpstr[i]; 6253 /* Convert the ASCII hex character into a number */ 6254 if (isdigit(c)) 6255 c -= '0'; 6256 else if (isalpha(c)) 6257 c -= isupper(c) ? 'A' - 10 : 'a' - 10; 6258 else { 6259 if (error_str != NULL) { 6260 snprintf(error_str, error_str_len, "%s: " 6261 "RDMA ID must be hex digits, got " 6262 "invalid character %c", __func__, 6263 tmpstr[i]); 6264 } 6265 retval = 1; 6266 goto bailout; 6267 } 6268 /* 6269 * The converted number can't be less than 0; the type is 6270 * unsigned, and the subtraction logic will not give us 6271 * a negative number. So we only need to make sure that 6272 * the value is not greater than 0xf. (i.e. make sure the 6273 * user didn't give us a value like "0x12jklmno"). 6274 */ 6275 if (c > 0xf) { 6276 if (error_str != NULL) { 6277 snprintf(error_str, error_str_len, "%s: " 6278 "RDMA ID must be hex digits, got " 6279 "invalid character %c", __func__, 6280 tmpstr[i]); 6281 } 6282 retval = 1; 6283 goto bailout; 6284 } 6285 6286 rdma_id[j] |= c << cur_shift; 6287 } 6288 6289 #ifdef _KERNEL 6290 rdma = malloc(sizeof(*rdma), type, flags); 6291 #else 6292 rdma = malloc(sizeof(*rdma)); 6293 #endif 6294 if (rdma == NULL) { 6295 if (error_str != NULL) { 6296 snprintf(error_str, error_str_len, "%s: unable to " 6297 "allocate %zu bytes", __func__, 6298 sizeof(*rdma)); 6299 } 6300 retval = 1; 6301 goto bailout; 6302 } 6303 *alloc_len = sizeof(*rdma); 6304 bzero(rdma, *alloc_len); 6305 6306 rdma->format_protocol = SCSI_PROTO_RDMA | SCSI_TRN_RDMA_FORMAT_DEFAULT; 6307 bcopy(rdma_id, rdma->initiator_port_id, SCSI_TRN_RDMA_PORT_LEN); 6308 6309 *hdr = (struct scsi_transportid_header *)rdma; 6310 6311 bailout: 6312 return (retval); 6313 } 6314 6315 /* 6316 * Parse an iSCSI name. The format is either just the name: 6317 * 6318 * iqn.2012-06.com.example:target0 6319 * or the name, separator and initiator session ID: 6320 * 6321 * iqn.2012-06.com.example:target0,i,0x123 6322 * 6323 * The separator format is exact. 6324 */ 6325 int 6326 scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr, 6327 unsigned int *alloc_len, 6328 #ifdef _KERNEL 6329 struct malloc_type *type, int flags, 6330 #endif 6331 char *error_str, int error_str_len) 6332 { 6333 size_t id_len, sep_len, id_size, name_len; 6334 int retval; 6335 unsigned int i, sep_pos, sep_found; 6336 const char *sep_template = ",i,0x"; 6337 const char *iqn_prefix = "iqn."; 6338 struct scsi_transportid_iscsi_device *iscsi; 6339 6340 retval = 0; 6341 sep_found = 0; 6342 6343 id_len = strlen(id_str); 6344 sep_len = strlen(sep_template); 6345 6346 /* 6347 * The separator is defined as exactly ',i,0x'. Any other commas, 6348 * or any other form, is an error. So look for a comma, and once 6349 * we find that, the next few characters must match the separator 6350 * exactly. Once we get through the separator, there should be at 6351 * least one character. 6352 */ 6353 for (i = 0, sep_pos = 0; i < id_len; i++) { 6354 if (sep_pos == 0) { 6355 if (id_str[i] == sep_template[sep_pos]) 6356 sep_pos++; 6357 6358 continue; 6359 } 6360 if (sep_pos < sep_len) { 6361 if (id_str[i] == sep_template[sep_pos]) { 6362 sep_pos++; 6363 continue; 6364 } 6365 if (error_str != NULL) { 6366 snprintf(error_str, error_str_len, "%s: " 6367 "invalid separator in iSCSI name " 6368 "\"%s\"", 6369 __func__, id_str); 6370 } 6371 retval = 1; 6372 goto bailout; 6373 } else { 6374 sep_found = 1; 6375 break; 6376 } 6377 } 6378 6379 /* 6380 * Check to see whether we have a separator but no digits after it. 6381 */ 6382 if ((sep_pos != 0) 6383 && (sep_found == 0)) { 6384 if (error_str != NULL) { 6385 snprintf(error_str, error_str_len, "%s: no digits " 6386 "found after separator in iSCSI name \"%s\"", 6387 __func__, id_str); 6388 } 6389 retval = 1; 6390 goto bailout; 6391 } 6392 6393 /* 6394 * The incoming ID string has the "iqn." prefix stripped off. We 6395 * need enough space for the base structure (the structures are the 6396 * same for the two iSCSI forms), the prefix, the ID string and a 6397 * terminating NUL. 6398 */ 6399 id_size = sizeof(*iscsi) + strlen(iqn_prefix) + id_len + 1; 6400 6401 #ifdef _KERNEL 6402 iscsi = malloc(id_size, type, flags); 6403 #else 6404 iscsi = malloc(id_size); 6405 #endif 6406 if (iscsi == NULL) { 6407 if (error_str != NULL) { 6408 snprintf(error_str, error_str_len, "%s: unable to " 6409 "allocate %zu bytes", __func__, id_size); 6410 } 6411 retval = 1; 6412 goto bailout; 6413 } 6414 *alloc_len = id_size; 6415 bzero(iscsi, id_size); 6416 6417 iscsi->format_protocol = SCSI_PROTO_ISCSI; 6418 if (sep_found == 0) 6419 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_DEVICE; 6420 else 6421 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_PORT; 6422 name_len = id_size - sizeof(*iscsi); 6423 scsi_ulto2b(name_len, iscsi->additional_length); 6424 snprintf(iscsi->iscsi_name, name_len, "%s%s", iqn_prefix, id_str); 6425 6426 *hdr = (struct scsi_transportid_header *)iscsi; 6427 6428 bailout: 6429 return (retval); 6430 } 6431 6432 /* 6433 * Parse a SCSI over PCIe (SOP) identifier. The Routing ID can either be 6434 * of the form 'bus,device,function' or 'bus,function'. 6435 */ 6436 int 6437 scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr, 6438 unsigned int *alloc_len, 6439 #ifdef _KERNEL 6440 struct malloc_type *type, int flags, 6441 #endif 6442 char *error_str, int error_str_len) 6443 { 6444 struct scsi_transportid_sop *sop; 6445 unsigned long bus, device, function; 6446 char *tmpstr, *endptr; 6447 int retval, device_spec; 6448 6449 retval = 0; 6450 device_spec = 0; 6451 device = 0; 6452 6453 tmpstr = strsep(&id_str, ","); 6454 if ((tmpstr == NULL) 6455 || (*tmpstr == '\0')) { 6456 if (error_str != NULL) { 6457 snprintf(error_str, error_str_len, "%s: no ID found", 6458 __func__); 6459 } 6460 retval = 1; 6461 goto bailout; 6462 } 6463 bus = strtoul(tmpstr, &endptr, 0); 6464 if (*endptr != '\0') { 6465 if (error_str != NULL) { 6466 snprintf(error_str, error_str_len, "%s: error " 6467 "parsing PCIe bus %s, number required", 6468 __func__, tmpstr); 6469 } 6470 retval = 1; 6471 goto bailout; 6472 } 6473 if ((id_str == NULL) 6474 || (*id_str == '\0')) { 6475 if (error_str != NULL) { 6476 snprintf(error_str, error_str_len, "%s: no PCIe " 6477 "device or function found", __func__); 6478 } 6479 retval = 1; 6480 goto bailout; 6481 } 6482 tmpstr = strsep(&id_str, ","); 6483 function = strtoul(tmpstr, &endptr, 0); 6484 if (*endptr != '\0') { 6485 if (error_str != NULL) { 6486 snprintf(error_str, error_str_len, "%s: error " 6487 "parsing PCIe device/function %s, number " 6488 "required", __func__, tmpstr); 6489 } 6490 retval = 1; 6491 goto bailout; 6492 } 6493 /* 6494 * Check to see whether the user specified a third value. If so, 6495 * the second is the device. 6496 */ 6497 if (id_str != NULL) { 6498 if (*id_str == '\0') { 6499 if (error_str != NULL) { 6500 snprintf(error_str, error_str_len, "%s: " 6501 "no PCIe function found", __func__); 6502 } 6503 retval = 1; 6504 goto bailout; 6505 } 6506 device = function; 6507 device_spec = 1; 6508 function = strtoul(id_str, &endptr, 0); 6509 if (*endptr != '\0') { 6510 if (error_str != NULL) { 6511 snprintf(error_str, error_str_len, "%s: " 6512 "error parsing PCIe function %s, " 6513 "number required", __func__, id_str); 6514 } 6515 retval = 1; 6516 goto bailout; 6517 } 6518 } 6519 if (bus > SCSI_TRN_SOP_BUS_MAX) { 6520 if (error_str != NULL) { 6521 snprintf(error_str, error_str_len, "%s: bus value " 6522 "%lu greater than maximum %u", __func__, 6523 bus, SCSI_TRN_SOP_BUS_MAX); 6524 } 6525 retval = 1; 6526 goto bailout; 6527 } 6528 6529 if ((device_spec != 0) 6530 && (device > SCSI_TRN_SOP_DEV_MASK)) { 6531 if (error_str != NULL) { 6532 snprintf(error_str, error_str_len, "%s: device value " 6533 "%lu greater than maximum %u", __func__, 6534 device, SCSI_TRN_SOP_DEV_MAX); 6535 } 6536 retval = 1; 6537 goto bailout; 6538 } 6539 6540 if (((device_spec != 0) 6541 && (function > SCSI_TRN_SOP_FUNC_NORM_MAX)) 6542 || ((device_spec == 0) 6543 && (function > SCSI_TRN_SOP_FUNC_ALT_MAX))) { 6544 if (error_str != NULL) { 6545 snprintf(error_str, error_str_len, "%s: function value " 6546 "%lu greater than maximum %u", __func__, 6547 function, (device_spec == 0) ? 6548 SCSI_TRN_SOP_FUNC_ALT_MAX : 6549 SCSI_TRN_SOP_FUNC_NORM_MAX); 6550 } 6551 retval = 1; 6552 goto bailout; 6553 } 6554 6555 #ifdef _KERNEL 6556 sop = malloc(sizeof(*sop), type, flags); 6557 #else 6558 sop = malloc(sizeof(*sop)); 6559 #endif 6560 if (sop == NULL) { 6561 if (error_str != NULL) { 6562 snprintf(error_str, error_str_len, "%s: unable to " 6563 "allocate %zu bytes", __func__, sizeof(*sop)); 6564 } 6565 retval = 1; 6566 goto bailout; 6567 } 6568 *alloc_len = sizeof(*sop); 6569 bzero(sop, sizeof(*sop)); 6570 sop->format_protocol = SCSI_PROTO_SOP | SCSI_TRN_SOP_FORMAT_DEFAULT; 6571 if (device_spec != 0) { 6572 struct scsi_sop_routing_id_norm rid; 6573 6574 rid.bus = bus; 6575 rid.devfunc = (device << SCSI_TRN_SOP_DEV_SHIFT) | function; 6576 bcopy(&rid, sop->routing_id, MIN(sizeof(rid), 6577 sizeof(sop->routing_id))); 6578 } else { 6579 struct scsi_sop_routing_id_alt rid; 6580 6581 rid.bus = bus; 6582 rid.function = function; 6583 bcopy(&rid, sop->routing_id, MIN(sizeof(rid), 6584 sizeof(sop->routing_id))); 6585 } 6586 6587 *hdr = (struct scsi_transportid_header *)sop; 6588 bailout: 6589 return (retval); 6590 } 6591 6592 /* 6593 * transportid_str: NUL-terminated string with format: protcol,id 6594 * The ID is protocol specific. 6595 * hdr: Storage will be allocated for the transport ID. 6596 * alloc_len: The amount of memory allocated is returned here. 6597 * type: Malloc bucket (kernel only). 6598 * flags: Malloc flags (kernel only). 6599 * error_str: If non-NULL, it will contain error information (without 6600 * a terminating newline) if an error is returned. 6601 * error_str_len: Allocated length of the error string. 6602 * 6603 * Returns 0 for success, non-zero for failure. 6604 */ 6605 int 6606 scsi_parse_transportid(char *transportid_str, 6607 struct scsi_transportid_header **hdr, 6608 unsigned int *alloc_len, 6609 #ifdef _KERNEL 6610 struct malloc_type *type, int flags, 6611 #endif 6612 char *error_str, int error_str_len) 6613 { 6614 char *tmpstr; 6615 scsi_nv_status status; 6616 u_int num_proto_entries; 6617 int retval, table_entry; 6618 6619 retval = 0; 6620 table_entry = 0; 6621 6622 /* 6623 * We do allow a period as well as a comma to separate the protocol 6624 * from the ID string. This is to accommodate iSCSI names, which 6625 * start with "iqn.". 6626 */ 6627 tmpstr = strsep(&transportid_str, ",."); 6628 if (tmpstr == NULL) { 6629 if (error_str != NULL) { 6630 snprintf(error_str, error_str_len, 6631 "%s: transportid_str is NULL", __func__); 6632 } 6633 retval = 1; 6634 goto bailout; 6635 } 6636 6637 num_proto_entries = nitems(scsi_proto_map); 6638 status = scsi_get_nv(scsi_proto_map, num_proto_entries, tmpstr, 6639 &table_entry, SCSI_NV_FLAG_IG_CASE); 6640 if (status != SCSI_NV_FOUND) { 6641 if (error_str != NULL) { 6642 snprintf(error_str, error_str_len, "%s: %s protocol " 6643 "name %s", __func__, 6644 (status == SCSI_NV_AMBIGUOUS) ? "ambiguous" : 6645 "invalid", tmpstr); 6646 } 6647 retval = 1; 6648 goto bailout; 6649 } 6650 switch (scsi_proto_map[table_entry].value) { 6651 case SCSI_PROTO_FC: 6652 case SCSI_PROTO_1394: 6653 case SCSI_PROTO_SAS: 6654 retval = scsi_parse_transportid_64bit( 6655 scsi_proto_map[table_entry].value, transportid_str, hdr, 6656 alloc_len, 6657 #ifdef _KERNEL 6658 type, flags, 6659 #endif 6660 error_str, error_str_len); 6661 break; 6662 case SCSI_PROTO_SPI: 6663 retval = scsi_parse_transportid_spi(transportid_str, hdr, 6664 alloc_len, 6665 #ifdef _KERNEL 6666 type, flags, 6667 #endif 6668 error_str, error_str_len); 6669 break; 6670 case SCSI_PROTO_RDMA: 6671 retval = scsi_parse_transportid_rdma(transportid_str, hdr, 6672 alloc_len, 6673 #ifdef _KERNEL 6674 type, flags, 6675 #endif 6676 error_str, error_str_len); 6677 break; 6678 case SCSI_PROTO_ISCSI: 6679 retval = scsi_parse_transportid_iscsi(transportid_str, hdr, 6680 alloc_len, 6681 #ifdef _KERNEL 6682 type, flags, 6683 #endif 6684 error_str, error_str_len); 6685 break; 6686 case SCSI_PROTO_SOP: 6687 retval = scsi_parse_transportid_sop(transportid_str, hdr, 6688 alloc_len, 6689 #ifdef _KERNEL 6690 type, flags, 6691 #endif 6692 error_str, error_str_len); 6693 break; 6694 case SCSI_PROTO_SSA: 6695 case SCSI_PROTO_ADITP: 6696 case SCSI_PROTO_ATA: 6697 case SCSI_PROTO_UAS: 6698 case SCSI_PROTO_NONE: 6699 default: 6700 /* 6701 * There is no format defined for a Transport ID for these 6702 * protocols. So even if the user gives us something, we 6703 * have no way to turn it into a standard SCSI Transport ID. 6704 */ 6705 retval = 1; 6706 if (error_str != NULL) { 6707 snprintf(error_str, error_str_len, "%s: no Transport " 6708 "ID format exists for protocol %s", 6709 __func__, tmpstr); 6710 } 6711 goto bailout; 6712 break; /* NOTREACHED */ 6713 } 6714 bailout: 6715 return (retval); 6716 } 6717 6718 struct scsi_attrib_table_entry scsi_mam_attr_table[] = { 6719 { SMA_ATTR_REM_CAP_PARTITION, SCSI_ATTR_FLAG_NONE, 6720 "Remaining Capacity in Partition", 6721 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,/*parse_str*/ NULL }, 6722 { SMA_ATTR_MAX_CAP_PARTITION, SCSI_ATTR_FLAG_NONE, 6723 "Maximum Capacity in Partition", 6724 /*suffix*/"MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6725 { SMA_ATTR_TAPEALERT_FLAGS, SCSI_ATTR_FLAG_HEX, 6726 "TapeAlert Flags", 6727 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6728 { SMA_ATTR_LOAD_COUNT, SCSI_ATTR_FLAG_NONE, 6729 "Load Count", 6730 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6731 { SMA_ATTR_MAM_SPACE_REMAINING, SCSI_ATTR_FLAG_NONE, 6732 "MAM Space Remaining", 6733 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf, 6734 /*parse_str*/ NULL }, 6735 { SMA_ATTR_DEV_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE, 6736 "Assigning Organization", 6737 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6738 /*parse_str*/ NULL }, 6739 { SMA_ATTR_FORMAT_DENSITY_CODE, SCSI_ATTR_FLAG_HEX, 6740 "Format Density Code", 6741 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6742 { SMA_ATTR_INITIALIZATION_COUNT, SCSI_ATTR_FLAG_NONE, 6743 "Initialization Count", 6744 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6745 { SMA_ATTR_VOLUME_ID, SCSI_ATTR_FLAG_NONE, 6746 "Volume Identifier", 6747 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6748 /*parse_str*/ NULL }, 6749 { SMA_ATTR_VOLUME_CHANGE_REF, SCSI_ATTR_FLAG_HEX, 6750 "Volume Change Reference", 6751 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6752 /*parse_str*/ NULL }, 6753 { SMA_ATTR_DEV_SERIAL_LAST_LOAD, SCSI_ATTR_FLAG_NONE, 6754 "Device Vendor/Serial at Last Load", 6755 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6756 /*parse_str*/ NULL }, 6757 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_1, SCSI_ATTR_FLAG_NONE, 6758 "Device Vendor/Serial at Last Load - 1", 6759 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6760 /*parse_str*/ NULL }, 6761 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_2, SCSI_ATTR_FLAG_NONE, 6762 "Device Vendor/Serial at Last Load - 2", 6763 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6764 /*parse_str*/ NULL }, 6765 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_3, SCSI_ATTR_FLAG_NONE, 6766 "Device Vendor/Serial at Last Load - 3", 6767 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6768 /*parse_str*/ NULL }, 6769 { SMA_ATTR_TOTAL_MB_WRITTEN_LT, SCSI_ATTR_FLAG_NONE, 6770 "Total MB Written in Medium Life", 6771 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6772 /*parse_str*/ NULL }, 6773 { SMA_ATTR_TOTAL_MB_READ_LT, SCSI_ATTR_FLAG_NONE, 6774 "Total MB Read in Medium Life", 6775 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6776 /*parse_str*/ NULL }, 6777 { SMA_ATTR_TOTAL_MB_WRITTEN_CUR, SCSI_ATTR_FLAG_NONE, 6778 "Total MB Written in Current/Last Load", 6779 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6780 /*parse_str*/ NULL }, 6781 { SMA_ATTR_TOTAL_MB_READ_CUR, SCSI_ATTR_FLAG_NONE, 6782 "Total MB Read in Current/Last Load", 6783 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6784 /*parse_str*/ NULL }, 6785 { SMA_ATTR_FIRST_ENC_BLOCK, SCSI_ATTR_FLAG_NONE, 6786 "Logical Position of First Encrypted Block", 6787 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf, 6788 /*parse_str*/ NULL }, 6789 { SMA_ATTR_NEXT_UNENC_BLOCK, SCSI_ATTR_FLAG_NONE, 6790 "Logical Position of First Unencrypted Block after First " 6791 "Encrypted Block", 6792 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf, 6793 /*parse_str*/ NULL }, 6794 { SMA_ATTR_MEDIUM_USAGE_HIST, SCSI_ATTR_FLAG_NONE, 6795 "Medium Usage History", 6796 /*suffix*/ NULL, /*to_str*/ NULL, 6797 /*parse_str*/ NULL }, 6798 { SMA_ATTR_PART_USAGE_HIST, SCSI_ATTR_FLAG_NONE, 6799 "Partition Usage History", 6800 /*suffix*/ NULL, /*to_str*/ NULL, 6801 /*parse_str*/ NULL }, 6802 { SMA_ATTR_MED_MANUF, SCSI_ATTR_FLAG_NONE, 6803 "Medium Manufacturer", 6804 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6805 /*parse_str*/ NULL }, 6806 { SMA_ATTR_MED_SERIAL, SCSI_ATTR_FLAG_NONE, 6807 "Medium Serial Number", 6808 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6809 /*parse_str*/ NULL }, 6810 { SMA_ATTR_MED_LENGTH, SCSI_ATTR_FLAG_NONE, 6811 "Medium Length", 6812 /*suffix*/"m", /*to_str*/ scsi_attrib_int_sbuf, 6813 /*parse_str*/ NULL }, 6814 { SMA_ATTR_MED_WIDTH, SCSI_ATTR_FLAG_FP | SCSI_ATTR_FLAG_DIV_10 | 6815 SCSI_ATTR_FLAG_FP_1DIGIT, 6816 "Medium Width", 6817 /*suffix*/"mm", /*to_str*/ scsi_attrib_int_sbuf, 6818 /*parse_str*/ NULL }, 6819 { SMA_ATTR_MED_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE, 6820 "Assigning Organization", 6821 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6822 /*parse_str*/ NULL }, 6823 { SMA_ATTR_MED_DENSITY_CODE, SCSI_ATTR_FLAG_HEX, 6824 "Medium Density Code", 6825 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6826 /*parse_str*/ NULL }, 6827 { SMA_ATTR_MED_MANUF_DATE, SCSI_ATTR_FLAG_NONE, 6828 "Medium Manufacture Date", 6829 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6830 /*parse_str*/ NULL }, 6831 { SMA_ATTR_MAM_CAPACITY, SCSI_ATTR_FLAG_NONE, 6832 "MAM Capacity", 6833 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf, 6834 /*parse_str*/ NULL }, 6835 { SMA_ATTR_MED_TYPE, SCSI_ATTR_FLAG_HEX, 6836 "Medium Type", 6837 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6838 /*parse_str*/ NULL }, 6839 { SMA_ATTR_MED_TYPE_INFO, SCSI_ATTR_FLAG_HEX, 6840 "Medium Type Information", 6841 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6842 /*parse_str*/ NULL }, 6843 { SMA_ATTR_MED_SERIAL_NUM, SCSI_ATTR_FLAG_NONE, 6844 "Medium Serial Number", 6845 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6846 /*parse_str*/ NULL }, 6847 { SMA_ATTR_APP_VENDOR, SCSI_ATTR_FLAG_NONE, 6848 "Application Vendor", 6849 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6850 /*parse_str*/ NULL }, 6851 { SMA_ATTR_APP_NAME, SCSI_ATTR_FLAG_NONE, 6852 "Application Name", 6853 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6854 /*parse_str*/ NULL }, 6855 { SMA_ATTR_APP_VERSION, SCSI_ATTR_FLAG_NONE, 6856 "Application Version", 6857 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6858 /*parse_str*/ NULL }, 6859 { SMA_ATTR_USER_MED_TEXT_LABEL, SCSI_ATTR_FLAG_NONE, 6860 "User Medium Text Label", 6861 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6862 /*parse_str*/ NULL }, 6863 { SMA_ATTR_LAST_WRITTEN_TIME, SCSI_ATTR_FLAG_NONE, 6864 "Date and Time Last Written", 6865 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6866 /*parse_str*/ NULL }, 6867 { SMA_ATTR_TEXT_LOCAL_ID, SCSI_ATTR_FLAG_HEX, 6868 "Text Localization Identifier", 6869 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6870 /*parse_str*/ NULL }, 6871 { SMA_ATTR_BARCODE, SCSI_ATTR_FLAG_NONE, 6872 "Barcode", 6873 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6874 /*parse_str*/ NULL }, 6875 { SMA_ATTR_HOST_OWNER_NAME, SCSI_ATTR_FLAG_NONE, 6876 "Owning Host Textual Name", 6877 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6878 /*parse_str*/ NULL }, 6879 { SMA_ATTR_MEDIA_POOL, SCSI_ATTR_FLAG_NONE, 6880 "Media Pool", 6881 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6882 /*parse_str*/ NULL }, 6883 { SMA_ATTR_PART_USER_LABEL, SCSI_ATTR_FLAG_NONE, 6884 "Partition User Text Label", 6885 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6886 /*parse_str*/ NULL }, 6887 { SMA_ATTR_LOAD_UNLOAD_AT_PART, SCSI_ATTR_FLAG_NONE, 6888 "Load/Unload at Partition", 6889 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6890 /*parse_str*/ NULL }, 6891 { SMA_ATTR_APP_FORMAT_VERSION, SCSI_ATTR_FLAG_NONE, 6892 "Application Format Version", 6893 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6894 /*parse_str*/ NULL }, 6895 { SMA_ATTR_VOL_COHERENCY_INFO, SCSI_ATTR_FLAG_NONE, 6896 "Volume Coherency Information", 6897 /*suffix*/NULL, /*to_str*/ scsi_attrib_volcoh_sbuf, 6898 /*parse_str*/ NULL }, 6899 { 0x0ff1, SCSI_ATTR_FLAG_NONE, 6900 "Spectra MLM Creation", 6901 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6902 /*parse_str*/ NULL }, 6903 { 0x0ff2, SCSI_ATTR_FLAG_NONE, 6904 "Spectra MLM C3", 6905 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6906 /*parse_str*/ NULL }, 6907 { 0x0ff3, SCSI_ATTR_FLAG_NONE, 6908 "Spectra MLM RW", 6909 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6910 /*parse_str*/ NULL }, 6911 { 0x0ff4, SCSI_ATTR_FLAG_NONE, 6912 "Spectra MLM SDC List", 6913 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6914 /*parse_str*/ NULL }, 6915 { 0x0ff7, SCSI_ATTR_FLAG_NONE, 6916 "Spectra MLM Post Scan", 6917 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6918 /*parse_str*/ NULL }, 6919 { 0x0ffe, SCSI_ATTR_FLAG_NONE, 6920 "Spectra MLM Checksum", 6921 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6922 /*parse_str*/ NULL }, 6923 { 0x17f1, SCSI_ATTR_FLAG_NONE, 6924 "Spectra MLM Creation", 6925 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6926 /*parse_str*/ NULL }, 6927 { 0x17f2, SCSI_ATTR_FLAG_NONE, 6928 "Spectra MLM C3", 6929 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6930 /*parse_str*/ NULL }, 6931 { 0x17f3, SCSI_ATTR_FLAG_NONE, 6932 "Spectra MLM RW", 6933 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6934 /*parse_str*/ NULL }, 6935 { 0x17f4, SCSI_ATTR_FLAG_NONE, 6936 "Spectra MLM SDC List", 6937 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6938 /*parse_str*/ NULL }, 6939 { 0x17f7, SCSI_ATTR_FLAG_NONE, 6940 "Spectra MLM Post Scan", 6941 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6942 /*parse_str*/ NULL }, 6943 { 0x17ff, SCSI_ATTR_FLAG_NONE, 6944 "Spectra MLM Checksum", 6945 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6946 /*parse_str*/ NULL }, 6947 }; 6948 6949 /* 6950 * Print out Volume Coherency Information (Attribute 0x080c). 6951 * This field has two variable length members, including one at the 6952 * beginning, so it isn't practical to have a fixed structure definition. 6953 * This is current as of SSC4r03 (see section 4.2.21.3), dated March 25, 6954 * 2013. 6955 */ 6956 int 6957 scsi_attrib_volcoh_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 6958 uint32_t valid_len, uint32_t flags, 6959 uint32_t output_flags, char *error_str, 6960 int error_str_len) 6961 { 6962 size_t avail_len; 6963 uint32_t field_size; 6964 uint64_t tmp_val; 6965 uint8_t *cur_ptr; 6966 int retval; 6967 int vcr_len, as_len; 6968 6969 retval = 0; 6970 tmp_val = 0; 6971 6972 field_size = scsi_2btoul(hdr->length); 6973 avail_len = valid_len - sizeof(*hdr); 6974 if (field_size > avail_len) { 6975 if (error_str != NULL) { 6976 snprintf(error_str, error_str_len, "Available " 6977 "length of attribute ID 0x%.4x %zu < field " 6978 "length %u", scsi_2btoul(hdr->id), avail_len, 6979 field_size); 6980 } 6981 retval = 1; 6982 goto bailout; 6983 } else if (field_size == 0) { 6984 /* 6985 * It isn't clear from the spec whether a field length of 6986 * 0 is invalid here. It probably is, but be lenient here 6987 * to avoid inconveniencing the user. 6988 */ 6989 goto bailout; 6990 } 6991 cur_ptr = hdr->attribute; 6992 vcr_len = *cur_ptr; 6993 cur_ptr++; 6994 6995 sbuf_printf(sb, "\n\tVolume Change Reference Value:"); 6996 6997 switch (vcr_len) { 6998 case 0: 6999 if (error_str != NULL) { 7000 snprintf(error_str, error_str_len, "Volume Change " 7001 "Reference value has length of 0"); 7002 } 7003 retval = 1; 7004 goto bailout; 7005 break; /*NOTREACHED*/ 7006 case 1: 7007 tmp_val = *cur_ptr; 7008 break; 7009 case 2: 7010 tmp_val = scsi_2btoul(cur_ptr); 7011 break; 7012 case 3: 7013 tmp_val = scsi_3btoul(cur_ptr); 7014 break; 7015 case 4: 7016 tmp_val = scsi_4btoul(cur_ptr); 7017 break; 7018 case 8: 7019 tmp_val = scsi_8btou64(cur_ptr); 7020 break; 7021 default: 7022 sbuf_printf(sb, "\n"); 7023 sbuf_hexdump(sb, cur_ptr, vcr_len, NULL, 0); 7024 break; 7025 } 7026 if (vcr_len <= 8) 7027 sbuf_printf(sb, " 0x%jx\n", (uintmax_t)tmp_val); 7028 7029 cur_ptr += vcr_len; 7030 tmp_val = scsi_8btou64(cur_ptr); 7031 sbuf_printf(sb, "\tVolume Coherency Count: %ju\n", (uintmax_t)tmp_val); 7032 7033 cur_ptr += sizeof(tmp_val); 7034 tmp_val = scsi_8btou64(cur_ptr); 7035 sbuf_printf(sb, "\tVolume Coherency Set Identifier: 0x%jx\n", 7036 (uintmax_t)tmp_val); 7037 7038 /* 7039 * Figure out how long the Application Client Specific Information 7040 * is and produce a hexdump. 7041 */ 7042 cur_ptr += sizeof(tmp_val); 7043 as_len = scsi_2btoul(cur_ptr); 7044 cur_ptr += sizeof(uint16_t); 7045 sbuf_printf(sb, "\tApplication Client Specific Information: "); 7046 if (((as_len == SCSI_LTFS_VER0_LEN) 7047 || (as_len == SCSI_LTFS_VER1_LEN)) 7048 && (strncmp(cur_ptr, SCSI_LTFS_STR_NAME, SCSI_LTFS_STR_LEN) == 0)) { 7049 sbuf_printf(sb, "LTFS\n"); 7050 cur_ptr += SCSI_LTFS_STR_LEN + 1; 7051 if (cur_ptr[SCSI_LTFS_UUID_LEN] != '\0') 7052 cur_ptr[SCSI_LTFS_UUID_LEN] = '\0'; 7053 sbuf_printf(sb, "\tLTFS UUID: %s\n", cur_ptr); 7054 cur_ptr += SCSI_LTFS_UUID_LEN + 1; 7055 /* XXX KDM check the length */ 7056 sbuf_printf(sb, "\tLTFS Version: %d\n", *cur_ptr); 7057 } else { 7058 sbuf_printf(sb, "Unknown\n"); 7059 sbuf_hexdump(sb, cur_ptr, as_len, NULL, 0); 7060 } 7061 7062 bailout: 7063 return (retval); 7064 } 7065 7066 int 7067 scsi_attrib_vendser_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7068 uint32_t valid_len, uint32_t flags, 7069 uint32_t output_flags, char *error_str, 7070 int error_str_len) 7071 { 7072 size_t avail_len; 7073 uint32_t field_size; 7074 struct scsi_attrib_vendser *vendser; 7075 cam_strvis_flags strvis_flags; 7076 int retval = 0; 7077 7078 field_size = scsi_2btoul(hdr->length); 7079 avail_len = valid_len - sizeof(*hdr); 7080 if (field_size > avail_len) { 7081 if (error_str != NULL) { 7082 snprintf(error_str, error_str_len, "Available " 7083 "length of attribute ID 0x%.4x %zu < field " 7084 "length %u", scsi_2btoul(hdr->id), avail_len, 7085 field_size); 7086 } 7087 retval = 1; 7088 goto bailout; 7089 } else if (field_size == 0) { 7090 /* 7091 * A field size of 0 doesn't make sense here. The device 7092 * can at least give you the vendor ID, even if it can't 7093 * give you the serial number. 7094 */ 7095 if (error_str != NULL) { 7096 snprintf(error_str, error_str_len, "The length of " 7097 "attribute ID 0x%.4x is 0", 7098 scsi_2btoul(hdr->id)); 7099 } 7100 retval = 1; 7101 goto bailout; 7102 } 7103 vendser = (struct scsi_attrib_vendser *)hdr->attribute; 7104 7105 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) { 7106 case SCSI_ATTR_OUTPUT_NONASCII_TRIM: 7107 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM; 7108 break; 7109 case SCSI_ATTR_OUTPUT_NONASCII_RAW: 7110 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW; 7111 break; 7112 case SCSI_ATTR_OUTPUT_NONASCII_ESC: 7113 default: 7114 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC; 7115 break;; 7116 } 7117 cam_strvis_sbuf(sb, vendser->vendor, sizeof(vendser->vendor), 7118 strvis_flags); 7119 sbuf_putc(sb, ' '); 7120 cam_strvis_sbuf(sb, vendser->serial_num, sizeof(vendser->serial_num), 7121 strvis_flags); 7122 bailout: 7123 return (retval); 7124 } 7125 7126 int 7127 scsi_attrib_hexdump_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7128 uint32_t valid_len, uint32_t flags, 7129 uint32_t output_flags, char *error_str, 7130 int error_str_len) 7131 { 7132 uint32_t field_size; 7133 ssize_t avail_len; 7134 uint32_t print_len; 7135 uint8_t *num_ptr; 7136 int retval = 0; 7137 7138 field_size = scsi_2btoul(hdr->length); 7139 avail_len = valid_len - sizeof(*hdr); 7140 print_len = MIN(avail_len, field_size); 7141 num_ptr = hdr->attribute; 7142 7143 if (print_len > 0) { 7144 sbuf_printf(sb, "\n"); 7145 sbuf_hexdump(sb, num_ptr, print_len, NULL, 0); 7146 } 7147 7148 return (retval); 7149 } 7150 7151 int 7152 scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7153 uint32_t valid_len, uint32_t flags, 7154 uint32_t output_flags, char *error_str, 7155 int error_str_len) 7156 { 7157 uint64_t print_number; 7158 size_t avail_len; 7159 uint32_t number_size; 7160 int retval = 0; 7161 7162 number_size = scsi_2btoul(hdr->length); 7163 7164 avail_len = valid_len - sizeof(*hdr); 7165 if (avail_len < number_size) { 7166 if (error_str != NULL) { 7167 snprintf(error_str, error_str_len, "Available " 7168 "length of attribute ID 0x%.4x %zu < field " 7169 "length %u", scsi_2btoul(hdr->id), avail_len, 7170 number_size); 7171 } 7172 retval = 1; 7173 goto bailout; 7174 } 7175 7176 switch (number_size) { 7177 case 0: 7178 /* 7179 * We don't treat this as an error, since there may be 7180 * scenarios where a device reports a field but then gives 7181 * a length of 0. See the note in scsi_attrib_ascii_sbuf(). 7182 */ 7183 goto bailout; 7184 break; /*NOTREACHED*/ 7185 case 1: 7186 print_number = hdr->attribute[0]; 7187 break; 7188 case 2: 7189 print_number = scsi_2btoul(hdr->attribute); 7190 break; 7191 case 3: 7192 print_number = scsi_3btoul(hdr->attribute); 7193 break; 7194 case 4: 7195 print_number = scsi_4btoul(hdr->attribute); 7196 break; 7197 case 8: 7198 print_number = scsi_8btou64(hdr->attribute); 7199 break; 7200 default: 7201 /* 7202 * If we wind up here, the number is too big to print 7203 * normally, so just do a hexdump. 7204 */ 7205 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len, 7206 flags, output_flags, 7207 error_str, error_str_len); 7208 goto bailout; 7209 break; 7210 } 7211 7212 if (flags & SCSI_ATTR_FLAG_FP) { 7213 #ifndef _KERNEL 7214 long double num_float; 7215 7216 num_float = (long double)print_number; 7217 7218 if (flags & SCSI_ATTR_FLAG_DIV_10) 7219 num_float /= 10; 7220 7221 sbuf_printf(sb, "%.*Lf", (flags & SCSI_ATTR_FLAG_FP_1DIGIT) ? 7222 1 : 0, num_float); 7223 #else /* _KERNEL */ 7224 sbuf_printf(sb, "%ju", (flags & SCSI_ATTR_FLAG_DIV_10) ? 7225 (print_number / 10) : print_number); 7226 #endif /* _KERNEL */ 7227 } else if (flags & SCSI_ATTR_FLAG_HEX) { 7228 sbuf_printf(sb, "0x%jx", (uintmax_t)print_number); 7229 } else 7230 sbuf_printf(sb, "%ju", (uintmax_t)print_number); 7231 7232 bailout: 7233 return (retval); 7234 } 7235 7236 int 7237 scsi_attrib_ascii_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7238 uint32_t valid_len, uint32_t flags, 7239 uint32_t output_flags, char *error_str, 7240 int error_str_len) 7241 { 7242 size_t avail_len; 7243 uint32_t field_size, print_size; 7244 int retval = 0; 7245 7246 avail_len = valid_len - sizeof(*hdr); 7247 field_size = scsi_2btoul(hdr->length); 7248 print_size = MIN(avail_len, field_size); 7249 7250 if (print_size > 0) { 7251 cam_strvis_flags strvis_flags; 7252 7253 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) { 7254 case SCSI_ATTR_OUTPUT_NONASCII_TRIM: 7255 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM; 7256 break; 7257 case SCSI_ATTR_OUTPUT_NONASCII_RAW: 7258 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW; 7259 break; 7260 case SCSI_ATTR_OUTPUT_NONASCII_ESC: 7261 default: 7262 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC; 7263 break; 7264 } 7265 cam_strvis_sbuf(sb, hdr->attribute, print_size, strvis_flags); 7266 } else if (avail_len < field_size) { 7267 /* 7268 * We only report an error if the user didn't allocate 7269 * enough space to hold the full value of this field. If 7270 * the field length is 0, that is allowed by the spec. 7271 * e.g. in SPC-4r37, section 7.4.2.2.5, VOLUME IDENTIFIER 7272 * "This attribute indicates the current volume identifier 7273 * (see SMC-3) of the medium. If the device server supports 7274 * this attribute but does not have access to the volume 7275 * identifier, the device server shall report this attribute 7276 * with an attribute length value of zero." 7277 */ 7278 if (error_str != NULL) { 7279 snprintf(error_str, error_str_len, "Available " 7280 "length of attribute ID 0x%.4x %zu < field " 7281 "length %u", scsi_2btoul(hdr->id), avail_len, 7282 field_size); 7283 } 7284 retval = 1; 7285 } 7286 7287 return (retval); 7288 } 7289 7290 int 7291 scsi_attrib_text_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7292 uint32_t valid_len, uint32_t flags, 7293 uint32_t output_flags, char *error_str, 7294 int error_str_len) 7295 { 7296 size_t avail_len; 7297 uint32_t field_size, print_size; 7298 int retval = 0; 7299 int esc_text = 1; 7300 7301 avail_len = valid_len - sizeof(*hdr); 7302 field_size = scsi_2btoul(hdr->length); 7303 print_size = MIN(avail_len, field_size); 7304 7305 if ((output_flags & SCSI_ATTR_OUTPUT_TEXT_MASK) == 7306 SCSI_ATTR_OUTPUT_TEXT_RAW) 7307 esc_text = 0; 7308 7309 if (print_size > 0) { 7310 uint32_t i; 7311 7312 for (i = 0; i < print_size; i++) { 7313 if (hdr->attribute[i] == '\0') 7314 continue; 7315 else if (((unsigned char)hdr->attribute[i] < 0x80) 7316 || (esc_text == 0)) 7317 sbuf_putc(sb, hdr->attribute[i]); 7318 else 7319 sbuf_printf(sb, "%%%02x", 7320 (unsigned char)hdr->attribute[i]); 7321 } 7322 } else if (avail_len < field_size) { 7323 /* 7324 * We only report an error if the user didn't allocate 7325 * enough space to hold the full value of this field. 7326 */ 7327 if (error_str != NULL) { 7328 snprintf(error_str, error_str_len, "Available " 7329 "length of attribute ID 0x%.4x %zu < field " 7330 "length %u", scsi_2btoul(hdr->id), avail_len, 7331 field_size); 7332 } 7333 retval = 1; 7334 } 7335 7336 return (retval); 7337 } 7338 7339 struct scsi_attrib_table_entry * 7340 scsi_find_attrib_entry(struct scsi_attrib_table_entry *table, 7341 size_t num_table_entries, uint32_t id) 7342 { 7343 uint32_t i; 7344 7345 for (i = 0; i < num_table_entries; i++) { 7346 if (table[i].id == id) 7347 return (&table[i]); 7348 } 7349 7350 return (NULL); 7351 } 7352 7353 struct scsi_attrib_table_entry * 7354 scsi_get_attrib_entry(uint32_t id) 7355 { 7356 return (scsi_find_attrib_entry(scsi_mam_attr_table, 7357 nitems(scsi_mam_attr_table), id)); 7358 } 7359 7360 int 7361 scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len, 7362 struct scsi_mam_attribute_header *hdr, uint32_t output_flags, 7363 char *error_str, size_t error_str_len) 7364 { 7365 int retval; 7366 7367 switch (hdr->byte2 & SMA_FORMAT_MASK) { 7368 case SMA_FORMAT_ASCII: 7369 retval = scsi_attrib_ascii_sbuf(sb, hdr, valid_len, 7370 SCSI_ATTR_FLAG_NONE, output_flags, error_str,error_str_len); 7371 break; 7372 case SMA_FORMAT_BINARY: 7373 if (scsi_2btoul(hdr->length) <= 8) 7374 retval = scsi_attrib_int_sbuf(sb, hdr, valid_len, 7375 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7376 error_str_len); 7377 else 7378 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len, 7379 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7380 error_str_len); 7381 break; 7382 case SMA_FORMAT_TEXT: 7383 retval = scsi_attrib_text_sbuf(sb, hdr, valid_len, 7384 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7385 error_str_len); 7386 break; 7387 default: 7388 if (error_str != NULL) { 7389 snprintf(error_str, error_str_len, "Unknown attribute " 7390 "format 0x%x", hdr->byte2 & SMA_FORMAT_MASK); 7391 } 7392 retval = 1; 7393 goto bailout; 7394 break; /*NOTREACHED*/ 7395 } 7396 7397 sbuf_trim(sb); 7398 7399 bailout: 7400 7401 return (retval); 7402 } 7403 7404 void 7405 scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags, 7406 struct scsi_mam_attribute_header *hdr, 7407 uint32_t valid_len, const char *desc) 7408 { 7409 int need_space = 0; 7410 uint32_t len; 7411 uint32_t id; 7412 7413 /* 7414 * We can't do anything if we don't have enough valid data for the 7415 * header. 7416 */ 7417 if (valid_len < sizeof(*hdr)) 7418 return; 7419 7420 id = scsi_2btoul(hdr->id); 7421 /* 7422 * Note that we print out the value of the attribute listed in the 7423 * header, regardless of whether we actually got that many bytes 7424 * back from the device through the controller. A truncated result 7425 * could be the result of a failure to ask for enough data; the 7426 * header indicates how many bytes are allocated for this attribute 7427 * in the MAM. 7428 */ 7429 len = scsi_2btoul(hdr->length); 7430 7431 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_MASK) == 7432 SCSI_ATTR_OUTPUT_FIELD_NONE) 7433 return; 7434 7435 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_DESC) 7436 && (desc != NULL)) { 7437 sbuf_printf(sb, "%s", desc); 7438 need_space = 1; 7439 } 7440 7441 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_NUM) { 7442 sbuf_printf(sb, "%s(0x%.4x)", (need_space) ? " " : "", id); 7443 need_space = 0; 7444 } 7445 7446 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_SIZE) { 7447 sbuf_printf(sb, "%s[%d]", (need_space) ? " " : "", len); 7448 need_space = 0; 7449 } 7450 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_RW) { 7451 sbuf_printf(sb, "%s(%s)", (need_space) ? " " : "", 7452 (hdr->byte2 & SMA_READ_ONLY) ? "RO" : "RW"); 7453 } 7454 sbuf_printf(sb, ": "); 7455 } 7456 7457 int 7458 scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7459 uint32_t valid_len, struct scsi_attrib_table_entry *user_table, 7460 size_t num_user_entries, int prefer_user_table, 7461 uint32_t output_flags, char *error_str, int error_str_len) 7462 { 7463 int retval; 7464 struct scsi_attrib_table_entry *table1 = NULL, *table2 = NULL; 7465 struct scsi_attrib_table_entry *entry = NULL; 7466 size_t table1_size = 0, table2_size = 0; 7467 uint32_t id; 7468 7469 retval = 0; 7470 7471 if (valid_len < sizeof(*hdr)) { 7472 retval = 1; 7473 goto bailout; 7474 } 7475 7476 id = scsi_2btoul(hdr->id); 7477 7478 if (user_table != NULL) { 7479 if (prefer_user_table != 0) { 7480 table1 = user_table; 7481 table1_size = num_user_entries; 7482 table2 = scsi_mam_attr_table; 7483 table2_size = nitems(scsi_mam_attr_table); 7484 } else { 7485 table1 = scsi_mam_attr_table; 7486 table1_size = nitems(scsi_mam_attr_table); 7487 table2 = user_table; 7488 table2_size = num_user_entries; 7489 } 7490 } else { 7491 table1 = scsi_mam_attr_table; 7492 table1_size = nitems(scsi_mam_attr_table); 7493 } 7494 7495 entry = scsi_find_attrib_entry(table1, table1_size, id); 7496 if (entry != NULL) { 7497 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, 7498 entry->desc); 7499 if (entry->to_str == NULL) 7500 goto print_default; 7501 retval = entry->to_str(sb, hdr, valid_len, entry->flags, 7502 output_flags, error_str, error_str_len); 7503 goto bailout; 7504 } 7505 if (table2 != NULL) { 7506 entry = scsi_find_attrib_entry(table2, table2_size, id); 7507 if (entry != NULL) { 7508 if (entry->to_str == NULL) 7509 goto print_default; 7510 7511 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, 7512 valid_len, entry->desc); 7513 retval = entry->to_str(sb, hdr, valid_len, entry->flags, 7514 output_flags, error_str, 7515 error_str_len); 7516 goto bailout; 7517 } 7518 } 7519 7520 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, NULL); 7521 7522 print_default: 7523 retval = scsi_attrib_value_sbuf(sb, valid_len, hdr, output_flags, 7524 error_str, error_str_len); 7525 bailout: 7526 if (retval == 0) { 7527 if ((entry != NULL) 7528 && (entry->suffix != NULL)) 7529 sbuf_printf(sb, " %s", entry->suffix); 7530 7531 sbuf_trim(sb); 7532 sbuf_printf(sb, "\n"); 7533 } 7534 7535 return (retval); 7536 } 7537 7538 void 7539 scsi_test_unit_ready(struct ccb_scsiio *csio, u_int32_t retries, 7540 void (*cbfcnp)(struct cam_periph *, union ccb *), 7541 u_int8_t tag_action, u_int8_t sense_len, u_int32_t timeout) 7542 { 7543 struct scsi_test_unit_ready *scsi_cmd; 7544 7545 cam_fill_csio(csio, 7546 retries, 7547 cbfcnp, 7548 CAM_DIR_NONE, 7549 tag_action, 7550 /*data_ptr*/NULL, 7551 /*dxfer_len*/0, 7552 sense_len, 7553 sizeof(*scsi_cmd), 7554 timeout); 7555 7556 scsi_cmd = (struct scsi_test_unit_ready *)&csio->cdb_io.cdb_bytes; 7557 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7558 scsi_cmd->opcode = TEST_UNIT_READY; 7559 } 7560 7561 void 7562 scsi_request_sense(struct ccb_scsiio *csio, u_int32_t retries, 7563 void (*cbfcnp)(struct cam_periph *, union ccb *), 7564 void *data_ptr, u_int8_t dxfer_len, u_int8_t tag_action, 7565 u_int8_t sense_len, u_int32_t timeout) 7566 { 7567 struct scsi_request_sense *scsi_cmd; 7568 7569 cam_fill_csio(csio, 7570 retries, 7571 cbfcnp, 7572 CAM_DIR_IN, 7573 tag_action, 7574 data_ptr, 7575 dxfer_len, 7576 sense_len, 7577 sizeof(*scsi_cmd), 7578 timeout); 7579 7580 scsi_cmd = (struct scsi_request_sense *)&csio->cdb_io.cdb_bytes; 7581 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7582 scsi_cmd->opcode = REQUEST_SENSE; 7583 scsi_cmd->length = dxfer_len; 7584 } 7585 7586 void 7587 scsi_inquiry(struct ccb_scsiio *csio, u_int32_t retries, 7588 void (*cbfcnp)(struct cam_periph *, union ccb *), 7589 u_int8_t tag_action, u_int8_t *inq_buf, u_int32_t inq_len, 7590 int evpd, u_int8_t page_code, u_int8_t sense_len, 7591 u_int32_t timeout) 7592 { 7593 struct scsi_inquiry *scsi_cmd; 7594 7595 cam_fill_csio(csio, 7596 retries, 7597 cbfcnp, 7598 /*flags*/CAM_DIR_IN, 7599 tag_action, 7600 /*data_ptr*/inq_buf, 7601 /*dxfer_len*/inq_len, 7602 sense_len, 7603 sizeof(*scsi_cmd), 7604 timeout); 7605 7606 scsi_cmd = (struct scsi_inquiry *)&csio->cdb_io.cdb_bytes; 7607 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7608 scsi_cmd->opcode = INQUIRY; 7609 if (evpd) { 7610 scsi_cmd->byte2 |= SI_EVPD; 7611 scsi_cmd->page_code = page_code; 7612 } 7613 scsi_ulto2b(inq_len, scsi_cmd->length); 7614 } 7615 7616 void 7617 scsi_mode_sense(struct ccb_scsiio *csio, uint32_t retries, 7618 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, 7619 int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len, 7620 uint8_t sense_len, uint32_t timeout) 7621 { 7622 7623 scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd, 7624 pc, page, 0, param_buf, param_len, 0, sense_len, timeout); 7625 } 7626 7627 void 7628 scsi_mode_sense_len(struct ccb_scsiio *csio, uint32_t retries, 7629 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, 7630 int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len, 7631 int minimum_cmd_size, uint8_t sense_len, uint32_t timeout) 7632 { 7633 7634 scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd, 7635 pc, page, 0, param_buf, param_len, minimum_cmd_size, 7636 sense_len, timeout); 7637 } 7638 7639 void 7640 scsi_mode_sense_subpage(struct ccb_scsiio *csio, uint32_t retries, 7641 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, 7642 int dbd, uint8_t pc, uint8_t page, uint8_t subpage, uint8_t *param_buf, 7643 uint32_t param_len, int minimum_cmd_size, uint8_t sense_len, 7644 uint32_t timeout) 7645 { 7646 u_int8_t cdb_len; 7647 7648 /* 7649 * Use the smallest possible command to perform the operation. 7650 */ 7651 if ((param_len < 256) 7652 && (minimum_cmd_size < 10)) { 7653 /* 7654 * We can fit in a 6 byte cdb. 7655 */ 7656 struct scsi_mode_sense_6 *scsi_cmd; 7657 7658 scsi_cmd = (struct scsi_mode_sense_6 *)&csio->cdb_io.cdb_bytes; 7659 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7660 scsi_cmd->opcode = MODE_SENSE_6; 7661 if (dbd != 0) 7662 scsi_cmd->byte2 |= SMS_DBD; 7663 scsi_cmd->page = pc | page; 7664 scsi_cmd->subpage = subpage; 7665 scsi_cmd->length = param_len; 7666 cdb_len = sizeof(*scsi_cmd); 7667 } else { 7668 /* 7669 * Need a 10 byte cdb. 7670 */ 7671 struct scsi_mode_sense_10 *scsi_cmd; 7672 7673 scsi_cmd = (struct scsi_mode_sense_10 *)&csio->cdb_io.cdb_bytes; 7674 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7675 scsi_cmd->opcode = MODE_SENSE_10; 7676 if (dbd != 0) 7677 scsi_cmd->byte2 |= SMS_DBD; 7678 scsi_cmd->page = pc | page; 7679 scsi_cmd->subpage = subpage; 7680 scsi_ulto2b(param_len, scsi_cmd->length); 7681 cdb_len = sizeof(*scsi_cmd); 7682 } 7683 cam_fill_csio(csio, 7684 retries, 7685 cbfcnp, 7686 CAM_DIR_IN, 7687 tag_action, 7688 param_buf, 7689 param_len, 7690 sense_len, 7691 cdb_len, 7692 timeout); 7693 } 7694 7695 void 7696 scsi_mode_select(struct ccb_scsiio *csio, u_int32_t retries, 7697 void (*cbfcnp)(struct cam_periph *, union ccb *), 7698 u_int8_t tag_action, int scsi_page_fmt, int save_pages, 7699 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, 7700 u_int32_t timeout) 7701 { 7702 scsi_mode_select_len(csio, retries, cbfcnp, tag_action, 7703 scsi_page_fmt, save_pages, param_buf, 7704 param_len, 0, sense_len, timeout); 7705 } 7706 7707 void 7708 scsi_mode_select_len(struct ccb_scsiio *csio, u_int32_t retries, 7709 void (*cbfcnp)(struct cam_periph *, union ccb *), 7710 u_int8_t tag_action, int scsi_page_fmt, int save_pages, 7711 u_int8_t *param_buf, u_int32_t param_len, 7712 int minimum_cmd_size, u_int8_t sense_len, 7713 u_int32_t timeout) 7714 { 7715 u_int8_t cdb_len; 7716 7717 /* 7718 * Use the smallest possible command to perform the operation. 7719 */ 7720 if ((param_len < 256) 7721 && (minimum_cmd_size < 10)) { 7722 /* 7723 * We can fit in a 6 byte cdb. 7724 */ 7725 struct scsi_mode_select_6 *scsi_cmd; 7726 7727 scsi_cmd = (struct scsi_mode_select_6 *)&csio->cdb_io.cdb_bytes; 7728 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7729 scsi_cmd->opcode = MODE_SELECT_6; 7730 if (scsi_page_fmt != 0) 7731 scsi_cmd->byte2 |= SMS_PF; 7732 if (save_pages != 0) 7733 scsi_cmd->byte2 |= SMS_SP; 7734 scsi_cmd->length = param_len; 7735 cdb_len = sizeof(*scsi_cmd); 7736 } else { 7737 /* 7738 * Need a 10 byte cdb. 7739 */ 7740 struct scsi_mode_select_10 *scsi_cmd; 7741 7742 scsi_cmd = 7743 (struct scsi_mode_select_10 *)&csio->cdb_io.cdb_bytes; 7744 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7745 scsi_cmd->opcode = MODE_SELECT_10; 7746 if (scsi_page_fmt != 0) 7747 scsi_cmd->byte2 |= SMS_PF; 7748 if (save_pages != 0) 7749 scsi_cmd->byte2 |= SMS_SP; 7750 scsi_ulto2b(param_len, scsi_cmd->length); 7751 cdb_len = sizeof(*scsi_cmd); 7752 } 7753 cam_fill_csio(csio, 7754 retries, 7755 cbfcnp, 7756 CAM_DIR_OUT, 7757 tag_action, 7758 param_buf, 7759 param_len, 7760 sense_len, 7761 cdb_len, 7762 timeout); 7763 } 7764 7765 void 7766 scsi_log_sense(struct ccb_scsiio *csio, u_int32_t retries, 7767 void (*cbfcnp)(struct cam_periph *, union ccb *), 7768 u_int8_t tag_action, u_int8_t page_code, u_int8_t page, 7769 int save_pages, int ppc, u_int32_t paramptr, 7770 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, 7771 u_int32_t timeout) 7772 { 7773 struct scsi_log_sense *scsi_cmd; 7774 u_int8_t cdb_len; 7775 7776 scsi_cmd = (struct scsi_log_sense *)&csio->cdb_io.cdb_bytes; 7777 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7778 scsi_cmd->opcode = LOG_SENSE; 7779 scsi_cmd->page = page_code | page; 7780 if (save_pages != 0) 7781 scsi_cmd->byte2 |= SLS_SP; 7782 if (ppc != 0) 7783 scsi_cmd->byte2 |= SLS_PPC; 7784 scsi_ulto2b(paramptr, scsi_cmd->paramptr); 7785 scsi_ulto2b(param_len, scsi_cmd->length); 7786 cdb_len = sizeof(*scsi_cmd); 7787 7788 cam_fill_csio(csio, 7789 retries, 7790 cbfcnp, 7791 /*flags*/CAM_DIR_IN, 7792 tag_action, 7793 /*data_ptr*/param_buf, 7794 /*dxfer_len*/param_len, 7795 sense_len, 7796 cdb_len, 7797 timeout); 7798 } 7799 7800 void 7801 scsi_log_select(struct ccb_scsiio *csio, u_int32_t retries, 7802 void (*cbfcnp)(struct cam_periph *, union ccb *), 7803 u_int8_t tag_action, u_int8_t page_code, int save_pages, 7804 int pc_reset, u_int8_t *param_buf, u_int32_t param_len, 7805 u_int8_t sense_len, u_int32_t timeout) 7806 { 7807 struct scsi_log_select *scsi_cmd; 7808 u_int8_t cdb_len; 7809 7810 scsi_cmd = (struct scsi_log_select *)&csio->cdb_io.cdb_bytes; 7811 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7812 scsi_cmd->opcode = LOG_SELECT; 7813 scsi_cmd->page = page_code & SLS_PAGE_CODE; 7814 if (save_pages != 0) 7815 scsi_cmd->byte2 |= SLS_SP; 7816 if (pc_reset != 0) 7817 scsi_cmd->byte2 |= SLS_PCR; 7818 scsi_ulto2b(param_len, scsi_cmd->length); 7819 cdb_len = sizeof(*scsi_cmd); 7820 7821 cam_fill_csio(csio, 7822 retries, 7823 cbfcnp, 7824 /*flags*/CAM_DIR_OUT, 7825 tag_action, 7826 /*data_ptr*/param_buf, 7827 /*dxfer_len*/param_len, 7828 sense_len, 7829 cdb_len, 7830 timeout); 7831 } 7832 7833 /* 7834 * Prevent or allow the user to remove the media 7835 */ 7836 void 7837 scsi_prevent(struct ccb_scsiio *csio, u_int32_t retries, 7838 void (*cbfcnp)(struct cam_periph *, union ccb *), 7839 u_int8_t tag_action, u_int8_t action, 7840 u_int8_t sense_len, u_int32_t timeout) 7841 { 7842 struct scsi_prevent *scsi_cmd; 7843 7844 cam_fill_csio(csio, 7845 retries, 7846 cbfcnp, 7847 /*flags*/CAM_DIR_NONE, 7848 tag_action, 7849 /*data_ptr*/NULL, 7850 /*dxfer_len*/0, 7851 sense_len, 7852 sizeof(*scsi_cmd), 7853 timeout); 7854 7855 scsi_cmd = (struct scsi_prevent *)&csio->cdb_io.cdb_bytes; 7856 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7857 scsi_cmd->opcode = PREVENT_ALLOW; 7858 scsi_cmd->how = action; 7859 } 7860 7861 /* XXX allow specification of address and PMI bit and LBA */ 7862 void 7863 scsi_read_capacity(struct ccb_scsiio *csio, u_int32_t retries, 7864 void (*cbfcnp)(struct cam_periph *, union ccb *), 7865 u_int8_t tag_action, 7866 struct scsi_read_capacity_data *rcap_buf, 7867 u_int8_t sense_len, u_int32_t timeout) 7868 { 7869 struct scsi_read_capacity *scsi_cmd; 7870 7871 cam_fill_csio(csio, 7872 retries, 7873 cbfcnp, 7874 /*flags*/CAM_DIR_IN, 7875 tag_action, 7876 /*data_ptr*/(u_int8_t *)rcap_buf, 7877 /*dxfer_len*/sizeof(*rcap_buf), 7878 sense_len, 7879 sizeof(*scsi_cmd), 7880 timeout); 7881 7882 scsi_cmd = (struct scsi_read_capacity *)&csio->cdb_io.cdb_bytes; 7883 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7884 scsi_cmd->opcode = READ_CAPACITY; 7885 } 7886 7887 void 7888 scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries, 7889 void (*cbfcnp)(struct cam_periph *, union ccb *), 7890 uint8_t tag_action, uint64_t lba, int reladr, int pmi, 7891 uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len, 7892 uint32_t timeout) 7893 { 7894 struct scsi_read_capacity_16 *scsi_cmd; 7895 7896 7897 cam_fill_csio(csio, 7898 retries, 7899 cbfcnp, 7900 /*flags*/CAM_DIR_IN, 7901 tag_action, 7902 /*data_ptr*/(u_int8_t *)rcap_buf, 7903 /*dxfer_len*/rcap_buf_len, 7904 sense_len, 7905 sizeof(*scsi_cmd), 7906 timeout); 7907 scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes; 7908 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7909 scsi_cmd->opcode = SERVICE_ACTION_IN; 7910 scsi_cmd->service_action = SRC16_SERVICE_ACTION; 7911 scsi_u64to8b(lba, scsi_cmd->addr); 7912 scsi_ulto4b(rcap_buf_len, scsi_cmd->alloc_len); 7913 if (pmi) 7914 reladr |= SRC16_PMI; 7915 if (reladr) 7916 reladr |= SRC16_RELADR; 7917 } 7918 7919 void 7920 scsi_report_luns(struct ccb_scsiio *csio, u_int32_t retries, 7921 void (*cbfcnp)(struct cam_periph *, union ccb *), 7922 u_int8_t tag_action, u_int8_t select_report, 7923 struct scsi_report_luns_data *rpl_buf, u_int32_t alloc_len, 7924 u_int8_t sense_len, u_int32_t timeout) 7925 { 7926 struct scsi_report_luns *scsi_cmd; 7927 7928 cam_fill_csio(csio, 7929 retries, 7930 cbfcnp, 7931 /*flags*/CAM_DIR_IN, 7932 tag_action, 7933 /*data_ptr*/(u_int8_t *)rpl_buf, 7934 /*dxfer_len*/alloc_len, 7935 sense_len, 7936 sizeof(*scsi_cmd), 7937 timeout); 7938 scsi_cmd = (struct scsi_report_luns *)&csio->cdb_io.cdb_bytes; 7939 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7940 scsi_cmd->opcode = REPORT_LUNS; 7941 scsi_cmd->select_report = select_report; 7942 scsi_ulto4b(alloc_len, scsi_cmd->length); 7943 } 7944 7945 void 7946 scsi_report_target_group(struct ccb_scsiio *csio, u_int32_t retries, 7947 void (*cbfcnp)(struct cam_periph *, union ccb *), 7948 u_int8_t tag_action, u_int8_t pdf, 7949 void *buf, u_int32_t alloc_len, 7950 u_int8_t sense_len, u_int32_t timeout) 7951 { 7952 struct scsi_target_group *scsi_cmd; 7953 7954 cam_fill_csio(csio, 7955 retries, 7956 cbfcnp, 7957 /*flags*/CAM_DIR_IN, 7958 tag_action, 7959 /*data_ptr*/(u_int8_t *)buf, 7960 /*dxfer_len*/alloc_len, 7961 sense_len, 7962 sizeof(*scsi_cmd), 7963 timeout); 7964 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; 7965 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7966 scsi_cmd->opcode = MAINTENANCE_IN; 7967 scsi_cmd->service_action = REPORT_TARGET_PORT_GROUPS | pdf; 7968 scsi_ulto4b(alloc_len, scsi_cmd->length); 7969 } 7970 7971 void 7972 scsi_report_timestamp(struct ccb_scsiio *csio, u_int32_t retries, 7973 void (*cbfcnp)(struct cam_periph *, union ccb *), 7974 u_int8_t tag_action, u_int8_t pdf, 7975 void *buf, u_int32_t alloc_len, 7976 u_int8_t sense_len, u_int32_t timeout) 7977 { 7978 struct scsi_timestamp *scsi_cmd; 7979 7980 cam_fill_csio(csio, 7981 retries, 7982 cbfcnp, 7983 /*flags*/CAM_DIR_IN, 7984 tag_action, 7985 /*data_ptr*/(u_int8_t *)buf, 7986 /*dxfer_len*/alloc_len, 7987 sense_len, 7988 sizeof(*scsi_cmd), 7989 timeout); 7990 scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes; 7991 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7992 scsi_cmd->opcode = MAINTENANCE_IN; 7993 scsi_cmd->service_action = REPORT_TIMESTAMP | pdf; 7994 scsi_ulto4b(alloc_len, scsi_cmd->length); 7995 } 7996 7997 void 7998 scsi_set_target_group(struct ccb_scsiio *csio, u_int32_t retries, 7999 void (*cbfcnp)(struct cam_periph *, union ccb *), 8000 u_int8_t tag_action, void *buf, u_int32_t alloc_len, 8001 u_int8_t sense_len, u_int32_t timeout) 8002 { 8003 struct scsi_target_group *scsi_cmd; 8004 8005 cam_fill_csio(csio, 8006 retries, 8007 cbfcnp, 8008 /*flags*/CAM_DIR_OUT, 8009 tag_action, 8010 /*data_ptr*/(u_int8_t *)buf, 8011 /*dxfer_len*/alloc_len, 8012 sense_len, 8013 sizeof(*scsi_cmd), 8014 timeout); 8015 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; 8016 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8017 scsi_cmd->opcode = MAINTENANCE_OUT; 8018 scsi_cmd->service_action = SET_TARGET_PORT_GROUPS; 8019 scsi_ulto4b(alloc_len, scsi_cmd->length); 8020 } 8021 8022 void 8023 scsi_create_timestamp(uint8_t *timestamp_6b_buf, 8024 uint64_t timestamp) 8025 { 8026 uint8_t buf[8]; 8027 scsi_u64to8b(timestamp, buf); 8028 /* 8029 * Using memcopy starting at buf[2] because the set timestamp parameters 8030 * only has six bytes for the timestamp to fit into, and we don't have a 8031 * scsi_u64to6b function. 8032 */ 8033 memcpy(timestamp_6b_buf, &buf[2], 6); 8034 } 8035 8036 void 8037 scsi_set_timestamp(struct ccb_scsiio *csio, u_int32_t retries, 8038 void (*cbfcnp)(struct cam_periph *, union ccb *), 8039 u_int8_t tag_action, void *buf, u_int32_t alloc_len, 8040 u_int8_t sense_len, u_int32_t timeout) 8041 { 8042 struct scsi_timestamp *scsi_cmd; 8043 8044 cam_fill_csio(csio, 8045 retries, 8046 cbfcnp, 8047 /*flags*/CAM_DIR_OUT, 8048 tag_action, 8049 /*data_ptr*/(u_int8_t *) buf, 8050 /*dxfer_len*/alloc_len, 8051 sense_len, 8052 sizeof(*scsi_cmd), 8053 timeout); 8054 scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes; 8055 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8056 scsi_cmd->opcode = MAINTENANCE_OUT; 8057 scsi_cmd->service_action = SET_TIMESTAMP; 8058 scsi_ulto4b(alloc_len, scsi_cmd->length); 8059 } 8060 8061 /* 8062 * Syncronize the media to the contents of the cache for 8063 * the given lba/count pair. Specifying 0/0 means sync 8064 * the whole cache. 8065 */ 8066 void 8067 scsi_synchronize_cache(struct ccb_scsiio *csio, u_int32_t retries, 8068 void (*cbfcnp)(struct cam_periph *, union ccb *), 8069 u_int8_t tag_action, u_int32_t begin_lba, 8070 u_int16_t lb_count, u_int8_t sense_len, 8071 u_int32_t timeout) 8072 { 8073 struct scsi_sync_cache *scsi_cmd; 8074 8075 cam_fill_csio(csio, 8076 retries, 8077 cbfcnp, 8078 /*flags*/CAM_DIR_NONE, 8079 tag_action, 8080 /*data_ptr*/NULL, 8081 /*dxfer_len*/0, 8082 sense_len, 8083 sizeof(*scsi_cmd), 8084 timeout); 8085 8086 scsi_cmd = (struct scsi_sync_cache *)&csio->cdb_io.cdb_bytes; 8087 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8088 scsi_cmd->opcode = SYNCHRONIZE_CACHE; 8089 scsi_ulto4b(begin_lba, scsi_cmd->begin_lba); 8090 scsi_ulto2b(lb_count, scsi_cmd->lb_count); 8091 } 8092 8093 void 8094 scsi_read_write(struct ccb_scsiio *csio, u_int32_t retries, 8095 void (*cbfcnp)(struct cam_periph *, union ccb *), 8096 u_int8_t tag_action, int readop, u_int8_t byte2, 8097 int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, 8098 u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, 8099 u_int32_t timeout) 8100 { 8101 int read; 8102 u_int8_t cdb_len; 8103 8104 read = (readop & SCSI_RW_DIRMASK) == SCSI_RW_READ; 8105 8106 /* 8107 * Use the smallest possible command to perform the operation 8108 * as some legacy hardware does not support the 10 byte commands. 8109 * If any of the bits in byte2 is set, we have to go with a larger 8110 * command. 8111 */ 8112 if ((minimum_cmd_size < 10) 8113 && ((lba & 0x1fffff) == lba) 8114 && ((block_count & 0xff) == block_count) 8115 && (byte2 == 0)) { 8116 /* 8117 * We can fit in a 6 byte cdb. 8118 */ 8119 struct scsi_rw_6 *scsi_cmd; 8120 8121 scsi_cmd = (struct scsi_rw_6 *)&csio->cdb_io.cdb_bytes; 8122 scsi_cmd->opcode = read ? READ_6 : WRITE_6; 8123 scsi_ulto3b(lba, scsi_cmd->addr); 8124 scsi_cmd->length = block_count & 0xff; 8125 scsi_cmd->control = 0; 8126 cdb_len = sizeof(*scsi_cmd); 8127 8128 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8129 ("6byte: %x%x%x:%d:%d\n", scsi_cmd->addr[0], 8130 scsi_cmd->addr[1], scsi_cmd->addr[2], 8131 scsi_cmd->length, dxfer_len)); 8132 } else if ((minimum_cmd_size < 12) 8133 && ((block_count & 0xffff) == block_count) 8134 && ((lba & 0xffffffff) == lba)) { 8135 /* 8136 * Need a 10 byte cdb. 8137 */ 8138 struct scsi_rw_10 *scsi_cmd; 8139 8140 scsi_cmd = (struct scsi_rw_10 *)&csio->cdb_io.cdb_bytes; 8141 scsi_cmd->opcode = read ? READ_10 : WRITE_10; 8142 scsi_cmd->byte2 = byte2; 8143 scsi_ulto4b(lba, scsi_cmd->addr); 8144 scsi_cmd->reserved = 0; 8145 scsi_ulto2b(block_count, scsi_cmd->length); 8146 scsi_cmd->control = 0; 8147 cdb_len = sizeof(*scsi_cmd); 8148 8149 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8150 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], 8151 scsi_cmd->addr[1], scsi_cmd->addr[2], 8152 scsi_cmd->addr[3], scsi_cmd->length[0], 8153 scsi_cmd->length[1], dxfer_len)); 8154 } else if ((minimum_cmd_size < 16) 8155 && ((block_count & 0xffffffff) == block_count) 8156 && ((lba & 0xffffffff) == lba)) { 8157 /* 8158 * The block count is too big for a 10 byte CDB, use a 12 8159 * byte CDB. 8160 */ 8161 struct scsi_rw_12 *scsi_cmd; 8162 8163 scsi_cmd = (struct scsi_rw_12 *)&csio->cdb_io.cdb_bytes; 8164 scsi_cmd->opcode = read ? READ_12 : WRITE_12; 8165 scsi_cmd->byte2 = byte2; 8166 scsi_ulto4b(lba, scsi_cmd->addr); 8167 scsi_cmd->reserved = 0; 8168 scsi_ulto4b(block_count, scsi_cmd->length); 8169 scsi_cmd->control = 0; 8170 cdb_len = sizeof(*scsi_cmd); 8171 8172 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8173 ("12byte: %x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0], 8174 scsi_cmd->addr[1], scsi_cmd->addr[2], 8175 scsi_cmd->addr[3], scsi_cmd->length[0], 8176 scsi_cmd->length[1], scsi_cmd->length[2], 8177 scsi_cmd->length[3], dxfer_len)); 8178 } else { 8179 /* 8180 * 16 byte CDB. We'll only get here if the LBA is larger 8181 * than 2^32, or if the user asks for a 16 byte command. 8182 */ 8183 struct scsi_rw_16 *scsi_cmd; 8184 8185 scsi_cmd = (struct scsi_rw_16 *)&csio->cdb_io.cdb_bytes; 8186 scsi_cmd->opcode = read ? READ_16 : WRITE_16; 8187 scsi_cmd->byte2 = byte2; 8188 scsi_u64to8b(lba, scsi_cmd->addr); 8189 scsi_cmd->reserved = 0; 8190 scsi_ulto4b(block_count, scsi_cmd->length); 8191 scsi_cmd->control = 0; 8192 cdb_len = sizeof(*scsi_cmd); 8193 } 8194 cam_fill_csio(csio, 8195 retries, 8196 cbfcnp, 8197 (read ? CAM_DIR_IN : CAM_DIR_OUT) | 8198 ((readop & SCSI_RW_BIO) != 0 ? CAM_DATA_BIO : 0), 8199 tag_action, 8200 data_ptr, 8201 dxfer_len, 8202 sense_len, 8203 cdb_len, 8204 timeout); 8205 } 8206 8207 void 8208 scsi_write_same(struct ccb_scsiio *csio, u_int32_t retries, 8209 void (*cbfcnp)(struct cam_periph *, union ccb *), 8210 u_int8_t tag_action, u_int8_t byte2, 8211 int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, 8212 u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, 8213 u_int32_t timeout) 8214 { 8215 u_int8_t cdb_len; 8216 if ((minimum_cmd_size < 16) && 8217 ((block_count & 0xffff) == block_count) && 8218 ((lba & 0xffffffff) == lba)) { 8219 /* 8220 * Need a 10 byte cdb. 8221 */ 8222 struct scsi_write_same_10 *scsi_cmd; 8223 8224 scsi_cmd = (struct scsi_write_same_10 *)&csio->cdb_io.cdb_bytes; 8225 scsi_cmd->opcode = WRITE_SAME_10; 8226 scsi_cmd->byte2 = byte2; 8227 scsi_ulto4b(lba, scsi_cmd->addr); 8228 scsi_cmd->group = 0; 8229 scsi_ulto2b(block_count, scsi_cmd->length); 8230 scsi_cmd->control = 0; 8231 cdb_len = sizeof(*scsi_cmd); 8232 8233 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8234 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], 8235 scsi_cmd->addr[1], scsi_cmd->addr[2], 8236 scsi_cmd->addr[3], scsi_cmd->length[0], 8237 scsi_cmd->length[1], dxfer_len)); 8238 } else { 8239 /* 8240 * 16 byte CDB. We'll only get here if the LBA is larger 8241 * than 2^32, or if the user asks for a 16 byte command. 8242 */ 8243 struct scsi_write_same_16 *scsi_cmd; 8244 8245 scsi_cmd = (struct scsi_write_same_16 *)&csio->cdb_io.cdb_bytes; 8246 scsi_cmd->opcode = WRITE_SAME_16; 8247 scsi_cmd->byte2 = byte2; 8248 scsi_u64to8b(lba, scsi_cmd->addr); 8249 scsi_ulto4b(block_count, scsi_cmd->length); 8250 scsi_cmd->group = 0; 8251 scsi_cmd->control = 0; 8252 cdb_len = sizeof(*scsi_cmd); 8253 8254 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8255 ("16byte: %x%x%x%x%x%x%x%x:%x%x%x%x: %d\n", 8256 scsi_cmd->addr[0], scsi_cmd->addr[1], 8257 scsi_cmd->addr[2], scsi_cmd->addr[3], 8258 scsi_cmd->addr[4], scsi_cmd->addr[5], 8259 scsi_cmd->addr[6], scsi_cmd->addr[7], 8260 scsi_cmd->length[0], scsi_cmd->length[1], 8261 scsi_cmd->length[2], scsi_cmd->length[3], 8262 dxfer_len)); 8263 } 8264 cam_fill_csio(csio, 8265 retries, 8266 cbfcnp, 8267 /*flags*/CAM_DIR_OUT, 8268 tag_action, 8269 data_ptr, 8270 dxfer_len, 8271 sense_len, 8272 cdb_len, 8273 timeout); 8274 } 8275 8276 void 8277 scsi_ata_identify(struct ccb_scsiio *csio, u_int32_t retries, 8278 void (*cbfcnp)(struct cam_periph *, union ccb *), 8279 u_int8_t tag_action, u_int8_t *data_ptr, 8280 u_int16_t dxfer_len, u_int8_t sense_len, 8281 u_int32_t timeout) 8282 { 8283 scsi_ata_pass(csio, 8284 retries, 8285 cbfcnp, 8286 /*flags*/CAM_DIR_IN, 8287 tag_action, 8288 /*protocol*/AP_PROTO_PIO_IN, 8289 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV | 8290 AP_FLAG_BYT_BLOK_BLOCKS | 8291 AP_FLAG_TLEN_SECT_CNT, 8292 /*features*/0, 8293 /*sector_count*/dxfer_len / 512, 8294 /*lba*/0, 8295 /*command*/ATA_ATA_IDENTIFY, 8296 /*device*/ 0, 8297 /*icc*/ 0, 8298 /*auxiliary*/ 0, 8299 /*control*/0, 8300 data_ptr, 8301 dxfer_len, 8302 /*cdb_storage*/ NULL, 8303 /*cdb_storage_len*/ 0, 8304 /*minimum_cmd_size*/ 0, 8305 sense_len, 8306 timeout); 8307 } 8308 8309 void 8310 scsi_ata_trim(struct ccb_scsiio *csio, u_int32_t retries, 8311 void (*cbfcnp)(struct cam_periph *, union ccb *), 8312 u_int8_t tag_action, u_int16_t block_count, 8313 u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, 8314 u_int32_t timeout) 8315 { 8316 scsi_ata_pass_16(csio, 8317 retries, 8318 cbfcnp, 8319 /*flags*/CAM_DIR_OUT, 8320 tag_action, 8321 /*protocol*/AP_EXTEND|AP_PROTO_DMA, 8322 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT|AP_FLAG_BYT_BLOK_BLOCKS, 8323 /*features*/ATA_DSM_TRIM, 8324 /*sector_count*/block_count, 8325 /*lba*/0, 8326 /*command*/ATA_DATA_SET_MANAGEMENT, 8327 /*control*/0, 8328 data_ptr, 8329 dxfer_len, 8330 sense_len, 8331 timeout); 8332 } 8333 8334 int 8335 scsi_ata_read_log(struct ccb_scsiio *csio, uint32_t retries, 8336 void (*cbfcnp)(struct cam_periph *, union ccb *), 8337 uint8_t tag_action, uint32_t log_address, 8338 uint32_t page_number, uint16_t block_count, 8339 uint8_t protocol, uint8_t *data_ptr, uint32_t dxfer_len, 8340 uint8_t sense_len, uint32_t timeout) 8341 { 8342 uint8_t command, protocol_out; 8343 uint16_t count_out; 8344 uint64_t lba; 8345 int retval; 8346 8347 retval = 0; 8348 8349 switch (protocol) { 8350 case AP_PROTO_DMA: 8351 count_out = block_count; 8352 command = ATA_READ_LOG_DMA_EXT; 8353 protocol_out = AP_PROTO_DMA; 8354 break; 8355 case AP_PROTO_PIO_IN: 8356 default: 8357 count_out = block_count; 8358 command = ATA_READ_LOG_EXT; 8359 protocol_out = AP_PROTO_PIO_IN; 8360 break; 8361 } 8362 8363 lba = (((uint64_t)page_number & 0xff00) << 32) | 8364 ((page_number & 0x00ff) << 8) | 8365 (log_address & 0xff); 8366 8367 protocol_out |= AP_EXTEND; 8368 8369 retval = scsi_ata_pass(csio, 8370 retries, 8371 cbfcnp, 8372 /*flags*/CAM_DIR_IN, 8373 tag_action, 8374 /*protocol*/ protocol_out, 8375 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT | 8376 AP_FLAG_BYT_BLOK_BLOCKS | 8377 AP_FLAG_TDIR_FROM_DEV, 8378 /*feature*/ 0, 8379 /*sector_count*/ count_out, 8380 /*lba*/ lba, 8381 /*command*/ command, 8382 /*device*/ 0, 8383 /*icc*/ 0, 8384 /*auxiliary*/ 0, 8385 /*control*/0, 8386 data_ptr, 8387 dxfer_len, 8388 /*cdb_storage*/ NULL, 8389 /*cdb_storage_len*/ 0, 8390 /*minimum_cmd_size*/ 0, 8391 sense_len, 8392 timeout); 8393 8394 return (retval); 8395 } 8396 8397 int scsi_ata_setfeatures(struct ccb_scsiio *csio, uint32_t retries, 8398 void (*cbfcnp)(struct cam_periph *, union ccb *), 8399 uint8_t tag_action, uint8_t feature, 8400 uint64_t lba, uint32_t count, 8401 uint8_t sense_len, uint32_t timeout) 8402 { 8403 return (scsi_ata_pass(csio, 8404 retries, 8405 cbfcnp, 8406 /*flags*/CAM_DIR_NONE, 8407 tag_action, 8408 /*protocol*/AP_PROTO_PIO_IN, 8409 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV | 8410 AP_FLAG_BYT_BLOK_BYTES | 8411 AP_FLAG_TLEN_SECT_CNT, 8412 /*features*/feature, 8413 /*sector_count*/count, 8414 /*lba*/lba, 8415 /*command*/ATA_SETFEATURES, 8416 /*device*/ 0, 8417 /*icc*/ 0, 8418 /*auxiliary*/0, 8419 /*control*/0, 8420 /*data_ptr*/NULL, 8421 /*dxfer_len*/0, 8422 /*cdb_storage*/NULL, 8423 /*cdb_storage_len*/0, 8424 /*minimum_cmd_size*/0, 8425 sense_len, 8426 timeout)); 8427 } 8428 8429 /* 8430 * Note! This is an unusual CDB building function because it can return 8431 * an error in the event that the command in question requires a variable 8432 * length CDB, but the caller has not given storage space for one or has not 8433 * given enough storage space. If there is enough space available in the 8434 * standard SCSI CCB CDB bytes, we'll prefer that over passed in storage. 8435 */ 8436 int 8437 scsi_ata_pass(struct ccb_scsiio *csio, uint32_t retries, 8438 void (*cbfcnp)(struct cam_periph *, union ccb *), 8439 uint32_t flags, uint8_t tag_action, 8440 uint8_t protocol, uint8_t ata_flags, uint16_t features, 8441 uint16_t sector_count, uint64_t lba, uint8_t command, 8442 uint8_t device, uint8_t icc, uint32_t auxiliary, 8443 uint8_t control, u_int8_t *data_ptr, uint32_t dxfer_len, 8444 uint8_t *cdb_storage, size_t cdb_storage_len, 8445 int minimum_cmd_size, u_int8_t sense_len, u_int32_t timeout) 8446 { 8447 uint32_t cam_flags; 8448 uint8_t *cdb_ptr; 8449 int cmd_size; 8450 int retval; 8451 uint8_t cdb_len; 8452 8453 retval = 0; 8454 cam_flags = flags; 8455 8456 /* 8457 * Round the user's request to the nearest command size that is at 8458 * least as big as what he requested. 8459 */ 8460 if (minimum_cmd_size <= 12) 8461 cmd_size = 12; 8462 else if (minimum_cmd_size > 16) 8463 cmd_size = 32; 8464 else 8465 cmd_size = 16; 8466 8467 /* 8468 * If we have parameters that require a 48-bit ATA command, we have to 8469 * use the 16 byte ATA PASS-THROUGH command at least. 8470 */ 8471 if (((lba > ATA_MAX_28BIT_LBA) 8472 || (sector_count > 255) 8473 || (features > 255) 8474 || (protocol & AP_EXTEND)) 8475 && ((cmd_size < 16) 8476 || ((protocol & AP_EXTEND) == 0))) { 8477 if (cmd_size < 16) 8478 cmd_size = 16; 8479 protocol |= AP_EXTEND; 8480 } 8481 8482 /* 8483 * The icc and auxiliary ATA registers are only supported in the 8484 * 32-byte version of the ATA PASS-THROUGH command. 8485 */ 8486 if ((icc != 0) 8487 || (auxiliary != 0)) { 8488 cmd_size = 32; 8489 protocol |= AP_EXTEND; 8490 } 8491 8492 8493 if ((cmd_size > sizeof(csio->cdb_io.cdb_bytes)) 8494 && ((cdb_storage == NULL) 8495 || (cdb_storage_len < cmd_size))) { 8496 retval = 1; 8497 goto bailout; 8498 } 8499 8500 /* 8501 * At this point we know we have enough space to store the command 8502 * in one place or another. We prefer the built-in array, but used 8503 * the passed in storage if necessary. 8504 */ 8505 if (cmd_size <= sizeof(csio->cdb_io.cdb_bytes)) 8506 cdb_ptr = csio->cdb_io.cdb_bytes; 8507 else { 8508 cdb_ptr = cdb_storage; 8509 cam_flags |= CAM_CDB_POINTER; 8510 } 8511 8512 if (cmd_size <= 12) { 8513 struct ata_pass_12 *cdb; 8514 8515 cdb = (struct ata_pass_12 *)cdb_ptr; 8516 cdb_len = sizeof(*cdb); 8517 bzero(cdb, cdb_len); 8518 8519 cdb->opcode = ATA_PASS_12; 8520 cdb->protocol = protocol; 8521 cdb->flags = ata_flags; 8522 cdb->features = features; 8523 cdb->sector_count = sector_count; 8524 cdb->lba_low = lba & 0xff; 8525 cdb->lba_mid = (lba >> 8) & 0xff; 8526 cdb->lba_high = (lba >> 16) & 0xff; 8527 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8528 cdb->command = command; 8529 cdb->control = control; 8530 } else if (cmd_size <= 16) { 8531 struct ata_pass_16 *cdb; 8532 8533 cdb = (struct ata_pass_16 *)cdb_ptr; 8534 cdb_len = sizeof(*cdb); 8535 bzero(cdb, cdb_len); 8536 8537 cdb->opcode = ATA_PASS_16; 8538 cdb->protocol = protocol; 8539 cdb->flags = ata_flags; 8540 cdb->features = features & 0xff; 8541 cdb->sector_count = sector_count & 0xff; 8542 cdb->lba_low = lba & 0xff; 8543 cdb->lba_mid = (lba >> 8) & 0xff; 8544 cdb->lba_high = (lba >> 16) & 0xff; 8545 /* 8546 * If AP_EXTEND is set, we're sending a 48-bit command. 8547 * Otherwise it's a 28-bit command. 8548 */ 8549 if (protocol & AP_EXTEND) { 8550 cdb->lba_low_ext = (lba >> 24) & 0xff; 8551 cdb->lba_mid_ext = (lba >> 32) & 0xff; 8552 cdb->lba_high_ext = (lba >> 40) & 0xff; 8553 cdb->features_ext = (features >> 8) & 0xff; 8554 cdb->sector_count_ext = (sector_count >> 8) & 0xff; 8555 cdb->device = device | ATA_DEV_LBA; 8556 } else { 8557 cdb->lba_low_ext = (lba >> 24) & 0xf; 8558 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8559 } 8560 cdb->command = command; 8561 cdb->control = control; 8562 } else { 8563 struct ata_pass_32 *cdb; 8564 uint8_t tmp_lba[8]; 8565 8566 cdb = (struct ata_pass_32 *)cdb_ptr; 8567 cdb_len = sizeof(*cdb); 8568 bzero(cdb, cdb_len); 8569 cdb->opcode = VARIABLE_LEN_CDB; 8570 cdb->control = control; 8571 cdb->length = sizeof(*cdb) - __offsetof(struct ata_pass_32, 8572 service_action); 8573 scsi_ulto2b(ATA_PASS_32_SA, cdb->service_action); 8574 cdb->protocol = protocol; 8575 cdb->flags = ata_flags; 8576 8577 if ((protocol & AP_EXTEND) == 0) { 8578 lba &= 0x0fffffff; 8579 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8580 features &= 0xff; 8581 sector_count &= 0xff; 8582 } else { 8583 cdb->device = device | ATA_DEV_LBA; 8584 } 8585 scsi_u64to8b(lba, tmp_lba); 8586 bcopy(&tmp_lba[2], cdb->lba, sizeof(cdb->lba)); 8587 scsi_ulto2b(features, cdb->features); 8588 scsi_ulto2b(sector_count, cdb->count); 8589 cdb->command = command; 8590 cdb->icc = icc; 8591 scsi_ulto4b(auxiliary, cdb->auxiliary); 8592 } 8593 8594 cam_fill_csio(csio, 8595 retries, 8596 cbfcnp, 8597 cam_flags, 8598 tag_action, 8599 data_ptr, 8600 dxfer_len, 8601 sense_len, 8602 cmd_size, 8603 timeout); 8604 bailout: 8605 return (retval); 8606 } 8607 8608 void 8609 scsi_ata_pass_16(struct ccb_scsiio *csio, u_int32_t retries, 8610 void (*cbfcnp)(struct cam_periph *, union ccb *), 8611 u_int32_t flags, u_int8_t tag_action, 8612 u_int8_t protocol, u_int8_t ata_flags, u_int16_t features, 8613 u_int16_t sector_count, uint64_t lba, u_int8_t command, 8614 u_int8_t control, u_int8_t *data_ptr, u_int16_t dxfer_len, 8615 u_int8_t sense_len, u_int32_t timeout) 8616 { 8617 struct ata_pass_16 *ata_cmd; 8618 8619 ata_cmd = (struct ata_pass_16 *)&csio->cdb_io.cdb_bytes; 8620 ata_cmd->opcode = ATA_PASS_16; 8621 ata_cmd->protocol = protocol; 8622 ata_cmd->flags = ata_flags; 8623 ata_cmd->features_ext = features >> 8; 8624 ata_cmd->features = features; 8625 ata_cmd->sector_count_ext = sector_count >> 8; 8626 ata_cmd->sector_count = sector_count; 8627 ata_cmd->lba_low = lba; 8628 ata_cmd->lba_mid = lba >> 8; 8629 ata_cmd->lba_high = lba >> 16; 8630 ata_cmd->device = ATA_DEV_LBA; 8631 if (protocol & AP_EXTEND) { 8632 ata_cmd->lba_low_ext = lba >> 24; 8633 ata_cmd->lba_mid_ext = lba >> 32; 8634 ata_cmd->lba_high_ext = lba >> 40; 8635 } else 8636 ata_cmd->device |= (lba >> 24) & 0x0f; 8637 ata_cmd->command = command; 8638 ata_cmd->control = control; 8639 8640 cam_fill_csio(csio, 8641 retries, 8642 cbfcnp, 8643 flags, 8644 tag_action, 8645 data_ptr, 8646 dxfer_len, 8647 sense_len, 8648 sizeof(*ata_cmd), 8649 timeout); 8650 } 8651 8652 void 8653 scsi_unmap(struct ccb_scsiio *csio, u_int32_t retries, 8654 void (*cbfcnp)(struct cam_periph *, union ccb *), 8655 u_int8_t tag_action, u_int8_t byte2, 8656 u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, 8657 u_int32_t timeout) 8658 { 8659 struct scsi_unmap *scsi_cmd; 8660 8661 scsi_cmd = (struct scsi_unmap *)&csio->cdb_io.cdb_bytes; 8662 scsi_cmd->opcode = UNMAP; 8663 scsi_cmd->byte2 = byte2; 8664 scsi_ulto4b(0, scsi_cmd->reserved); 8665 scsi_cmd->group = 0; 8666 scsi_ulto2b(dxfer_len, scsi_cmd->length); 8667 scsi_cmd->control = 0; 8668 8669 cam_fill_csio(csio, 8670 retries, 8671 cbfcnp, 8672 /*flags*/CAM_DIR_OUT, 8673 tag_action, 8674 data_ptr, 8675 dxfer_len, 8676 sense_len, 8677 sizeof(*scsi_cmd), 8678 timeout); 8679 } 8680 8681 void 8682 scsi_receive_diagnostic_results(struct ccb_scsiio *csio, u_int32_t retries, 8683 void (*cbfcnp)(struct cam_periph *, union ccb*), 8684 uint8_t tag_action, int pcv, uint8_t page_code, 8685 uint8_t *data_ptr, uint16_t allocation_length, 8686 uint8_t sense_len, uint32_t timeout) 8687 { 8688 struct scsi_receive_diag *scsi_cmd; 8689 8690 scsi_cmd = (struct scsi_receive_diag *)&csio->cdb_io.cdb_bytes; 8691 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8692 scsi_cmd->opcode = RECEIVE_DIAGNOSTIC; 8693 if (pcv) { 8694 scsi_cmd->byte2 |= SRD_PCV; 8695 scsi_cmd->page_code = page_code; 8696 } 8697 scsi_ulto2b(allocation_length, scsi_cmd->length); 8698 8699 cam_fill_csio(csio, 8700 retries, 8701 cbfcnp, 8702 /*flags*/CAM_DIR_IN, 8703 tag_action, 8704 data_ptr, 8705 allocation_length, 8706 sense_len, 8707 sizeof(*scsi_cmd), 8708 timeout); 8709 } 8710 8711 void 8712 scsi_send_diagnostic(struct ccb_scsiio *csio, u_int32_t retries, 8713 void (*cbfcnp)(struct cam_periph *, union ccb *), 8714 uint8_t tag_action, int unit_offline, int device_offline, 8715 int self_test, int page_format, int self_test_code, 8716 uint8_t *data_ptr, uint16_t param_list_length, 8717 uint8_t sense_len, uint32_t timeout) 8718 { 8719 struct scsi_send_diag *scsi_cmd; 8720 8721 scsi_cmd = (struct scsi_send_diag *)&csio->cdb_io.cdb_bytes; 8722 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8723 scsi_cmd->opcode = SEND_DIAGNOSTIC; 8724 8725 /* 8726 * The default self-test mode control and specific test 8727 * control are mutually exclusive. 8728 */ 8729 if (self_test) 8730 self_test_code = SSD_SELF_TEST_CODE_NONE; 8731 8732 scsi_cmd->byte2 = ((self_test_code << SSD_SELF_TEST_CODE_SHIFT) 8733 & SSD_SELF_TEST_CODE_MASK) 8734 | (unit_offline ? SSD_UNITOFFL : 0) 8735 | (device_offline ? SSD_DEVOFFL : 0) 8736 | (self_test ? SSD_SELFTEST : 0) 8737 | (page_format ? SSD_PF : 0); 8738 scsi_ulto2b(param_list_length, scsi_cmd->length); 8739 8740 cam_fill_csio(csio, 8741 retries, 8742 cbfcnp, 8743 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE, 8744 tag_action, 8745 data_ptr, 8746 param_list_length, 8747 sense_len, 8748 sizeof(*scsi_cmd), 8749 timeout); 8750 } 8751 8752 void 8753 scsi_read_buffer(struct ccb_scsiio *csio, u_int32_t retries, 8754 void (*cbfcnp)(struct cam_periph *, union ccb*), 8755 uint8_t tag_action, int mode, 8756 uint8_t buffer_id, u_int32_t offset, 8757 uint8_t *data_ptr, uint32_t allocation_length, 8758 uint8_t sense_len, uint32_t timeout) 8759 { 8760 struct scsi_read_buffer *scsi_cmd; 8761 8762 scsi_cmd = (struct scsi_read_buffer *)&csio->cdb_io.cdb_bytes; 8763 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8764 scsi_cmd->opcode = READ_BUFFER; 8765 scsi_cmd->byte2 = mode; 8766 scsi_cmd->buffer_id = buffer_id; 8767 scsi_ulto3b(offset, scsi_cmd->offset); 8768 scsi_ulto3b(allocation_length, scsi_cmd->length); 8769 8770 cam_fill_csio(csio, 8771 retries, 8772 cbfcnp, 8773 /*flags*/CAM_DIR_IN, 8774 tag_action, 8775 data_ptr, 8776 allocation_length, 8777 sense_len, 8778 sizeof(*scsi_cmd), 8779 timeout); 8780 } 8781 8782 void 8783 scsi_write_buffer(struct ccb_scsiio *csio, u_int32_t retries, 8784 void (*cbfcnp)(struct cam_periph *, union ccb *), 8785 uint8_t tag_action, int mode, 8786 uint8_t buffer_id, u_int32_t offset, 8787 uint8_t *data_ptr, uint32_t param_list_length, 8788 uint8_t sense_len, uint32_t timeout) 8789 { 8790 struct scsi_write_buffer *scsi_cmd; 8791 8792 scsi_cmd = (struct scsi_write_buffer *)&csio->cdb_io.cdb_bytes; 8793 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8794 scsi_cmd->opcode = WRITE_BUFFER; 8795 scsi_cmd->byte2 = mode; 8796 scsi_cmd->buffer_id = buffer_id; 8797 scsi_ulto3b(offset, scsi_cmd->offset); 8798 scsi_ulto3b(param_list_length, scsi_cmd->length); 8799 8800 cam_fill_csio(csio, 8801 retries, 8802 cbfcnp, 8803 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE, 8804 tag_action, 8805 data_ptr, 8806 param_list_length, 8807 sense_len, 8808 sizeof(*scsi_cmd), 8809 timeout); 8810 } 8811 8812 void 8813 scsi_start_stop(struct ccb_scsiio *csio, u_int32_t retries, 8814 void (*cbfcnp)(struct cam_periph *, union ccb *), 8815 u_int8_t tag_action, int start, int load_eject, 8816 int immediate, u_int8_t sense_len, u_int32_t timeout) 8817 { 8818 struct scsi_start_stop_unit *scsi_cmd; 8819 int extra_flags = 0; 8820 8821 scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes; 8822 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8823 scsi_cmd->opcode = START_STOP_UNIT; 8824 if (start != 0) { 8825 scsi_cmd->how |= SSS_START; 8826 /* it takes a lot of power to start a drive */ 8827 extra_flags |= CAM_HIGH_POWER; 8828 } 8829 if (load_eject != 0) 8830 scsi_cmd->how |= SSS_LOEJ; 8831 if (immediate != 0) 8832 scsi_cmd->byte2 |= SSS_IMMED; 8833 8834 cam_fill_csio(csio, 8835 retries, 8836 cbfcnp, 8837 /*flags*/CAM_DIR_NONE | extra_flags, 8838 tag_action, 8839 /*data_ptr*/NULL, 8840 /*dxfer_len*/0, 8841 sense_len, 8842 sizeof(*scsi_cmd), 8843 timeout); 8844 } 8845 8846 void 8847 scsi_read_attribute(struct ccb_scsiio *csio, u_int32_t retries, 8848 void (*cbfcnp)(struct cam_periph *, union ccb *), 8849 u_int8_t tag_action, u_int8_t service_action, 8850 uint32_t element, u_int8_t elem_type, int logical_volume, 8851 int partition, u_int32_t first_attribute, int cache, 8852 u_int8_t *data_ptr, u_int32_t length, int sense_len, 8853 u_int32_t timeout) 8854 { 8855 struct scsi_read_attribute *scsi_cmd; 8856 8857 scsi_cmd = (struct scsi_read_attribute *)&csio->cdb_io.cdb_bytes; 8858 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8859 8860 scsi_cmd->opcode = READ_ATTRIBUTE; 8861 scsi_cmd->service_action = service_action; 8862 scsi_ulto2b(element, scsi_cmd->element); 8863 scsi_cmd->elem_type = elem_type; 8864 scsi_cmd->logical_volume = logical_volume; 8865 scsi_cmd->partition = partition; 8866 scsi_ulto2b(first_attribute, scsi_cmd->first_attribute); 8867 scsi_ulto4b(length, scsi_cmd->length); 8868 if (cache != 0) 8869 scsi_cmd->cache |= SRA_CACHE; 8870 8871 cam_fill_csio(csio, 8872 retries, 8873 cbfcnp, 8874 /*flags*/CAM_DIR_IN, 8875 tag_action, 8876 /*data_ptr*/data_ptr, 8877 /*dxfer_len*/length, 8878 sense_len, 8879 sizeof(*scsi_cmd), 8880 timeout); 8881 } 8882 8883 void 8884 scsi_write_attribute(struct ccb_scsiio *csio, u_int32_t retries, 8885 void (*cbfcnp)(struct cam_periph *, union ccb *), 8886 u_int8_t tag_action, uint32_t element, int logical_volume, 8887 int partition, int wtc, u_int8_t *data_ptr, 8888 u_int32_t length, int sense_len, u_int32_t timeout) 8889 { 8890 struct scsi_write_attribute *scsi_cmd; 8891 8892 scsi_cmd = (struct scsi_write_attribute *)&csio->cdb_io.cdb_bytes; 8893 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8894 8895 scsi_cmd->opcode = WRITE_ATTRIBUTE; 8896 if (wtc != 0) 8897 scsi_cmd->byte2 = SWA_WTC; 8898 scsi_ulto3b(element, scsi_cmd->element); 8899 scsi_cmd->logical_volume = logical_volume; 8900 scsi_cmd->partition = partition; 8901 scsi_ulto4b(length, scsi_cmd->length); 8902 8903 cam_fill_csio(csio, 8904 retries, 8905 cbfcnp, 8906 /*flags*/CAM_DIR_OUT, 8907 tag_action, 8908 /*data_ptr*/data_ptr, 8909 /*dxfer_len*/length, 8910 sense_len, 8911 sizeof(*scsi_cmd), 8912 timeout); 8913 } 8914 8915 void 8916 scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries, 8917 void (*cbfcnp)(struct cam_periph *, union ccb *), 8918 uint8_t tag_action, int service_action, 8919 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 8920 int timeout) 8921 { 8922 struct scsi_per_res_in *scsi_cmd; 8923 8924 scsi_cmd = (struct scsi_per_res_in *)&csio->cdb_io.cdb_bytes; 8925 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8926 8927 scsi_cmd->opcode = PERSISTENT_RES_IN; 8928 scsi_cmd->action = service_action; 8929 scsi_ulto2b(dxfer_len, scsi_cmd->length); 8930 8931 cam_fill_csio(csio, 8932 retries, 8933 cbfcnp, 8934 /*flags*/CAM_DIR_IN, 8935 tag_action, 8936 data_ptr, 8937 dxfer_len, 8938 sense_len, 8939 sizeof(*scsi_cmd), 8940 timeout); 8941 } 8942 8943 void 8944 scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries, 8945 void (*cbfcnp)(struct cam_periph *, union ccb *), 8946 uint8_t tag_action, int service_action, 8947 int scope, int res_type, uint8_t *data_ptr, 8948 uint32_t dxfer_len, int sense_len, int timeout) 8949 { 8950 struct scsi_per_res_out *scsi_cmd; 8951 8952 scsi_cmd = (struct scsi_per_res_out *)&csio->cdb_io.cdb_bytes; 8953 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8954 8955 scsi_cmd->opcode = PERSISTENT_RES_OUT; 8956 scsi_cmd->action = service_action; 8957 scsi_cmd->scope_type = scope | res_type; 8958 scsi_ulto4b(dxfer_len, scsi_cmd->length); 8959 8960 cam_fill_csio(csio, 8961 retries, 8962 cbfcnp, 8963 /*flags*/CAM_DIR_OUT, 8964 tag_action, 8965 /*data_ptr*/data_ptr, 8966 /*dxfer_len*/dxfer_len, 8967 sense_len, 8968 sizeof(*scsi_cmd), 8969 timeout); 8970 } 8971 8972 void 8973 scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries, 8974 void (*cbfcnp)(struct cam_periph *, union ccb *), 8975 uint8_t tag_action, uint32_t security_protocol, 8976 uint32_t security_protocol_specific, int byte4, 8977 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 8978 int timeout) 8979 { 8980 struct scsi_security_protocol_in *scsi_cmd; 8981 8982 scsi_cmd = (struct scsi_security_protocol_in *)&csio->cdb_io.cdb_bytes; 8983 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8984 8985 scsi_cmd->opcode = SECURITY_PROTOCOL_IN; 8986 8987 scsi_cmd->security_protocol = security_protocol; 8988 scsi_ulto2b(security_protocol_specific, 8989 scsi_cmd->security_protocol_specific); 8990 scsi_cmd->byte4 = byte4; 8991 scsi_ulto4b(dxfer_len, scsi_cmd->length); 8992 8993 cam_fill_csio(csio, 8994 retries, 8995 cbfcnp, 8996 /*flags*/CAM_DIR_IN, 8997 tag_action, 8998 data_ptr, 8999 dxfer_len, 9000 sense_len, 9001 sizeof(*scsi_cmd), 9002 timeout); 9003 } 9004 9005 void 9006 scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries, 9007 void (*cbfcnp)(struct cam_periph *, union ccb *), 9008 uint8_t tag_action, uint32_t security_protocol, 9009 uint32_t security_protocol_specific, int byte4, 9010 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 9011 int timeout) 9012 { 9013 struct scsi_security_protocol_out *scsi_cmd; 9014 9015 scsi_cmd = (struct scsi_security_protocol_out *)&csio->cdb_io.cdb_bytes; 9016 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9017 9018 scsi_cmd->opcode = SECURITY_PROTOCOL_OUT; 9019 9020 scsi_cmd->security_protocol = security_protocol; 9021 scsi_ulto2b(security_protocol_specific, 9022 scsi_cmd->security_protocol_specific); 9023 scsi_cmd->byte4 = byte4; 9024 scsi_ulto4b(dxfer_len, scsi_cmd->length); 9025 9026 cam_fill_csio(csio, 9027 retries, 9028 cbfcnp, 9029 /*flags*/CAM_DIR_OUT, 9030 tag_action, 9031 data_ptr, 9032 dxfer_len, 9033 sense_len, 9034 sizeof(*scsi_cmd), 9035 timeout); 9036 } 9037 9038 void 9039 scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries, 9040 void (*cbfcnp)(struct cam_periph *, union ccb *), 9041 uint8_t tag_action, int options, int req_opcode, 9042 int req_service_action, uint8_t *data_ptr, 9043 uint32_t dxfer_len, int sense_len, int timeout) 9044 { 9045 struct scsi_report_supported_opcodes *scsi_cmd; 9046 9047 scsi_cmd = (struct scsi_report_supported_opcodes *) 9048 &csio->cdb_io.cdb_bytes; 9049 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9050 9051 scsi_cmd->opcode = MAINTENANCE_IN; 9052 scsi_cmd->service_action = REPORT_SUPPORTED_OPERATION_CODES; 9053 scsi_cmd->options = options; 9054 scsi_cmd->requested_opcode = req_opcode; 9055 scsi_ulto2b(req_service_action, scsi_cmd->requested_service_action); 9056 scsi_ulto4b(dxfer_len, scsi_cmd->length); 9057 9058 cam_fill_csio(csio, 9059 retries, 9060 cbfcnp, 9061 /*flags*/CAM_DIR_IN, 9062 tag_action, 9063 data_ptr, 9064 dxfer_len, 9065 sense_len, 9066 sizeof(*scsi_cmd), 9067 timeout); 9068 } 9069 9070 /* 9071 * Try make as good a match as possible with 9072 * available sub drivers 9073 */ 9074 int 9075 scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) 9076 { 9077 struct scsi_inquiry_pattern *entry; 9078 struct scsi_inquiry_data *inq; 9079 9080 entry = (struct scsi_inquiry_pattern *)table_entry; 9081 inq = (struct scsi_inquiry_data *)inqbuffer; 9082 9083 if (((SID_TYPE(inq) == entry->type) 9084 || (entry->type == T_ANY)) 9085 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE 9086 : entry->media_type & SIP_MEDIA_FIXED) 9087 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) 9088 && (cam_strmatch(inq->product, entry->product, 9089 sizeof(inq->product)) == 0) 9090 && (cam_strmatch(inq->revision, entry->revision, 9091 sizeof(inq->revision)) == 0)) { 9092 return (0); 9093 } 9094 return (-1); 9095 } 9096 9097 /* 9098 * Try make as good a match as possible with 9099 * available sub drivers 9100 */ 9101 int 9102 scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) 9103 { 9104 struct scsi_static_inquiry_pattern *entry; 9105 struct scsi_inquiry_data *inq; 9106 9107 entry = (struct scsi_static_inquiry_pattern *)table_entry; 9108 inq = (struct scsi_inquiry_data *)inqbuffer; 9109 9110 if (((SID_TYPE(inq) == entry->type) 9111 || (entry->type == T_ANY)) 9112 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE 9113 : entry->media_type & SIP_MEDIA_FIXED) 9114 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) 9115 && (cam_strmatch(inq->product, entry->product, 9116 sizeof(inq->product)) == 0) 9117 && (cam_strmatch(inq->revision, entry->revision, 9118 sizeof(inq->revision)) == 0)) { 9119 return (0); 9120 } 9121 return (-1); 9122 } 9123 9124 /** 9125 * Compare two buffers of vpd device descriptors for a match. 9126 * 9127 * \param lhs Pointer to first buffer of descriptors to compare. 9128 * \param lhs_len The length of the first buffer. 9129 * \param rhs Pointer to second buffer of descriptors to compare. 9130 * \param rhs_len The length of the second buffer. 9131 * 9132 * \return 0 on a match, -1 otherwise. 9133 * 9134 * Treat rhs and lhs as arrays of vpd device id descriptors. Walk lhs matching 9135 * against each element in rhs until all data are exhausted or we have found 9136 * a match. 9137 */ 9138 int 9139 scsi_devid_match(uint8_t *lhs, size_t lhs_len, uint8_t *rhs, size_t rhs_len) 9140 { 9141 struct scsi_vpd_id_descriptor *lhs_id; 9142 struct scsi_vpd_id_descriptor *lhs_last; 9143 struct scsi_vpd_id_descriptor *rhs_last; 9144 uint8_t *lhs_end; 9145 uint8_t *rhs_end; 9146 9147 lhs_end = lhs + lhs_len; 9148 rhs_end = rhs + rhs_len; 9149 9150 /* 9151 * rhs_last and lhs_last are the last posible position of a valid 9152 * descriptor assuming it had a zero length identifier. We use 9153 * these variables to insure we can safely dereference the length 9154 * field in our loop termination tests. 9155 */ 9156 lhs_last = (struct scsi_vpd_id_descriptor *) 9157 (lhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); 9158 rhs_last = (struct scsi_vpd_id_descriptor *) 9159 (rhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); 9160 9161 lhs_id = (struct scsi_vpd_id_descriptor *)lhs; 9162 while (lhs_id <= lhs_last 9163 && (lhs_id->identifier + lhs_id->length) <= lhs_end) { 9164 struct scsi_vpd_id_descriptor *rhs_id; 9165 9166 rhs_id = (struct scsi_vpd_id_descriptor *)rhs; 9167 while (rhs_id <= rhs_last 9168 && (rhs_id->identifier + rhs_id->length) <= rhs_end) { 9169 9170 if ((rhs_id->id_type & 9171 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) == 9172 (lhs_id->id_type & 9173 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) 9174 && rhs_id->length == lhs_id->length 9175 && memcmp(rhs_id->identifier, lhs_id->identifier, 9176 rhs_id->length) == 0) 9177 return (0); 9178 9179 rhs_id = (struct scsi_vpd_id_descriptor *) 9180 (rhs_id->identifier + rhs_id->length); 9181 } 9182 lhs_id = (struct scsi_vpd_id_descriptor *) 9183 (lhs_id->identifier + lhs_id->length); 9184 } 9185 return (-1); 9186 } 9187 9188 #ifdef _KERNEL 9189 int 9190 scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id) 9191 { 9192 struct cam_ed *device; 9193 struct scsi_vpd_supported_pages *vpds; 9194 int i, num_pages; 9195 9196 device = periph->path->device; 9197 vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds; 9198 9199 if (vpds != NULL) { 9200 num_pages = device->supported_vpds_len - 9201 SVPD_SUPPORTED_PAGES_HDR_LEN; 9202 for (i = 0; i < num_pages; i++) { 9203 if (vpds->page_list[i] == page_id) 9204 return (1); 9205 } 9206 } 9207 9208 return (0); 9209 } 9210 9211 static void 9212 init_scsi_delay(void) 9213 { 9214 int delay; 9215 9216 delay = SCSI_DELAY; 9217 TUNABLE_INT_FETCH("kern.cam.scsi_delay", &delay); 9218 9219 if (set_scsi_delay(delay) != 0) { 9220 printf("cam: invalid value for tunable kern.cam.scsi_delay\n"); 9221 set_scsi_delay(SCSI_DELAY); 9222 } 9223 } 9224 SYSINIT(scsi_delay, SI_SUB_TUNABLES, SI_ORDER_ANY, init_scsi_delay, NULL); 9225 9226 static int 9227 sysctl_scsi_delay(SYSCTL_HANDLER_ARGS) 9228 { 9229 int error, delay; 9230 9231 delay = scsi_delay; 9232 error = sysctl_handle_int(oidp, &delay, 0, req); 9233 if (error != 0 || req->newptr == NULL) 9234 return (error); 9235 return (set_scsi_delay(delay)); 9236 } 9237 SYSCTL_PROC(_kern_cam, OID_AUTO, scsi_delay, 9238 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, 0, sysctl_scsi_delay, "I", 9239 "Delay to allow devices to settle after a SCSI bus reset (ms)"); 9240 9241 static int 9242 set_scsi_delay(int delay) 9243 { 9244 /* 9245 * If someone sets this to 0, we assume that they want the 9246 * minimum allowable bus settle delay. 9247 */ 9248 if (delay == 0) { 9249 printf("cam: using minimum scsi_delay (%dms)\n", 9250 SCSI_MIN_DELAY); 9251 delay = SCSI_MIN_DELAY; 9252 } 9253 if (delay < SCSI_MIN_DELAY) 9254 return (EINVAL); 9255 scsi_delay = delay; 9256 return (0); 9257 } 9258 #endif /* _KERNEL */ 9259