/*- * Implementation of Utility functions for all SCSI device types. * * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. * Copyright (c) 1997, 1998, 2003 Kenneth D. Merry. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #ifdef _KERNEL #include "opt_scsi.h" #include #include #include #include #include #include #include #include #else #include #include #include #include #include #endif #include #include #include #include #include #include #include #ifdef _KERNEL #include #include #include #include #else #include #include #ifndef FALSE #define FALSE 0 #endif /* FALSE */ #ifndef TRUE #define TRUE 1 #endif /* TRUE */ #define ERESTART -1 /* restart syscall */ #define EJUSTRETURN -2 /* don't modify regs, just return */ #endif /* !_KERNEL */ /* * This is the default number of milliseconds we wait for devices to settle * after a SCSI bus reset. */ #ifndef SCSI_DELAY #define SCSI_DELAY 2000 #endif /* * All devices need _some_ sort of bus settle delay, so we'll set it to * a minimum value of 100ms. Note that this is pertinent only for SPI- * not transport like Fibre Channel or iSCSI where 'delay' is completely * meaningless. */ #ifndef SCSI_MIN_DELAY #define SCSI_MIN_DELAY 100 #endif /* * Make sure the user isn't using seconds instead of milliseconds. */ #if (SCSI_DELAY < SCSI_MIN_DELAY && SCSI_DELAY != 0) #error "SCSI_DELAY is in milliseconds, not seconds! Please use a larger value" #endif int scsi_delay; static int ascentrycomp(const void *key, const void *member); static int senseentrycomp(const void *key, const void *member); static void fetchtableentries(int sense_key, int asc, int ascq, struct scsi_inquiry_data *, const struct sense_key_table_entry **, const struct asc_table_entry **); #ifdef _KERNEL static void init_scsi_delay(void); static int sysctl_scsi_delay(SYSCTL_HANDLER_ARGS); static int set_scsi_delay(int delay); #endif #if !defined(SCSI_NO_OP_STRINGS) #define D (1 << T_DIRECT) #define T (1 << T_SEQUENTIAL) #define L (1 << T_PRINTER) #define P (1 << T_PROCESSOR) #define W (1 << T_WORM) #define R (1 << T_CDROM) #define O (1 << T_OPTICAL) #define M (1 << T_CHANGER) #define A (1 << T_STORARRAY) #define E (1 << T_ENCLOSURE) #define B (1 << T_RBC) #define K (1 << T_OCRW) #define V (1 << T_ADC) #define F (1 << T_OSD) #define S (1 << T_SCANNER) #define C (1 << T_COMM) #define ALL (D | T | L | P | W | R | O | M | A | E | B | K | V | F | S | C) static struct op_table_entry plextor_cd_ops[] = { { 0xD8, R, "CD-DA READ" } }; static struct scsi_op_quirk_entry scsi_op_quirk_table[] = { { /* * I believe that 0xD8 is the Plextor proprietary command * to read CD-DA data. I'm not sure which Plextor CDROM * models support the command, though. I know for sure * that the 4X, 8X, and 12X models do, and presumably the * 12-20X does. I don't know about any earlier models, * though. If anyone has any more complete information, * feel free to change this quirk entry. */ {T_CDROM, SIP_MEDIA_REMOVABLE, "PLEXTOR", "CD-ROM PX*", "*"}, nitems(plextor_cd_ops), plextor_cd_ops } }; static struct op_table_entry scsi_op_codes[] = { /* * From: http://www.t10.org/lists/op-num.txt * Modifications by Kenneth Merry (ken@FreeBSD.ORG) * and Jung-uk Kim (jkim@FreeBSD.org) * * Note: order is important in this table, scsi_op_desc() currently * depends on the opcodes in the table being in order to save * search time. * Note: scanner and comm. devices are carried over from the previous * version because they were removed in the latest spec. */ /* File: OP-NUM.TXT * * SCSI Operation Codes * Numeric Sorted Listing * as of 5/26/15 * * D - DIRECT ACCESS DEVICE (SBC-2) device column key * .T - SEQUENTIAL ACCESS DEVICE (SSC-2) ----------------- * . L - PRINTER DEVICE (SSC) M = Mandatory * . P - PROCESSOR DEVICE (SPC) O = Optional * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) V = Vendor spec. * . . R - CD/DVE DEVICE (MMC-3) Z = Obsolete * . . O - OPTICAL MEMORY DEVICE (SBC-2) * . . .M - MEDIA CHANGER DEVICE (SMC-2) * . . . A - STORAGE ARRAY DEVICE (SCC-2) * . . . .E - ENCLOSURE SERVICES DEVICE (SES) * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) * . . . . .F - OBJECT-BASED STORAGE (OSD) * OP DTLPWROMAEBKVF Description * -- -------------- ---------------------------------------------- */ /* 00 MMMMMMMMMMMMMM TEST UNIT READY */ { 0x00, ALL, "TEST UNIT READY" }, /* 01 M REWIND */ { 0x01, T, "REWIND" }, /* 01 Z V ZZZZ REZERO UNIT */ { 0x01, D | W | R | O | M, "REZERO UNIT" }, /* 02 VVVVVV V */ /* 03 MMMMMMMMMMOMMM REQUEST SENSE */ { 0x03, ALL, "REQUEST SENSE" }, /* 04 M OO FORMAT UNIT */ { 0x04, D | R | O, "FORMAT UNIT" }, /* 04 O FORMAT MEDIUM */ { 0x04, T, "FORMAT MEDIUM" }, /* 04 O FORMAT */ { 0x04, L, "FORMAT" }, /* 05 VMVVVV V READ BLOCK LIMITS */ { 0x05, T, "READ BLOCK LIMITS" }, /* 06 VVVVVV V */ /* 07 OVV O OV REASSIGN BLOCKS */ { 0x07, D | W | O, "REASSIGN BLOCKS" }, /* 07 O INITIALIZE ELEMENT STATUS */ { 0x07, M, "INITIALIZE ELEMENT STATUS" }, /* 08 MOV O OV READ(6) */ { 0x08, D | T | W | O, "READ(6)" }, /* 08 O RECEIVE */ { 0x08, P, "RECEIVE" }, /* 08 GET MESSAGE(6) */ { 0x08, C, "GET MESSAGE(6)" }, /* 09 VVVVVV V */ /* 0A OO O OV WRITE(6) */ { 0x0A, D | T | W | O, "WRITE(6)" }, /* 0A M SEND(6) */ { 0x0A, P, "SEND(6)" }, /* 0A SEND MESSAGE(6) */ { 0x0A, C, "SEND MESSAGE(6)" }, /* 0A M PRINT */ { 0x0A, L, "PRINT" }, /* 0B Z ZOZV SEEK(6) */ { 0x0B, D | W | R | O, "SEEK(6)" }, /* 0B O SET CAPACITY */ { 0x0B, T, "SET CAPACITY" }, /* 0B O SLEW AND PRINT */ { 0x0B, L, "SLEW AND PRINT" }, /* 0C VVVVVV V */ /* 0D VVVVVV V */ /* 0E VVVVVV V */ /* 0F VOVVVV V READ REVERSE(6) */ { 0x0F, T, "READ REVERSE(6)" }, /* 10 VM VVV WRITE FILEMARKS(6) */ { 0x10, T, "WRITE FILEMARKS(6)" }, /* 10 O SYNCHRONIZE BUFFER */ { 0x10, L, "SYNCHRONIZE BUFFER" }, /* 11 VMVVVV SPACE(6) */ { 0x11, T, "SPACE(6)" }, /* 12 MMMMMMMMMMMMMM INQUIRY */ { 0x12, ALL, "INQUIRY" }, /* 13 V VVVV */ /* 13 O VERIFY(6) */ { 0x13, T, "VERIFY(6)" }, /* 14 VOOVVV RECOVER BUFFERED DATA */ { 0x14, T | L, "RECOVER BUFFERED DATA" }, /* 15 OMO O OOOO OO MODE SELECT(6) */ { 0x15, ALL & ~(P | R | B | F), "MODE SELECT(6)" }, /* 16 ZZMZO OOOZ O RESERVE(6) */ { 0x16, ALL & ~(R | B | V | F | C), "RESERVE(6)" }, /* 16 Z RESERVE ELEMENT(6) */ { 0x16, M, "RESERVE ELEMENT(6)" }, /* 17 ZZMZO OOOZ O RELEASE(6) */ { 0x17, ALL & ~(R | B | V | F | C), "RELEASE(6)" }, /* 17 Z RELEASE ELEMENT(6) */ { 0x17, M, "RELEASE ELEMENT(6)" }, /* 18 ZZZZOZO Z COPY */ { 0x18, D | T | L | P | W | R | O | K | S, "COPY" }, /* 19 VMVVVV ERASE(6) */ { 0x19, T, "ERASE(6)" }, /* 1A OMO O OOOO OO MODE SENSE(6) */ { 0x1A, ALL & ~(P | R | B | F), "MODE SENSE(6)" }, /* 1B O OOO O MO O START STOP UNIT */ { 0x1B, D | W | R | O | A | B | K | F, "START STOP UNIT" }, /* 1B O M LOAD UNLOAD */ { 0x1B, T | V, "LOAD UNLOAD" }, /* 1B SCAN */ { 0x1B, S, "SCAN" }, /* 1B O STOP PRINT */ { 0x1B, L, "STOP PRINT" }, /* 1B O OPEN/CLOSE IMPORT/EXPORT ELEMENT */ { 0x1B, M, "OPEN/CLOSE IMPORT/EXPORT ELEMENT" }, /* 1C OOOOO OOOM OOO RECEIVE DIAGNOSTIC RESULTS */ { 0x1C, ALL & ~(R | B), "RECEIVE DIAGNOSTIC RESULTS" }, /* 1D MMMMM MMOM MMM SEND DIAGNOSTIC */ { 0x1D, ALL & ~(R | B), "SEND DIAGNOSTIC" }, /* 1E OO OOOO O O PREVENT ALLOW MEDIUM REMOVAL */ { 0x1E, D | T | W | R | O | M | K | F, "PREVENT ALLOW MEDIUM REMOVAL" }, /* 1F */ /* 20 V VVV V */ /* 21 V VVV V */ /* 22 V VVV V */ /* 23 V V V V */ /* 23 O READ FORMAT CAPACITIES */ { 0x23, R, "READ FORMAT CAPACITIES" }, /* 24 V VV SET WINDOW */ { 0x24, S, "SET WINDOW" }, /* 25 M M M M READ CAPACITY(10) */ { 0x25, D | W | O | B, "READ CAPACITY(10)" }, /* 25 O READ CAPACITY */ { 0x25, R, "READ CAPACITY" }, /* 25 M READ CARD CAPACITY */ { 0x25, K, "READ CARD CAPACITY" }, /* 25 GET WINDOW */ { 0x25, S, "GET WINDOW" }, /* 26 V VV */ /* 27 V VV */ /* 28 M MOM MM READ(10) */ { 0x28, D | W | R | O | B | K | S, "READ(10)" }, /* 28 GET MESSAGE(10) */ { 0x28, C, "GET MESSAGE(10)" }, /* 29 V VVO READ GENERATION */ { 0x29, O, "READ GENERATION" }, /* 2A O MOM MO WRITE(10) */ { 0x2A, D | W | R | O | B | K, "WRITE(10)" }, /* 2A SEND(10) */ { 0x2A, S, "SEND(10)" }, /* 2A SEND MESSAGE(10) */ { 0x2A, C, "SEND MESSAGE(10)" }, /* 2B Z OOO O SEEK(10) */ { 0x2B, D | W | R | O | K, "SEEK(10)" }, /* 2B O LOCATE(10) */ { 0x2B, T, "LOCATE(10)" }, /* 2B O POSITION TO ELEMENT */ { 0x2B, M, "POSITION TO ELEMENT" }, /* 2C V OO ERASE(10) */ { 0x2C, R | O, "ERASE(10)" }, /* 2D O READ UPDATED BLOCK */ { 0x2D, O, "READ UPDATED BLOCK" }, /* 2D V */ /* 2E O OOO MO WRITE AND VERIFY(10) */ { 0x2E, D | W | R | O | B | K, "WRITE AND VERIFY(10)" }, /* 2F O OOO VERIFY(10) */ { 0x2F, D | W | R | O, "VERIFY(10)" }, /* 30 Z ZZZ SEARCH DATA HIGH(10) */ { 0x30, D | W | R | O, "SEARCH DATA HIGH(10)" }, /* 31 Z ZZZ SEARCH DATA EQUAL(10) */ { 0x31, D | W | R | O, "SEARCH DATA EQUAL(10)" }, /* 31 OBJECT POSITION */ { 0x31, S, "OBJECT POSITION" }, /* 32 Z ZZZ SEARCH DATA LOW(10) */ { 0x32, D | W | R | O, "SEARCH DATA LOW(10)" }, /* 33 Z OZO SET LIMITS(10) */ { 0x33, D | W | R | O, "SET LIMITS(10)" }, /* 34 O O O O PRE-FETCH(10) */ { 0x34, D | W | O | K, "PRE-FETCH(10)" }, /* 34 M READ POSITION */ { 0x34, T, "READ POSITION" }, /* 34 GET DATA BUFFER STATUS */ { 0x34, S, "GET DATA BUFFER STATUS" }, /* 35 O OOO MO SYNCHRONIZE CACHE(10) */ { 0x35, D | W | R | O | B | K, "SYNCHRONIZE CACHE(10)" }, /* 36 Z O O O LOCK UNLOCK CACHE(10) */ { 0x36, D | W | O | K, "LOCK UNLOCK CACHE(10)" }, /* 37 O O READ DEFECT DATA(10) */ { 0x37, D | O, "READ DEFECT DATA(10)" }, /* 37 O INITIALIZE ELEMENT STATUS WITH RANGE */ { 0x37, M, "INITIALIZE ELEMENT STATUS WITH RANGE" }, /* 38 O O O MEDIUM SCAN */ { 0x38, W | O | K, "MEDIUM SCAN" }, /* 39 ZZZZOZO Z COMPARE */ { 0x39, D | T | L | P | W | R | O | K | S, "COMPARE" }, /* 3A ZZZZOZO Z COPY AND VERIFY */ { 0x3A, D | T | L | P | W | R | O | K | S, "COPY AND VERIFY" }, /* 3B OOOOOOOOOOMOOO WRITE BUFFER */ { 0x3B, ALL, "WRITE BUFFER" }, /* 3C OOOOOOOOOO OOO READ BUFFER */ { 0x3C, ALL & ~(B), "READ BUFFER" }, /* 3D O UPDATE BLOCK */ { 0x3D, O, "UPDATE BLOCK" }, /* 3E O O O READ LONG(10) */ { 0x3E, D | W | O, "READ LONG(10)" }, /* 3F O O O WRITE LONG(10) */ { 0x3F, D | W | O, "WRITE LONG(10)" }, /* 40 ZZZZOZOZ CHANGE DEFINITION */ { 0x40, D | T | L | P | W | R | O | M | S | C, "CHANGE DEFINITION" }, /* 41 O WRITE SAME(10) */ { 0x41, D, "WRITE SAME(10)" }, /* 42 O UNMAP */ { 0x42, D, "UNMAP" }, /* 42 O READ SUB-CHANNEL */ { 0x42, R, "READ SUB-CHANNEL" }, /* 43 O READ TOC/PMA/ATIP */ { 0x43, R, "READ TOC/PMA/ATIP" }, /* 44 M M REPORT DENSITY SUPPORT */ { 0x44, T | V, "REPORT DENSITY SUPPORT" }, /* 44 READ HEADER */ /* 45 O PLAY AUDIO(10) */ { 0x45, R, "PLAY AUDIO(10)" }, /* 46 M GET CONFIGURATION */ { 0x46, R, "GET CONFIGURATION" }, /* 47 O PLAY AUDIO MSF */ { 0x47, R, "PLAY AUDIO MSF" }, /* 48 O SANITIZE */ { 0x48, D, "SANITIZE" }, /* 49 */ /* 4A M GET EVENT STATUS NOTIFICATION */ { 0x4A, R, "GET EVENT STATUS NOTIFICATION" }, /* 4B O PAUSE/RESUME */ { 0x4B, R, "PAUSE/RESUME" }, /* 4C OOOOO OOOO OOO LOG SELECT */ { 0x4C, ALL & ~(R | B), "LOG SELECT" }, /* 4D OOOOO OOOO OMO LOG SENSE */ { 0x4D, ALL & ~(R | B), "LOG SENSE" }, /* 4E O STOP PLAY/SCAN */ { 0x4E, R, "STOP PLAY/SCAN" }, /* 4F */ /* 50 O XDWRITE(10) */ { 0x50, D, "XDWRITE(10)" }, /* 51 O XPWRITE(10) */ { 0x51, D, "XPWRITE(10)" }, /* 51 O READ DISC INFORMATION */ { 0x51, R, "READ DISC INFORMATION" }, /* 52 O XDREAD(10) */ { 0x52, D, "XDREAD(10)" }, /* 52 O READ TRACK INFORMATION */ { 0x52, R, "READ TRACK INFORMATION" }, /* 53 O RESERVE TRACK */ { 0x53, R, "RESERVE TRACK" }, /* 54 O SEND OPC INFORMATION */ { 0x54, R, "SEND OPC INFORMATION" }, /* 55 OOO OMOOOOMOMO MODE SELECT(10) */ { 0x55, ALL & ~(P), "MODE SELECT(10)" }, /* 56 ZZMZO OOOZ RESERVE(10) */ { 0x56, ALL & ~(R | B | K | V | F | C), "RESERVE(10)" }, /* 56 Z RESERVE ELEMENT(10) */ { 0x56, M, "RESERVE ELEMENT(10)" }, /* 57 ZZMZO OOOZ RELEASE(10) */ { 0x57, ALL & ~(R | B | K | V | F | C), "RELEASE(10)" }, /* 57 Z RELEASE ELEMENT(10) */ { 0x57, M, "RELEASE ELEMENT(10)" }, /* 58 O REPAIR TRACK */ { 0x58, R, "REPAIR TRACK" }, /* 59 */ /* 5A OOO OMOOOOMOMO MODE SENSE(10) */ { 0x5A, ALL & ~(P), "MODE SENSE(10)" }, /* 5B O CLOSE TRACK/SESSION */ { 0x5B, R, "CLOSE TRACK/SESSION" }, /* 5C O READ BUFFER CAPACITY */ { 0x5C, R, "READ BUFFER CAPACITY" }, /* 5D O SEND CUE SHEET */ { 0x5D, R, "SEND CUE SHEET" }, /* 5E OOOOO OOOO M PERSISTENT RESERVE IN */ { 0x5E, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE IN" }, /* 5F OOOOO OOOO M PERSISTENT RESERVE OUT */ { 0x5F, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE OUT" }, /* 7E OO O OOOO O extended CDB */ { 0x7E, D | T | R | M | A | E | B | V, "extended CDB" }, /* 7F O M variable length CDB (more than 16 bytes) */ { 0x7F, D | F, "variable length CDB (more than 16 bytes)" }, /* 80 Z XDWRITE EXTENDED(16) */ { 0x80, D, "XDWRITE EXTENDED(16)" }, /* 80 M WRITE FILEMARKS(16) */ { 0x80, T, "WRITE FILEMARKS(16)" }, /* 81 Z REBUILD(16) */ { 0x81, D, "REBUILD(16)" }, /* 81 O READ REVERSE(16) */ { 0x81, T, "READ REVERSE(16)" }, /* 82 Z REGENERATE(16) */ { 0x82, D, "REGENERATE(16)" }, /* 83 OOOOO O OO EXTENDED COPY */ { 0x83, D | T | L | P | W | O | K | V, "EXTENDED COPY" }, /* 84 OOOOO O OO RECEIVE COPY RESULTS */ { 0x84, D | T | L | P | W | O | K | V, "RECEIVE COPY RESULTS" }, /* 85 O O O ATA COMMAND PASS THROUGH(16) */ { 0x85, D | R | B, "ATA COMMAND PASS THROUGH(16)" }, /* 86 OO OO OOOOOOO ACCESS CONTROL IN */ { 0x86, ALL & ~(L | R | F), "ACCESS CONTROL IN" }, /* 87 OO OO OOOOOOO ACCESS CONTROL OUT */ { 0x87, ALL & ~(L | R | F), "ACCESS CONTROL OUT" }, /* 88 MM O O O READ(16) */ { 0x88, D | T | W | O | B, "READ(16)" }, /* 89 O COMPARE AND WRITE*/ { 0x89, D, "COMPARE AND WRITE" }, /* 8A OM O O O WRITE(16) */ { 0x8A, D | T | W | O | B, "WRITE(16)" }, /* 8B O ORWRITE */ { 0x8B, D, "ORWRITE" }, /* 8C OO O OO O M READ ATTRIBUTE */ { 0x8C, D | T | W | O | M | B | V, "READ ATTRIBUTE" }, /* 8D OO O OO O O WRITE ATTRIBUTE */ { 0x8D, D | T | W | O | M | B | V, "WRITE ATTRIBUTE" }, /* 8E O O O O WRITE AND VERIFY(16) */ { 0x8E, D | W | O | B, "WRITE AND VERIFY(16)" }, /* 8F OO O O O VERIFY(16) */ { 0x8F, D | T | W | O | B, "VERIFY(16)" }, /* 90 O O O O PRE-FETCH(16) */ { 0x90, D | W | O | B, "PRE-FETCH(16)" }, /* 91 O O O O SYNCHRONIZE CACHE(16) */ { 0x91, D | W | O | B, "SYNCHRONIZE CACHE(16)" }, /* 91 O SPACE(16) */ { 0x91, T, "SPACE(16)" }, /* 92 Z O O LOCK UNLOCK CACHE(16) */ { 0x92, D | W | O, "LOCK UNLOCK CACHE(16)" }, /* 92 O LOCATE(16) */ { 0x92, T, "LOCATE(16)" }, /* 93 O WRITE SAME(16) */ { 0x93, D, "WRITE SAME(16)" }, /* 93 M ERASE(16) */ { 0x93, T, "ERASE(16)" }, /* 94 O ZBC OUT */ { 0x94, ALL, "ZBC OUT" }, /* 95 O ZBC IN */ { 0x95, ALL, "ZBC IN" }, /* 96 */ /* 97 */ /* 98 */ /* 99 */ /* 9A O WRITE STREAM(16) */ { 0x9A, D, "WRITE STREAM(16)" }, /* 9B OOOOOOOOOO OOO READ BUFFER(16) */ { 0x9B, ALL & ~(B) , "READ BUFFER(16)" }, /* 9C O WRITE ATOMIC(16) */ { 0x9C, D, "WRITE ATOMIC(16)" }, /* 9D SERVICE ACTION BIDIRECTIONAL */ { 0x9D, ALL, "SERVICE ACTION BIDIRECTIONAL" }, /* XXX KDM ALL for this? op-num.txt defines it for none.. */ /* 9E SERVICE ACTION IN(16) */ { 0x9E, ALL, "SERVICE ACTION IN(16)" }, /* 9F M SERVICE ACTION OUT(16) */ { 0x9F, ALL, "SERVICE ACTION OUT(16)" }, /* A0 MMOOO OMMM OMO REPORT LUNS */ { 0xA0, ALL & ~(R | B), "REPORT LUNS" }, /* A1 O BLANK */ { 0xA1, R, "BLANK" }, /* A1 O O ATA COMMAND PASS THROUGH(12) */ { 0xA1, D | B, "ATA COMMAND PASS THROUGH(12)" }, /* A2 OO O O SECURITY PROTOCOL IN */ { 0xA2, D | T | R | V, "SECURITY PROTOCOL IN" }, /* A3 OOO O OOMOOOM MAINTENANCE (IN) */ { 0xA3, ALL & ~(P | R | F), "MAINTENANCE (IN)" }, /* A3 O SEND KEY */ { 0xA3, R, "SEND KEY" }, /* A4 OOO O OOOOOOO MAINTENANCE (OUT) */ { 0xA4, ALL & ~(P | R | F), "MAINTENANCE (OUT)" }, /* A4 O REPORT KEY */ { 0xA4, R, "REPORT KEY" }, /* A5 O O OM MOVE MEDIUM */ { 0xA5, T | W | O | M, "MOVE MEDIUM" }, /* A5 O PLAY AUDIO(12) */ { 0xA5, R, "PLAY AUDIO(12)" }, /* A6 O EXCHANGE MEDIUM */ { 0xA6, M, "EXCHANGE MEDIUM" }, /* A6 O LOAD/UNLOAD C/DVD */ { 0xA6, R, "LOAD/UNLOAD C/DVD" }, /* A7 ZZ O O MOVE MEDIUM ATTACHED */ { 0xA7, D | T | W | O, "MOVE MEDIUM ATTACHED" }, /* A7 O SET READ AHEAD */ { 0xA7, R, "SET READ AHEAD" }, /* A8 O OOO READ(12) */ { 0xA8, D | W | R | O, "READ(12)" }, /* A8 GET MESSAGE(12) */ { 0xA8, C, "GET MESSAGE(12)" }, /* A9 O SERVICE ACTION OUT(12) */ { 0xA9, V, "SERVICE ACTION OUT(12)" }, /* AA O OOO WRITE(12) */ { 0xAA, D | W | R | O, "WRITE(12)" }, /* AA SEND MESSAGE(12) */ { 0xAA, C, "SEND MESSAGE(12)" }, /* AB O O SERVICE ACTION IN(12) */ { 0xAB, R | V, "SERVICE ACTION IN(12)" }, /* AC O ERASE(12) */ { 0xAC, O, "ERASE(12)" }, /* AC O GET PERFORMANCE */ { 0xAC, R, "GET PERFORMANCE" }, /* AD O READ DVD STRUCTURE */ { 0xAD, R, "READ DVD STRUCTURE" }, /* AE O O O WRITE AND VERIFY(12) */ { 0xAE, D | W | O, "WRITE AND VERIFY(12)" }, /* AF O OZO VERIFY(12) */ { 0xAF, D | W | R | O, "VERIFY(12)" }, /* B0 ZZZ SEARCH DATA HIGH(12) */ { 0xB0, W | R | O, "SEARCH DATA HIGH(12)" }, /* B1 ZZZ SEARCH DATA EQUAL(12) */ { 0xB1, W | R | O, "SEARCH DATA EQUAL(12)" }, /* B2 ZZZ SEARCH DATA LOW(12) */ { 0xB2, W | R | O, "SEARCH DATA LOW(12)" }, /* B3 Z OZO SET LIMITS(12) */ { 0xB3, D | W | R | O, "SET LIMITS(12)" }, /* B4 ZZ OZO READ ELEMENT STATUS ATTACHED */ { 0xB4, D | T | W | R | O, "READ ELEMENT STATUS ATTACHED" }, /* B5 OO O O SECURITY PROTOCOL OUT */ { 0xB5, D | T | R | V, "SECURITY PROTOCOL OUT" }, /* B5 O REQUEST VOLUME ELEMENT ADDRESS */ { 0xB5, M, "REQUEST VOLUME ELEMENT ADDRESS" }, /* B6 O SEND VOLUME TAG */ { 0xB6, M, "SEND VOLUME TAG" }, /* B6 O SET STREAMING */ { 0xB6, R, "SET STREAMING" }, /* B7 O O READ DEFECT DATA(12) */ { 0xB7, D | O, "READ DEFECT DATA(12)" }, /* B8 O OZOM READ ELEMENT STATUS */ { 0xB8, T | W | R | O | M, "READ ELEMENT STATUS" }, /* B9 O READ CD MSF */ { 0xB9, R, "READ CD MSF" }, /* BA O O OOMO REDUNDANCY GROUP (IN) */ { 0xBA, D | W | O | M | A | E, "REDUNDANCY GROUP (IN)" }, /* BA O SCAN */ { 0xBA, R, "SCAN" }, /* BB O O OOOO REDUNDANCY GROUP (OUT) */ { 0xBB, D | W | O | M | A | E, "REDUNDANCY GROUP (OUT)" }, /* BB O SET CD SPEED */ { 0xBB, R, "SET CD SPEED" }, /* BC O O OOMO SPARE (IN) */ { 0xBC, D | W | O | M | A | E, "SPARE (IN)" }, /* BD O O OOOO SPARE (OUT) */ { 0xBD, D | W | O | M | A | E, "SPARE (OUT)" }, /* BD O MECHANISM STATUS */ { 0xBD, R, "MECHANISM STATUS" }, /* BE O O OOMO VOLUME SET (IN) */ { 0xBE, D | W | O | M | A | E, "VOLUME SET (IN)" }, /* BE O READ CD */ { 0xBE, R, "READ CD" }, /* BF O O OOOO VOLUME SET (OUT) */ { 0xBF, D | W | O | M | A | E, "VOLUME SET (OUT)" }, /* BF O SEND DVD STRUCTURE */ { 0xBF, R, "SEND DVD STRUCTURE" } }; const char * scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data) { caddr_t match; int i, j; u_int32_t opmask; u_int16_t pd_type; int num_ops[2]; struct op_table_entry *table[2]; int num_tables; /* * If we've got inquiry data, use it to determine what type of * device we're dealing with here. Otherwise, assume direct * access. */ if (inq_data == NULL) { pd_type = T_DIRECT; match = NULL; } else { pd_type = SID_TYPE(inq_data); match = cam_quirkmatch((caddr_t)inq_data, (caddr_t)scsi_op_quirk_table, nitems(scsi_op_quirk_table), sizeof(*scsi_op_quirk_table), scsi_inquiry_match); } if (match != NULL) { table[0] = ((struct scsi_op_quirk_entry *)match)->op_table; num_ops[0] = ((struct scsi_op_quirk_entry *)match)->num_ops; table[1] = scsi_op_codes; num_ops[1] = nitems(scsi_op_codes); num_tables = 2; } else { /* * If this is true, we have a vendor specific opcode that * wasn't covered in the quirk table. */ if ((opcode > 0xBF) || ((opcode > 0x5F) && (opcode < 0x80))) return("Vendor Specific Command"); table[0] = scsi_op_codes; num_ops[0] = nitems(scsi_op_codes); num_tables = 1; } /* RBC is 'Simplified' Direct Access Device */ if (pd_type == T_RBC) pd_type = T_DIRECT; /* * Host managed drives are direct access for the most part. */ if (pd_type == T_ZBC_HM) pd_type = T_DIRECT; /* Map NODEVICE to Direct Access Device to handle REPORT LUNS, etc. */ if (pd_type == T_NODEVICE) pd_type = T_DIRECT; opmask = 1 << pd_type; for (j = 0; j < num_tables; j++) { for (i = 0;i < num_ops[j] && table[j][i].opcode <= opcode; i++){ if ((table[j][i].opcode == opcode) && ((table[j][i].opmask & opmask) != 0)) return(table[j][i].desc); } } /* * If we can't find a match for the command in the table, we just * assume it's a vendor specifc command. */ return("Vendor Specific Command"); } #else /* SCSI_NO_OP_STRINGS */ const char * scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data) { return(""); } #endif #if !defined(SCSI_NO_SENSE_STRINGS) #define SST(asc, ascq, action, desc) \ asc, ascq, action, desc #else const char empty_string[] = ""; #define SST(asc, ascq, action, desc) \ asc, ascq, action, empty_string #endif const struct sense_key_table_entry sense_key_table[] = { { SSD_KEY_NO_SENSE, SS_NOP, "NO SENSE" }, { SSD_KEY_RECOVERED_ERROR, SS_NOP|SSQ_PRINT_SENSE, "RECOVERED ERROR" }, { SSD_KEY_NOT_READY, SS_RDEF, "NOT READY" }, { SSD_KEY_MEDIUM_ERROR, SS_RDEF, "MEDIUM ERROR" }, { SSD_KEY_HARDWARE_ERROR, SS_RDEF, "HARDWARE FAILURE" }, { SSD_KEY_ILLEGAL_REQUEST, SS_FATAL|EINVAL, "ILLEGAL REQUEST" }, { SSD_KEY_UNIT_ATTENTION, SS_FATAL|ENXIO, "UNIT ATTENTION" }, { SSD_KEY_DATA_PROTECT, SS_FATAL|EACCES, "DATA PROTECT" }, { SSD_KEY_BLANK_CHECK, SS_FATAL|ENOSPC, "BLANK CHECK" }, { SSD_KEY_Vendor_Specific, SS_FATAL|EIO, "Vendor Specific" }, { SSD_KEY_COPY_ABORTED, SS_FATAL|EIO, "COPY ABORTED" }, { SSD_KEY_ABORTED_COMMAND, SS_RDEF, "ABORTED COMMAND" }, { SSD_KEY_EQUAL, SS_NOP, "EQUAL" }, { SSD_KEY_VOLUME_OVERFLOW, SS_FATAL|EIO, "VOLUME OVERFLOW" }, { SSD_KEY_MISCOMPARE, SS_NOP, "MISCOMPARE" }, { SSD_KEY_COMPLETED, SS_NOP, "COMPLETED" } }; static struct asc_table_entry quantum_fireball_entries[] = { { SST(0x04, 0x0b, SS_START | SSQ_DECREMENT_COUNT | ENXIO, "Logical unit not ready, initializing cmd. required") } }; static struct asc_table_entry sony_mo_entries[] = { { SST(0x04, 0x00, SS_START | SSQ_DECREMENT_COUNT | ENXIO, "Logical unit not ready, cause not reportable") } }; static struct asc_table_entry hgst_entries[] = { { SST(0x04, 0xF0, SS_RDEF, "Vendor Unique - Logical Unit Not Ready") }, { SST(0x0A, 0x01, SS_RDEF, "Unrecovered Super Certification Log Write Error") }, { SST(0x0A, 0x02, SS_RDEF, "Unrecovered Super Certification Log Read Error") }, { SST(0x15, 0x03, SS_RDEF, "Unrecovered Sector Error") }, { SST(0x3E, 0x04, SS_RDEF, "Unrecovered Self-Test Hard-Cache Test Fail") }, { SST(0x3E, 0x05, SS_RDEF, "Unrecovered Self-Test OTF-Cache Fail") }, { SST(0x40, 0x00, SS_RDEF, "Unrecovered SAT No Buffer Overflow Error") }, { SST(0x40, 0x01, SS_RDEF, "Unrecovered SAT Buffer Overflow Error") }, { SST(0x40, 0x02, SS_RDEF, "Unrecovered SAT No Buffer Overflow With ECS Fault") }, { SST(0x40, 0x03, SS_RDEF, "Unrecovered SAT Buffer Overflow With ECS Fault") }, { SST(0x40, 0x81, SS_RDEF, "DRAM Failure") }, { SST(0x44, 0x0B, SS_RDEF, "Vendor Unique - Internal Target Failure") }, { SST(0x44, 0xF2, SS_RDEF, "Vendor Unique - Internal Target Failure") }, { SST(0x44, 0xF6, SS_RDEF, "Vendor Unique - Internal Target Failure") }, { SST(0x44, 0xF9, SS_RDEF, "Vendor Unique - Internal Target Failure") }, { SST(0x44, 0xFA, SS_RDEF, "Vendor Unique - Internal Target Failure") }, { SST(0x5D, 0x22, SS_RDEF, "Extreme Over-Temperature Warning") }, { SST(0x5D, 0x50, SS_RDEF, "Load/Unload cycle Count Warning") }, { SST(0x81, 0x00, SS_RDEF, "Vendor Unique - Internal Logic Error") }, { SST(0x85, 0x00, SS_RDEF, "Vendor Unique - Internal Key Seed Error") }, }; static struct asc_table_entry seagate_entries[] = { { SST(0x04, 0xF0, SS_RDEF, "Logical Unit Not Ready, super certify in Progress") }, { SST(0x08, 0x86, SS_RDEF, "Write Fault Data Corruption") }, { SST(0x09, 0x0D, SS_RDEF, "Tracking Failure") }, { SST(0x09, 0x0E, SS_RDEF, "ETF Failure") }, { SST(0x0B, 0x5D, SS_RDEF, "Pre-SMART Warning") }, { SST(0x0B, 0x85, SS_RDEF, "5V Voltage Warning") }, { SST(0x0B, 0x8C, SS_RDEF, "12V Voltage Warning") }, { SST(0x0C, 0xFF, SS_RDEF, "Write Error - Too many error recovery revs") }, { SST(0x11, 0xFF, SS_RDEF, "Unrecovered Read Error - Too many error recovery revs") }, { SST(0x19, 0x0E, SS_RDEF, "Fewer than 1/2 defect list copies") }, { SST(0x20, 0xF3, SS_RDEF, "Illegal CDB linked to skip mask cmd") }, { SST(0x24, 0xF0, SS_RDEF, "Illegal byte in CDB, LBA not matching") }, { SST(0x24, 0xF1, SS_RDEF, "Illegal byte in CDB, LEN not matching") }, { SST(0x24, 0xF2, SS_RDEF, "Mask not matching transfer length") }, { SST(0x24, 0xF3, SS_RDEF, "Drive formatted without plist") }, { SST(0x26, 0x95, SS_RDEF, "Invalid Field Parameter - CAP File") }, { SST(0x26, 0x96, SS_RDEF, "Invalid Field Parameter - RAP File") }, { SST(0x26, 0x97, SS_RDEF, "Invalid Field Parameter - TMS Firmware Tag") }, { SST(0x26, 0x98, SS_RDEF, "Invalid Field Parameter - Check Sum") }, { SST(0x26, 0x99, SS_RDEF, "Invalid Field Parameter - Firmware Tag") }, { SST(0x29, 0x08, SS_RDEF, "Write Log Dump data") }, { SST(0x29, 0x09, SS_RDEF, "Write Log Dump data") }, { SST(0x29, 0x0A, SS_RDEF, "Reserved disk space") }, { SST(0x29, 0x0B, SS_RDEF, "SDBP") }, { SST(0x29, 0x0C, SS_RDEF, "SDBP") }, { SST(0x31, 0x91, SS_RDEF, "Format Corrupted World Wide Name (WWN) is Invalid") }, { SST(0x32, 0x03, SS_RDEF, "Defect List - Length exceeds Command Allocated Length") }, { SST(0x33, 0x00, SS_RDEF, "Flash not ready for access") }, { SST(0x3F, 0x70, SS_RDEF, "Invalid RAP block") }, { SST(0x3F, 0x71, SS_RDEF, "RAP/ETF mismatch") }, { SST(0x3F, 0x90, SS_RDEF, "Invalid CAP block") }, { SST(0x3F, 0x91, SS_RDEF, "World Wide Name (WWN) Mismatch") }, { SST(0x40, 0x01, SS_RDEF, "DRAM Parity Error") }, { SST(0x40, 0x02, SS_RDEF, "DRAM Parity Error") }, { SST(0x42, 0x0A, SS_RDEF, "Loopback Test") }, { SST(0x42, 0x0B, SS_RDEF, "Loopback Test") }, { SST(0x44, 0xF2, SS_RDEF, "Compare error during data integrity check") }, { SST(0x44, 0xF6, SS_RDEF, "Unrecoverable error during data integrity check") }, { SST(0x47, 0x80, SS_RDEF, "Fibre Channel Sequence Error") }, { SST(0x4E, 0x01, SS_RDEF, "Information Unit Too Short") }, { SST(0x80, 0x00, SS_RDEF, "General Firmware Error / Command Timeout") }, { SST(0x80, 0x01, SS_RDEF, "Command Timeout") }, { SST(0x80, 0x02, SS_RDEF, "Command Timeout") }, { SST(0x80, 0x80, SS_RDEF, "FC FIFO Error During Read Transfer") }, { SST(0x80, 0x81, SS_RDEF, "FC FIFO Error During Write Transfer") }, { SST(0x80, 0x82, SS_RDEF, "DISC FIFO Error During Read Transfer") }, { SST(0x80, 0x83, SS_RDEF, "DISC FIFO Error During Write Transfer") }, { SST(0x80, 0x84, SS_RDEF, "LBA Seeded LRC Error on Read") }, { SST(0x80, 0x85, SS_RDEF, "LBA Seeded LRC Error on Write") }, { SST(0x80, 0x86, SS_RDEF, "IOEDC Error on Read") }, { SST(0x80, 0x87, SS_RDEF, "IOEDC Error on Write") }, { SST(0x80, 0x88, SS_RDEF, "Host Parity Check Failed") }, { SST(0x80, 0x89, SS_RDEF, "IOEDC error on read detected by formatter") }, { SST(0x80, 0x8A, SS_RDEF, "Host Parity Errors / Host FIFO Initialization Failed") }, { SST(0x80, 0x8B, SS_RDEF, "Host Parity Errors") }, { SST(0x80, 0x8C, SS_RDEF, "Host Parity Errors") }, { SST(0x80, 0x8D, SS_RDEF, "Host Parity Errors") }, { SST(0x81, 0x00, SS_RDEF, "LA Check Failed") }, { SST(0x82, 0x00, SS_RDEF, "Internal client detected insufficient buffer") }, { SST(0x84, 0x00, SS_RDEF, "Scheduled Diagnostic And Repair") }, }; static struct scsi_sense_quirk_entry sense_quirk_table[] = { { /* * XXX The Quantum Fireball ST and SE like to return 0x04 0x0b * when they really should return 0x04 0x02. */ {T_DIRECT, SIP_MEDIA_FIXED, "QUANTUM", "FIREBALL S*", "*"}, /*num_sense_keys*/0, nitems(quantum_fireball_entries), /*sense key entries*/NULL, quantum_fireball_entries }, { /* * This Sony MO drive likes to return 0x04, 0x00 when it * isn't spun up. */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "SONY", "SMO-*", "*"}, /*num_sense_keys*/0, nitems(sony_mo_entries), /*sense key entries*/NULL, sony_mo_entries }, { /* * HGST vendor-specific error codes */ {T_DIRECT, SIP_MEDIA_FIXED, "HGST", "*", "*"}, /*num_sense_keys*/0, nitems(hgst_entries), /*sense key entries*/NULL, hgst_entries }, { /* * SEAGATE vendor-specific error codes */ {T_DIRECT, SIP_MEDIA_FIXED, "SEAGATE", "*", "*"}, /*num_sense_keys*/0, nitems(seagate_entries), /*sense key entries*/NULL, seagate_entries } }; const u_int sense_quirk_table_size = nitems(sense_quirk_table); static struct asc_table_entry asc_table[] = { /* * From: http://www.t10.org/lists/asc-num.txt * Modifications by Jung-uk Kim (jkim@FreeBSD.org) */ /* * File: ASC-NUM.TXT * * SCSI ASC/ASCQ Assignments * Numeric Sorted Listing * as of 8/12/15 * * D - DIRECT ACCESS DEVICE (SBC-2) device column key * .T - SEQUENTIAL ACCESS DEVICE (SSC) ------------------- * . L - PRINTER DEVICE (SSC) blank = reserved * . P - PROCESSOR DEVICE (SPC) not blank = allowed * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) * . . R - CD DEVICE (MMC) * . . O - OPTICAL MEMORY DEVICE (SBC-2) * . . .M - MEDIA CHANGER DEVICE (SMC) * . . . A - STORAGE ARRAY DEVICE (SCC) * . . . E - ENCLOSURE SERVICES DEVICE (SES) * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) * . . . . .F - OBJECT-BASED STORAGE (OSD) * DTLPWROMAEBKVF * ASC ASCQ Action * Description */ /* DTLPWROMAEBKVF */ { SST(0x00, 0x00, SS_NOP, "No additional sense information") }, /* T */ { SST(0x00, 0x01, SS_RDEF, "Filemark detected") }, /* T */ { SST(0x00, 0x02, SS_RDEF, "End-of-partition/medium detected") }, /* T */ { SST(0x00, 0x03, SS_RDEF, "Setmark detected") }, /* T */ { SST(0x00, 0x04, SS_RDEF, "Beginning-of-partition/medium detected") }, /* TL */ { SST(0x00, 0x05, SS_RDEF, "End-of-data detected") }, /* DTLPWROMAEBKVF */ { SST(0x00, 0x06, SS_RDEF, "I/O process terminated") }, /* T */ { SST(0x00, 0x07, SS_RDEF, /* XXX TBD */ "Programmable early warning detected") }, /* R */ { SST(0x00, 0x11, SS_FATAL | EBUSY, "Audio play operation in progress") }, /* R */ { SST(0x00, 0x12, SS_NOP, "Audio play operation paused") }, /* R */ { SST(0x00, 0x13, SS_NOP, "Audio play operation successfully completed") }, /* R */ { SST(0x00, 0x14, SS_RDEF, "Audio play operation stopped due to error") }, /* R */ { SST(0x00, 0x15, SS_NOP, "No current audio status to return") }, /* DTLPWROMAEBKVF */ { SST(0x00, 0x16, SS_FATAL | EBUSY, "Operation in progress") }, /* DTL WROMAEBKVF */ { SST(0x00, 0x17, SS_RDEF, "Cleaning requested") }, /* T */ { SST(0x00, 0x18, SS_RDEF, /* XXX TBD */ "Erase operation in progress") }, /* T */ { SST(0x00, 0x19, SS_RDEF, /* XXX TBD */ "Locate operation in progress") }, /* T */ { SST(0x00, 0x1A, SS_RDEF, /* XXX TBD */ "Rewind operation in progress") }, /* T */ { SST(0x00, 0x1B, SS_RDEF, /* XXX TBD */ "Set capacity operation in progress") }, /* T */ { SST(0x00, 0x1C, SS_RDEF, /* XXX TBD */ "Verify operation in progress") }, /* DT B */ { SST(0x00, 0x1D, SS_NOP, "ATA pass through information available") }, /* DT R MAEBKV */ { SST(0x00, 0x1E, SS_RDEF, /* XXX TBD */ "Conflicting SA creation request") }, /* DT B */ { SST(0x00, 0x1F, SS_RDEF, /* XXX TBD */ "Logical unit transitioning to another power condition") }, /* DT P B */ { SST(0x00, 0x20, SS_NOP, "Extended copy information available") }, /* D */ { SST(0x00, 0x21, SS_RDEF, /* XXX TBD */ "Atomic command aborted due to ACA") }, /* D W O BK */ { SST(0x01, 0x00, SS_RDEF, "No index/sector signal") }, /* D WRO BK */ { SST(0x02, 0x00, SS_RDEF, "No seek complete") }, /* DTL W O BK */ { SST(0x03, 0x00, SS_RDEF, "Peripheral device write fault") }, /* T */ { SST(0x03, 0x01, SS_RDEF, "No write current") }, /* T */ { SST(0x03, 0x02, SS_RDEF, "Excessive write errors") }, /* DTLPWROMAEBKVF */ { SST(0x04, 0x00, SS_RDEF, "Logical unit not ready, cause not reportable") }, /* DTLPWROMAEBKVF */ { SST(0x04, 0x01, SS_WAIT | EBUSY, "Logical unit is in process of becoming ready") }, /* DTLPWROMAEBKVF */ { SST(0x04, 0x02, SS_START | SSQ_DECREMENT_COUNT | ENXIO, "Logical unit not ready, initializing command required") }, /* DTLPWROMAEBKVF */ { SST(0x04, 0x03, SS_FATAL | ENXIO, "Logical unit not ready, manual intervention required") }, /* DTL RO B */ { SST(0x04, 0x04, SS_FATAL | EBUSY, "Logical unit not ready, format in progress") }, /* DT W O A BK F */ { SST(0x04, 0x05, SS_FATAL | EBUSY, "Logical unit not ready, rebuild in progress") }, /* DT W O A BK */ { SST(0x04, 0x06, SS_FATAL | EBUSY, "Logical unit not ready, recalculation in progress") }, /* DTLPWROMAEBKVF */ { SST(0x04, 0x07, SS_FATAL | EBUSY, "Logical unit not ready, operation in progress") }, /* R */ { SST(0x04, 0x08, SS_FATAL | EBUSY, "Logical unit not ready, long write in progress") }, /* DTLPWROMAEBKVF */ { SST(0x04, 0x09, SS_FATAL | EBUSY, "Logical unit not ready, self-test in progress") }, /* DTLPWROMAEBKVF */ { SST(0x04, 0x0A, SS_WAIT | ENXIO, "Logical unit not accessible, asymmetric access state transition")}, /* DTLPWROMAEBKVF */ { SST(0x04, 0x0B, SS_FATAL | ENXIO, "Logical unit not accessible, target port in standby state") }, /* DTLPWROMAEBKVF */ { SST(0x04, 0x0C, SS_FATAL | ENXIO, "Logical unit not accessible, target port in unavailable state") }, /* F */ { SST(0x04, 0x0D, SS_RDEF, /* XXX TBD */ "Logical unit not ready, structure check required") }, /* DTL WR MAEBKVF */ { SST(0x04, 0x0E, SS_RDEF, /* XXX TBD */ "Logical unit not ready, security session in progress") }, /* DT WROM B */ { SST(0x04, 0x10, SS_FATAL | ENODEV, "Logical unit not ready, auxiliary memory not accessible") }, /* DT WRO AEB VF */ { SST(0x04, 0x11, SS_WAIT | ENXIO, "Logical unit not ready, notify (enable spinup) required") }, /* M V */ { SST(0x04, 0x12, SS_FATAL | ENXIO, "Logical unit not ready, offline") }, /* DT R MAEBKV */ { SST(0x04, 0x13, SS_WAIT | EBUSY, "Logical unit not ready, SA creation in progress") }, /* D B */ { SST(0x04, 0x14, SS_WAIT | ENOSPC, "Logical unit not ready, space allocation in progress") }, /* M */ { SST(0x04, 0x15, SS_FATAL | ENXIO, "Logical unit not ready, robotics disabled") }, /* M */ { SST(0x04, 0x16, SS_FATAL | ENXIO, "Logical unit not ready, configuration required") }, /* M */ { SST(0x04, 0x17, SS_FATAL | ENXIO, "Logical unit not ready, calibration required") }, /* M */ { SST(0x04, 0x18, SS_FATAL | ENXIO, "Logical unit not ready, a door is open") }, /* M */ { SST(0x04, 0x19, SS_FATAL | ENODEV, "Logical unit not ready, operating in sequential mode") }, /* DT B */ { SST(0x04, 0x1A, SS_WAIT | EBUSY, "Logical unit not ready, START/STOP UNIT command in progress") }, /* D B */ { SST(0x04, 0x1B, SS_WAIT | EBUSY, "Logical unit not ready, sanitize in progress") }, /* DT MAEB */ { SST(0x04, 0x1C, SS_START | SSQ_DECREMENT_COUNT | ENXIO, "Logical unit not ready, additional power use not yet granted") }, /* D */ { SST(0x04, 0x1D, SS_WAIT | EBUSY, "Logical unit not ready, configuration in progress") }, /* D */ { SST(0x04, 0x1E, SS_FATAL | ENXIO, "Logical unit not ready, microcode activation required") }, /* DTLPWROMAEBKVF */ { SST(0x04, 0x1F, SS_FATAL | ENXIO, "Logical unit not ready, microcode download required") }, /* DTLPWROMAEBKVF */ { SST(0x04, 0x20, SS_FATAL | ENXIO, "Logical unit not ready, logical unit reset required") }, /* DTLPWROMAEBKVF */ { SST(0x04, 0x21, SS_FATAL | ENXIO, "Logical unit not ready, hard reset required") }, /* DTLPWROMAEBKVF */ { SST(0x04, 0x22, SS_FATAL | ENXIO, "Logical unit not ready, power cycle required") }, /* D */ { SST(0x04, 0x23, SS_FATAL | ENXIO, "Logical unit not ready, affiliation required") }, /* D */ { SST(0x04, 0x24, SS_FATAL | EBUSY, "Depopulation in progress") }, /* DTL WROMAEBKVF */ { SST(0x05, 0x00, SS_RDEF, "Logical unit does not respond to selection") }, /* D WROM BK */ { SST(0x06, 0x00, SS_RDEF, "No reference position found") }, /* DTL WROM BK */ { SST(0x07, 0x00, SS_RDEF, "Multiple peripheral devices selected") }, /* DTL WROMAEBKVF */ { SST(0x08, 0x00, SS_RDEF, "Logical unit communication failure") }, /* DTL WROMAEBKVF */ { SST(0x08, 0x01, SS_RDEF, "Logical unit communication time-out") }, /* DTL WROMAEBKVF */ { SST(0x08, 0x02, SS_RDEF, "Logical unit communication parity error") }, /* DT ROM BK */ { SST(0x08, 0x03, SS_RDEF, "Logical unit communication CRC error (Ultra-DMA/32)") }, /* DTLPWRO K */ { SST(0x08, 0x04, SS_RDEF, /* XXX TBD */ "Unreachable copy target") }, /* DT WRO B */ { SST(0x09, 0x00, SS_RDEF, "Track following error") }, /* WRO K */ { SST(0x09, 0x01, SS_RDEF, "Tracking servo failure") }, /* WRO K */ { SST(0x09, 0x02, SS_RDEF, "Focus servo failure") }, /* WRO */ { SST(0x09, 0x03, SS_RDEF, "Spindle servo failure") }, /* DT WRO B */ { SST(0x09, 0x04, SS_RDEF, "Head select fault") }, /* DT RO B */ { SST(0x09, 0x05, SS_RDEF, "Vibration induced tracking error") }, /* DTLPWROMAEBKVF */ { SST(0x0A, 0x00, SS_FATAL | ENOSPC, "Error log overflow") }, /* DTLPWROMAEBKVF */ { SST(0x0B, 0x00, SS_NOP | SSQ_PRINT_SENSE, "Warning") }, /* DTLPWROMAEBKVF */ { SST(0x0B, 0x01, SS_NOP | SSQ_PRINT_SENSE, "Warning - specified temperature exceeded") }, /* DTLPWROMAEBKVF */ { SST(0x0B, 0x02, SS_NOP | SSQ_PRINT_SENSE, "Warning - enclosure degraded") }, /* DTLPWROMAEBKVF */ { SST(0x0B, 0x03, SS_NOP | SSQ_PRINT_SENSE, "Warning - background self-test failed") }, /* DTLPWRO AEBKVF */ { SST(0x0B, 0x04, SS_NOP | SSQ_PRINT_SENSE, "Warning - background pre-scan detected medium error") }, /* DTLPWRO AEBKVF */ { SST(0x0B, 0x05, SS_NOP | SSQ_PRINT_SENSE, "Warning - background medium scan detected medium error") }, /* DTLPWROMAEBKVF */ { SST(0x0B, 0x06, SS_NOP | SSQ_PRINT_SENSE, "Warning - non-volatile cache now volatile") }, /* DTLPWROMAEBKVF */ { SST(0x0B, 0x07, SS_NOP | SSQ_PRINT_SENSE, "Warning - degraded power to non-volatile cache") }, /* DTLPWROMAEBKVF */ { SST(0x0B, 0x08, SS_NOP | SSQ_PRINT_SENSE, "Warning - power loss expected") }, /* D */ { SST(0x0B, 0x09, SS_NOP | SSQ_PRINT_SENSE, "Warning - device statistics notification available") }, /* DTLPWROMAEBKVF */ { SST(0x0B, 0x0A, SS_NOP | SSQ_PRINT_SENSE, "Warning - High critical temperature limit exceeded") }, /* DTLPWROMAEBKVF */ { SST(0x0B, 0x0B, SS_NOP | SSQ_PRINT_SENSE, "Warning - Low critical temperature limit exceeded") }, /* DTLPWROMAEBKVF */ { SST(0x0B, 0x0C, SS_NOP | SSQ_PRINT_SENSE, "Warning - High operating temperature limit exceeded") }, /* DTLPWROMAEBKVF */ { SST(0x0B, 0x0D, SS_NOP | SSQ_PRINT_SENSE, "Warning - Low operating temperature limit exceeded") }, /* DTLPWROMAEBKVF */ { SST(0x0B, 0x0E, SS_NOP | SSQ_PRINT_SENSE, "Warning - High citical humidity limit exceeded") }, /* DTLPWROMAEBKVF */ { SST(0x0B, 0x0F, SS_NOP | SSQ_PRINT_SENSE, "Warning - Low citical humidity limit exceeded") }, /* DTLPWROMAEBKVF */ { SST(0x0B, 0x10, SS_NOP | SSQ_PRINT_SENSE, "Warning - High operating humidity limit exceeded") }, /* DTLPWROMAEBKVF */ { SST(0x0B, 0x11, SS_NOP | SSQ_PRINT_SENSE, "Warning - Low operating humidity limit exceeded") }, /* T R */ { SST(0x0C, 0x00, SS_RDEF, "Write error") }, /* K */ { SST(0x0C, 0x01, SS_NOP | SSQ_PRINT_SENSE, "Write error - recovered with auto reallocation") }, /* D W O BK */ { SST(0x0C, 0x02, SS_RDEF, "Write error - auto reallocation failed") }, /* D W O BK */ { SST(0x0C, 0x03, SS_RDEF, "Write error - recommend reassignment") }, /* DT W O B */ { SST(0x0C, 0x04, SS_RDEF, "Compression check miscompare error") }, /* DT W O B */ { SST(0x0C, 0x05, SS_RDEF, "Data expansion occurred during compression") }, /* DT W O B */ { SST(0x0C, 0x06, SS_RDEF, "Block not compressible") }, /* R */ { SST(0x0C, 0x07, SS_RDEF, "Write error - recovery needed") }, /* R */ { SST(0x0C, 0x08, SS_RDEF, "Write error - recovery failed") }, /* R */ { SST(0x0C, 0x09, SS_RDEF, "Write error - loss of streaming") }, /* R */ { SST(0x0C, 0x0A, SS_RDEF, "Write error - padding blocks added") }, /* DT WROM B */ { SST(0x0C, 0x0B, SS_RDEF, /* XXX TBD */ "Auxiliary memory write error") }, /* DTLPWRO AEBKVF */ { SST(0x0C, 0x0C, SS_RDEF, /* XXX TBD */ "Write error - unexpected unsolicited data") }, /* DTLPWRO AEBKVF */ { SST(0x0C, 0x0D, SS_RDEF, /* XXX TBD */ "Write error - not enough unsolicited data") }, /* DT W O BK */ { SST(0x0C, 0x0E, SS_RDEF, /* XXX TBD */ "Multiple write errors") }, /* R */ { SST(0x0C, 0x0F, SS_RDEF, /* XXX TBD */ "Defects in error window") }, /* D */ { SST(0x0C, 0x10, SS_RDEF, /* XXX TBD */ "Incomplete multiple atomic write operations") }, /* D */ { SST(0x0C, 0x11, SS_RDEF, /* XXX TBD */ "Write error - recovery scan needed") }, /* D */ { SST(0x0C, 0x12, SS_RDEF, /* XXX TBD */ "Write error - insufficient zone resources") }, /* DTLPWRO A K */ { SST(0x0D, 0x00, SS_RDEF, /* XXX TBD */ "Error detected by third party temporary initiator") }, /* DTLPWRO A K */ { SST(0x0D, 0x01, SS_RDEF, /* XXX TBD */ "Third party device failure") }, /* DTLPWRO A K */ { SST(0x0D, 0x02, SS_RDEF, /* XXX TBD */ "Copy target device not reachable") }, /* DTLPWRO A K */ { SST(0x0D, 0x03, SS_RDEF, /* XXX TBD */ "Incorrect copy target device type") }, /* DTLPWRO A K */ { SST(0x0D, 0x04, SS_RDEF, /* XXX TBD */ "Copy target device data underrun") }, /* DTLPWRO A K */ { SST(0x0D, 0x05, SS_RDEF, /* XXX TBD */ "Copy target device data overrun") }, /* DT PWROMAEBK F */ { SST(0x0E, 0x00, SS_RDEF, /* XXX TBD */ "Invalid information unit") }, /* DT PWROMAEBK F */ { SST(0x0E, 0x01, SS_RDEF, /* XXX TBD */ "Information unit too short") }, /* DT PWROMAEBK F */ { SST(0x0E, 0x02, SS_RDEF, /* XXX TBD */ "Information unit too long") }, /* DT P R MAEBK F */ { SST(0x0E, 0x03, SS_FATAL | EINVAL, "Invalid field in command information unit") }, /* D W O BK */ { SST(0x10, 0x00, SS_RDEF, "ID CRC or ECC error") }, /* DT W O */ { SST(0x10, 0x01, SS_RDEF, /* XXX TBD */ "Logical block guard check failed") }, /* DT W O */ { SST(0x10, 0x02, SS_RDEF, /* XXX TBD */ "Logical block application tag check failed") }, /* DT W O */ { SST(0x10, 0x03, SS_RDEF, /* XXX TBD */ "Logical block reference tag check failed") }, /* T */ { SST(0x10, 0x04, SS_RDEF, /* XXX TBD */ "Logical block protection error on recovered buffer data") }, /* T */ { SST(0x10, 0x05, SS_RDEF, /* XXX TBD */ "Logical block protection method error") }, /* DT WRO BK */ { SST(0x11, 0x00, SS_FATAL|EIO, "Unrecovered read error") }, /* DT WRO BK */ { SST(0x11, 0x01, SS_FATAL|EIO, "Read retries exhausted") }, /* DT WRO BK */ { SST(0x11, 0x02, SS_FATAL|EIO, "Error too long to correct") }, /* DT W O BK */ { SST(0x11, 0x03, SS_FATAL|EIO, "Multiple read errors") }, /* D W O BK */ { SST(0x11, 0x04, SS_FATAL|EIO, "Unrecovered read error - auto reallocate failed") }, /* WRO B */ { SST(0x11, 0x05, SS_FATAL|EIO, "L-EC uncorrectable error") }, /* WRO B */ { SST(0x11, 0x06, SS_FATAL|EIO, "CIRC unrecovered error") }, /* W O B */ { SST(0x11, 0x07, SS_RDEF, "Data re-synchronization error") }, /* T */ { SST(0x11, 0x08, SS_RDEF, "Incomplete block read") }, /* T */ { SST(0x11, 0x09, SS_RDEF, "No gap found") }, /* DT O BK */ { SST(0x11, 0x0A, SS_RDEF, "Miscorrected error") }, /* D W O BK */ { SST(0x11, 0x0B, SS_FATAL|EIO, "Unrecovered read error - recommend reassignment") }, /* D W O BK */ { SST(0x11, 0x0C, SS_FATAL|EIO, "Unrecovered read error - recommend rewrite the data") }, /* DT WRO B */ { SST(0x11, 0x0D, SS_RDEF, "De-compression CRC error") }, /* DT WRO B */ { SST(0x11, 0x0E, SS_RDEF, "Cannot decompress using declared algorithm") }, /* R */ { SST(0x11, 0x0F, SS_RDEF, "Error reading UPC/EAN number") }, /* R */ { SST(0x11, 0x10, SS_RDEF, "Error reading ISRC number") }, /* R */ { SST(0x11, 0x11, SS_RDEF, "Read error - loss of streaming") }, /* DT WROM B */ { SST(0x11, 0x12, SS_RDEF, /* XXX TBD */ "Auxiliary memory read error") }, /* DTLPWRO AEBKVF */ { SST(0x11, 0x13, SS_RDEF, /* XXX TBD */ "Read error - failed retransmission request") }, /* D */ { SST(0x11, 0x14, SS_RDEF, /* XXX TBD */ "Read error - LBA marked bad by application client") }, /* D */ { SST(0x11, 0x15, SS_FATAL | EIO, "Write after sanitize required") }, /* D W O BK */ { SST(0x12, 0x00, SS_RDEF, "Address mark not found for ID field") }, /* D W O BK */ { SST(0x13, 0x00, SS_RDEF, "Address mark not found for data field") }, /* DTL WRO BK */ { SST(0x14, 0x00, SS_RDEF, "Recorded entity not found") }, /* DT WRO BK */ { SST(0x14, 0x01, SS_RDEF, "Record not found") }, /* T */ { SST(0x14, 0x02, SS_RDEF, "Filemark or setmark not found") }, /* T */ { SST(0x14, 0x03, SS_RDEF, "End-of-data not found") }, /* T */ { SST(0x14, 0x04, SS_RDEF, "Block sequence error") }, /* DT W O BK */ { SST(0x14, 0x05, SS_RDEF, "Record not found - recommend reassignment") }, /* DT W O BK */ { SST(0x14, 0x06, SS_RDEF, "Record not found - data auto-reallocated") }, /* T */ { SST(0x14, 0x07, SS_RDEF, /* XXX TBD */ "Locate operation failure") }, /* DTL WROM BK */ { SST(0x15, 0x00, SS_RDEF, "Random positioning error") }, /* DTL WROM BK */ { SST(0x15, 0x01, SS_RDEF, "Mechanical positioning error") }, /* DT WRO BK */ { SST(0x15, 0x02, SS_RDEF, "Positioning error detected by read of medium") }, /* D W O BK */ { SST(0x16, 0x00, SS_RDEF, "Data synchronization mark error") }, /* D W O BK */ { SST(0x16, 0x01, SS_RDEF, "Data sync error - data rewritten") }, /* D W O BK */ { SST(0x16, 0x02, SS_RDEF, "Data sync error - recommend rewrite") }, /* D W O BK */ { SST(0x16, 0x03, SS_NOP | SSQ_PRINT_SENSE, "Data sync error - data auto-reallocated") }, /* D W O BK */ { SST(0x16, 0x04, SS_RDEF, "Data sync error - recommend reassignment") }, /* DT WRO BK */ { SST(0x17, 0x00, SS_NOP | SSQ_PRINT_SENSE, "Recovered data with no error correction applied") }, /* DT WRO BK */ { SST(0x17, 0x01, SS_NOP | SSQ_PRINT_SENSE, "Recovered data with retries") }, /* DT WRO BK */ { SST(0x17, 0x02, SS_NOP | SSQ_PRINT_SENSE, "Recovered data with positive head offset") }, /* DT WRO BK */ { SST(0x17, 0x03, SS_NOP | SSQ_PRINT_SENSE, "Recovered data with negative head offset") }, /* WRO B */ { SST(0x17, 0x04, SS_NOP | SSQ_PRINT_SENSE, "Recovered data with retries and/or CIRC applied") }, /* D WRO BK */ { SST(0x17, 0x05, SS_NOP | SSQ_PRINT_SENSE, "Recovered data using previous sector ID") }, /* D W O BK */ { SST(0x17, 0x06, SS_NOP | SSQ_PRINT_SENSE, "Recovered data without ECC - data auto-reallocated") }, /* D WRO BK */ { SST(0x17, 0x07, SS_NOP | SSQ_PRINT_SENSE, "Recovered data without ECC - recommend reassignment") }, /* D WRO BK */ { SST(0x17, 0x08, SS_NOP | SSQ_PRINT_SENSE, "Recovered data without ECC - recommend rewrite") }, /* D WRO BK */ { SST(0x17, 0x09, SS_NOP | SSQ_PRINT_SENSE, "Recovered data without ECC - data rewritten") }, /* DT WRO BK */ { SST(0x18, 0x00, SS_NOP | SSQ_PRINT_SENSE, "Recovered data with error correction applied") }, /* D WRO BK */ { SST(0x18, 0x01, SS_NOP | SSQ_PRINT_SENSE, "Recovered data with error corr. & retries applied") }, /* D WRO BK */ { SST(0x18, 0x02, SS_NOP | SSQ_PRINT_SENSE, "Recovered data - data auto-reallocated") }, /* R */ { SST(0x18, 0x03, SS_NOP | SSQ_PRINT_SENSE, "Recovered data with CIRC") }, /* R */ { SST(0x18, 0x04, SS_NOP | SSQ_PRINT_SENSE, "Recovered data with L-EC") }, /* D WRO BK */ { SST(0x18, 0x05, SS_NOP | SSQ_PRINT_SENSE, "Recovered data - recommend reassignment") }, /* D WRO BK */ { SST(0x18, 0x06, SS_NOP | SSQ_PRINT_SENSE, "Recovered data - recommend rewrite") }, /* D W O BK */ { SST(0x18, 0x07, SS_NOP | SSQ_PRINT_SENSE, "Recovered data with ECC - data rewritten") }, /* R */ { SST(0x18, 0x08, SS_RDEF, /* XXX TBD */ "Recovered data with linking") }, /* D O K */ { SST(0x19, 0x00, SS_RDEF, "Defect list error") }, /* D O K */ { SST(0x19, 0x01, SS_RDEF, "Defect list not available") }, /* D O K */ { SST(0x19, 0x02, SS_RDEF, "Defect list error in primary list") }, /* D O K */ { SST(0x19, 0x03, SS_RDEF, "Defect list error in grown list") }, /* DTLPWROMAEBKVF */ { SST(0x1A, 0x00, SS_RDEF, "Parameter list length error") }, /* DTLPWROMAEBKVF */ { SST(0x1B, 0x00, SS_RDEF, "Synchronous data transfer error") }, /* D O BK */ { SST(0x1C, 0x00, SS_RDEF, "Defect list not found") }, /* D O BK */ { SST(0x1C, 0x01, SS_RDEF, "Primary defect list not found") }, /* D O BK */ { SST(0x1C, 0x02, SS_RDEF, "Grown defect list not found") }, /* DT WRO BK */ { SST(0x1D, 0x00, SS_FATAL, "Miscompare during verify operation") }, /* D B */ { SST(0x1D, 0x01, SS_RDEF, /* XXX TBD */ "Miscomparable verify of unmapped LBA") }, /* D W O BK */ { SST(0x1E, 0x00, SS_NOP | SSQ_PRINT_SENSE, "Recovered ID with ECC correction") }, /* D O K */ { SST(0x1F, 0x00, SS_RDEF, "Partial defect list transfer") }, /* DTLPWROMAEBKVF */ { SST(0x20, 0x00, SS_FATAL | EINVAL, "Invalid command operation code") }, /* DT PWROMAEBK */ { SST(0x20, 0x01, SS_RDEF, /* XXX TBD */ "Access denied - initiator pending-enrolled") }, /* DT PWROMAEBK */ { SST(0x20, 0x02, SS_FATAL | EPERM, "Access denied - no access rights") }, /* DT PWROMAEBK */ { SST(0x20, 0x03, SS_RDEF, /* XXX TBD */ "Access denied - invalid mgmt ID key") }, /* T */ { SST(0x20, 0x04, SS_RDEF, /* XXX TBD */ "Illegal command while in write capable state") }, /* T */ { SST(0x20, 0x05, SS_RDEF, /* XXX TBD */ "Obsolete") }, /* T */ { SST(0x20, 0x06, SS_RDEF, /* XXX TBD */ "Illegal command while in explicit address mode") }, /* T */ { SST(0x20, 0x07, SS_RDEF, /* XXX TBD */ "Illegal command while in implicit address mode") }, /* DT PWROMAEBK */ { SST(0x20, 0x08, SS_RDEF, /* XXX TBD */ "Access denied - enrollment conflict") }, /* DT PWROMAEBK */ { SST(0x20, 0x09, SS_RDEF, /* XXX TBD */ "Access denied - invalid LU identifier") }, /* DT PWROMAEBK */ { SST(0x20, 0x0A, SS_RDEF, /* XXX TBD */ "Access denied - invalid proxy token") }, /* DT PWROMAEBK */ { SST(0x20, 0x0B, SS_RDEF, /* XXX TBD */ "Access denied - ACL LUN conflict") }, /* T */ { SST(0x20, 0x0C, SS_FATAL | EINVAL, "Illegal command when not in append-only mode") }, /* DT WRO BK */ { SST(0x21, 0x00, SS_FATAL | EINVAL, "Logical block address out of range") }, /* DT WROM BK */ { SST(0x21, 0x01, SS_FATAL | EINVAL, "Invalid element address") }, /* R */ { SST(0x21, 0x02, SS_RDEF, /* XXX TBD */ "Invalid address for write") }, /* R */ { SST(0x21, 0x03, SS_RDEF, /* XXX TBD */ "Invalid write crossing layer jump") }, /* D */ { SST(0x21, 0x04, SS_RDEF, /* XXX TBD */ "Unaligned write command") }, /* D */ { SST(0x21, 0x05, SS_RDEF, /* XXX TBD */ "Write boundary violation") }, /* D */ { SST(0x21, 0x06, SS_RDEF, /* XXX TBD */ "Attempt to read invalid data") }, /* D */ { SST(0x21, 0x07, SS_RDEF, /* XXX TBD */ "Read boundary violation") }, /* D */ { SST(0x22, 0x00, SS_FATAL | EINVAL, "Illegal function (use 20 00, 24 00, or 26 00)") }, /* DT P B */ { SST(0x23, 0x00, SS_FATAL | EINVAL, "Invalid token operation, cause not reportable") }, /* DT P B */ { SST(0x23, 0x01, SS_FATAL | EINVAL, "Invalid token operation, unsupported token type") }, /* DT P B */ { SST(0x23, 0x02, SS_FATAL | EINVAL, "Invalid token operation, remote token usage not supported") }, /* DT P B */ { SST(0x23, 0x03, SS_FATAL | EINVAL, "Invalid token operation, remote ROD token creation not supported") }, /* DT P B */ { SST(0x23, 0x04, SS_FATAL | EINVAL, "Invalid token operation, token unknown") }, /* DT P B */ { SST(0x23, 0x05, SS_FATAL | EINVAL, "Invalid token operation, token corrupt") }, /* DT P B */ { SST(0x23, 0x06, SS_FATAL | EINVAL, "Invalid token operation, token revoked") }, /* DT P B */ { SST(0x23, 0x07, SS_FATAL | EINVAL, "Invalid token operation, token expired") }, /* DT P B */ { SST(0x23, 0x08, SS_FATAL | EINVAL, "Invalid token operation, token cancelled") }, /* DT P B */ { SST(0x23, 0x09, SS_FATAL | EINVAL, "Invalid token operation, token deleted") }, /* DT P B */ { SST(0x23, 0x0A, SS_FATAL | EINVAL, "Invalid token operation, invalid token length") }, /* DTLPWROMAEBKVF */ { SST(0x24, 0x00, SS_FATAL | EINVAL, "Invalid field in CDB") }, /* DTLPWRO AEBKVF */ { SST(0x24, 0x01, SS_RDEF, /* XXX TBD */ "CDB decryption error") }, /* T */ { SST(0x24, 0x02, SS_RDEF, /* XXX TBD */ "Obsolete") }, /* T */ { SST(0x24, 0x03, SS_RDEF, /* XXX TBD */ "Obsolete") }, /* F */ { SST(0x24, 0x04, SS_RDEF, /* XXX TBD */ "Security audit value frozen") }, /* F */ { SST(0x24, 0x05, SS_RDEF, /* XXX TBD */ "Security working key frozen") }, /* F */ { SST(0x24, 0x06, SS_RDEF, /* XXX TBD */ "NONCE not unique") }, /* F */ { SST(0x24, 0x07, SS_RDEF, /* XXX TBD */ "NONCE timestamp out of range") }, /* DT R MAEBKV */ { SST(0x24, 0x08, SS_RDEF, /* XXX TBD */ "Invalid XCDB") }, /* DTLPWROMAEBKVF */ { SST(0x25, 0x00, SS_FATAL | ENXIO | SSQ_LOST, "Logical unit not supported") }, /* DTLPWROMAEBKVF */ { SST(0x26, 0x00, SS_FATAL | EINVAL, "Invalid field in parameter list") }, /* DTLPWROMAEBKVF */ { SST(0x26, 0x01, SS_FATAL | EINVAL, "Parameter not supported") }, /* DTLPWROMAEBKVF */ { SST(0x26, 0x02, SS_FATAL | EINVAL, "Parameter value invalid") }, /* DTLPWROMAE K */ { SST(0x26, 0x03, SS_FATAL | EINVAL, "Threshold parameters not supported") }, /* DTLPWROMAEBKVF */ { SST(0x26, 0x04, SS_FATAL | EINVAL, "Invalid release of persistent reservation") }, /* DTLPWRO A BK */ { SST(0x26, 0x05, SS_RDEF, /* XXX TBD */ "Data decryption error") }, /* DTLPWRO K */ { SST(0x26, 0x06, SS_FATAL | EINVAL, "Too many target descriptors") }, /* DTLPWRO K */ { SST(0x26, 0x07, SS_FATAL | EINVAL, "Unsupported target descriptor type code") }, /* DTLPWRO K */ { SST(0x26, 0x08, SS_FATAL | EINVAL, "Too many segment descriptors") }, /* DTLPWRO K */ { SST(0x26, 0x09, SS_FATAL | EINVAL, "Unsupported segment descriptor type code") }, /* DTLPWRO K */ { SST(0x26, 0x0A, SS_FATAL | EINVAL, "Unexpected inexact segment") }, /* DTLPWRO K */ { SST(0x26, 0x0B, SS_FATAL | EINVAL, "Inline data length exceeded") }, /* DTLPWRO K */ { SST(0x26, 0x0C, SS_FATAL | EINVAL, "Invalid operation for copy source or destination") }, /* DTLPWRO K */ { SST(0x26, 0x0D, SS_FATAL | EINVAL, "Copy segment granularity violation") }, /* DT PWROMAEBK */ { SST(0x26, 0x0E, SS_RDEF, /* XXX TBD */ "Invalid parameter while port is enabled") }, /* F */ { SST(0x26, 0x0F, SS_RDEF, /* XXX TBD */ "Invalid data-out buffer integrity check value") }, /* T */ { SST(0x26, 0x10, SS_RDEF, /* XXX TBD */ "Data decryption key fail limit reached") }, /* T */ { SST(0x26, 0x11, SS_RDEF, /* XXX TBD */ "Incomplete key-associated data set") }, /* T */ { SST(0x26, 0x12, SS_RDEF, /* XXX TBD */ "Vendor specific key reference not found") }, /* D */ { SST(0x26, 0x13, SS_RDEF, /* XXX TBD */ "Application tag mode page is invalid") }, /* DT WRO BK */ { SST(0x27, 0x00, SS_FATAL | EACCES, "Write protected") }, /* DT WRO BK */ { SST(0x27, 0x01, SS_FATAL | EACCES, "Hardware write protected") }, /* DT WRO BK */ { SST(0x27, 0x02, SS_FATAL | EACCES, "Logical unit software write protected") }, /* T R */ { SST(0x27, 0x03, SS_FATAL | EACCES, "Associated write protect") }, /* T R */ { SST(0x27, 0x04, SS_FATAL | EACCES, "Persistent write protect") }, /* T R */ { SST(0x27, 0x05, SS_FATAL | EACCES, "Permanent write protect") }, /* R F */ { SST(0x27, 0x06, SS_RDEF, /* XXX TBD */ "Conditional write protect") }, /* D B */ { SST(0x27, 0x07, SS_FATAL | ENOSPC, "Space allocation failed write protect") }, /* D */ { SST(0x27, 0x08, SS_FATAL | EACCES, "Zone is read only") }, /* DTLPWROMAEBKVF */ { SST(0x28, 0x00, SS_FATAL | ENXIO, "Not ready to ready change, medium may have changed") }, /* DT WROM B */ { SST(0x28, 0x01, SS_FATAL | ENXIO, "Import or export element accessed") }, /* R */ { SST(0x28, 0x02, SS_RDEF, /* XXX TBD */ "Format-layer may have changed") }, /* M */ { SST(0x28, 0x03, SS_RDEF, /* XXX TBD */ "Import/export element accessed, medium changed") }, /* * XXX JGibbs - All of these should use the same errno, but I don't * think ENXIO is the correct choice. Should we borrow from * the networking errnos? ECONNRESET anyone? */ /* DTLPWROMAEBKVF */ { SST(0x29, 0x00, SS_FATAL | ENXIO, "Power on, reset, or bus device reset occurred") }, /* DTLPWROMAEBKVF */ { SST(0x29, 0x01, SS_RDEF, "Power on occurred") }, /* DTLPWROMAEBKVF */ { SST(0x29, 0x02, SS_RDEF, "SCSI bus reset occurred") }, /* DTLPWROMAEBKVF */ { SST(0x29, 0x03, SS_RDEF, "Bus device reset function occurred") }, /* DTLPWROMAEBKVF */ { SST(0x29, 0x04, SS_RDEF, "Device internal reset") }, /* DTLPWROMAEBKVF */ { SST(0x29, 0x05, SS_RDEF, "Transceiver mode changed to single-ended") }, /* DTLPWROMAEBKVF */ { SST(0x29, 0x06, SS_RDEF, "Transceiver mode changed to LVD") }, /* DTLPWROMAEBKVF */ { SST(0x29, 0x07, SS_RDEF, /* XXX TBD */ "I_T nexus loss occurred") }, /* DTL WROMAEBKVF */ { SST(0x2A, 0x00, SS_RDEF, "Parameters changed") }, /* DTL WROMAEBKVF */ { SST(0x2A, 0x01, SS_RDEF, "Mode parameters changed") }, /* DTL WROMAE K */ { SST(0x2A, 0x02, SS_RDEF, "Log parameters changed") }, /* DTLPWROMAE K */ { SST(0x2A, 0x03, SS_RDEF, "Reservations preempted") }, /* DTLPWROMAE */ { SST(0x2A, 0x04, SS_RDEF, /* XXX TBD */ "Reservations released") }, /* DTLPWROMAE */ { SST(0x2A, 0x05, SS_RDEF, /* XXX TBD */ "Registrations preempted") }, /* DTLPWROMAEBKVF */ { SST(0x2A, 0x06, SS_RDEF, /* XXX TBD */ "Asymmetric access state changed") }, /* DTLPWROMAEBKVF */ { SST(0x2A, 0x07, SS_RDEF, /* XXX TBD */ "Implicit asymmetric access state transition failed") }, /* DT WROMAEBKVF */ { SST(0x2A, 0x08, SS_RDEF, /* XXX TBD */ "Priority changed") }, /* D */ { SST(0x2A, 0x09, SS_RDEF, /* XXX TBD */ "Capacity data has changed") }, /* DT */ { SST(0x2A, 0x0A, SS_RDEF, /* XXX TBD */ "Error history I_T nexus cleared") }, /* DT */ { SST(0x2A, 0x0B, SS_RDEF, /* XXX TBD */ "Error history snapshot released") }, /* F */ { SST(0x2A, 0x0C, SS_RDEF, /* XXX TBD */ "Error recovery attributes have changed") }, /* T */ { SST(0x2A, 0x0D, SS_RDEF, /* XXX TBD */ "Data encryption capabilities changed") }, /* DT M E V */ { SST(0x2A, 0x10, SS_RDEF, /* XXX TBD */ "Timestamp changed") }, /* T */ { SST(0x2A, 0x11, SS_RDEF, /* XXX TBD */ "Data encryption parameters changed by another I_T nexus") }, /* T */ { SST(0x2A, 0x12, SS_RDEF, /* XXX TBD */ "Data encryption parameters changed by vendor specific event") }, /* T */ { SST(0x2A, 0x13, SS_RDEF, /* XXX TBD */ "Data encryption key instance counter has changed") }, /* DT R MAEBKV */ { SST(0x2A, 0x14, SS_RDEF, /* XXX TBD */ "SA creation capabilities data has changed") }, /* T M V */ { SST(0x2A, 0x15, SS_RDEF, /* XXX TBD */ "Medium removal prevention preempted") }, /* DTLPWRO K */ { SST(0x2B, 0x00, SS_RDEF, "Copy cannot execute since host cannot disconnect") }, /* DTLPWROMAEBKVF */ { SST(0x2C, 0x00, SS_RDEF, "Command sequence error") }, /* */ { SST(0x2C, 0x01, SS_RDEF, "Too many windows specified") }, /* */ { SST(0x2C, 0x02, SS_RDEF, "Invalid combination of windows specified") }, /* R */ { SST(0x2C, 0x03, SS_RDEF, "Current program area is not empty") }, /* R */ { SST(0x2C, 0x04, SS_RDEF, "Current program area is empty") }, /* B */ { SST(0x2C, 0x05, SS_RDEF, /* XXX TBD */ "Illegal power condition request") }, /* R */ { SST(0x2C, 0x06, SS_RDEF, /* XXX TBD */ "Persistent prevent conflict") }, /* DTLPWROMAEBKVF */ { SST(0x2C, 0x07, SS_RDEF, /* XXX TBD */ "Previous busy status") }, /* DTLPWROMAEBKVF */ { SST(0x2C, 0x08, SS_RDEF, /* XXX TBD */ "Previous task set full status") }, /* DTLPWROM EBKVF */ { SST(0x2C, 0x09, SS_RDEF, /* XXX TBD */ "Previous reservation conflict status") }, /* F */ { SST(0x2C, 0x0A, SS_RDEF, /* XXX TBD */ "Partition or collection contains user objects") }, /* T */ { SST(0x2C, 0x0B, SS_RDEF, /* XXX TBD */ "Not reserved") }, /* D */ { SST(0x2C, 0x0C, SS_RDEF, /* XXX TBD */ "ORWRITE generation does not match") }, /* D */ { SST(0x2C, 0x0D, SS_RDEF, /* XXX TBD */ "Reset write pointer not allowed") }, /* D */ { SST(0x2C, 0x0E, SS_RDEF, /* XXX TBD */ "Zone is offline") }, /* D */ { SST(0x2C, 0x0F, SS_RDEF, /* XXX TBD */ "Stream not open") }, /* D */ { SST(0x2C, 0x10, SS_RDEF, /* XXX TBD */ "Unwritten data in zone") }, /* T */ { SST(0x2D, 0x00, SS_RDEF, "Overwrite error on update in place") }, /* R */ { SST(0x2E, 0x00, SS_RDEF, /* XXX TBD */ "Insufficient time for operation") }, /* D */ { SST(0x2E, 0x01, SS_RDEF, /* XXX TBD */ "Command timeout before processing") }, /* D */ { SST(0x2E, 0x02, SS_RDEF, /* XXX TBD */ "Command timeout during processing") }, /* D */ { SST(0x2E, 0x03, SS_RDEF, /* XXX TBD */ "Command timeout during processing due to error recovery") }, /* DTLPWROMAEBKVF */ { SST(0x2F, 0x00, SS_RDEF, "Commands cleared by another initiator") }, /* D */ { SST(0x2F, 0x01, SS_RDEF, /* XXX TBD */ "Commands cleared by power loss notification") }, /* DTLPWROMAEBKVF */ { SST(0x2F, 0x02, SS_RDEF, /* XXX TBD */ "Commands cleared by device server") }, /* DTLPWROMAEBKVF */ { SST(0x2F, 0x03, SS_RDEF, /* XXX TBD */ "Some commands cleared by queuing layer event") }, /* DT WROM BK */ { SST(0x30, 0x00, SS_RDEF, "Incompatible medium installed") }, /* DT WRO BK */ { SST(0x30, 0x01, SS_RDEF, "Cannot read medium - unknown format") }, /* DT WRO BK */ { SST(0x30, 0x02, SS_RDEF, "Cannot read medium - incompatible format") }, /* DT R K */ { SST(0x30, 0x03, SS_RDEF, "Cleaning cartridge installed") }, /* DT WRO BK */ { SST(0x30, 0x04, SS_RDEF, "Cannot write medium - unknown format") }, /* DT WRO BK */ { SST(0x30, 0x05, SS_RDEF, "Cannot write medium - incompatible format") }, /* DT WRO B */ { SST(0x30, 0x06, SS_RDEF, "Cannot format medium - incompatible medium") }, /* DTL WROMAEBKVF */ { SST(0x30, 0x07, SS_RDEF, "Cleaning failure") }, /* R */ { SST(0x30, 0x08, SS_RDEF, "Cannot write - application code mismatch") }, /* R */ { SST(0x30, 0x09, SS_RDEF, "Current session not fixated for append") }, /* DT WRO AEBK */ { SST(0x30, 0x0A, SS_RDEF, /* XXX TBD */ "Cleaning request rejected") }, /* T */ { SST(0x30, 0x0C, SS_RDEF, /* XXX TBD */ "WORM medium - overwrite attempted") }, /* T */ { SST(0x30, 0x0D, SS_RDEF, /* XXX TBD */ "WORM medium - integrity check") }, /* R */ { SST(0x30, 0x10, SS_RDEF, /* XXX TBD */ "Medium not formatted") }, /* M */ { SST(0x30, 0x11, SS_RDEF, /* XXX TBD */ "Incompatible volume type") }, /* M */ { SST(0x30, 0x12, SS_RDEF, /* XXX TBD */ "Incompatible volume qualifier") }, /* M */ { SST(0x30, 0x13, SS_RDEF, /* XXX TBD */ "Cleaning volume expired") }, /* DT WRO BK */ { SST(0x31, 0x00, SS_FATAL | ENXIO, "Medium format corrupted") }, /* D L RO B */ { SST(0x31, 0x01, SS_RDEF, "Format command failed") }, /* R */ { SST(0x31, 0x02, SS_RDEF, /* XXX TBD */ "Zoned formatting failed due to spare linking") }, /* D B */ { SST(0x31, 0x03, SS_FATAL | EIO, "SANITIZE command failed") }, /* D W O BK */ { SST(0x32, 0x00, SS_RDEF, "No defect spare location available") }, /* D W O BK */ { SST(0x32, 0x01, SS_RDEF, "Defect list update failure") }, /* T */ { SST(0x33, 0x00, SS_RDEF, "Tape length error") }, /* DTLPWROMAEBKVF */ { SST(0x34, 0x00, SS_RDEF, "Enclosure failure") }, /* DTLPWROMAEBKVF */ { SST(0x35, 0x00, SS_RDEF, "Enclosure services failure") }, /* DTLPWROMAEBKVF */ { SST(0x35, 0x01, SS_RDEF, "Unsupported enclosure function") }, /* DTLPWROMAEBKVF */ { SST(0x35, 0x02, SS_RDEF, "Enclosure services unavailable") }, /* DTLPWROMAEBKVF */ { SST(0x35, 0x03, SS_RDEF, "Enclosure services transfer failure") }, /* DTLPWROMAEBKVF */ { SST(0x35, 0x04, SS_RDEF, "Enclosure services transfer refused") }, /* DTL WROMAEBKVF */ { SST(0x35, 0x05, SS_RDEF, /* XXX TBD */ "Enclosure services checksum error") }, /* L */ { SST(0x36, 0x00, SS_RDEF, "Ribbon, ink, or toner failure") }, /* DTL WROMAEBKVF */ { SST(0x37, 0x00, SS_RDEF, "Rounded parameter") }, /* B */ { SST(0x38, 0x00, SS_RDEF, /* XXX TBD */ "Event status notification") }, /* B */ { SST(0x38, 0x02, SS_RDEF, /* XXX TBD */ "ESN - power management class event") }, /* B */ { SST(0x38, 0x04, SS_RDEF, /* XXX TBD */ "ESN - media class event") }, /* B */ { SST(0x38, 0x06, SS_RDEF, /* XXX TBD */ "ESN - device busy class event") }, /* D */ { SST(0x38, 0x07, SS_RDEF, /* XXX TBD */ "Thin provisioning soft threshold reached") }, /* DTL WROMAE K */ { SST(0x39, 0x00, SS_RDEF, "Saving parameters not supported") }, /* DTL WROM BK */ { SST(0x3A, 0x00, SS_FATAL | ENXIO, "Medium not present") }, /* DT WROM BK */ { SST(0x3A, 0x01, SS_FATAL | ENXIO, "Medium not present - tray closed") }, /* DT WROM BK */ { SST(0x3A, 0x02, SS_FATAL | ENXIO, "Medium not present - tray open") }, /* DT WROM B */ { SST(0x3A, 0x03, SS_RDEF, /* XXX TBD */ "Medium not present - loadable") }, /* DT WRO B */ { SST(0x3A, 0x04, SS_RDEF, /* XXX TBD */ "Medium not present - medium auxiliary memory accessible") }, /* TL */ { SST(0x3B, 0x00, SS_RDEF, "Sequential positioning error") }, /* T */ { SST(0x3B, 0x01, SS_RDEF, "Tape position error at beginning-of-medium") }, /* T */ { SST(0x3B, 0x02, SS_RDEF, "Tape position error at end-of-medium") }, /* L */ { SST(0x3B, 0x03, SS_RDEF, "Tape or electronic vertical forms unit not ready") }, /* L */ { SST(0x3B, 0x04, SS_RDEF, "Slew failure") }, /* L */ { SST(0x3B, 0x05, SS_RDEF, "Paper jam") }, /* L */ { SST(0x3B, 0x06, SS_RDEF, "Failed to sense top-of-form") }, /* L */ { SST(0x3B, 0x07, SS_RDEF, "Failed to sense bottom-of-form") }, /* T */ { SST(0x3B, 0x08, SS_RDEF, "Reposition error") }, /* */ { SST(0x3B, 0x09, SS_RDEF, "Read past end of medium") }, /* */ { SST(0x3B, 0x0A, SS_RDEF, "Read past beginning of medium") }, /* */ { SST(0x3B, 0x0B, SS_RDEF, "Position past end of medium") }, /* T */ { SST(0x3B, 0x0C, SS_RDEF, "Position past beginning of medium") }, /* DT WROM BK */ { SST(0x3B, 0x0D, SS_FATAL | ENOSPC, "Medium destination element full") }, /* DT WROM BK */ { SST(0x3B, 0x0E, SS_RDEF, "Medium source element empty") }, /* R */ { SST(0x3B, 0x0F, SS_RDEF, "End of medium reached") }, /* DT WROM BK */ { SST(0x3B, 0x11, SS_RDEF, "Medium magazine not accessible") }, /* DT WROM BK */ { SST(0x3B, 0x12, SS_RDEF, "Medium magazine removed") }, /* DT WROM BK */ { SST(0x3B, 0x13, SS_RDEF, "Medium magazine inserted") }, /* DT WROM BK */ { SST(0x3B, 0x14, SS_RDEF, "Medium magazine locked") }, /* DT WROM BK */ { SST(0x3B, 0x15, SS_RDEF, "Medium magazine unlocked") }, /* R */ { SST(0x3B, 0x16, SS_RDEF, /* XXX TBD */ "Mechanical positioning or changer error") }, /* F */ { SST(0x3B, 0x17, SS_RDEF, /* XXX TBD */ "Read past end of user object") }, /* M */ { SST(0x3B, 0x18, SS_RDEF, /* XXX TBD */ "Element disabled") }, /* M */ { SST(0x3B, 0x19, SS_RDEF, /* XXX TBD */ "Element enabled") }, /* M */ { SST(0x3B, 0x1A, SS_RDEF, /* XXX TBD */ "Data transfer device removed") }, /* M */ { SST(0x3B, 0x1B, SS_RDEF, /* XXX TBD */ "Data transfer device inserted") }, /* T */ { SST(0x3B, 0x1C, SS_RDEF, /* XXX TBD */ "Too many logical objects on partition to support operation") }, /* DTLPWROMAE K */ { SST(0x3D, 0x00, SS_RDEF, "Invalid bits in IDENTIFY message") }, /* DTLPWROMAEBKVF */ { SST(0x3E, 0x00, SS_RDEF, "Logical unit has not self-configured yet") }, /* DTLPWROMAEBKVF */ { SST(0x3E, 0x01, SS_RDEF, "Logical unit failure") }, /* DTLPWROMAEBKVF */ { SST(0x3E, 0x02, SS_RDEF, "Timeout on logical unit") }, /* DTLPWROMAEBKVF */ { SST(0x3E, 0x03, SS_RDEF, /* XXX TBD */ "Logical unit failed self-test") }, /* DTLPWROMAEBKVF */ { SST(0x3E, 0x04, SS_RDEF, /* XXX TBD */ "Logical unit unable to update self-test log") }, /* DTLPWROMAEBKVF */ { SST(0x3F, 0x00, SS_RDEF, "Target operating conditions have changed") }, /* DTLPWROMAEBKVF */ { SST(0x3F, 0x01, SS_RDEF, "Microcode has been changed") }, /* DTLPWROM BK */ { SST(0x3F, 0x02, SS_RDEF, "Changed operating definition") }, /* DTLPWROMAEBKVF */ { SST(0x3F, 0x03, SS_RDEF, "INQUIRY data has changed") }, /* DT WROMAEBK */ { SST(0x3F, 0x04, SS_RDEF, "Component device attached") }, /* DT WROMAEBK */ { SST(0x3F, 0x05, SS_RDEF, "Device identifier changed") }, /* DT WROMAEB */ { SST(0x3F, 0x06, SS_RDEF, "Redundancy group created or modified") }, /* DT WROMAEB */ { SST(0x3F, 0x07, SS_RDEF, "Redundancy group deleted") }, /* DT WROMAEB */ { SST(0x3F, 0x08, SS_RDEF, "Spare created or modified") }, /* DT WROMAEB */ { SST(0x3F, 0x09, SS_RDEF, "Spare deleted") }, /* DT WROMAEBK */ { SST(0x3F, 0x0A, SS_RDEF, "Volume set created or modified") }, /* DT WROMAEBK */ { SST(0x3F, 0x0B, SS_RDEF, "Volume set deleted") }, /* DT WROMAEBK */ { SST(0x3F, 0x0C, SS_RDEF, "Volume set deassigned") }, /* DT WROMAEBK */ { SST(0x3F, 0x0D, SS_RDEF, "Volume set reassigned") }, /* DTLPWROMAE */ { SST(0x3F, 0x0E, SS_RDEF | SSQ_RESCAN , "Reported LUNs data has changed") }, /* DTLPWROMAEBKVF */ { SST(0x3F, 0x0F, SS_RDEF, /* XXX TBD */ "Echo buffer overwritten") }, /* DT WROM B */ { SST(0x3F, 0x10, SS_RDEF, /* XXX TBD */ "Medium loadable") }, /* DT WROM B */ { SST(0x3F, 0x11, SS_RDEF, /* XXX TBD */ "Medium auxiliary memory accessible") }, /* DTLPWR MAEBK F */ { SST(0x3F, 0x12, SS_RDEF, /* XXX TBD */ "iSCSI IP address added") }, /* DTLPWR MAEBK F */ { SST(0x3F, 0x13, SS_RDEF, /* XXX TBD */ "iSCSI IP address removed") }, /* DTLPWR MAEBK F */ { SST(0x3F, 0x14, SS_RDEF, /* XXX TBD */ "iSCSI IP address changed") }, /* DTLPWR MAEBK */ { SST(0x3F, 0x15, SS_RDEF, /* XXX TBD */ "Inspect referrals sense descriptors") }, /* DTLPWROMAEBKVF */ { SST(0x3F, 0x16, SS_RDEF, /* XXX TBD */ "Microcode has been changed without reset") }, /* D */ { SST(0x3F, 0x17, SS_RDEF, /* XXX TBD */ "Zone transition to full") }, /* D */ { SST(0x40, 0x00, SS_RDEF, "RAM failure") }, /* deprecated - use 40 NN instead */ /* DTLPWROMAEBKVF */ { SST(0x40, 0x80, SS_RDEF, "Diagnostic failure: ASCQ = Component ID") }, /* DTLPWROMAEBKVF */ { SST(0x40, 0xFF, SS_RDEF | SSQ_RANGE, NULL) }, /* Range 0x80->0xFF */ /* D */ { SST(0x41, 0x00, SS_RDEF, "Data path failure") }, /* deprecated - use 40 NN instead */ /* D */ { SST(0x42, 0x00, SS_RDEF, "Power-on or self-test failure") }, /* deprecated - use 40 NN instead */ /* DTLPWROMAEBKVF */ { SST(0x43, 0x00, SS_RDEF, "Message error") }, /* DTLPWROMAEBKVF */ { SST(0x44, 0x00, SS_FATAL | EIO, "Internal target failure") }, /* DT P MAEBKVF */ { SST(0x44, 0x01, SS_RDEF, /* XXX TBD */ "Persistent reservation information lost") }, /* DT B */ { SST(0x44, 0x71, SS_RDEF, /* XXX TBD */ "ATA device failed set features") }, /* DTLPWROMAEBKVF */ { SST(0x45, 0x00, SS_RDEF, "Select or reselect failure") }, /* DTLPWROM BK */ { SST(0x46, 0x00, SS_RDEF, "Unsuccessful soft reset") }, /* DTLPWROMAEBKVF */ { SST(0x47, 0x00, SS_RDEF, "SCSI parity error") }, /* DTLPWROMAEBKVF */ { SST(0x47, 0x01, SS_RDEF, /* XXX TBD */ "Data phase CRC error detected") }, /* DTLPWROMAEBKVF */ { SST(0x47, 0x02, SS_RDEF, /* XXX TBD */ "SCSI parity error detected during ST data phase") }, /* DTLPWROMAEBKVF */ { SST(0x47, 0x03, SS_RDEF, /* XXX TBD */ "Information unit iuCRC error detected") }, /* DTLPWROMAEBKVF */ { SST(0x47, 0x04, SS_RDEF, /* XXX TBD */ "Asynchronous information protection error detected") }, /* DTLPWROMAEBKVF */ { SST(0x47, 0x05, SS_RDEF, /* XXX TBD */ "Protocol service CRC error") }, /* DT MAEBKVF */ { SST(0x47, 0x06, SS_RDEF, /* XXX TBD */ "PHY test function in progress") }, /* DT PWROMAEBK */ { SST(0x47, 0x7F, SS_RDEF, /* XXX TBD */ "Some commands cleared by iSCSI protocol event") }, /* DTLPWROMAEBKVF */ { SST(0x48, 0x00, SS_RDEF, "Initiator detected error message received") }, /* DTLPWROMAEBKVF */ { SST(0x49, 0x00, SS_RDEF, "Invalid message error") }, /* DTLPWROMAEBKVF */ { SST(0x4A, 0x00, SS_RDEF, "Command phase error") }, /* DTLPWROMAEBKVF */ { SST(0x4B, 0x00, SS_RDEF, "Data phase error") }, /* DT PWROMAEBK */ { SST(0x4B, 0x01, SS_RDEF, /* XXX TBD */ "Invalid target port transfer tag received") }, /* DT PWROMAEBK */ { SST(0x4B, 0x02, SS_RDEF, /* XXX TBD */ "Too much write data") }, /* DT PWROMAEBK */ { SST(0x4B, 0x03, SS_RDEF, /* XXX TBD */ "ACK/NAK timeout") }, /* DT PWROMAEBK */ { SST(0x4B, 0x04, SS_RDEF, /* XXX TBD */ "NAK received") }, /* DT PWROMAEBK */ { SST(0x4B, 0x05, SS_RDEF, /* XXX TBD */ "Data offset error") }, /* DT PWROMAEBK */ { SST(0x4B, 0x06, SS_RDEF, /* XXX TBD */ "Initiator response timeout") }, /* DT PWROMAEBK F */ { SST(0x4B, 0x07, SS_RDEF, /* XXX TBD */ "Connection lost") }, /* DT PWROMAEBK F */ { SST(0x4B, 0x08, SS_RDEF, /* XXX TBD */ "Data-in buffer overflow - data buffer size") }, /* DT PWROMAEBK F */ { SST(0x4B, 0x09, SS_RDEF, /* XXX TBD */ "Data-in buffer overflow - data buffer descriptor area") }, /* DT PWROMAEBK F */ { SST(0x4B, 0x0A, SS_RDEF, /* XXX TBD */ "Data-in buffer error") }, /* DT PWROMAEBK F */ { SST(0x4B, 0x0B, SS_RDEF, /* XXX TBD */ "Data-out buffer overflow - data buffer size") }, /* DT PWROMAEBK F */ { SST(0x4B, 0x0C, SS_RDEF, /* XXX TBD */ "Data-out buffer overflow - data buffer descriptor area") }, /* DT PWROMAEBK F */ { SST(0x4B, 0x0D, SS_RDEF, /* XXX TBD */ "Data-out buffer error") }, /* DT PWROMAEBK F */ { SST(0x4B, 0x0E, SS_RDEF, /* XXX TBD */ "PCIe fabric error") }, /* DT PWROMAEBK F */ { SST(0x4B, 0x0F, SS_RDEF, /* XXX TBD */ "PCIe completion timeout") }, /* DT PWROMAEBK F */ { SST(0x4B, 0x10, SS_RDEF, /* XXX TBD */ "PCIe completer abort") }, /* DT PWROMAEBK F */ { SST(0x4B, 0x11, SS_RDEF, /* XXX TBD */ "PCIe poisoned TLP received") }, /* DT PWROMAEBK F */ { SST(0x4B, 0x12, SS_RDEF, /* XXX TBD */ "PCIe ECRC check failed") }, /* DT PWROMAEBK F */ { SST(0x4B, 0x13, SS_RDEF, /* XXX TBD */ "PCIe unsupported request") }, /* DT PWROMAEBK F */ { SST(0x4B, 0x14, SS_RDEF, /* XXX TBD */ "PCIe ACS violation") }, /* DT PWROMAEBK F */ { SST(0x4B, 0x15, SS_RDEF, /* XXX TBD */ "PCIe TLP prefix blocket") }, /* DTLPWROMAEBKVF */ { SST(0x4C, 0x00, SS_RDEF, "Logical unit failed self-configuration") }, /* DTLPWROMAEBKVF */ { SST(0x4D, 0x00, SS_RDEF, "Tagged overlapped commands: ASCQ = Queue tag ID") }, /* DTLPWROMAEBKVF */ { SST(0x4D, 0xFF, SS_RDEF | SSQ_RANGE, NULL) }, /* Range 0x00->0xFF */ /* DTLPWROMAEBKVF */ { SST(0x4E, 0x00, SS_RDEF, "Overlapped commands attempted") }, /* T */ { SST(0x50, 0x00, SS_RDEF, "Write append error") }, /* T */ { SST(0x50, 0x01, SS_RDEF, "Write append position error") }, /* T */ { SST(0x50, 0x02, SS_RDEF, "Position error related to timing") }, /* T RO */ { SST(0x51, 0x00, SS_RDEF, "Erase failure") }, /* R */ { SST(0x51, 0x01, SS_RDEF, /* XXX TBD */ "Erase failure - incomplete erase operation detected") }, /* T */ { SST(0x52, 0x00, SS_RDEF, "Cartridge fault") }, /* DTL WROM BK */ { SST(0x53, 0x00, SS_RDEF, "Media load or eject failed") }, /* T */ { SST(0x53, 0x01, SS_RDEF, "Unload tape failure") }, /* DT WROM BK */ { SST(0x53, 0x02, SS_RDEF, "Medium removal prevented") }, /* M */ { SST(0x53, 0x03, SS_RDEF, /* XXX TBD */ "Medium removal prevented by data transfer element") }, /* T */ { SST(0x53, 0x04, SS_RDEF, /* XXX TBD */ "Medium thread or unthread failure") }, /* M */ { SST(0x53, 0x05, SS_RDEF, /* XXX TBD */ "Volume identifier invalid") }, /* T */ { SST(0x53, 0x06, SS_RDEF, /* XXX TBD */ "Volume identifier missing") }, /* M */ { SST(0x53, 0x07, SS_RDEF, /* XXX TBD */ "Duplicate volume identifier") }, /* M */ { SST(0x53, 0x08, SS_RDEF, /* XXX TBD */ "Element status unknown") }, /* M */ { SST(0x53, 0x09, SS_RDEF, /* XXX TBD */ "Data transfer device error - load failed") }, /* M */ { SST(0x53, 0x0A, SS_RDEF, /* XXX TBD */ "Data transfer device error - unload failed") }, /* M */ { SST(0x53, 0x0B, SS_RDEF, /* XXX TBD */ "Data transfer device error - unload missing") }, /* M */ { SST(0x53, 0x0C, SS_RDEF, /* XXX TBD */ "Data transfer device error - eject failed") }, /* M */ { SST(0x53, 0x0D, SS_RDEF, /* XXX TBD */ "Data transfer device error - library communication failed") }, /* P */ { SST(0x54, 0x00, SS_RDEF, "SCSI to host system interface failure") }, /* P */ { SST(0x55, 0x00, SS_RDEF, "System resource failure") }, /* D O BK */ { SST(0x55, 0x01, SS_FATAL | ENOSPC, "System buffer full") }, /* DTLPWROMAE K */ { SST(0x55, 0x02, SS_RDEF, /* XXX TBD */ "Insufficient reservation resources") }, /* DTLPWROMAE K */ { SST(0x55, 0x03, SS_RDEF, /* XXX TBD */ "Insufficient resources") }, /* DTLPWROMAE K */ { SST(0x55, 0x04, SS_RDEF, /* XXX TBD */ "Insufficient registration resources") }, /* DT PWROMAEBK */ { SST(0x55, 0x05, SS_RDEF, /* XXX TBD */ "Insufficient access control resources") }, /* DT WROM B */ { SST(0x55, 0x06, SS_RDEF, /* XXX TBD */ "Auxiliary memory out of space") }, /* F */ { SST(0x55, 0x07, SS_RDEF, /* XXX TBD */ "Quota error") }, /* T */ { SST(0x55, 0x08, SS_RDEF, /* XXX TBD */ "Maximum number of supplemental decryption keys exceeded") }, /* M */ { SST(0x55, 0x09, SS_RDEF, /* XXX TBD */ "Medium auxiliary memory not accessible") }, /* M */ { SST(0x55, 0x0A, SS_RDEF, /* XXX TBD */ "Data currently unavailable") }, /* DTLPWROMAEBKVF */ { SST(0x55, 0x0B, SS_RDEF, /* XXX TBD */ "Insufficient power for operation") }, /* DT P B */ { SST(0x55, 0x0C, SS_RDEF, /* XXX TBD */ "Insufficient resources to create ROD") }, /* DT P B */ { SST(0x55, 0x0D, SS_RDEF, /* XXX TBD */ "Insufficient resources to create ROD token") }, /* D */ { SST(0x55, 0x0E, SS_RDEF, /* XXX TBD */ "Insufficient zone resources") }, /* D */ { SST(0x55, 0x0F, SS_RDEF, /* XXX TBD */ "Insufficient zone resources to complete write") }, /* D */ { SST(0x55, 0x10, SS_RDEF, /* XXX TBD */ "Maximum number of streams open") }, /* R */ { SST(0x57, 0x00, SS_RDEF, "Unable to recover table-of-contents") }, /* O */ { SST(0x58, 0x00, SS_RDEF, "Generation does not exist") }, /* O */ { SST(0x59, 0x00, SS_RDEF, "Updated block read") }, /* DTLPWRO BK */ { SST(0x5A, 0x00, SS_RDEF, "Operator request or state change input") }, /* DT WROM BK */ { SST(0x5A, 0x01, SS_RDEF, "Operator medium removal request") }, /* DT WRO A BK */ { SST(0x5A, 0x02, SS_RDEF, "Operator selected write protect") }, /* DT WRO A BK */ { SST(0x5A, 0x03, SS_RDEF, "Operator selected write permit") }, /* DTLPWROM K */ { SST(0x5B, 0x00, SS_RDEF, "Log exception") }, /* DTLPWROM K */ { SST(0x5B, 0x01, SS_RDEF, "Threshold condition met") }, /* DTLPWROM K */ { SST(0x5B, 0x02, SS_RDEF, "Log counter at maximum") }, /* DTLPWROM K */ { SST(0x5B, 0x03, SS_RDEF, "Log list codes exhausted") }, /* D O */ { SST(0x5C, 0x00, SS_RDEF, "RPL status change") }, /* D O */ { SST(0x5C, 0x01, SS_NOP | SSQ_PRINT_SENSE, "Spindles synchronized") }, /* D O */ { SST(0x5C, 0x02, SS_RDEF, "Spindles not synchronized") }, /* DTLPWROMAEBKVF */ { SST(0x5D, 0x00, SS_NOP | SSQ_PRINT_SENSE, "Failure prediction threshold exceeded") }, /* R B */ { SST(0x5D, 0x01, SS_NOP | SSQ_PRINT_SENSE, "Media failure prediction threshold exceeded") }, /* R */ { SST(0x5D, 0x02, SS_NOP | SSQ_PRINT_SENSE, "Logical unit failure prediction threshold exceeded") }, /* R */ { SST(0x5D, 0x03, SS_NOP | SSQ_PRINT_SENSE, "Spare area exhaustion prediction threshold exceeded") }, /* D B */ { SST(0x5D, 0x10, SS_NOP | SSQ_PRINT_SENSE, "Hardware impending failure general hard drive failure") }, /* D B */ { SST(0x5D, 0x11, SS_NOP | SSQ_PRINT_SENSE, "Hardware impending failure drive error rate too high") }, /* D B */ { SST(0x5D, 0x12, SS_NOP | SSQ_PRINT_SENSE, "Hardware impending failure data error rate too high") }, /* D B */ { SST(0x5D, 0x13, SS_NOP | SSQ_PRINT_SENSE, "Hardware impending failure seek error rate too high") }, /* D B */ { SST(0x5D, 0x14, SS_NOP | SSQ_PRINT_SENSE, "Hardware impending failure too many block reassigns") }, /* D B */ { SST(0x5D, 0x15, SS_NOP | SSQ_PRINT_SENSE, "Hardware impending failure access times too high") }, /* D B */ { SST(0x5D, 0x16, SS_NOP | SSQ_PRINT_SENSE, "Hardware impending failure start unit times too high") }, /* D B */ { SST(0x5D, 0x17, SS_NOP | SSQ_PRINT_SENSE, "Hardware impending failure channel parametrics") }, /* D B */ { SST(0x5D, 0x18, SS_NOP | SSQ_PRINT_SENSE, "Hardware impending failure controller detected") }, /* D B */ { SST(0x5D, 0x19, SS_NOP | SSQ_PRINT_SENSE, "Hardware impending failure throughput performance") }, /* D B */ { SST(0x5D, 0x1A, SS_NOP | SSQ_PRINT_SENSE, "Hardware impending failure seek time performance") }, /* D B */ { SST(0x5D, 0x1B, SS_NOP | SSQ_PRINT_SENSE, "Hardware impending failure spin-up retry count") }, /* D B */ { SST(0x5D, 0x1C, SS_NOP | SSQ_PRINT_SENSE, "Hardware impending failure drive calibration retry count") }, /* D B */ { SST(0x5D, 0x1D, SS_NOP | SSQ_PRINT_SENSE, "Hardware impending failure power loss protection circuit") }, /* D B */ { SST(0x5D, 0x20, SS_NOP | SSQ_PRINT_SENSE, "Controller impending failure general hard drive failure") }, /* D B */ { SST(0x5D, 0x21, SS_NOP | SSQ_PRINT_SENSE, "Controller impending failure drive error rate too high") }, /* D B */ { SST(0x5D, 0x22, SS_NOP | SSQ_PRINT_SENSE, "Controller impending failure data error rate too high") }, /* D B */ { SST(0x5D, 0x23, SS_NOP | SSQ_PRINT_SENSE, "Controller impending failure seek error rate too high") }, /* D B */ { SST(0x5D, 0x24, SS_NOP | SSQ_PRINT_SENSE, "Controller impending failure too many block reassigns") }, /* D B */ { SST(0x5D, 0x25, SS_NOP | SSQ_PRINT_SENSE, "Controller impending failure access times too high") }, /* D B */ { SST(0x5D, 0x26, SS_NOP | SSQ_PRINT_SENSE, "Controller impending failure start unit times too high") }, /* D B */ { SST(0x5D, 0x27, SS_NOP | SSQ_PRINT_SENSE, "Controller impending failure channel parametrics") }, /* D B */ { SST(0x5D, 0x28, SS_NOP | SSQ_PRINT_SENSE, "Controller impending failure controller detected") }, /* D B */ { SST(0x5D, 0x29, SS_NOP | SSQ_PRINT_SENSE, "Controller impending failure throughput performance") }, /* D B */ { SST(0x5D, 0x2A, SS_NOP | SSQ_PRINT_SENSE, "Controller impending failure seek time performance") }, /* D B */ { SST(0x5D, 0x2B, SS_NOP | SSQ_PRINT_SENSE, "Controller impending failure spin-up retry count") }, /* D B */ { SST(0x5D, 0x2C, SS_NOP | SSQ_PRINT_SENSE, "Controller impending failure drive calibration retry count") }, /* D B */ { SST(0x5D, 0x30, SS_NOP | SSQ_PRINT_SENSE, "Data channel impending failure general hard drive failure") }, /* D B */ { SST(0x5D, 0x31, SS_NOP | SSQ_PRINT_SENSE, "Data channel impending failure drive error rate too high") }, /* D B */ { SST(0x5D, 0x32, SS_NOP | SSQ_PRINT_SENSE, "Data channel impending failure data error rate too high") }, /* D B */ { SST(0x5D, 0x33, SS_NOP | SSQ_PRINT_SENSE, "Data channel impending failure seek error rate too high") }, /* D B */ { SST(0x5D, 0x34, SS_NOP | SSQ_PRINT_SENSE, "Data channel impending failure too many block reassigns") }, /* D B */ { SST(0x5D, 0x35, SS_NOP | SSQ_PRINT_SENSE, "Data channel impending failure access times too high") }, /* D B */ { SST(0x5D, 0x36, SS_NOP | SSQ_PRINT_SENSE, "Data channel impending failure start unit times too high") }, /* D B */ { SST(0x5D, 0x37, SS_NOP | SSQ_PRINT_SENSE, "Data channel impending failure channel parametrics") }, /* D B */ { SST(0x5D, 0x38, SS_NOP | SSQ_PRINT_SENSE, "Data channel impending failure controller detected") }, /* D B */ { SST(0x5D, 0x39, SS_NOP | SSQ_PRINT_SENSE, "Data channel impending failure throughput performance") }, /* D B */ { SST(0x5D, 0x3A, SS_NOP | SSQ_PRINT_SENSE, "Data channel impending failure seek time performance") }, /* D B */ { SST(0x5D, 0x3B, SS_NOP | SSQ_PRINT_SENSE, "Data channel impending failure spin-up retry count") }, /* D B */ { SST(0x5D, 0x3C, SS_NOP | SSQ_PRINT_SENSE, "Data channel impending failure drive calibration retry count") }, /* D B */ { SST(0x5D, 0x40, SS_NOP | SSQ_PRINT_SENSE, "Servo impending failure general hard drive failure") }, /* D B */ { SST(0x5D, 0x41, SS_NOP | SSQ_PRINT_SENSE, "Servo impending failure drive error rate too high") }, /* D B */ { SST(0x5D, 0x42, SS_NOP | SSQ_PRINT_SENSE, "Servo impending failure data error rate too high") }, /* D B */ { SST(0x5D, 0x43, SS_NOP | SSQ_PRINT_SENSE, "Servo impending failure seek error rate too high") }, /* D B */ { SST(0x5D, 0x44, SS_NOP | SSQ_PRINT_SENSE, "Servo impending failure too many block reassigns") }, /* D B */ { SST(0x5D, 0x45, SS_NOP | SSQ_PRINT_SENSE, "Servo impending failure access times too high") }, /* D B */ { SST(0x5D, 0x46, SS_NOP | SSQ_PRINT_SENSE, "Servo impending failure start unit times too high") }, /* D B */ { SST(0x5D, 0x47, SS_NOP | SSQ_PRINT_SENSE, "Servo impending failure channel parametrics") }, /* D B */ { SST(0x5D, 0x48, SS_NOP | SSQ_PRINT_SENSE, "Servo impending failure controller detected") }, /* D B */ { SST(0x5D, 0x49, SS_NOP | SSQ_PRINT_SENSE, "Servo impending failure throughput performance") }, /* D B */ { SST(0x5D, 0x4A, SS_NOP | SSQ_PRINT_SENSE, "Servo impending failure seek time performance") }, /* D B */ { SST(0x5D, 0x4B, SS_NOP | SSQ_PRINT_SENSE, "Servo impending failure spin-up retry count") }, /* D B */ { SST(0x5D, 0x4C, SS_NOP | SSQ_PRINT_SENSE, "Servo impending failure drive calibration retry count") }, /* D B */ { SST(0x5D, 0x50, SS_NOP | SSQ_PRINT_SENSE, "Spindle impending failure general hard drive failure") }, /* D B */ { SST(0x5D, 0x51, SS_NOP | SSQ_PRINT_SENSE, "Spindle impending failure drive error rate too high") }, /* D B */ { SST(0x5D, 0x52, SS_NOP | SSQ_PRINT_SENSE, "Spindle impending failure data error rate too high") }, /* D B */ { SST(0x5D, 0x53, SS_NOP | SSQ_PRINT_SENSE, "Spindle impending failure seek error rate too high") }, /* D B */ { SST(0x5D, 0x54, SS_NOP | SSQ_PRINT_SENSE, "Spindle impending failure too many block reassigns") }, /* D B */ { SST(0x5D, 0x55, SS_NOP | SSQ_PRINT_SENSE, "Spindle impending failure access times too high") }, /* D B */ { SST(0x5D, 0x56, SS_NOP | SSQ_PRINT_SENSE, "Spindle impending failure start unit times too high") }, /* D B */ { SST(0x5D, 0x57, SS_NOP | SSQ_PRINT_SENSE, "Spindle impending failure channel parametrics") }, /* D B */ { SST(0x5D, 0x58, SS_NOP | SSQ_PRINT_SENSE, "Spindle impending failure controller detected") }, /* D B */ { SST(0x5D, 0x59, SS_NOP | SSQ_PRINT_SENSE, "Spindle impending failure throughput performance") }, /* D B */ { SST(0x5D, 0x5A, SS_NOP | SSQ_PRINT_SENSE, "Spindle impending failure seek time performance") }, /* D B */ { SST(0x5D, 0x5B, SS_NOP | SSQ_PRINT_SENSE, "Spindle impending failure spin-up retry count") }, /* D B */ { SST(0x5D, 0x5C, SS_NOP | SSQ_PRINT_SENSE, "Spindle impending failure drive calibration retry count") }, /* D B */ { SST(0x5D, 0x60, SS_NOP | SSQ_PRINT_SENSE, "Firmware impending failure general hard drive failure") }, /* D B */ { SST(0x5D, 0x61, SS_NOP | SSQ_PRINT_SENSE, "Firmware impending failure drive error rate too high") }, /* D B */ { SST(0x5D, 0x62, SS_NOP | SSQ_PRINT_SENSE, "Firmware impending failure data error rate too high") }, /* D B */ { SST(0x5D, 0x63, SS_NOP | SSQ_PRINT_SENSE, "Firmware impending failure seek error rate too high") }, /* D B */ { SST(0x5D, 0x64, SS_NOP | SSQ_PRINT_SENSE, "Firmware impending failure too many block reassigns") }, /* D B */ { SST(0x5D, 0x65, SS_NOP | SSQ_PRINT_SENSE, "Firmware impending failure access times too high") }, /* D B */ { SST(0x5D, 0x66, SS_NOP | SSQ_PRINT_SENSE, "Firmware impending failure start unit times too high") }, /* D B */ { SST(0x5D, 0x67, SS_NOP | SSQ_PRINT_SENSE, "Firmware impending failure channel parametrics") }, /* D B */ { SST(0x5D, 0x68, SS_NOP | SSQ_PRINT_SENSE, "Firmware impending failure controller detected") }, /* D B */ { SST(0x5D, 0x69, SS_NOP | SSQ_PRINT_SENSE, "Firmware impending failure throughput performance") }, /* D B */ { SST(0x5D, 0x6A, SS_NOP | SSQ_PRINT_SENSE, "Firmware impending failure seek time performance") }, /* D B */ { SST(0x5D, 0x6B, SS_NOP | SSQ_PRINT_SENSE, "Firmware impending failure spin-up retry count") }, /* D B */ { SST(0x5D, 0x6C, SS_NOP | SSQ_PRINT_SENSE, "Firmware impending failure drive calibration retry count") }, /* D B */ { SST(0x5D, 0x73, SS_NOP | SSQ_PRINT_SENSE, "Media impending failure endurance limit met") }, /* DTLPWROMAEBKVF */ { SST(0x5D, 0xFF, SS_NOP | SSQ_PRINT_SENSE, "Failure prediction threshold exceeded (false)") }, /* DTLPWRO A K */ { SST(0x5E, 0x00, SS_RDEF, "Low power condition on") }, /* DTLPWRO A K */ { SST(0x5E, 0x01, SS_RDEF, "Idle condition activated by timer") }, /* DTLPWRO A K */ { SST(0x5E, 0x02, SS_RDEF, "Standby condition activated by timer") }, /* DTLPWRO A K */ { SST(0x5E, 0x03, SS_RDEF, "Idle condition activated by command") }, /* DTLPWRO A K */ { SST(0x5E, 0x04, SS_RDEF, "Standby condition activated by command") }, /* DTLPWRO A K */ { SST(0x5E, 0x05, SS_RDEF, "Idle-B condition activated by timer") }, /* DTLPWRO A K */ { SST(0x5E, 0x06, SS_RDEF, "Idle-B condition activated by command") }, /* DTLPWRO A K */ { SST(0x5E, 0x07, SS_RDEF, "Idle-C condition activated by timer") }, /* DTLPWRO A K */ { SST(0x5E, 0x08, SS_RDEF, "Idle-C condition activated by command") }, /* DTLPWRO A K */ { SST(0x5E, 0x09, SS_RDEF, "Standby-Y condition activated by timer") }, /* DTLPWRO A K */ { SST(0x5E, 0x0A, SS_RDEF, "Standby-Y condition activated by command") }, /* B */ { SST(0x5E, 0x41, SS_RDEF, /* XXX TBD */ "Power state change to active") }, /* B */ { SST(0x5E, 0x42, SS_RDEF, /* XXX TBD */ "Power state change to idle") }, /* B */ { SST(0x5E, 0x43, SS_RDEF, /* XXX TBD */ "Power state change to standby") }, /* B */ { SST(0x5E, 0x45, SS_RDEF, /* XXX TBD */ "Power state change to sleep") }, /* BK */ { SST(0x5E, 0x47, SS_RDEF, /* XXX TBD */ "Power state change to device control") }, /* */ { SST(0x60, 0x00, SS_RDEF, "Lamp failure") }, /* */ { SST(0x61, 0x00, SS_RDEF, "Video acquisition error") }, /* */ { SST(0x61, 0x01, SS_RDEF, "Unable to acquire video") }, /* */ { SST(0x61, 0x02, SS_RDEF, "Out of focus") }, /* */ { SST(0x62, 0x00, SS_RDEF, "Scan head positioning error") }, /* R */ { SST(0x63, 0x00, SS_RDEF, "End of user area encountered on this track") }, /* R */ { SST(0x63, 0x01, SS_FATAL | ENOSPC, "Packet does not fit in available space") }, /* R */ { SST(0x64, 0x00, SS_FATAL | ENXIO, "Illegal mode for this track") }, /* R */ { SST(0x64, 0x01, SS_RDEF, "Invalid packet size") }, /* DTLPWROMAEBKVF */ { SST(0x65, 0x00, SS_RDEF, "Voltage fault") }, /* */ { SST(0x66, 0x00, SS_RDEF, "Automatic document feeder cover up") }, /* */ { SST(0x66, 0x01, SS_RDEF, "Automatic document feeder lift up") }, /* */ { SST(0x66, 0x02, SS_RDEF, "Document jam in automatic document feeder") }, /* */ { SST(0x66, 0x03, SS_RDEF, "Document miss feed automatic in document feeder") }, /* A */ { SST(0x67, 0x00, SS_RDEF, "Configuration failure") }, /* A */ { SST(0x67, 0x01, SS_RDEF, "Configuration of incapable logical units failed") }, /* A */ { SST(0x67, 0x02, SS_RDEF, "Add logical unit failed") }, /* A */ { SST(0x67, 0x03, SS_RDEF, "Modification of logical unit failed") }, /* A */ { SST(0x67, 0x04, SS_RDEF, "Exchange of logical unit failed") }, /* A */ { SST(0x67, 0x05, SS_RDEF, "Remove of logical unit failed") }, /* A */ { SST(0x67, 0x06, SS_RDEF, "Attachment of logical unit failed") }, /* A */ { SST(0x67, 0x07, SS_RDEF, "Creation of logical unit failed") }, /* A */ { SST(0x67, 0x08, SS_RDEF, /* XXX TBD */ "Assign failure occurred") }, /* A */ { SST(0x67, 0x09, SS_RDEF, /* XXX TBD */ "Multiply assigned logical unit") }, /* DTLPWROMAEBKVF */ { SST(0x67, 0x0A, SS_RDEF, /* XXX TBD */ "Set target port groups command failed") }, /* DT B */ { SST(0x67, 0x0B, SS_RDEF, /* XXX TBD */ "ATA device feature not enabled") }, /* A */ { SST(0x68, 0x00, SS_RDEF, "Logical unit not configured") }, /* D */ { SST(0x68, 0x01, SS_RDEF, "Subsidiary logical unit not configured") }, /* A */ { SST(0x69, 0x00, SS_RDEF, "Data loss on logical unit") }, /* A */ { SST(0x69, 0x01, SS_RDEF, "Multiple logical unit failures") }, /* A */ { SST(0x69, 0x02, SS_RDEF, "Parity/data mismatch") }, /* A */ { SST(0x6A, 0x00, SS_RDEF, "Informational, refer to log") }, /* A */ { SST(0x6B, 0x00, SS_RDEF, "State change has occurred") }, /* A */ { SST(0x6B, 0x01, SS_RDEF, "Redundancy level got better") }, /* A */ { SST(0x6B, 0x02, SS_RDEF, "Redundancy level got worse") }, /* A */ { SST(0x6C, 0x00, SS_RDEF, "Rebuild failure occurred") }, /* A */ { SST(0x6D, 0x00, SS_RDEF, "Recalculate failure occurred") }, /* A */ { SST(0x6E, 0x00, SS_RDEF, "Command to logical unit failed") }, /* R */ { SST(0x6F, 0x00, SS_RDEF, /* XXX TBD */ "Copy protection key exchange failure - authentication failure") }, /* R */ { SST(0x6F, 0x01, SS_RDEF, /* XXX TBD */ "Copy protection key exchange failure - key not present") }, /* R */ { SST(0x6F, 0x02, SS_RDEF, /* XXX TBD */ "Copy protection key exchange failure - key not established") }, /* R */ { SST(0x6F, 0x03, SS_RDEF, /* XXX TBD */ "Read of scrambled sector without authentication") }, /* R */ { SST(0x6F, 0x04, SS_RDEF, /* XXX TBD */ "Media region code is mismatched to logical unit region") }, /* R */ { SST(0x6F, 0x05, SS_RDEF, /* XXX TBD */ "Drive region must be permanent/region reset count error") }, /* R */ { SST(0x6F, 0x06, SS_RDEF, /* XXX TBD */ "Insufficient block count for binding NONCE recording") }, /* R */ { SST(0x6F, 0x07, SS_RDEF, /* XXX TBD */ "Conflict in binding NONCE recording") }, /* T */ { SST(0x70, 0x00, SS_RDEF, "Decompression exception short: ASCQ = Algorithm ID") }, /* T */ { SST(0x70, 0xFF, SS_RDEF | SSQ_RANGE, NULL) }, /* Range 0x00 -> 0xFF */ /* T */ { SST(0x71, 0x00, SS_RDEF, "Decompression exception long: ASCQ = Algorithm ID") }, /* T */ { SST(0x71, 0xFF, SS_RDEF | SSQ_RANGE, NULL) }, /* Range 0x00 -> 0xFF */ /* R */ { SST(0x72, 0x00, SS_RDEF, "Session fixation error") }, /* R */ { SST(0x72, 0x01, SS_RDEF, "Session fixation error writing lead-in") }, /* R */ { SST(0x72, 0x02, SS_RDEF, "Session fixation error writing lead-out") }, /* R */ { SST(0x72, 0x03, SS_RDEF, "Session fixation error - incomplete track in session") }, /* R */ { SST(0x72, 0x04, SS_RDEF, "Empty or partially written reserved track") }, /* R */ { SST(0x72, 0x05, SS_RDEF, /* XXX TBD */ "No more track reservations allowed") }, /* R */ { SST(0x72, 0x06, SS_RDEF, /* XXX TBD */ "RMZ extension is not allowed") }, /* R */ { SST(0x72, 0x07, SS_RDEF, /* XXX TBD */ "No more test zone extensions are allowed") }, /* R */ { SST(0x73, 0x00, SS_RDEF, "CD control error") }, /* R */ { SST(0x73, 0x01, SS_RDEF, "Power calibration area almost full") }, /* R */ { SST(0x73, 0x02, SS_FATAL | ENOSPC, "Power calibration area is full") }, /* R */ { SST(0x73, 0x03, SS_RDEF, "Power calibration area error") }, /* R */ { SST(0x73, 0x04, SS_RDEF, "Program memory area update failure") }, /* R */ { SST(0x73, 0x05, SS_RDEF, "Program memory area is full") }, /* R */ { SST(0x73, 0x06, SS_RDEF, /* XXX TBD */ "RMA/PMA is almost full") }, /* R */ { SST(0x73, 0x10, SS_RDEF, /* XXX TBD */ "Current power calibration area almost full") }, /* R */ { SST(0x73, 0x11, SS_RDEF, /* XXX TBD */ "Current power calibration area is full") }, /* R */ { SST(0x73, 0x17, SS_RDEF, /* XXX TBD */ "RDZ is full") }, /* T */ { SST(0x74, 0x00, SS_RDEF, /* XXX TBD */ "Security error") }, /* T */ { SST(0x74, 0x01, SS_RDEF, /* XXX TBD */ "Unable to decrypt data") }, /* T */ { SST(0x74, 0x02, SS_RDEF, /* XXX TBD */ "Unencrypted data encountered while decrypting") }, /* T */ { SST(0x74, 0x03, SS_RDEF, /* XXX TBD */ "Incorrect data encryption key") }, /* T */ { SST(0x74, 0x04, SS_RDEF, /* XXX TBD */ "Cryptographic integrity validation failed") }, /* T */ { SST(0x74, 0x05, SS_RDEF, /* XXX TBD */ "Error decrypting data") }, /* T */ { SST(0x74, 0x06, SS_RDEF, /* XXX TBD */ "Unknown signature verification key") }, /* T */ { SST(0x74, 0x07, SS_RDEF, /* XXX TBD */ "Encryption parameters not useable") }, /* DT R M E VF */ { SST(0x74, 0x08, SS_RDEF, /* XXX TBD */ "Digital signature validation failure") }, /* T */ { SST(0x74, 0x09, SS_RDEF, /* XXX TBD */ "Encryption mode mismatch on read") }, /* T */ { SST(0x74, 0x0A, SS_RDEF, /* XXX TBD */ "Encrypted block not raw read enabled") }, /* T */ { SST(0x74, 0x0B, SS_RDEF, /* XXX TBD */ "Incorrect encryption parameters") }, /* DT R MAEBKV */ { SST(0x74, 0x0C, SS_RDEF, /* XXX TBD */ "Unable to decrypt parameter list") }, /* T */ { SST(0x74, 0x0D, SS_RDEF, /* XXX TBD */ "Encryption algorithm disabled") }, /* DT R MAEBKV */ { SST(0x74, 0x10, SS_RDEF, /* XXX TBD */ "SA creation parameter value invalid") }, /* DT R MAEBKV */ { SST(0x74, 0x11, SS_RDEF, /* XXX TBD */ "SA creation parameter value rejected") }, /* DT R MAEBKV */ { SST(0x74, 0x12, SS_RDEF, /* XXX TBD */ "Invalid SA usage") }, /* T */ { SST(0x74, 0x21, SS_RDEF, /* XXX TBD */ "Data encryption configuration prevented") }, /* DT R MAEBKV */ { SST(0x74, 0x30, SS_RDEF, /* XXX TBD */ "SA creation parameter not supported") }, /* DT R MAEBKV */ { SST(0x74, 0x40, SS_RDEF, /* XXX TBD */ "Authentication failed") }, /* V */ { SST(0x74, 0x61, SS_RDEF, /* XXX TBD */ "External data encryption key manager access error") }, /* V */ { SST(0x74, 0x62, SS_RDEF, /* XXX TBD */ "External data encryption key manager error") }, /* V */ { SST(0x74, 0x63, SS_RDEF, /* XXX TBD */ "External data encryption key not found") }, /* V */ { SST(0x74, 0x64, SS_RDEF, /* XXX TBD */ "External data encryption request not authorized") }, /* T */ { SST(0x74, 0x6E, SS_RDEF, /* XXX TBD */ "External data encryption control timeout") }, /* T */ { SST(0x74, 0x6F, SS_RDEF, /* XXX TBD */ "External data encryption control error") }, /* DT R M E V */ { SST(0x74, 0x71, SS_FATAL | EACCES, "Logical unit access not authorized") }, /* D */ { SST(0x74, 0x79, SS_FATAL | EACCES, "Security conflict in translated device") } }; const u_int asc_table_size = nitems(asc_table); struct asc_key { int asc; int ascq; }; static int ascentrycomp(const void *key, const void *member) { int asc; int ascq; const struct asc_table_entry *table_entry; asc = ((const struct asc_key *)key)->asc; ascq = ((const struct asc_key *)key)->ascq; table_entry = (const struct asc_table_entry *)member; if (asc >= table_entry->asc) { if (asc > table_entry->asc) return (1); if (ascq <= table_entry->ascq) { /* Check for ranges */ if (ascq == table_entry->ascq || ((table_entry->action & SSQ_RANGE) != 0 && ascq >= (table_entry - 1)->ascq)) return (0); return (-1); } return (1); } return (-1); } static int senseentrycomp(const void *key, const void *member) { int sense_key; const struct sense_key_table_entry *table_entry; sense_key = *((const int *)key); table_entry = (const struct sense_key_table_entry *)member; if (sense_key >= table_entry->sense_key) { if (sense_key == table_entry->sense_key) return (0); return (1); } return (-1); } static void fetchtableentries(int sense_key, int asc, int ascq, struct scsi_inquiry_data *inq_data, const struct sense_key_table_entry **sense_entry, const struct asc_table_entry **asc_entry) { caddr_t match; const struct asc_table_entry *asc_tables[2]; const struct sense_key_table_entry *sense_tables[2]; struct asc_key asc_ascq; size_t asc_tables_size[2]; size_t sense_tables_size[2]; int num_asc_tables; int num_sense_tables; int i; /* Default to failure */ *sense_entry = NULL; *asc_entry = NULL; match = NULL; if (inq_data != NULL) match = cam_quirkmatch((caddr_t)inq_data, (caddr_t)sense_quirk_table, sense_quirk_table_size, sizeof(*sense_quirk_table), scsi_inquiry_match); if (match != NULL) { struct scsi_sense_quirk_entry *quirk; quirk = (struct scsi_sense_quirk_entry *)match; asc_tables[0] = quirk->asc_info; asc_tables_size[0] = quirk->num_ascs; asc_tables[1] = asc_table; asc_tables_size[1] = asc_table_size; num_asc_tables = 2; sense_tables[0] = quirk->sense_key_info; sense_tables_size[0] = quirk->num_sense_keys; sense_tables[1] = sense_key_table; sense_tables_size[1] = nitems(sense_key_table); num_sense_tables = 2; } else { asc_tables[0] = asc_table; asc_tables_size[0] = asc_table_size; num_asc_tables = 1; sense_tables[0] = sense_key_table; sense_tables_size[0] = nitems(sense_key_table); num_sense_tables = 1; } asc_ascq.asc = asc; asc_ascq.ascq = ascq; for (i = 0; i < num_asc_tables; i++) { void *found_entry; found_entry = bsearch(&asc_ascq, asc_tables[i], asc_tables_size[i], sizeof(**asc_tables), ascentrycomp); if (found_entry) { *asc_entry = (struct asc_table_entry *)found_entry; break; } } for (i = 0; i < num_sense_tables; i++) { void *found_entry; found_entry = bsearch(&sense_key, sense_tables[i], sense_tables_size[i], sizeof(**sense_tables), senseentrycomp); if (found_entry) { *sense_entry = (struct sense_key_table_entry *)found_entry; break; } } } void scsi_sense_desc(int sense_key, int asc, int ascq, struct scsi_inquiry_data *inq_data, const char **sense_key_desc, const char **asc_desc) { const struct asc_table_entry *asc_entry; const struct sense_key_table_entry *sense_entry; fetchtableentries(sense_key, asc, ascq, inq_data, &sense_entry, &asc_entry); if (sense_entry != NULL) *sense_key_desc = sense_entry->desc; else *sense_key_desc = "Invalid Sense Key"; if (asc_entry != NULL) *asc_desc = asc_entry->desc; else if (asc >= 0x80 && asc <= 0xff) *asc_desc = "Vendor Specific ASC"; else if (ascq >= 0x80 && ascq <= 0xff) *asc_desc = "Vendor Specific ASCQ"; else *asc_desc = "Reserved ASC/ASCQ pair"; } /* * Given sense and device type information, return the appropriate action. * If we do not understand the specific error as identified by the ASC/ASCQ * pair, fall back on the more generic actions derived from the sense key. */ scsi_sense_action scsi_error_action(struct ccb_scsiio *csio, struct scsi_inquiry_data *inq_data, u_int32_t sense_flags) { const struct asc_table_entry *asc_entry; const struct sense_key_table_entry *sense_entry; int error_code, sense_key, asc, ascq; scsi_sense_action action; if (!scsi_extract_sense_ccb((union ccb *)csio, &error_code, &sense_key, &asc, &ascq)) { action = SS_RDEF; } else if ((error_code == SSD_DEFERRED_ERROR) || (error_code == SSD_DESC_DEFERRED_ERROR)) { /* * XXX dufault@FreeBSD.org * This error doesn't relate to the command associated * with this request sense. A deferred error is an error * for a command that has already returned GOOD status * (see SCSI2 8.2.14.2). * * By my reading of that section, it looks like the current * command has been cancelled, we should now clean things up * (hopefully recovering any lost data) and then retry the * current command. There are two easy choices, both wrong: * * 1. Drop through (like we had been doing), thus treating * this as if the error were for the current command and * return and stop the current command. * * 2. Issue a retry (like I made it do) thus hopefully * recovering the current transfer, and ignoring the * fact that we've dropped a command. * * These should probably be handled in a device specific * sense handler or punted back up to a user mode daemon */ action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; } else { fetchtableentries(sense_key, asc, ascq, inq_data, &sense_entry, &asc_entry); /* * Override the 'No additional Sense' entry (0,0) * with the error action of the sense key. */ if (asc_entry != NULL && (asc != 0 || ascq != 0)) action = asc_entry->action; else if (sense_entry != NULL) action = sense_entry->action; else action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; if (sense_key == SSD_KEY_RECOVERED_ERROR) { /* * The action succeeded but the device wants * the user to know that some recovery action * was required. */ action &= ~(SS_MASK|SSQ_MASK|SS_ERRMASK); action |= SS_NOP|SSQ_PRINT_SENSE; } else if (sense_key == SSD_KEY_ILLEGAL_REQUEST) { if ((sense_flags & SF_QUIET_IR) != 0) action &= ~SSQ_PRINT_SENSE; } else if (sense_key == SSD_KEY_UNIT_ATTENTION) { if ((sense_flags & SF_RETRY_UA) != 0 && (action & SS_MASK) == SS_FAIL) { action &= ~(SS_MASK|SSQ_MASK); action |= SS_RETRY|SSQ_DECREMENT_COUNT| SSQ_PRINT_SENSE; } action |= SSQ_UA; } } if ((action & SS_MASK) >= SS_START && (sense_flags & SF_NO_RECOVERY)) { action &= ~SS_MASK; action |= SS_FAIL; } else if ((action & SS_MASK) == SS_RETRY && (sense_flags & SF_NO_RETRY)) { action &= ~SS_MASK; action |= SS_FAIL; } if ((sense_flags & SF_PRINT_ALWAYS) != 0) action |= SSQ_PRINT_SENSE; else if ((sense_flags & SF_NO_PRINT) != 0) action &= ~SSQ_PRINT_SENSE; return (action); } char * scsi_cdb_string(u_int8_t *cdb_ptr, char *cdb_string, size_t len) { struct sbuf sb; int error; if (len == 0) return (""); sbuf_new(&sb, cdb_string, len, SBUF_FIXEDLEN); scsi_cdb_sbuf(cdb_ptr, &sb); /* ENOMEM just means that the fixed buffer is full, OK to ignore */ error = sbuf_finish(&sb); if (error != 0 && error != ENOMEM) return (""); return(sbuf_data(&sb)); } void scsi_cdb_sbuf(u_int8_t *cdb_ptr, struct sbuf *sb) { u_int8_t cdb_len; int i; if (cdb_ptr == NULL) return; /* * This is taken from the SCSI-3 draft spec. * (T10/1157D revision 0.3) * The top 3 bits of an opcode are the group code. The next 5 bits * are the command code. * Group 0: six byte commands * Group 1: ten byte commands * Group 2: ten byte commands * Group 3: reserved * Group 4: sixteen byte commands * Group 5: twelve byte commands * Group 6: vendor specific * Group 7: vendor specific */ switch((*cdb_ptr >> 5) & 0x7) { case 0: cdb_len = 6; break; case 1: case 2: cdb_len = 10; break; case 3: case 6: case 7: /* in this case, just print out the opcode */ cdb_len = 1; break; case 4: cdb_len = 16; break; case 5: cdb_len = 12; break; } for (i = 0; i < cdb_len; i++) sbuf_printf(sb, "%02hhx ", cdb_ptr[i]); return; } const char * scsi_status_string(struct ccb_scsiio *csio) { switch(csio->scsi_status) { case SCSI_STATUS_OK: return("OK"); case SCSI_STATUS_CHECK_COND: return("Check Condition"); case SCSI_STATUS_BUSY: return("Busy"); case SCSI_STATUS_INTERMED: return("Intermediate"); case SCSI_STATUS_INTERMED_COND_MET: return("Intermediate-Condition Met"); case SCSI_STATUS_RESERV_CONFLICT: return("Reservation Conflict"); case SCSI_STATUS_CMD_TERMINATED: return("Command Terminated"); case SCSI_STATUS_QUEUE_FULL: return("Queue Full"); case SCSI_STATUS_ACA_ACTIVE: return("ACA Active"); case SCSI_STATUS_TASK_ABORTED: return("Task Aborted"); default: { static char unkstr[64]; snprintf(unkstr, sizeof(unkstr), "Unknown %#x", csio->scsi_status); return(unkstr); } } } /* * scsi_command_string() returns 0 for success and -1 for failure. */ #ifdef _KERNEL int scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb) #else /* !_KERNEL */ int scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio, struct sbuf *sb) #endif /* _KERNEL/!_KERNEL */ { struct scsi_inquiry_data *inq_data; #ifdef _KERNEL struct ccb_getdev *cgd; #endif /* _KERNEL */ #ifdef _KERNEL if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) return(-1); /* * Get the device information. */ xpt_setup_ccb(&cgd->ccb_h, csio->ccb_h.path, CAM_PRIORITY_NORMAL); cgd->ccb_h.func_code = XPT_GDEV_TYPE; xpt_action((union ccb *)cgd); /* * If the device is unconfigured, just pretend that it is a hard * drive. scsi_op_desc() needs this. */ if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) cgd->inq_data.device = T_DIRECT; inq_data = &cgd->inq_data; #else /* !_KERNEL */ inq_data = &device->inq_data; #endif /* _KERNEL/!_KERNEL */ sbuf_printf(sb, "%s. CDB: ", scsi_op_desc(scsiio_cdb_ptr(csio)[0], inq_data)); scsi_cdb_sbuf(scsiio_cdb_ptr(csio), sb); #ifdef _KERNEL xpt_free_ccb((union ccb *)cgd); #endif return(0); } /* * Iterate over sense descriptors. Each descriptor is passed into iter_func(). * If iter_func() returns 0, list traversal continues. If iter_func() * returns non-zero, list traversal is stopped. */ void scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len, int (*iter_func)(struct scsi_sense_data_desc *sense, u_int, struct scsi_sense_desc_header *, void *), void *arg) { int cur_pos; int desc_len; /* * First make sure the extra length field is present. */ if (SSD_DESC_IS_PRESENT(sense, sense_len, extra_len) == 0) return; /* * The length of data actually returned may be different than the * extra_len recorded in the structure. */ desc_len = sense_len -offsetof(struct scsi_sense_data_desc, sense_desc); /* * Limit this further by the extra length reported, and the maximum * allowed extra length. */ desc_len = MIN(desc_len, MIN(sense->extra_len, SSD_EXTRA_MAX)); /* * Subtract the size of the header from the descriptor length. * This is to ensure that we have at least the header left, so we * don't have to check that inside the loop. This can wind up * being a negative value. */ desc_len -= sizeof(struct scsi_sense_desc_header); for (cur_pos = 0; cur_pos < desc_len;) { struct scsi_sense_desc_header *header; header = (struct scsi_sense_desc_header *) &sense->sense_desc[cur_pos]; /* * Check to make sure we have the entire descriptor. We * don't call iter_func() unless we do. * * Note that although cur_pos is at the beginning of the * descriptor, desc_len already has the header length * subtracted. So the comparison of the length in the * header (which does not include the header itself) to * desc_len - cur_pos is correct. */ if (header->length > (desc_len - cur_pos)) break; if (iter_func(sense, sense_len, header, arg) != 0) break; cur_pos += sizeof(*header) + header->length; } } struct scsi_find_desc_info { uint8_t desc_type; struct scsi_sense_desc_header *header; }; static int scsi_find_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, struct scsi_sense_desc_header *header, void *arg) { struct scsi_find_desc_info *desc_info; desc_info = (struct scsi_find_desc_info *)arg; if (header->desc_type == desc_info->desc_type) { desc_info->header = header; /* We found the descriptor, tell the iterator to stop. */ return (1); } else return (0); } /* * Given a descriptor type, return a pointer to it if it is in the sense * data and not truncated. Avoiding truncating sense data will simplify * things significantly for the caller. */ uint8_t * scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len, uint8_t desc_type) { struct scsi_find_desc_info desc_info; desc_info.desc_type = desc_type; desc_info.header = NULL; scsi_desc_iterate(sense, sense_len, scsi_find_desc_func, &desc_info); return ((uint8_t *)desc_info.header); } /* * Fill in SCSI descriptor sense data with the specified parameters. */ static void scsi_set_sense_data_desc_va(struct scsi_sense_data *sense_data, u_int *sense_len, scsi_sense_data_type sense_format, int current_error, int sense_key, int asc, int ascq, va_list ap) { struct scsi_sense_data_desc *sense; scsi_sense_elem_type elem_type; int space, len; uint8_t *desc, *data; memset(sense_data, 0, sizeof(*sense_data)); sense = (struct scsi_sense_data_desc *)sense_data; if (current_error != 0) sense->error_code = SSD_DESC_CURRENT_ERROR; else sense->error_code = SSD_DESC_DEFERRED_ERROR; sense->sense_key = sense_key; sense->add_sense_code = asc; sense->add_sense_code_qual = ascq; sense->flags = 0; desc = &sense->sense_desc[0]; space = *sense_len - offsetof(struct scsi_sense_data_desc, sense_desc); while ((elem_type = va_arg(ap, scsi_sense_elem_type)) != SSD_ELEM_NONE) { if (elem_type >= SSD_ELEM_MAX) { printf("%s: invalid sense type %d\n", __func__, elem_type); break; } len = va_arg(ap, int); data = va_arg(ap, uint8_t *); switch (elem_type) { case SSD_ELEM_SKIP: break; case SSD_ELEM_DESC: if (space < len) { sense->flags |= SSDD_SDAT_OVFL; break; } bcopy(data, desc, len); desc += len; space -= len; break; case SSD_ELEM_SKS: { struct scsi_sense_sks *sks = (void *)desc; if (len > sizeof(sks->sense_key_spec)) break; if (space < sizeof(*sks)) { sense->flags |= SSDD_SDAT_OVFL; break; } sks->desc_type = SSD_DESC_SKS; sks->length = sizeof(*sks) - (offsetof(struct scsi_sense_sks, length) + 1); bcopy(data, &sks->sense_key_spec, len); desc += sizeof(*sks); space -= sizeof(*sks); break; } case SSD_ELEM_COMMAND: { struct scsi_sense_command *cmd = (void *)desc; if (len > sizeof(cmd->command_info)) break; if (space < sizeof(*cmd)) { sense->flags |= SSDD_SDAT_OVFL; break; } cmd->desc_type = SSD_DESC_COMMAND; cmd->length = sizeof(*cmd) - (offsetof(struct scsi_sense_command, length) + 1); bcopy(data, &cmd->command_info[ sizeof(cmd->command_info) - len], len); desc += sizeof(*cmd); space -= sizeof(*cmd); break; } case SSD_ELEM_INFO: { struct scsi_sense_info *info = (void *)desc; if (len > sizeof(info->info)) break; if (space < sizeof(*info)) { sense->flags |= SSDD_SDAT_OVFL; break; } info->desc_type = SSD_DESC_INFO; info->length = sizeof(*info) - (offsetof(struct scsi_sense_info, length) + 1); info->byte2 = SSD_INFO_VALID; bcopy(data, &info->info[sizeof(info->info) - len], len); desc += sizeof(*info); space -= sizeof(*info); break; } case SSD_ELEM_FRU: { struct scsi_sense_fru *fru = (void *)desc; if (len > sizeof(fru->fru)) break; if (space < sizeof(*fru)) { sense->flags |= SSDD_SDAT_OVFL; break; } fru->desc_type = SSD_DESC_FRU; fru->length = sizeof(*fru) - (offsetof(struct scsi_sense_fru, length) + 1); fru->fru = *data; desc += sizeof(*fru); space -= sizeof(*fru); break; } case SSD_ELEM_STREAM: { struct scsi_sense_stream *stream = (void *)desc; if (len > sizeof(stream->byte3)) break; if (space < sizeof(*stream)) { sense->flags |= SSDD_SDAT_OVFL; break; } stream->desc_type = SSD_DESC_STREAM; stream->length = sizeof(*stream) - (offsetof(struct scsi_sense_stream, length) + 1); stream->byte3 = *data; desc += sizeof(*stream); space -= sizeof(*stream); break; } default: /* * We shouldn't get here, but if we do, do nothing. * We've already consumed the arguments above. */ break; } } sense->extra_len = desc - &sense->sense_desc[0]; *sense_len = offsetof(struct scsi_sense_data_desc, extra_len) + 1 + sense->extra_len; } /* * Fill in SCSI fixed sense data with the specified parameters. */ static void scsi_set_sense_data_fixed_va(struct scsi_sense_data *sense_data, u_int *sense_len, scsi_sense_data_type sense_format, int current_error, int sense_key, int asc, int ascq, va_list ap) { struct scsi_sense_data_fixed *sense; scsi_sense_elem_type elem_type; uint8_t *data; int len; memset(sense_data, 0, sizeof(*sense_data)); sense = (struct scsi_sense_data_fixed *)sense_data; if (current_error != 0) sense->error_code = SSD_CURRENT_ERROR; else sense->error_code = SSD_DEFERRED_ERROR; sense->flags = sense_key & SSD_KEY; sense->extra_len = 0; if (*sense_len >= 13) { sense->add_sense_code = asc; sense->extra_len = MAX(sense->extra_len, 5); } else sense->flags |= SSD_SDAT_OVFL; if (*sense_len >= 14) { sense->add_sense_code_qual = ascq; sense->extra_len = MAX(sense->extra_len, 6); } else sense->flags |= SSD_SDAT_OVFL; while ((elem_type = va_arg(ap, scsi_sense_elem_type)) != SSD_ELEM_NONE) { if (elem_type >= SSD_ELEM_MAX) { printf("%s: invalid sense type %d\n", __func__, elem_type); break; } len = va_arg(ap, int); data = va_arg(ap, uint8_t *); switch (elem_type) { case SSD_ELEM_SKIP: break; case SSD_ELEM_SKS: if (len > sizeof(sense->sense_key_spec)) break; if (*sense_len < 18) { sense->flags |= SSD_SDAT_OVFL; break; } bcopy(data, &sense->sense_key_spec[0], len); sense->extra_len = MAX(sense->extra_len, 10); break; case SSD_ELEM_COMMAND: if (*sense_len < 12) { sense->flags |= SSD_SDAT_OVFL; break; } if (len > sizeof(sense->cmd_spec_info)) { data += len - sizeof(sense->cmd_spec_info); len = sizeof(sense->cmd_spec_info); } bcopy(data, &sense->cmd_spec_info[ sizeof(sense->cmd_spec_info) - len], len); sense->extra_len = MAX(sense->extra_len, 4); break; case SSD_ELEM_INFO: /* Set VALID bit only if no overflow. */ sense->error_code |= SSD_ERRCODE_VALID; while (len > sizeof(sense->info)) { if (data[0] != 0) sense->error_code &= ~SSD_ERRCODE_VALID; data ++; len --; } bcopy(data, &sense->info[sizeof(sense->info) - len], len); break; case SSD_ELEM_FRU: if (*sense_len < 15) { sense->flags |= SSD_SDAT_OVFL; break; } sense->fru = *data; sense->extra_len = MAX(sense->extra_len, 7); break; case SSD_ELEM_STREAM: sense->flags |= *data & (SSD_ILI | SSD_EOM | SSD_FILEMARK); break; default: /* * We can't handle that in fixed format. Skip it. */ break; } } *sense_len = offsetof(struct scsi_sense_data_fixed, extra_len) + 1 + sense->extra_len; } /* * Fill in SCSI sense data with the specified parameters. This routine can * fill in either fixed or descriptor type sense data. */ void scsi_set_sense_data_va(struct scsi_sense_data *sense_data, u_int *sense_len, scsi_sense_data_type sense_format, int current_error, int sense_key, int asc, int ascq, va_list ap) { if (*sense_len > SSD_FULL_SIZE) *sense_len = SSD_FULL_SIZE; if (sense_format == SSD_TYPE_DESC) scsi_set_sense_data_desc_va(sense_data, sense_len, sense_format, current_error, sense_key, asc, ascq, ap); else scsi_set_sense_data_fixed_va(sense_data, sense_len, sense_format, current_error, sense_key, asc, ascq, ap); } void scsi_set_sense_data(struct scsi_sense_data *sense_data, scsi_sense_data_type sense_format, int current_error, int sense_key, int asc, int ascq, ...) { va_list ap; u_int sense_len = SSD_FULL_SIZE; va_start(ap, ascq); scsi_set_sense_data_va(sense_data, &sense_len, sense_format, current_error, sense_key, asc, ascq, ap); va_end(ap); } void scsi_set_sense_data_len(struct scsi_sense_data *sense_data, u_int *sense_len, scsi_sense_data_type sense_format, int current_error, int sense_key, int asc, int ascq, ...) { va_list ap; va_start(ap, ascq); scsi_set_sense_data_va(sense_data, sense_len, sense_format, current_error, sense_key, asc, ascq, ap); va_end(ap); } /* * Get sense information for three similar sense data types. */ int scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t info_type, uint64_t *info, int64_t *signed_info) { scsi_sense_data_type sense_type; if (sense_len == 0) goto bailout; sense_type = scsi_sense_type(sense_data); switch (sense_type) { case SSD_TYPE_DESC: { struct scsi_sense_data_desc *sense; uint8_t *desc; sense = (struct scsi_sense_data_desc *)sense_data; desc = scsi_find_desc(sense, sense_len, info_type); if (desc == NULL) goto bailout; switch (info_type) { case SSD_DESC_INFO: { struct scsi_sense_info *info_desc; info_desc = (struct scsi_sense_info *)desc; if ((info_desc->byte2 & SSD_INFO_VALID) == 0) goto bailout; *info = scsi_8btou64(info_desc->info); if (signed_info != NULL) *signed_info = *info; break; } case SSD_DESC_COMMAND: { struct scsi_sense_command *cmd_desc; cmd_desc = (struct scsi_sense_command *)desc; *info = scsi_8btou64(cmd_desc->command_info); if (signed_info != NULL) *signed_info = *info; break; } case SSD_DESC_FRU: { struct scsi_sense_fru *fru_desc; fru_desc = (struct scsi_sense_fru *)desc; if (fru_desc->fru == 0) goto bailout; *info = fru_desc->fru; if (signed_info != NULL) *signed_info = (int8_t)fru_desc->fru; break; } default: goto bailout; break; } break; } case SSD_TYPE_FIXED: { struct scsi_sense_data_fixed *sense; sense = (struct scsi_sense_data_fixed *)sense_data; switch (info_type) { case SSD_DESC_INFO: { uint32_t info_val; if ((sense->error_code & SSD_ERRCODE_VALID) == 0) goto bailout; if (SSD_FIXED_IS_PRESENT(sense, sense_len, info) == 0) goto bailout; info_val = scsi_4btoul(sense->info); *info = info_val; if (signed_info != NULL) *signed_info = (int32_t)info_val; break; } case SSD_DESC_COMMAND: { uint32_t cmd_val; if ((SSD_FIXED_IS_PRESENT(sense, sense_len, cmd_spec_info) == 0) || (SSD_FIXED_IS_FILLED(sense, cmd_spec_info) == 0)) goto bailout; cmd_val = scsi_4btoul(sense->cmd_spec_info); if (cmd_val == 0) goto bailout; *info = cmd_val; if (signed_info != NULL) *signed_info = (int32_t)cmd_val; break; } case SSD_DESC_FRU: if ((SSD_FIXED_IS_PRESENT(sense, sense_len, fru) == 0) || (SSD_FIXED_IS_FILLED(sense, fru) == 0)) goto bailout; if (sense->fru == 0) goto bailout; *info = sense->fru; if (signed_info != NULL) *signed_info = (int8_t)sense->fru; break; default: goto bailout; break; } break; } default: goto bailout; break; } return (0); bailout: return (1); } int scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks) { scsi_sense_data_type sense_type; if (sense_len == 0) goto bailout; sense_type = scsi_sense_type(sense_data); switch (sense_type) { case SSD_TYPE_DESC: { struct scsi_sense_data_desc *sense; struct scsi_sense_sks *desc; sense = (struct scsi_sense_data_desc *)sense_data; desc = (struct scsi_sense_sks *)scsi_find_desc(sense, sense_len, SSD_DESC_SKS); if (desc == NULL) goto bailout; if ((desc->sense_key_spec[0] & SSD_SKS_VALID) == 0) goto bailout; bcopy(desc->sense_key_spec, sks, sizeof(desc->sense_key_spec)); break; } case SSD_TYPE_FIXED: { struct scsi_sense_data_fixed *sense; sense = (struct scsi_sense_data_fixed *)sense_data; if ((SSD_FIXED_IS_PRESENT(sense, sense_len, sense_key_spec)== 0) || (SSD_FIXED_IS_FILLED(sense, sense_key_spec) == 0)) goto bailout; if ((sense->sense_key_spec[0] & SSD_SCS_VALID) == 0) goto bailout; bcopy(sense->sense_key_spec, sks,sizeof(sense->sense_key_spec)); break; } default: goto bailout; break; } return (0); bailout: return (1); } /* * Provide a common interface for fixed and descriptor sense to detect * whether we have block-specific sense information. It is clear by the * presence of the block descriptor in descriptor mode, but we have to * infer from the inquiry data and ILI bit in fixed mode. */ int scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len, struct scsi_inquiry_data *inq_data, uint8_t *block_bits) { scsi_sense_data_type sense_type; if (inq_data != NULL) { switch (SID_TYPE(inq_data)) { case T_DIRECT: case T_RBC: case T_ZBC_HM: break; default: goto bailout; break; } } sense_type = scsi_sense_type(sense_data); switch (sense_type) { case SSD_TYPE_DESC: { struct scsi_sense_data_desc *sense; struct scsi_sense_block *block; sense = (struct scsi_sense_data_desc *)sense_data; block = (struct scsi_sense_block *)scsi_find_desc(sense, sense_len, SSD_DESC_BLOCK); if (block == NULL) goto bailout; *block_bits = block->byte3; break; } case SSD_TYPE_FIXED: { struct scsi_sense_data_fixed *sense; sense = (struct scsi_sense_data_fixed *)sense_data; if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) goto bailout; *block_bits = sense->flags & SSD_ILI; break; } default: goto bailout; break; } return (0); bailout: return (1); } int scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len, struct scsi_inquiry_data *inq_data, uint8_t *stream_bits) { scsi_sense_data_type sense_type; if (inq_data != NULL) { switch (SID_TYPE(inq_data)) { case T_SEQUENTIAL: break; default: goto bailout; break; } } sense_type = scsi_sense_type(sense_data); switch (sense_type) { case SSD_TYPE_DESC: { struct scsi_sense_data_desc *sense; struct scsi_sense_stream *stream; sense = (struct scsi_sense_data_desc *)sense_data; stream = (struct scsi_sense_stream *)scsi_find_desc(sense, sense_len, SSD_DESC_STREAM); if (stream == NULL) goto bailout; *stream_bits = stream->byte3; break; } case SSD_TYPE_FIXED: { struct scsi_sense_data_fixed *sense; sense = (struct scsi_sense_data_fixed *)sense_data; if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) goto bailout; *stream_bits = sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK); break; } default: goto bailout; break; } return (0); bailout: return (1); } void scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, uint64_t info) { sbuf_printf(sb, "Info: %#jx", info); } void scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, uint64_t csi) { sbuf_printf(sb, "Command Specific Info: %#jx", csi); } void scsi_progress_sbuf(struct sbuf *sb, uint16_t progress) { sbuf_printf(sb, "Progress: %d%% (%d/%d) complete", (progress * 100) / SSD_SKS_PROGRESS_DENOM, progress, SSD_SKS_PROGRESS_DENOM); } /* * Returns 1 for failure (i.e. SKS isn't valid) and 0 for success. */ int scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks) { switch (sense_key) { case SSD_KEY_ILLEGAL_REQUEST: { struct scsi_sense_sks_field *field; int bad_command; char tmpstr[40]; /*Field Pointer*/ field = (struct scsi_sense_sks_field *)sks; if (field->byte0 & SSD_SKS_FIELD_CMD) bad_command = 1; else bad_command = 0; tmpstr[0] = '\0'; /* Bit pointer is valid */ if (field->byte0 & SSD_SKS_BPV) snprintf(tmpstr, sizeof(tmpstr), "bit %d ", field->byte0 & SSD_SKS_BIT_VALUE); sbuf_printf(sb, "%s byte %d %sis invalid", bad_command ? "Command" : "Data", scsi_2btoul(field->field), tmpstr); break; } case SSD_KEY_UNIT_ATTENTION: { struct scsi_sense_sks_overflow *overflow; overflow = (struct scsi_sense_sks_overflow *)sks; /*UA Condition Queue Overflow*/ sbuf_printf(sb, "Unit Attention Condition Queue %s", (overflow->byte0 & SSD_SKS_OVERFLOW_SET) ? "Overflowed" : "Did Not Overflow??"); break; } case SSD_KEY_RECOVERED_ERROR: case SSD_KEY_HARDWARE_ERROR: case SSD_KEY_MEDIUM_ERROR: { struct scsi_sense_sks_retry *retry; /*Actual Retry Count*/ retry = (struct scsi_sense_sks_retry *)sks; sbuf_printf(sb, "Actual Retry Count: %d", scsi_2btoul(retry->actual_retry_count)); break; } case SSD_KEY_NO_SENSE: case SSD_KEY_NOT_READY: { struct scsi_sense_sks_progress *progress; int progress_val; /*Progress Indication*/ progress = (struct scsi_sense_sks_progress *)sks; progress_val = scsi_2btoul(progress->progress); scsi_progress_sbuf(sb, progress_val); break; } case SSD_KEY_COPY_ABORTED: { struct scsi_sense_sks_segment *segment; char tmpstr[40]; /*Segment Pointer*/ segment = (struct scsi_sense_sks_segment *)sks; tmpstr[0] = '\0'; if (segment->byte0 & SSD_SKS_SEGMENT_BPV) snprintf(tmpstr, sizeof(tmpstr), "bit %d ", segment->byte0 & SSD_SKS_SEGMENT_BITPTR); sbuf_printf(sb, "%s byte %d %sis invalid", (segment->byte0 & SSD_SKS_SEGMENT_SD) ? "Segment" : "Data", scsi_2btoul(segment->field), tmpstr); break; } default: sbuf_printf(sb, "Sense Key Specific: %#x,%#x", sks[0], scsi_2btoul(&sks[1])); break; } return (0); } void scsi_fru_sbuf(struct sbuf *sb, uint64_t fru) { sbuf_printf(sb, "Field Replaceable Unit: %d", (int)fru); } void scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits) { int need_comma; need_comma = 0; /* * XXX KDM this needs more descriptive decoding. */ sbuf_printf(sb, "Stream Command Sense Data: "); if (stream_bits & SSD_DESC_STREAM_FM) { sbuf_printf(sb, "Filemark"); need_comma = 1; } if (stream_bits & SSD_DESC_STREAM_EOM) { sbuf_printf(sb, "%sEOM", (need_comma) ? "," : ""); need_comma = 1; } if (stream_bits & SSD_DESC_STREAM_ILI) sbuf_printf(sb, "%sILI", (need_comma) ? "," : ""); } void scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits) { sbuf_printf(sb, "Block Command Sense Data: "); if (block_bits & SSD_DESC_BLOCK_ILI) sbuf_printf(sb, "ILI"); } void scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header) { struct scsi_sense_info *info; info = (struct scsi_sense_info *)header; if ((info->byte2 & SSD_INFO_VALID) == 0) return; scsi_info_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(info->info)); } void scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header) { struct scsi_sense_command *command; command = (struct scsi_sense_command *)header; scsi_command_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(command->command_info)); } void scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header) { struct scsi_sense_sks *sks; int error_code, sense_key, asc, ascq; sks = (struct scsi_sense_sks *)header; if ((sks->sense_key_spec[0] & SSD_SKS_VALID) == 0) return; scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, &asc, &ascq, /*show_errors*/ 1); scsi_sks_sbuf(sb, sense_key, sks->sense_key_spec); } void scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header) { struct scsi_sense_fru *fru; fru = (struct scsi_sense_fru *)header; if (fru->fru == 0) return; scsi_fru_sbuf(sb, (uint64_t)fru->fru); } void scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header) { struct scsi_sense_stream *stream; stream = (struct scsi_sense_stream *)header; scsi_stream_sbuf(sb, stream->byte3); } void scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header) { struct scsi_sense_block *block; block = (struct scsi_sense_block *)header; scsi_block_sbuf(sb, block->byte3); } void scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header) { struct scsi_sense_progress *progress; const char *sense_key_desc; const char *asc_desc; int progress_val; progress = (struct scsi_sense_progress *)header; /* * Get descriptions for the sense key, ASC, and ASCQ in the * progress descriptor. These could be different than the values * in the overall sense data. */ scsi_sense_desc(progress->sense_key, progress->add_sense_code, progress->add_sense_code_qual, inq_data, &sense_key_desc, &asc_desc); progress_val = scsi_2btoul(progress->progress); /* * The progress indicator is for the operation described by the * sense key, ASC, and ASCQ in the descriptor. */ sbuf_cat(sb, sense_key_desc); sbuf_printf(sb, " asc:%x,%x (%s): ", progress->add_sense_code, progress->add_sense_code_qual, asc_desc); scsi_progress_sbuf(sb, progress_val); } void scsi_sense_ata_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header) { struct scsi_sense_ata_ret_desc *res; res = (struct scsi_sense_ata_ret_desc *)header; sbuf_printf(sb, "ATA status: %02x (%s%s%s%s%s%s%s%s), ", res->status, (res->status & 0x80) ? "BSY " : "", (res->status & 0x40) ? "DRDY " : "", (res->status & 0x20) ? "DF " : "", (res->status & 0x10) ? "SERV " : "", (res->status & 0x08) ? "DRQ " : "", (res->status & 0x04) ? "CORR " : "", (res->status & 0x02) ? "IDX " : "", (res->status & 0x01) ? "ERR" : ""); if (res->status & 1) { sbuf_printf(sb, "error: %02x (%s%s%s%s%s%s%s%s), ", res->error, (res->error & 0x80) ? "ICRC " : "", (res->error & 0x40) ? "UNC " : "", (res->error & 0x20) ? "MC " : "", (res->error & 0x10) ? "IDNF " : "", (res->error & 0x08) ? "MCR " : "", (res->error & 0x04) ? "ABRT " : "", (res->error & 0x02) ? "NM " : "", (res->error & 0x01) ? "ILI" : ""); } if (res->flags & SSD_DESC_ATA_FLAG_EXTEND) { sbuf_printf(sb, "count: %02x%02x, ", res->count_15_8, res->count_7_0); sbuf_printf(sb, "LBA: %02x%02x%02x%02x%02x%02x, ", res->lba_47_40, res->lba_39_32, res->lba_31_24, res->lba_23_16, res->lba_15_8, res->lba_7_0); } else { sbuf_printf(sb, "count: %02x, ", res->count_7_0); sbuf_printf(sb, "LBA: %02x%02x%02x, ", res->lba_23_16, res->lba_15_8, res->lba_7_0); } sbuf_printf(sb, "device: %02x, ", res->device); } void scsi_sense_forwarded_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header) { struct scsi_sense_forwarded *forwarded; const char *sense_key_desc; const char *asc_desc; int error_code, sense_key, asc, ascq; forwarded = (struct scsi_sense_forwarded *)header; scsi_extract_sense_len((struct scsi_sense_data *)forwarded->sense_data, forwarded->length - 2, &error_code, &sense_key, &asc, &ascq, 1); scsi_sense_desc(sense_key, asc, ascq, NULL, &sense_key_desc, &asc_desc); sbuf_printf(sb, "Forwarded sense: %s asc:%x,%x (%s): ", sense_key_desc, asc, ascq, asc_desc); } /* * Generic sense descriptor printing routine. This is used when we have * not yet implemented a specific printing routine for this descriptor. */ void scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header) { int i; uint8_t *buf_ptr; sbuf_printf(sb, "Descriptor %#x:", header->desc_type); buf_ptr = (uint8_t *)&header[1]; for (i = 0; i < header->length; i++, buf_ptr++) sbuf_printf(sb, " %02x", *buf_ptr); } /* * Keep this list in numeric order. This speeds the array traversal. */ struct scsi_sense_desc_printer { uint8_t desc_type; /* * The function arguments here are the superset of what is needed * to print out various different descriptors. Command and * information descriptors need inquiry data and command type. * Sense key specific descriptors need the sense key. * * The sense, cdb, and inquiry data arguments may be NULL, but the * information printed may not be fully decoded as a result. */ void (*print_func)(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header); } scsi_sense_printers[] = { {SSD_DESC_INFO, scsi_sense_info_sbuf}, {SSD_DESC_COMMAND, scsi_sense_command_sbuf}, {SSD_DESC_SKS, scsi_sense_sks_sbuf}, {SSD_DESC_FRU, scsi_sense_fru_sbuf}, {SSD_DESC_STREAM, scsi_sense_stream_sbuf}, {SSD_DESC_BLOCK, scsi_sense_block_sbuf}, {SSD_DESC_ATA, scsi_sense_ata_sbuf}, {SSD_DESC_PROGRESS, scsi_sense_progress_sbuf}, {SSD_DESC_FORWARDED, scsi_sense_forwarded_sbuf} }; void scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header) { u_int i; for (i = 0; i < nitems(scsi_sense_printers); i++) { struct scsi_sense_desc_printer *printer; printer = &scsi_sense_printers[i]; /* * The list is sorted, so quit if we've passed our * descriptor number. */ if (printer->desc_type > header->desc_type) break; if (printer->desc_type != header->desc_type) continue; printer->print_func(sb, sense, sense_len, cdb, cdb_len, inq_data, header); return; } /* * No specific printing routine, so use the generic routine. */ scsi_sense_generic_sbuf(sb, sense, sense_len, cdb, cdb_len, inq_data, header); } scsi_sense_data_type scsi_sense_type(struct scsi_sense_data *sense_data) { switch (sense_data->error_code & SSD_ERRCODE) { case SSD_DESC_CURRENT_ERROR: case SSD_DESC_DEFERRED_ERROR: return (SSD_TYPE_DESC); break; case SSD_CURRENT_ERROR: case SSD_DEFERRED_ERROR: return (SSD_TYPE_FIXED); break; default: break; } return (SSD_TYPE_NONE); } struct scsi_print_sense_info { struct sbuf *sb; char *path_str; uint8_t *cdb; int cdb_len; struct scsi_inquiry_data *inq_data; }; static int scsi_print_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, struct scsi_sense_desc_header *header, void *arg) { struct scsi_print_sense_info *print_info; print_info = (struct scsi_print_sense_info *)arg; switch (header->desc_type) { case SSD_DESC_INFO: case SSD_DESC_FRU: case SSD_DESC_COMMAND: case SSD_DESC_SKS: case SSD_DESC_BLOCK: case SSD_DESC_STREAM: /* * We have already printed these descriptors, if they are * present. */ break; default: { sbuf_printf(print_info->sb, "%s", print_info->path_str); scsi_sense_desc_sbuf(print_info->sb, (struct scsi_sense_data *)sense, sense_len, print_info->cdb, print_info->cdb_len, print_info->inq_data, header); sbuf_printf(print_info->sb, "\n"); break; } } /* * Tell the iterator that we want to see more descriptors if they * are present. */ return (0); } void scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len, struct sbuf *sb, char *path_str, struct scsi_inquiry_data *inq_data, uint8_t *cdb, int cdb_len) { int error_code, sense_key, asc, ascq; sbuf_cat(sb, path_str); scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, &asc, &ascq, /*show_errors*/ 1); sbuf_printf(sb, "SCSI sense: "); switch (error_code) { case SSD_DEFERRED_ERROR: case SSD_DESC_DEFERRED_ERROR: sbuf_printf(sb, "Deferred error: "); /* FALLTHROUGH */ case SSD_CURRENT_ERROR: case SSD_DESC_CURRENT_ERROR: { struct scsi_sense_data_desc *desc_sense; struct scsi_print_sense_info print_info; const char *sense_key_desc; const char *asc_desc; uint8_t sks[3]; uint64_t val; uint8_t bits; /* * Get descriptions for the sense key, ASC, and ASCQ. If * these aren't present in the sense data (i.e. the sense * data isn't long enough), the -1 values that * scsi_extract_sense_len() returns will yield default * or error descriptions. */ scsi_sense_desc(sense_key, asc, ascq, inq_data, &sense_key_desc, &asc_desc); /* * We first print the sense key and ASC/ASCQ. */ sbuf_cat(sb, sense_key_desc); sbuf_printf(sb, " asc:%x,%x (%s)\n", asc, ascq, asc_desc); /* * Print any block or stream device-specific information. */ if (scsi_get_block_info(sense, sense_len, inq_data, &bits) == 0 && bits != 0) { sbuf_cat(sb, path_str); scsi_block_sbuf(sb, bits); sbuf_printf(sb, "\n"); } else if (scsi_get_stream_info(sense, sense_len, inq_data, &bits) == 0 && bits != 0) { sbuf_cat(sb, path_str); scsi_stream_sbuf(sb, bits); sbuf_printf(sb, "\n"); } /* * Print the info field. */ if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, &val, NULL) == 0) { sbuf_cat(sb, path_str); scsi_info_sbuf(sb, cdb, cdb_len, inq_data, val); sbuf_printf(sb, "\n"); } /* * Print the FRU. */ if (scsi_get_sense_info(sense, sense_len, SSD_DESC_FRU, &val, NULL) == 0) { sbuf_cat(sb, path_str); scsi_fru_sbuf(sb, val); sbuf_printf(sb, "\n"); } /* * Print any command-specific information. */ if (scsi_get_sense_info(sense, sense_len, SSD_DESC_COMMAND, &val, NULL) == 0) { sbuf_cat(sb, path_str); scsi_command_sbuf(sb, cdb, cdb_len, inq_data, val); sbuf_printf(sb, "\n"); } /* * Print out any sense-key-specific information. */ if (scsi_get_sks(sense, sense_len, sks) == 0) { sbuf_cat(sb, path_str); scsi_sks_sbuf(sb, sense_key, sks); sbuf_printf(sb, "\n"); } /* * If this is fixed sense, we're done. If we have * descriptor sense, we might have more information * available. */ if (scsi_sense_type(sense) != SSD_TYPE_DESC) break; desc_sense = (struct scsi_sense_data_desc *)sense; print_info.sb = sb; print_info.path_str = path_str; print_info.cdb = cdb; print_info.cdb_len = cdb_len; print_info.inq_data = inq_data; /* * Print any sense descriptors that we have not already printed. */ scsi_desc_iterate(desc_sense, sense_len, scsi_print_desc_func, &print_info); break; } case -1: /* * scsi_extract_sense_len() sets values to -1 if the * show_errors flag is set and they aren't present in the * sense data. This means that sense_len is 0. */ sbuf_printf(sb, "No sense data present\n"); break; default: { sbuf_printf(sb, "Error code 0x%x", error_code); if (sense->error_code & SSD_ERRCODE_VALID) { struct scsi_sense_data_fixed *fixed_sense; fixed_sense = (struct scsi_sense_data_fixed *)sense; if (SSD_FIXED_IS_PRESENT(fixed_sense, sense_len, info)){ uint32_t info; info = scsi_4btoul(fixed_sense->info); sbuf_printf(sb, " at block no. %d (decimal)", info); } } sbuf_printf(sb, "\n"); break; } } } /* * scsi_sense_sbuf() returns 0 for success and -1 for failure. */ #ifdef _KERNEL int scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb, scsi_sense_string_flags flags) #else /* !_KERNEL */ int scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio, struct sbuf *sb, scsi_sense_string_flags flags) #endif /* _KERNEL/!_KERNEL */ { struct scsi_sense_data *sense; struct scsi_inquiry_data *inq_data; #ifdef _KERNEL struct ccb_getdev *cgd; #endif /* _KERNEL */ char path_str[64]; #ifndef _KERNEL if (device == NULL) return(-1); #endif /* !_KERNEL */ if ((csio == NULL) || (sb == NULL)) return(-1); /* * If the CDB is a physical address, we can't deal with it.. */ if ((csio->ccb_h.flags & CAM_CDB_PHYS) != 0) flags &= ~SSS_FLAG_PRINT_COMMAND; #ifdef _KERNEL xpt_path_string(csio->ccb_h.path, path_str, sizeof(path_str)); #else /* !_KERNEL */ cam_path_string(device, path_str, sizeof(path_str)); #endif /* _KERNEL/!_KERNEL */ #ifdef _KERNEL if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) return(-1); /* * Get the device information. */ xpt_setup_ccb(&cgd->ccb_h, csio->ccb_h.path, CAM_PRIORITY_NORMAL); cgd->ccb_h.func_code = XPT_GDEV_TYPE; xpt_action((union ccb *)cgd); /* * If the device is unconfigured, just pretend that it is a hard * drive. scsi_op_desc() needs this. */ if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) cgd->inq_data.device = T_DIRECT; inq_data = &cgd->inq_data; #else /* !_KERNEL */ inq_data = &device->inq_data; #endif /* _KERNEL/!_KERNEL */ sense = NULL; if (flags & SSS_FLAG_PRINT_COMMAND) { sbuf_cat(sb, path_str); #ifdef _KERNEL scsi_command_string(csio, sb); #else /* !_KERNEL */ scsi_command_string(device, csio, sb); #endif /* _KERNEL/!_KERNEL */ sbuf_printf(sb, "\n"); } /* * If the sense data is a physical pointer, forget it. */ if (csio->ccb_h.flags & CAM_SENSE_PTR) { if (csio->ccb_h.flags & CAM_SENSE_PHYS) { #ifdef _KERNEL xpt_free_ccb((union ccb*)cgd); #endif /* _KERNEL/!_KERNEL */ return(-1); } else { /* * bcopy the pointer to avoid unaligned access * errors on finicky architectures. We don't * ensure that the sense data is pointer aligned. */ bcopy((struct scsi_sense_data **)&csio->sense_data, &sense, sizeof(struct scsi_sense_data *)); } } else { /* * If the physical sense flag is set, but the sense pointer * is not also set, we assume that the user is an idiot and * return. (Well, okay, it could be that somehow, the * entire csio is physical, but we would have probably core * dumped on one of the bogus pointer deferences above * already.) */ if (csio->ccb_h.flags & CAM_SENSE_PHYS) { #ifdef _KERNEL xpt_free_ccb((union ccb*)cgd); #endif /* _KERNEL/!_KERNEL */ return(-1); } else sense = &csio->sense_data; } scsi_sense_only_sbuf(sense, csio->sense_len - csio->sense_resid, sb, path_str, inq_data, scsiio_cdb_ptr(csio), csio->cdb_len); #ifdef _KERNEL xpt_free_ccb((union ccb*)cgd); #endif /* _KERNEL/!_KERNEL */ return(0); } #ifdef _KERNEL char * scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len) #else /* !_KERNEL */ char * scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio, char *str, int str_len) #endif /* _KERNEL/!_KERNEL */ { struct sbuf sb; sbuf_new(&sb, str, str_len, 0); #ifdef _KERNEL scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); #else /* !_KERNEL */ scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); #endif /* _KERNEL/!_KERNEL */ sbuf_finish(&sb); return(sbuf_data(&sb)); } #ifdef _KERNEL void scsi_sense_print(struct ccb_scsiio *csio) { struct sbuf sb; char str[512]; sbuf_new(&sb, str, sizeof(str), 0); scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); sbuf_finish(&sb); sbuf_putbuf(&sb); } #else /* !_KERNEL */ void scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio, FILE *ofile) { struct sbuf sb; char str[512]; if ((device == NULL) || (csio == NULL) || (ofile == NULL)) return; sbuf_new(&sb, str, sizeof(str), 0); scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); sbuf_finish(&sb); fprintf(ofile, "%s", sbuf_data(&sb)); } #endif /* _KERNEL/!_KERNEL */ /* * Extract basic sense information. This is backward-compatible with the * previous implementation. For new implementations, * scsi_extract_sense_len() is recommended. */ void scsi_extract_sense(struct scsi_sense_data *sense_data, int *error_code, int *sense_key, int *asc, int *ascq) { scsi_extract_sense_len(sense_data, sizeof(*sense_data), error_code, sense_key, asc, ascq, /*show_errors*/ 0); } /* * Extract basic sense information from SCSI I/O CCB structure. */ int scsi_extract_sense_ccb(union ccb *ccb, int *error_code, int *sense_key, int *asc, int *ascq) { struct scsi_sense_data *sense_data; /* Make sure there are some sense data we can access. */ if (ccb->ccb_h.func_code != XPT_SCSI_IO || (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_SCSI_STATUS_ERROR || (ccb->csio.scsi_status != SCSI_STATUS_CHECK_COND) || (ccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0 || (ccb->ccb_h.flags & CAM_SENSE_PHYS)) return (0); if (ccb->ccb_h.flags & CAM_SENSE_PTR) bcopy((struct scsi_sense_data **)&ccb->csio.sense_data, &sense_data, sizeof(struct scsi_sense_data *)); else sense_data = &ccb->csio.sense_data; scsi_extract_sense_len(sense_data, ccb->csio.sense_len - ccb->csio.sense_resid, error_code, sense_key, asc, ascq, 1); if (*error_code == -1) return (0); return (1); } /* * Extract basic sense information. If show_errors is set, sense values * will be set to -1 if they are not present. */ void scsi_extract_sense_len(struct scsi_sense_data *sense_data, u_int sense_len, int *error_code, int *sense_key, int *asc, int *ascq, int show_errors) { /* * If we have no length, we have no sense. */ if (sense_len == 0) { if (show_errors == 0) { *error_code = 0; *sense_key = 0; *asc = 0; *ascq = 0; } else { *error_code = -1; *sense_key = -1; *asc = -1; *ascq = -1; } return; } *error_code = sense_data->error_code & SSD_ERRCODE; switch (*error_code) { case SSD_DESC_CURRENT_ERROR: case SSD_DESC_DEFERRED_ERROR: { struct scsi_sense_data_desc *sense; sense = (struct scsi_sense_data_desc *)sense_data; if (SSD_DESC_IS_PRESENT(sense, sense_len, sense_key)) *sense_key = sense->sense_key & SSD_KEY; else *sense_key = (show_errors) ? -1 : 0; if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code)) *asc = sense->add_sense_code; else *asc = (show_errors) ? -1 : 0; if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code_qual)) *ascq = sense->add_sense_code_qual; else *ascq = (show_errors) ? -1 : 0; break; } case SSD_CURRENT_ERROR: case SSD_DEFERRED_ERROR: default: { struct scsi_sense_data_fixed *sense; sense = (struct scsi_sense_data_fixed *)sense_data; if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags)) *sense_key = sense->flags & SSD_KEY; else *sense_key = (show_errors) ? -1 : 0; if ((SSD_FIXED_IS_PRESENT(sense, sense_len, add_sense_code)) && (SSD_FIXED_IS_FILLED(sense, add_sense_code))) *asc = sense->add_sense_code; else *asc = (show_errors) ? -1 : 0; if ((SSD_FIXED_IS_PRESENT(sense, sense_len,add_sense_code_qual)) && (SSD_FIXED_IS_FILLED(sense, add_sense_code_qual))) *ascq = sense->add_sense_code_qual; else *ascq = (show_errors) ? -1 : 0; break; } } } int scsi_get_sense_key(struct scsi_sense_data *sense_data, u_int sense_len, int show_errors) { int error_code, sense_key, asc, ascq; scsi_extract_sense_len(sense_data, sense_len, &error_code, &sense_key, &asc, &ascq, show_errors); return (sense_key); } int scsi_get_asc(struct scsi_sense_data *sense_data, u_int sense_len, int show_errors) { int error_code, sense_key, asc, ascq; scsi_extract_sense_len(sense_data, sense_len, &error_code, &sense_key, &asc, &ascq, show_errors); return (asc); } int scsi_get_ascq(struct scsi_sense_data *sense_data, u_int sense_len, int show_errors) { int error_code, sense_key, asc, ascq; scsi_extract_sense_len(sense_data, sense_len, &error_code, &sense_key, &asc, &ascq, show_errors); return (ascq); } /* * This function currently requires at least 36 bytes, or * SHORT_INQUIRY_LENGTH, worth of data to function properly. If this * function needs more or less data in the future, another length should be * defined in scsi_all.h to indicate the minimum amount of data necessary * for this routine to function properly. */ void scsi_print_inquiry_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data) { u_int8_t type; char *dtype, *qtype; type = SID_TYPE(inq_data); /* * Figure out basic device type and qualifier. */ if (SID_QUAL_IS_VENDOR_UNIQUE(inq_data)) { qtype = " (vendor-unique qualifier)"; } else { switch (SID_QUAL(inq_data)) { case SID_QUAL_LU_CONNECTED: qtype = ""; break; case SID_QUAL_LU_OFFLINE: qtype = " (offline)"; break; case SID_QUAL_RSVD: qtype = " (reserved qualifier)"; break; default: case SID_QUAL_BAD_LU: qtype = " (LUN not supported)"; break; } } switch (type) { case T_DIRECT: dtype = "Direct Access"; break; case T_SEQUENTIAL: dtype = "Sequential Access"; break; case T_PRINTER: dtype = "Printer"; break; case T_PROCESSOR: dtype = "Processor"; break; case T_WORM: dtype = "WORM"; break; case T_CDROM: dtype = "CD-ROM"; break; case T_SCANNER: dtype = "Scanner"; break; case T_OPTICAL: dtype = "Optical"; break; case T_CHANGER: dtype = "Changer"; break; case T_COMM: dtype = "Communication"; break; case T_STORARRAY: dtype = "Storage Array"; break; case T_ENCLOSURE: dtype = "Enclosure Services"; break; case T_RBC: dtype = "Simplified Direct Access"; break; case T_OCRW: dtype = "Optical Card Read/Write"; break; case T_OSD: dtype = "Object-Based Storage"; break; case T_ADC: dtype = "Automation/Drive Interface"; break; case T_ZBC_HM: dtype = "Host Managed Zoned Block"; break; case T_NODEVICE: dtype = "Uninstalled"; break; default: dtype = "unknown"; break; } scsi_print_inquiry_short_sbuf(sb, inq_data); sbuf_printf(sb, "%s %s ", SID_IS_REMOVABLE(inq_data) ? "Removable" : "Fixed", dtype); if (SID_ANSI_REV(inq_data) == SCSI_REV_0) sbuf_printf(sb, "SCSI "); else if (SID_ANSI_REV(inq_data) <= SCSI_REV_SPC) { sbuf_printf(sb, "SCSI-%d ", SID_ANSI_REV(inq_data)); } else { sbuf_printf(sb, "SPC-%d SCSI ", SID_ANSI_REV(inq_data) - 2); } sbuf_printf(sb, "device%s\n", qtype); } void scsi_print_inquiry(struct scsi_inquiry_data *inq_data) { struct sbuf sb; char buffer[120]; sbuf_new(&sb, buffer, 120, SBUF_FIXEDLEN); scsi_print_inquiry_sbuf(&sb, inq_data); sbuf_finish(&sb); sbuf_putbuf(&sb); } void scsi_print_inquiry_short_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data) { sbuf_printf(sb, "<"); cam_strvis_sbuf(sb, inq_data->vendor, sizeof(inq_data->vendor), 0); sbuf_printf(sb, " "); cam_strvis_sbuf(sb, inq_data->product, sizeof(inq_data->product), 0); sbuf_printf(sb, " "); cam_strvis_sbuf(sb, inq_data->revision, sizeof(inq_data->revision), 0); sbuf_printf(sb, "> "); } void scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data) { struct sbuf sb; char buffer[84]; sbuf_new(&sb, buffer, 84, SBUF_FIXEDLEN); scsi_print_inquiry_short_sbuf(&sb, inq_data); sbuf_finish(&sb); sbuf_putbuf(&sb); } /* * Table of syncrates that don't follow the "divisible by 4" * rule. This table will be expanded in future SCSI specs. */ static struct { u_int period_factor; u_int period; /* in 100ths of ns */ } scsi_syncrates[] = { { 0x08, 625 }, /* FAST-160 */ { 0x09, 1250 }, /* FAST-80 */ { 0x0a, 2500 }, /* FAST-40 40MHz */ { 0x0b, 3030 }, /* FAST-40 33MHz */ { 0x0c, 5000 } /* FAST-20 */ }; /* * Return the frequency in kHz corresponding to the given * sync period factor. */ u_int scsi_calc_syncsrate(u_int period_factor) { u_int i; u_int num_syncrates; /* * It's a bug if period is zero, but if it is anyway, don't * die with a divide fault- instead return something which * 'approximates' async */ if (period_factor == 0) { return (3300); } num_syncrates = nitems(scsi_syncrates); /* See if the period is in the "exception" table */ for (i = 0; i < num_syncrates; i++) { if (period_factor == scsi_syncrates[i].period_factor) { /* Period in kHz */ return (100000000 / scsi_syncrates[i].period); } } /* * Wasn't in the table, so use the standard * 4 times conversion. */ return (10000000 / (period_factor * 4 * 10)); } /* * Return the SCSI sync parameter that corresponds to * the passed in period in 10ths of ns. */ u_int scsi_calc_syncparam(u_int period) { u_int i; u_int num_syncrates; if (period == 0) return (~0); /* Async */ /* Adjust for exception table being in 100ths. */ period *= 10; num_syncrates = nitems(scsi_syncrates); /* See if the period is in the "exception" table */ for (i = 0; i < num_syncrates; i++) { if (period <= scsi_syncrates[i].period) { /* Period in 100ths of ns */ return (scsi_syncrates[i].period_factor); } } /* * Wasn't in the table, so use the standard * 1/4 period in ns conversion. */ return (period/400); } int scsi_devid_is_naa_ieee_reg(uint8_t *bufp) { struct scsi_vpd_id_descriptor *descr; struct scsi_vpd_id_naa_basic *naa; int n; descr = (struct scsi_vpd_id_descriptor *)bufp; naa = (struct scsi_vpd_id_naa_basic *)descr->identifier; if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) return 0; if (descr->length < sizeof(struct scsi_vpd_id_naa_ieee_reg)) return 0; n = naa->naa >> SVPD_ID_NAA_NAA_SHIFT; if (n != SVPD_ID_NAA_LOCAL_REG && n != SVPD_ID_NAA_IEEE_REG) return 0; return 1; } int scsi_devid_is_sas_target(uint8_t *bufp) { struct scsi_vpd_id_descriptor *descr; descr = (struct scsi_vpd_id_descriptor *)bufp; if (!scsi_devid_is_naa_ieee_reg(bufp)) return 0; if ((descr->id_type & SVPD_ID_PIV) == 0) /* proto field reserved */ return 0; if ((descr->proto_codeset >> SVPD_ID_PROTO_SHIFT) != SCSI_PROTO_SAS) return 0; return 1; } int scsi_devid_is_lun_eui64(uint8_t *bufp) { struct scsi_vpd_id_descriptor *descr; descr = (struct scsi_vpd_id_descriptor *)bufp; if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) return 0; if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_EUI64) return 0; return 1; } int scsi_devid_is_lun_naa(uint8_t *bufp) { struct scsi_vpd_id_descriptor *descr; descr = (struct scsi_vpd_id_descriptor *)bufp; if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) return 0; if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) return 0; return 1; } int scsi_devid_is_lun_t10(uint8_t *bufp) { struct scsi_vpd_id_descriptor *descr; descr = (struct scsi_vpd_id_descriptor *)bufp; if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) return 0; if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_T10) return 0; return 1; } int scsi_devid_is_lun_name(uint8_t *bufp) { struct scsi_vpd_id_descriptor *descr; descr = (struct scsi_vpd_id_descriptor *)bufp; if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) return 0; if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_SCSI_NAME) return 0; return 1; } int scsi_devid_is_lun_md5(uint8_t *bufp) { struct scsi_vpd_id_descriptor *descr; descr = (struct scsi_vpd_id_descriptor *)bufp; if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) return 0; if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_MD5_LUN_ID) return 0; return 1; } int scsi_devid_is_lun_uuid(uint8_t *bufp) { struct scsi_vpd_id_descriptor *descr; descr = (struct scsi_vpd_id_descriptor *)bufp; if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) return 0; if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_UUID) return 0; return 1; } int scsi_devid_is_port_naa(uint8_t *bufp) { struct scsi_vpd_id_descriptor *descr; descr = (struct scsi_vpd_id_descriptor *)bufp; if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_PORT) return 0; if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) return 0; return 1; } struct scsi_vpd_id_descriptor * scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len, scsi_devid_checkfn_t ck_fn) { uint8_t *desc_buf_end; desc_buf_end = (uint8_t *)desc + len; for (; desc->identifier <= desc_buf_end && desc->identifier + desc->length <= desc_buf_end; desc = (struct scsi_vpd_id_descriptor *)(desc->identifier + desc->length)) { if (ck_fn == NULL || ck_fn((uint8_t *)desc) != 0) return (desc); } return (NULL); } struct scsi_vpd_id_descriptor * scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t page_len, scsi_devid_checkfn_t ck_fn) { uint32_t len; if (page_len < sizeof(*id)) return (NULL); len = MIN(scsi_2btoul(id->length), page_len - sizeof(*id)); return (scsi_get_devid_desc((struct scsi_vpd_id_descriptor *) id->desc_list, len, ck_fn)); } int scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr, uint32_t valid_len) { switch (hdr->format_protocol & SCSI_TRN_PROTO_MASK) { case SCSI_PROTO_FC: { struct scsi_transportid_fcp *fcp; uint64_t n_port_name; fcp = (struct scsi_transportid_fcp *)hdr; n_port_name = scsi_8btou64(fcp->n_port_name); sbuf_printf(sb, "FCP address: 0x%.16jx",(uintmax_t)n_port_name); break; } case SCSI_PROTO_SPI: { struct scsi_transportid_spi *spi; spi = (struct scsi_transportid_spi *)hdr; sbuf_printf(sb, "SPI address: %u,%u", scsi_2btoul(spi->scsi_addr), scsi_2btoul(spi->rel_trgt_port_id)); break; } case SCSI_PROTO_SSA: /* * XXX KDM there is no transport ID defined in SPC-4 for * SSA. */ break; case SCSI_PROTO_1394: { struct scsi_transportid_1394 *sbp; uint64_t eui64; sbp = (struct scsi_transportid_1394 *)hdr; eui64 = scsi_8btou64(sbp->eui64); sbuf_printf(sb, "SBP address: 0x%.16jx", (uintmax_t)eui64); break; } case SCSI_PROTO_RDMA: { struct scsi_transportid_rdma *rdma; unsigned int i; rdma = (struct scsi_transportid_rdma *)hdr; sbuf_printf(sb, "RDMA address: 0x"); for (i = 0; i < sizeof(rdma->initiator_port_id); i++) sbuf_printf(sb, "%02x", rdma->initiator_port_id[i]); break; } case SCSI_PROTO_ISCSI: { uint32_t add_len, i; uint8_t *iscsi_name = NULL; int nul_found = 0; sbuf_printf(sb, "iSCSI address: "); if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) == SCSI_TRN_ISCSI_FORMAT_DEVICE) { struct scsi_transportid_iscsi_device *dev; dev = (struct scsi_transportid_iscsi_device *)hdr; /* * Verify how much additional data we really have. */ add_len = scsi_2btoul(dev->additional_length); add_len = MIN(add_len, valid_len - __offsetof(struct scsi_transportid_iscsi_device, iscsi_name)); iscsi_name = &dev->iscsi_name[0]; } else if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) == SCSI_TRN_ISCSI_FORMAT_PORT) { struct scsi_transportid_iscsi_port *port; port = (struct scsi_transportid_iscsi_port *)hdr; add_len = scsi_2btoul(port->additional_length); add_len = MIN(add_len, valid_len - __offsetof(struct scsi_transportid_iscsi_port, iscsi_name)); iscsi_name = &port->iscsi_name[0]; } else { sbuf_printf(sb, "unknown format %x", (hdr->format_protocol & SCSI_TRN_FORMAT_MASK) >> SCSI_TRN_FORMAT_SHIFT); break; } if (add_len == 0) { sbuf_printf(sb, "not enough data"); break; } /* * This is supposed to be a NUL-terminated ASCII * string, but you never know. So we're going to * check. We need to do this because there is no * sbuf equivalent of strncat(). */ for (i = 0; i < add_len; i++) { if (iscsi_name[i] == '\0') { nul_found = 1; break; } } /* * If there is a NUL in the name, we can just use * sbuf_cat(). Otherwise we need to use sbuf_bcat(). */ if (nul_found != 0) sbuf_cat(sb, iscsi_name); else sbuf_bcat(sb, iscsi_name, add_len); break; } case SCSI_PROTO_SAS: { struct scsi_transportid_sas *sas; uint64_t sas_addr; sas = (struct scsi_transportid_sas *)hdr; sas_addr = scsi_8btou64(sas->sas_address); sbuf_printf(sb, "SAS address: 0x%.16jx", (uintmax_t)sas_addr); break; } case SCSI_PROTO_ADITP: case SCSI_PROTO_ATA: case SCSI_PROTO_UAS: /* * No Transport ID format for ADI, ATA or USB is defined in * SPC-4. */ sbuf_printf(sb, "No known Transport ID format for protocol " "%#x", hdr->format_protocol & SCSI_TRN_PROTO_MASK); break; case SCSI_PROTO_SOP: { struct scsi_transportid_sop *sop; struct scsi_sop_routing_id_norm *rid; sop = (struct scsi_transportid_sop *)hdr; rid = (struct scsi_sop_routing_id_norm *)sop->routing_id; /* * Note that there is no alternate format specified in SPC-4 * for the PCIe routing ID, so we don't really have a way * to know whether the second byte of the routing ID is * a device and function or just a function. So we just * assume bus,device,function. */ sbuf_printf(sb, "SOP Routing ID: %u,%u,%u", rid->bus, rid->devfunc >> SCSI_TRN_SOP_DEV_SHIFT, rid->devfunc & SCSI_TRN_SOP_FUNC_NORM_MAX); break; } case SCSI_PROTO_NONE: default: sbuf_printf(sb, "Unknown protocol %#x", hdr->format_protocol & SCSI_TRN_PROTO_MASK); break; } return (0); } struct scsi_nv scsi_proto_map[] = { { "fcp", SCSI_PROTO_FC }, { "spi", SCSI_PROTO_SPI }, { "ssa", SCSI_PROTO_SSA }, { "sbp", SCSI_PROTO_1394 }, { "1394", SCSI_PROTO_1394 }, { "srp", SCSI_PROTO_RDMA }, { "rdma", SCSI_PROTO_RDMA }, { "iscsi", SCSI_PROTO_ISCSI }, { "iqn", SCSI_PROTO_ISCSI }, { "sas", SCSI_PROTO_SAS }, { "aditp", SCSI_PROTO_ADITP }, { "ata", SCSI_PROTO_ATA }, { "uas", SCSI_PROTO_UAS }, { "usb", SCSI_PROTO_UAS }, { "sop", SCSI_PROTO_SOP } }; const char * scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value) { int i; for (i = 0; i < num_table_entries; i++) { if (table[i].value == value) return (table[i].name); } return (NULL); } /* * Given a name/value table, find a value matching the given name. * Return values: * SCSI_NV_FOUND - match found * SCSI_NV_AMBIGUOUS - more than one match, none of them exact * SCSI_NV_NOT_FOUND - no match found */ scsi_nv_status scsi_get_nv(struct scsi_nv *table, int num_table_entries, char *name, int *table_entry, scsi_nv_flags flags) { int i, num_matches = 0; for (i = 0; i < num_table_entries; i++) { size_t table_len, name_len; table_len = strlen(table[i].name); name_len = strlen(name); if ((((flags & SCSI_NV_FLAG_IG_CASE) != 0) && (strncasecmp(table[i].name, name, name_len) == 0)) || (((flags & SCSI_NV_FLAG_IG_CASE) == 0) && (strncmp(table[i].name, name, name_len) == 0))) { *table_entry = i; /* * Check for an exact match. If we have the same * number of characters in the table as the argument, * and we already know they're the same, we have * an exact match. */ if (table_len == name_len) return (SCSI_NV_FOUND); /* * Otherwise, bump up the number of matches. We'll * see later how many we have. */ num_matches++; } } if (num_matches > 1) return (SCSI_NV_AMBIGUOUS); else if (num_matches == 1) return (SCSI_NV_FOUND); else return (SCSI_NV_NOT_FOUND); } /* * Parse transport IDs for Fibre Channel, 1394 and SAS. Since these are * all 64-bit numbers, the code is similar. */ int scsi_parse_transportid_64bit(int proto_id, char *id_str, struct scsi_transportid_header **hdr, unsigned int *alloc_len, #ifdef _KERNEL struct malloc_type *type, int flags, #endif char *error_str, int error_str_len) { uint64_t value; char *endptr; int retval; size_t alloc_size; retval = 0; value = strtouq(id_str, &endptr, 0); if (*endptr != '\0') { if (error_str != NULL) { snprintf(error_str, error_str_len, "%s: error " "parsing ID %s, 64-bit number required", __func__, id_str); } retval = 1; goto bailout; } switch (proto_id) { case SCSI_PROTO_FC: alloc_size = sizeof(struct scsi_transportid_fcp); break; case SCSI_PROTO_1394: alloc_size = sizeof(struct scsi_transportid_1394); break; case SCSI_PROTO_SAS: alloc_size = sizeof(struct scsi_transportid_sas); break; default: if (error_str != NULL) { snprintf(error_str, error_str_len, "%s: unsupported " "protocol %d", __func__, proto_id); } retval = 1; goto bailout; break; /* NOTREACHED */ } #ifdef _KERNEL *hdr = malloc(alloc_size, type, flags); #else /* _KERNEL */ *hdr = malloc(alloc_size); #endif /*_KERNEL */ if (*hdr == NULL) { if (error_str != NULL) { snprintf(error_str, error_str_len, "%s: unable to " "allocate %zu bytes", __func__, alloc_size); } retval = 1; goto bailout; } *alloc_len = alloc_size; bzero(*hdr, alloc_size); switch (proto_id) { case SCSI_PROTO_FC: { struct scsi_transportid_fcp *fcp; fcp = (struct scsi_transportid_fcp *)(*hdr); fcp->format_protocol = SCSI_PROTO_FC | SCSI_TRN_FCP_FORMAT_DEFAULT; scsi_u64to8b(value, fcp->n_port_name); break; } case SCSI_PROTO_1394: { struct scsi_transportid_1394 *sbp; sbp = (struct scsi_transportid_1394 *)(*hdr); sbp->format_protocol = SCSI_PROTO_1394 | SCSI_TRN_1394_FORMAT_DEFAULT; scsi_u64to8b(value, sbp->eui64); break; } case SCSI_PROTO_SAS: { struct scsi_transportid_sas *sas; sas = (struct scsi_transportid_sas *)(*hdr); sas->format_protocol = SCSI_PROTO_SAS | SCSI_TRN_SAS_FORMAT_DEFAULT; scsi_u64to8b(value, sas->sas_address); break; } default: break; } bailout: return (retval); } /* * Parse a SPI (Parallel SCSI) address of the form: id,rel_tgt_port */ int scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr, unsigned int *alloc_len, #ifdef _KERNEL struct malloc_type *type, int flags, #endif char *error_str, int error_str_len) { unsigned long scsi_addr, target_port; struct scsi_transportid_spi *spi; char *tmpstr, *endptr; int retval; retval = 0; tmpstr = strsep(&id_str, ","); if (tmpstr == NULL) { if (error_str != NULL) { snprintf(error_str, error_str_len, "%s: no ID found", __func__); } retval = 1; goto bailout; } scsi_addr = strtoul(tmpstr, &endptr, 0); if (*endptr != '\0') { if (error_str != NULL) { snprintf(error_str, error_str_len, "%s: error " "parsing SCSI ID %s, number required", __func__, tmpstr); } retval = 1; goto bailout; } if (id_str == NULL) { if (error_str != NULL) { snprintf(error_str, error_str_len, "%s: no relative " "target port found", __func__); } retval = 1; goto bailout; } target_port = strtoul(id_str, &endptr, 0); if (*endptr != '\0') { if (error_str != NULL) { snprintf(error_str, error_str_len, "%s: error " "parsing relative target port %s, number " "required", __func__, id_str); } retval = 1; goto bailout; } #ifdef _KERNEL spi = malloc(sizeof(*spi), type, flags); #else spi = malloc(sizeof(*spi)); #endif if (spi == NULL) { if (error_str != NULL) { snprintf(error_str, error_str_len, "%s: unable to " "allocate %zu bytes", __func__, sizeof(*spi)); } retval = 1; goto bailout; } *alloc_len = sizeof(*spi); bzero(spi, sizeof(*spi)); spi->format_protocol = SCSI_PROTO_SPI | SCSI_TRN_SPI_FORMAT_DEFAULT; scsi_ulto2b(scsi_addr, spi->scsi_addr); scsi_ulto2b(target_port, spi->rel_trgt_port_id); *hdr = (struct scsi_transportid_header *)spi; bailout: return (retval); } /* * Parse an RDMA/SRP Initiator Port ID string. This is 32 hexadecimal digits, * optionally prefixed by "0x" or "0X". */ int scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr, unsigned int *alloc_len, #ifdef _KERNEL struct malloc_type *type, int flags, #endif char *error_str, int error_str_len) { struct scsi_transportid_rdma *rdma; int retval; size_t id_len, rdma_id_size; uint8_t rdma_id[SCSI_TRN_RDMA_PORT_LEN]; char *tmpstr; unsigned int i, j; retval = 0; id_len = strlen(id_str); rdma_id_size = SCSI_TRN_RDMA_PORT_LEN; /* * Check the size. It needs to be either 32 or 34 characters long. */ if ((id_len != (rdma_id_size * 2)) && (id_len != ((rdma_id_size * 2) + 2))) { if (error_str != NULL) { snprintf(error_str, error_str_len, "%s: RDMA ID " "must be 32 hex digits (0x prefix " "optional), only %zu seen", __func__, id_len); } retval = 1; goto bailout; } tmpstr = id_str; /* * If the user gave us 34 characters, the string needs to start * with '0x'. */ if (id_len == ((rdma_id_size * 2) + 2)) { if ((tmpstr[0] == '0') && ((tmpstr[1] == 'x') || (tmpstr[1] == 'X'))) { tmpstr += 2; } else { if (error_str != NULL) { snprintf(error_str, error_str_len, "%s: RDMA " "ID prefix, if used, must be \"0x\", " "got %s", __func__, tmpstr); } retval = 1; goto bailout; } } bzero(rdma_id, sizeof(rdma_id)); /* * Convert ASCII hex into binary bytes. There is no standard * 128-bit integer type, and so no strtou128t() routine to convert * from hex into a large integer. In the end, we're not going to * an integer, but rather to a byte array, so that and the fact * that we require the user to give us 32 hex digits simplifies the * logic. */ for (i = 0; i < (rdma_id_size * 2); i++) { int cur_shift; unsigned char c; /* Increment the byte array one for every 2 hex digits */ j = i >> 1; /* * The first digit in every pair is the most significant * 4 bits. The second is the least significant 4 bits. */ if ((i % 2) == 0) cur_shift = 4; else cur_shift = 0; c = tmpstr[i]; /* Convert the ASCII hex character into a number */ if (isdigit(c)) c -= '0'; else if (isalpha(c)) c -= isupper(c) ? 'A' - 10 : 'a' - 10; else { if (error_str != NULL) { snprintf(error_str, error_str_len, "%s: " "RDMA ID must be hex digits, got " "invalid character %c", __func__, tmpstr[i]); } retval = 1; goto bailout; } /* * The converted number can't be less than 0; the type is * unsigned, and the subtraction logic will not give us * a negative number. So we only need to make sure that * the value is not greater than 0xf. (i.e. make sure the * user didn't give us a value like "0x12jklmno"). */ if (c > 0xf) { if (error_str != NULL) { snprintf(error_str, error_str_len, "%s: " "RDMA ID must be hex digits, got " "invalid character %c", __func__, tmpstr[i]); } retval = 1; goto bailout; } rdma_id[j] |= c << cur_shift; } #ifdef _KERNEL rdma = malloc(sizeof(*rdma), type, flags); #else rdma = malloc(sizeof(*rdma)); #endif if (rdma == NULL) { if (error_str != NULL) { snprintf(error_str, error_str_len, "%s: unable to " "allocate %zu bytes", __func__, sizeof(*rdma)); } retval = 1; goto bailout; } *alloc_len = sizeof(*rdma); bzero(rdma, *alloc_len); rdma->format_protocol = SCSI_PROTO_RDMA | SCSI_TRN_RDMA_FORMAT_DEFAULT; bcopy(rdma_id, rdma->initiator_port_id, SCSI_TRN_RDMA_PORT_LEN); *hdr = (struct scsi_transportid_header *)rdma; bailout: return (retval); } /* * Parse an iSCSI name. The format is either just the name: * * iqn.2012-06.com.example:target0 * or the name, separator and initiator session ID: * * iqn.2012-06.com.example:target0,i,0x123 * * The separator format is exact. */ int scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr, unsigned int *alloc_len, #ifdef _KERNEL struct malloc_type *type, int flags, #endif char *error_str, int error_str_len) { size_t id_len, sep_len, id_size, name_len; int retval; unsigned int i, sep_pos, sep_found; const char *sep_template = ",i,0x"; const char *iqn_prefix = "iqn."; struct scsi_transportid_iscsi_device *iscsi; retval = 0; sep_found = 0; id_len = strlen(id_str); sep_len = strlen(sep_template); /* * The separator is defined as exactly ',i,0x'. Any other commas, * or any other form, is an error. So look for a comma, and once * we find that, the next few characters must match the separator * exactly. Once we get through the separator, there should be at * least one character. */ for (i = 0, sep_pos = 0; i < id_len; i++) { if (sep_pos == 0) { if (id_str[i] == sep_template[sep_pos]) sep_pos++; continue; } if (sep_pos < sep_len) { if (id_str[i] == sep_template[sep_pos]) { sep_pos++; continue; } if (error_str != NULL) { snprintf(error_str, error_str_len, "%s: " "invalid separator in iSCSI name " "\"%s\"", __func__, id_str); } retval = 1; goto bailout; } else { sep_found = 1; break; } } /* * Check to see whether we have a separator but no digits after it. */ if ((sep_pos != 0) && (sep_found == 0)) { if (error_str != NULL) { snprintf(error_str, error_str_len, "%s: no digits " "found after separator in iSCSI name \"%s\"", __func__, id_str); } retval = 1; goto bailout; } /* * The incoming ID string has the "iqn." prefix stripped off. We * need enough space for the base structure (the structures are the * same for the two iSCSI forms), the prefix, the ID string and a * terminating NUL. */ id_size = sizeof(*iscsi) + strlen(iqn_prefix) + id_len + 1; #ifdef _KERNEL iscsi = malloc(id_size, type, flags); #else iscsi = malloc(id_size); #endif if (iscsi == NULL) { if (error_str != NULL) { snprintf(error_str, error_str_len, "%s: unable to " "allocate %zu bytes", __func__, id_size); } retval = 1; goto bailout; } *alloc_len = id_size; bzero(iscsi, id_size); iscsi->format_protocol = SCSI_PROTO_ISCSI; if (sep_found == 0) iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_DEVICE; else iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_PORT; name_len = id_size - sizeof(*iscsi); scsi_ulto2b(name_len, iscsi->additional_length); snprintf(iscsi->iscsi_name, name_len, "%s%s", iqn_prefix, id_str); *hdr = (struct scsi_transportid_header *)iscsi; bailout: return (retval); } /* * Parse a SCSI over PCIe (SOP) identifier. The Routing ID can either be * of the form 'bus,device,function' or 'bus,function'. */ int scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr, unsigned int *alloc_len, #ifdef _KERNEL struct malloc_type *type, int flags, #endif char *error_str, int error_str_len) { struct scsi_transportid_sop *sop; unsigned long bus, device, function; char *tmpstr, *endptr; int retval, device_spec; retval = 0; device_spec = 0; device = 0; tmpstr = strsep(&id_str, ","); if ((tmpstr == NULL) || (*tmpstr == '\0')) { if (error_str != NULL) { snprintf(error_str, error_str_len, "%s: no ID found", __func__); } retval = 1; goto bailout; } bus = strtoul(tmpstr, &endptr, 0); if (*endptr != '\0') { if (error_str != NULL) { snprintf(error_str, error_str_len, "%s: error " "parsing PCIe bus %s, number required", __func__, tmpstr); } retval = 1; goto bailout; } if ((id_str == NULL) || (*id_str == '\0')) { if (error_str != NULL) { snprintf(error_str, error_str_len, "%s: no PCIe " "device or function found", __func__); } retval = 1; goto bailout; } tmpstr = strsep(&id_str, ","); function = strtoul(tmpstr, &endptr, 0); if (*endptr != '\0') { if (error_str != NULL) { snprintf(error_str, error_str_len, "%s: error " "parsing PCIe device/function %s, number " "required", __func__, tmpstr); } retval = 1; goto bailout; } /* * Check to see whether the user specified a third value. If so, * the second is the device. */ if (id_str != NULL) { if (*id_str == '\0') { if (error_str != NULL) { snprintf(error_str, error_str_len, "%s: " "no PCIe function found", __func__); } retval = 1; goto bailout; } device = function; device_spec = 1; function = strtoul(id_str, &endptr, 0); if (*endptr != '\0') { if (error_str != NULL) { snprintf(error_str, error_str_len, "%s: " "error parsing PCIe function %s, " "number required", __func__, id_str); } retval = 1; goto bailout; } } if (bus > SCSI_TRN_SOP_BUS_MAX) { if (error_str != NULL) { snprintf(error_str, error_str_len, "%s: bus value " "%lu greater than maximum %u", __func__, bus, SCSI_TRN_SOP_BUS_MAX); } retval = 1; goto bailout; } if ((device_spec != 0) && (device > SCSI_TRN_SOP_DEV_MASK)) { if (error_str != NULL) { snprintf(error_str, error_str_len, "%s: device value " "%lu greater than maximum %u", __func__, device, SCSI_TRN_SOP_DEV_MAX); } retval = 1; goto bailout; } if (((device_spec != 0) && (function > SCSI_TRN_SOP_FUNC_NORM_MAX)) || ((device_spec == 0) && (function > SCSI_TRN_SOP_FUNC_ALT_MAX))) { if (error_str != NULL) { snprintf(error_str, error_str_len, "%s: function value " "%lu greater than maximum %u", __func__, function, (device_spec == 0) ? SCSI_TRN_SOP_FUNC_ALT_MAX : SCSI_TRN_SOP_FUNC_NORM_MAX); } retval = 1; goto bailout; } #ifdef _KERNEL sop = malloc(sizeof(*sop), type, flags); #else sop = malloc(sizeof(*sop)); #endif if (sop == NULL) { if (error_str != NULL) { snprintf(error_str, error_str_len, "%s: unable to " "allocate %zu bytes", __func__, sizeof(*sop)); } retval = 1; goto bailout; } *alloc_len = sizeof(*sop); bzero(sop, sizeof(*sop)); sop->format_protocol = SCSI_PROTO_SOP | SCSI_TRN_SOP_FORMAT_DEFAULT; if (device_spec != 0) { struct scsi_sop_routing_id_norm rid; rid.bus = bus; rid.devfunc = (device << SCSI_TRN_SOP_DEV_SHIFT) | function; bcopy(&rid, sop->routing_id, MIN(sizeof(rid), sizeof(sop->routing_id))); } else { struct scsi_sop_routing_id_alt rid; rid.bus = bus; rid.function = function; bcopy(&rid, sop->routing_id, MIN(sizeof(rid), sizeof(sop->routing_id))); } *hdr = (struct scsi_transportid_header *)sop; bailout: return (retval); } /* * transportid_str: NUL-terminated string with format: protcol,id * The ID is protocol specific. * hdr: Storage will be allocated for the transport ID. * alloc_len: The amount of memory allocated is returned here. * type: Malloc bucket (kernel only). * flags: Malloc flags (kernel only). * error_str: If non-NULL, it will contain error information (without * a terminating newline) if an error is returned. * error_str_len: Allocated length of the error string. * * Returns 0 for success, non-zero for failure. */ int scsi_parse_transportid(char *transportid_str, struct scsi_transportid_header **hdr, unsigned int *alloc_len, #ifdef _KERNEL struct malloc_type *type, int flags, #endif char *error_str, int error_str_len) { char *tmpstr; scsi_nv_status status; u_int num_proto_entries; int retval, table_entry; retval = 0; table_entry = 0; /* * We do allow a period as well as a comma to separate the protocol * from the ID string. This is to accommodate iSCSI names, which * start with "iqn.". */ tmpstr = strsep(&transportid_str, ",."); if (tmpstr == NULL) { if (error_str != NULL) { snprintf(error_str, error_str_len, "%s: transportid_str is NULL", __func__); } retval = 1; goto bailout; } num_proto_entries = nitems(scsi_proto_map); status = scsi_get_nv(scsi_proto_map, num_proto_entries, tmpstr, &table_entry, SCSI_NV_FLAG_IG_CASE); if (status != SCSI_NV_FOUND) { if (error_str != NULL) { snprintf(error_str, error_str_len, "%s: %s protocol " "name %s", __func__, (status == SCSI_NV_AMBIGUOUS) ? "ambiguous" : "invalid", tmpstr); } retval = 1; goto bailout; } switch (scsi_proto_map[table_entry].value) { case SCSI_PROTO_FC: case SCSI_PROTO_1394: case SCSI_PROTO_SAS: retval = scsi_parse_transportid_64bit( scsi_proto_map[table_entry].value, transportid_str, hdr, alloc_len, #ifdef _KERNEL type, flags, #endif error_str, error_str_len); break; case SCSI_PROTO_SPI: retval = scsi_parse_transportid_spi(transportid_str, hdr, alloc_len, #ifdef _KERNEL type, flags, #endif error_str, error_str_len); break; case SCSI_PROTO_RDMA: retval = scsi_parse_transportid_rdma(transportid_str, hdr, alloc_len, #ifdef _KERNEL type, flags, #endif error_str, error_str_len); break; case SCSI_PROTO_ISCSI: retval = scsi_parse_transportid_iscsi(transportid_str, hdr, alloc_len, #ifdef _KERNEL type, flags, #endif error_str, error_str_len); break; case SCSI_PROTO_SOP: retval = scsi_parse_transportid_sop(transportid_str, hdr, alloc_len, #ifdef _KERNEL type, flags, #endif error_str, error_str_len); break; case SCSI_PROTO_SSA: case SCSI_PROTO_ADITP: case SCSI_PROTO_ATA: case SCSI_PROTO_UAS: case SCSI_PROTO_NONE: default: /* * There is no format defined for a Transport ID for these * protocols. So even if the user gives us something, we * have no way to turn it into a standard SCSI Transport ID. */ retval = 1; if (error_str != NULL) { snprintf(error_str, error_str_len, "%s: no Transport " "ID format exists for protocol %s", __func__, tmpstr); } goto bailout; break; /* NOTREACHED */ } bailout: return (retval); } struct scsi_attrib_table_entry scsi_mam_attr_table[] = { { SMA_ATTR_REM_CAP_PARTITION, SCSI_ATTR_FLAG_NONE, "Remaining Capacity in Partition", /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,/*parse_str*/ NULL }, { SMA_ATTR_MAX_CAP_PARTITION, SCSI_ATTR_FLAG_NONE, "Maximum Capacity in Partition", /*suffix*/"MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_TAPEALERT_FLAGS, SCSI_ATTR_FLAG_HEX, "TapeAlert Flags", /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_LOAD_COUNT, SCSI_ATTR_FLAG_NONE, "Load Count", /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_MAM_SPACE_REMAINING, SCSI_ATTR_FLAG_NONE, "MAM Space Remaining", /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_DEV_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE, "Assigning Organization", /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_FORMAT_DENSITY_CODE, SCSI_ATTR_FLAG_HEX, "Format Density Code", /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_INITIALIZATION_COUNT, SCSI_ATTR_FLAG_NONE, "Initialization Count", /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_VOLUME_ID, SCSI_ATTR_FLAG_NONE, "Volume Identifier", /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_VOLUME_CHANGE_REF, SCSI_ATTR_FLAG_HEX, "Volume Change Reference", /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_DEV_SERIAL_LAST_LOAD, SCSI_ATTR_FLAG_NONE, "Device Vendor/Serial at Last Load", /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_DEV_SERIAL_LAST_LOAD_1, SCSI_ATTR_FLAG_NONE, "Device Vendor/Serial at Last Load - 1", /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_DEV_SERIAL_LAST_LOAD_2, SCSI_ATTR_FLAG_NONE, "Device Vendor/Serial at Last Load - 2", /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_DEV_SERIAL_LAST_LOAD_3, SCSI_ATTR_FLAG_NONE, "Device Vendor/Serial at Last Load - 3", /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_TOTAL_MB_WRITTEN_LT, SCSI_ATTR_FLAG_NONE, "Total MB Written in Medium Life", /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_TOTAL_MB_READ_LT, SCSI_ATTR_FLAG_NONE, "Total MB Read in Medium Life", /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_TOTAL_MB_WRITTEN_CUR, SCSI_ATTR_FLAG_NONE, "Total MB Written in Current/Last Load", /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_TOTAL_MB_READ_CUR, SCSI_ATTR_FLAG_NONE, "Total MB Read in Current/Last Load", /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_FIRST_ENC_BLOCK, SCSI_ATTR_FLAG_NONE, "Logical Position of First Encrypted Block", /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_NEXT_UNENC_BLOCK, SCSI_ATTR_FLAG_NONE, "Logical Position of First Unencrypted Block after First " "Encrypted Block", /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_MEDIUM_USAGE_HIST, SCSI_ATTR_FLAG_NONE, "Medium Usage History", /*suffix*/ NULL, /*to_str*/ NULL, /*parse_str*/ NULL }, { SMA_ATTR_PART_USAGE_HIST, SCSI_ATTR_FLAG_NONE, "Partition Usage History", /*suffix*/ NULL, /*to_str*/ NULL, /*parse_str*/ NULL }, { SMA_ATTR_MED_MANUF, SCSI_ATTR_FLAG_NONE, "Medium Manufacturer", /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_MED_SERIAL, SCSI_ATTR_FLAG_NONE, "Medium Serial Number", /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_MED_LENGTH, SCSI_ATTR_FLAG_NONE, "Medium Length", /*suffix*/"m", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_MED_WIDTH, SCSI_ATTR_FLAG_FP | SCSI_ATTR_FLAG_DIV_10 | SCSI_ATTR_FLAG_FP_1DIGIT, "Medium Width", /*suffix*/"mm", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_MED_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE, "Assigning Organization", /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_MED_DENSITY_CODE, SCSI_ATTR_FLAG_HEX, "Medium Density Code", /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_MED_MANUF_DATE, SCSI_ATTR_FLAG_NONE, "Medium Manufacture Date", /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_MAM_CAPACITY, SCSI_ATTR_FLAG_NONE, "MAM Capacity", /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_MED_TYPE, SCSI_ATTR_FLAG_HEX, "Medium Type", /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_MED_TYPE_INFO, SCSI_ATTR_FLAG_HEX, "Medium Type Information", /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_MED_SERIAL_NUM, SCSI_ATTR_FLAG_NONE, "Medium Serial Number", /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_APP_VENDOR, SCSI_ATTR_FLAG_NONE, "Application Vendor", /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_APP_NAME, SCSI_ATTR_FLAG_NONE, "Application Name", /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_APP_VERSION, SCSI_ATTR_FLAG_NONE, "Application Version", /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_USER_MED_TEXT_LABEL, SCSI_ATTR_FLAG_NONE, "User Medium Text Label", /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_LAST_WRITTEN_TIME, SCSI_ATTR_FLAG_NONE, "Date and Time Last Written", /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_TEXT_LOCAL_ID, SCSI_ATTR_FLAG_HEX, "Text Localization Identifier", /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_BARCODE, SCSI_ATTR_FLAG_NONE, "Barcode", /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_HOST_OWNER_NAME, SCSI_ATTR_FLAG_NONE, "Owning Host Textual Name", /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_MEDIA_POOL, SCSI_ATTR_FLAG_NONE, "Media Pool", /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_PART_USER_LABEL, SCSI_ATTR_FLAG_NONE, "Partition User Text Label", /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_LOAD_UNLOAD_AT_PART, SCSI_ATTR_FLAG_NONE, "Load/Unload at Partition", /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_APP_FORMAT_VERSION, SCSI_ATTR_FLAG_NONE, "Application Format Version", /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, /*parse_str*/ NULL }, { SMA_ATTR_VOL_COHERENCY_INFO, SCSI_ATTR_FLAG_NONE, "Volume Coherency Information", /*suffix*/NULL, /*to_str*/ scsi_attrib_volcoh_sbuf, /*parse_str*/ NULL }, { 0x0ff1, SCSI_ATTR_FLAG_NONE, "Spectra MLM Creation", /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, /*parse_str*/ NULL }, { 0x0ff2, SCSI_ATTR_FLAG_NONE, "Spectra MLM C3", /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, /*parse_str*/ NULL }, { 0x0ff3, SCSI_ATTR_FLAG_NONE, "Spectra MLM RW", /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, /*parse_str*/ NULL }, { 0x0ff4, SCSI_ATTR_FLAG_NONE, "Spectra MLM SDC List", /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, /*parse_str*/ NULL }, { 0x0ff7, SCSI_ATTR_FLAG_NONE, "Spectra MLM Post Scan", /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, /*parse_str*/ NULL }, { 0x0ffe, SCSI_ATTR_FLAG_NONE, "Spectra MLM Checksum", /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, /*parse_str*/ NULL }, { 0x17f1, SCSI_ATTR_FLAG_NONE, "Spectra MLM Creation", /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, /*parse_str*/ NULL }, { 0x17f2, SCSI_ATTR_FLAG_NONE, "Spectra MLM C3", /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, /*parse_str*/ NULL }, { 0x17f3, SCSI_ATTR_FLAG_NONE, "Spectra MLM RW", /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, /*parse_str*/ NULL }, { 0x17f4, SCSI_ATTR_FLAG_NONE, "Spectra MLM SDC List", /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, /*parse_str*/ NULL }, { 0x17f7, SCSI_ATTR_FLAG_NONE, "Spectra MLM Post Scan", /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, /*parse_str*/ NULL }, { 0x17ff, SCSI_ATTR_FLAG_NONE, "Spectra MLM Checksum", /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, /*parse_str*/ NULL }, }; /* * Print out Volume Coherency Information (Attribute 0x080c). * This field has two variable length members, including one at the * beginning, so it isn't practical to have a fixed structure definition. * This is current as of SSC4r03 (see section 4.2.21.3), dated March 25, * 2013. */ int scsi_attrib_volcoh_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, uint32_t valid_len, uint32_t flags, uint32_t output_flags, char *error_str, int error_str_len) { size_t avail_len; uint32_t field_size; uint64_t tmp_val; uint8_t *cur_ptr; int retval; int vcr_len, as_len; retval = 0; tmp_val = 0; field_size = scsi_2btoul(hdr->length); avail_len = valid_len - sizeof(*hdr); if (field_size > avail_len) { if (error_str != NULL) { snprintf(error_str, error_str_len, "Available " "length of attribute ID 0x%.4x %zu < field " "length %u", scsi_2btoul(hdr->id), avail_len, field_size); } retval = 1; goto bailout; } else if (field_size == 0) { /* * It isn't clear from the spec whether a field length of * 0 is invalid here. It probably is, but be lenient here * to avoid inconveniencing the user. */ goto bailout; } cur_ptr = hdr->attribute; vcr_len = *cur_ptr; cur_ptr++; sbuf_printf(sb, "\n\tVolume Change Reference Value:"); switch (vcr_len) { case 0: if (error_str != NULL) { snprintf(error_str, error_str_len, "Volume Change " "Reference value has length of 0"); } retval = 1; goto bailout; break; /*NOTREACHED*/ case 1: tmp_val = *cur_ptr; break; case 2: tmp_val = scsi_2btoul(cur_ptr); break; case 3: tmp_val = scsi_3btoul(cur_ptr); break; case 4: tmp_val = scsi_4btoul(cur_ptr); break; case 8: tmp_val = scsi_8btou64(cur_ptr); break; default: sbuf_printf(sb, "\n"); sbuf_hexdump(sb, cur_ptr, vcr_len, NULL, 0); break; } if (vcr_len <= 8) sbuf_printf(sb, " 0x%jx\n", (uintmax_t)tmp_val); cur_ptr += vcr_len; tmp_val = scsi_8btou64(cur_ptr); sbuf_printf(sb, "\tVolume Coherency Count: %ju\n", (uintmax_t)tmp_val); cur_ptr += sizeof(tmp_val); tmp_val = scsi_8btou64(cur_ptr); sbuf_printf(sb, "\tVolume Coherency Set Identifier: 0x%jx\n", (uintmax_t)tmp_val); /* * Figure out how long the Application Client Specific Information * is and produce a hexdump. */ cur_ptr += sizeof(tmp_val); as_len = scsi_2btoul(cur_ptr); cur_ptr += sizeof(uint16_t); sbuf_printf(sb, "\tApplication Client Specific Information: "); if (((as_len == SCSI_LTFS_VER0_LEN) || (as_len == SCSI_LTFS_VER1_LEN)) && (strncmp(cur_ptr, SCSI_LTFS_STR_NAME, SCSI_LTFS_STR_LEN) == 0)) { sbuf_printf(sb, "LTFS\n"); cur_ptr += SCSI_LTFS_STR_LEN + 1; if (cur_ptr[SCSI_LTFS_UUID_LEN] != '\0') cur_ptr[SCSI_LTFS_UUID_LEN] = '\0'; sbuf_printf(sb, "\tLTFS UUID: %s\n", cur_ptr); cur_ptr += SCSI_LTFS_UUID_LEN + 1; /* XXX KDM check the length */ sbuf_printf(sb, "\tLTFS Version: %d\n", *cur_ptr); } else { sbuf_printf(sb, "Unknown\n"); sbuf_hexdump(sb, cur_ptr, as_len, NULL, 0); } bailout: return (retval); } int scsi_attrib_vendser_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, uint32_t valid_len, uint32_t flags, uint32_t output_flags, char *error_str, int error_str_len) { size_t avail_len; uint32_t field_size; struct scsi_attrib_vendser *vendser; cam_strvis_flags strvis_flags; int retval = 0; field_size = scsi_2btoul(hdr->length); avail_len = valid_len - sizeof(*hdr); if (field_size > avail_len) { if (error_str != NULL) { snprintf(error_str, error_str_len, "Available " "length of attribute ID 0x%.4x %zu < field " "length %u", scsi_2btoul(hdr->id), avail_len, field_size); } retval = 1; goto bailout; } else if (field_size == 0) { /* * A field size of 0 doesn't make sense here. The device * can at least give you the vendor ID, even if it can't * give you the serial number. */ if (error_str != NULL) { snprintf(error_str, error_str_len, "The length of " "attribute ID 0x%.4x is 0", scsi_2btoul(hdr->id)); } retval = 1; goto bailout; } vendser = (struct scsi_attrib_vendser *)hdr->attribute; switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) { case SCSI_ATTR_OUTPUT_NONASCII_TRIM: strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM; break; case SCSI_ATTR_OUTPUT_NONASCII_RAW: strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW; break; case SCSI_ATTR_OUTPUT_NONASCII_ESC: default: strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC; break;; } cam_strvis_sbuf(sb, vendser->vendor, sizeof(vendser->vendor), strvis_flags); sbuf_putc(sb, ' '); cam_strvis_sbuf(sb, vendser->serial_num, sizeof(vendser->serial_num), strvis_flags); bailout: return (retval); } int scsi_attrib_hexdump_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, uint32_t valid_len, uint32_t flags, uint32_t output_flags, char *error_str, int error_str_len) { uint32_t field_size; ssize_t avail_len; uint32_t print_len; uint8_t *num_ptr; int retval = 0; field_size = scsi_2btoul(hdr->length); avail_len = valid_len - sizeof(*hdr); print_len = MIN(avail_len, field_size); num_ptr = hdr->attribute; if (print_len > 0) { sbuf_printf(sb, "\n"); sbuf_hexdump(sb, num_ptr, print_len, NULL, 0); } return (retval); } int scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, uint32_t valid_len, uint32_t flags, uint32_t output_flags, char *error_str, int error_str_len) { uint64_t print_number; size_t avail_len; uint32_t number_size; int retval = 0; number_size = scsi_2btoul(hdr->length); avail_len = valid_len - sizeof(*hdr); if (avail_len < number_size) { if (error_str != NULL) { snprintf(error_str, error_str_len, "Available " "length of attribute ID 0x%.4x %zu < field " "length %u", scsi_2btoul(hdr->id), avail_len, number_size); } retval = 1; goto bailout; } switch (number_size) { case 0: /* * We don't treat this as an error, since there may be * scenarios where a device reports a field but then gives * a length of 0. See the note in scsi_attrib_ascii_sbuf(). */ goto bailout; break; /*NOTREACHED*/ case 1: print_number = hdr->attribute[0]; break; case 2: print_number = scsi_2btoul(hdr->attribute); break; case 3: print_number = scsi_3btoul(hdr->attribute); break; case 4: print_number = scsi_4btoul(hdr->attribute); break; case 8: print_number = scsi_8btou64(hdr->attribute); break; default: /* * If we wind up here, the number is too big to print * normally, so just do a hexdump. */ retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len, flags, output_flags, error_str, error_str_len); goto bailout; break; } if (flags & SCSI_ATTR_FLAG_FP) { #ifndef _KERNEL long double num_float; num_float = (long double)print_number; if (flags & SCSI_ATTR_FLAG_DIV_10) num_float /= 10; sbuf_printf(sb, "%.*Lf", (flags & SCSI_ATTR_FLAG_FP_1DIGIT) ? 1 : 0, num_float); #else /* _KERNEL */ sbuf_printf(sb, "%ju", (flags & SCSI_ATTR_FLAG_DIV_10) ? (print_number / 10) : print_number); #endif /* _KERNEL */ } else if (flags & SCSI_ATTR_FLAG_HEX) { sbuf_printf(sb, "0x%jx", (uintmax_t)print_number); } else sbuf_printf(sb, "%ju", (uintmax_t)print_number); bailout: return (retval); } int scsi_attrib_ascii_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, uint32_t valid_len, uint32_t flags, uint32_t output_flags, char *error_str, int error_str_len) { size_t avail_len; uint32_t field_size, print_size; int retval = 0; avail_len = valid_len - sizeof(*hdr); field_size = scsi_2btoul(hdr->length); print_size = MIN(avail_len, field_size); if (print_size > 0) { cam_strvis_flags strvis_flags; switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) { case SCSI_ATTR_OUTPUT_NONASCII_TRIM: strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM; break; case SCSI_ATTR_OUTPUT_NONASCII_RAW: strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW; break; case SCSI_ATTR_OUTPUT_NONASCII_ESC: default: strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC; break; } cam_strvis_sbuf(sb, hdr->attribute, print_size, strvis_flags); } else if (avail_len < field_size) { /* * We only report an error if the user didn't allocate * enough space to hold the full value of this field. If * the field length is 0, that is allowed by the spec. * e.g. in SPC-4r37, section 7.4.2.2.5, VOLUME IDENTIFIER * "This attribute indicates the current volume identifier * (see SMC-3) of the medium. If the device server supports * this attribute but does not have access to the volume * identifier, the device server shall report this attribute * with an attribute length value of zero." */ if (error_str != NULL) { snprintf(error_str, error_str_len, "Available " "length of attribute ID 0x%.4x %zu < field " "length %u", scsi_2btoul(hdr->id), avail_len, field_size); } retval = 1; } return (retval); } int scsi_attrib_text_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, uint32_t valid_len, uint32_t flags, uint32_t output_flags, char *error_str, int error_str_len) { size_t avail_len; uint32_t field_size, print_size; int retval = 0; int esc_text = 1; avail_len = valid_len - sizeof(*hdr); field_size = scsi_2btoul(hdr->length); print_size = MIN(avail_len, field_size); if ((output_flags & SCSI_ATTR_OUTPUT_TEXT_MASK) == SCSI_ATTR_OUTPUT_TEXT_RAW) esc_text = 0; if (print_size > 0) { uint32_t i; for (i = 0; i < print_size; i++) { if (hdr->attribute[i] == '\0') continue; else if (((unsigned char)hdr->attribute[i] < 0x80) || (esc_text == 0)) sbuf_putc(sb, hdr->attribute[i]); else sbuf_printf(sb, "%%%02x", (unsigned char)hdr->attribute[i]); } } else if (avail_len < field_size) { /* * We only report an error if the user didn't allocate * enough space to hold the full value of this field. */ if (error_str != NULL) { snprintf(error_str, error_str_len, "Available " "length of attribute ID 0x%.4x %zu < field " "length %u", scsi_2btoul(hdr->id), avail_len, field_size); } retval = 1; } return (retval); } struct scsi_attrib_table_entry * scsi_find_attrib_entry(struct scsi_attrib_table_entry *table, size_t num_table_entries, uint32_t id) { uint32_t i; for (i = 0; i < num_table_entries; i++) { if (table[i].id == id) return (&table[i]); } return (NULL); } struct scsi_attrib_table_entry * scsi_get_attrib_entry(uint32_t id) { return (scsi_find_attrib_entry(scsi_mam_attr_table, nitems(scsi_mam_attr_table), id)); } int scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len, struct scsi_mam_attribute_header *hdr, uint32_t output_flags, char *error_str, size_t error_str_len) { int retval; switch (hdr->byte2 & SMA_FORMAT_MASK) { case SMA_FORMAT_ASCII: retval = scsi_attrib_ascii_sbuf(sb, hdr, valid_len, SCSI_ATTR_FLAG_NONE, output_flags, error_str,error_str_len); break; case SMA_FORMAT_BINARY: if (scsi_2btoul(hdr->length) <= 8) retval = scsi_attrib_int_sbuf(sb, hdr, valid_len, SCSI_ATTR_FLAG_NONE, output_flags, error_str, error_str_len); else retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len, SCSI_ATTR_FLAG_NONE, output_flags, error_str, error_str_len); break; case SMA_FORMAT_TEXT: retval = scsi_attrib_text_sbuf(sb, hdr, valid_len, SCSI_ATTR_FLAG_NONE, output_flags, error_str, error_str_len); break; default: if (error_str != NULL) { snprintf(error_str, error_str_len, "Unknown attribute " "format 0x%x", hdr->byte2 & SMA_FORMAT_MASK); } retval = 1; goto bailout; break; /*NOTREACHED*/ } sbuf_trim(sb); bailout: return (retval); } void scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags, struct scsi_mam_attribute_header *hdr, uint32_t valid_len, const char *desc) { int need_space = 0; uint32_t len; uint32_t id; /* * We can't do anything if we don't have enough valid data for the * header. */ if (valid_len < sizeof(*hdr)) return; id = scsi_2btoul(hdr->id); /* * Note that we print out the value of the attribute listed in the * header, regardless of whether we actually got that many bytes * back from the device through the controller. A truncated result * could be the result of a failure to ask for enough data; the * header indicates how many bytes are allocated for this attribute * in the MAM. */ len = scsi_2btoul(hdr->length); if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_MASK) == SCSI_ATTR_OUTPUT_FIELD_NONE) return; if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_DESC) && (desc != NULL)) { sbuf_printf(sb, "%s", desc); need_space = 1; } if (output_flags & SCSI_ATTR_OUTPUT_FIELD_NUM) { sbuf_printf(sb, "%s(0x%.4x)", (need_space) ? " " : "", id); need_space = 0; } if (output_flags & SCSI_ATTR_OUTPUT_FIELD_SIZE) { sbuf_printf(sb, "%s[%d]", (need_space) ? " " : "", len); need_space = 0; } if (output_flags & SCSI_ATTR_OUTPUT_FIELD_RW) { sbuf_printf(sb, "%s(%s)", (need_space) ? " " : "", (hdr->byte2 & SMA_READ_ONLY) ? "RO" : "RW"); } sbuf_printf(sb, ": "); } int scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, uint32_t valid_len, struct scsi_attrib_table_entry *user_table, size_t num_user_entries, int prefer_user_table, uint32_t output_flags, char *error_str, int error_str_len) { int retval; struct scsi_attrib_table_entry *table1 = NULL, *table2 = NULL; struct scsi_attrib_table_entry *entry = NULL; size_t table1_size = 0, table2_size = 0; uint32_t id; retval = 0; if (valid_len < sizeof(*hdr)) { retval = 1; goto bailout; } id = scsi_2btoul(hdr->id); if (user_table != NULL) { if (prefer_user_table != 0) { table1 = user_table; table1_size = num_user_entries; table2 = scsi_mam_attr_table; table2_size = nitems(scsi_mam_attr_table); } else { table1 = scsi_mam_attr_table; table1_size = nitems(scsi_mam_attr_table); table2 = user_table; table2_size = num_user_entries; } } else { table1 = scsi_mam_attr_table; table1_size = nitems(scsi_mam_attr_table); } entry = scsi_find_attrib_entry(table1, table1_size, id); if (entry != NULL) { scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, entry->desc); if (entry->to_str == NULL) goto print_default; retval = entry->to_str(sb, hdr, valid_len, entry->flags, output_flags, error_str, error_str_len); goto bailout; } if (table2 != NULL) { entry = scsi_find_attrib_entry(table2, table2_size, id); if (entry != NULL) { if (entry->to_str == NULL) goto print_default; scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, entry->desc); retval = entry->to_str(sb, hdr, valid_len, entry->flags, output_flags, error_str, error_str_len); goto bailout; } } scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, NULL); print_default: retval = scsi_attrib_value_sbuf(sb, valid_len, hdr, output_flags, error_str, error_str_len); bailout: if (retval == 0) { if ((entry != NULL) && (entry->suffix != NULL)) sbuf_printf(sb, " %s", entry->suffix); sbuf_trim(sb); sbuf_printf(sb, "\n"); } return (retval); } void scsi_test_unit_ready(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t sense_len, u_int32_t timeout) { struct scsi_test_unit_ready *scsi_cmd; cam_fill_csio(csio, retries, cbfcnp, CAM_DIR_NONE, tag_action, /*data_ptr*/NULL, /*dxfer_len*/0, sense_len, sizeof(*scsi_cmd), timeout); scsi_cmd = (struct scsi_test_unit_ready *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = TEST_UNIT_READY; } void scsi_request_sense(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), void *data_ptr, u_int8_t dxfer_len, u_int8_t tag_action, u_int8_t sense_len, u_int32_t timeout) { struct scsi_request_sense *scsi_cmd; cam_fill_csio(csio, retries, cbfcnp, CAM_DIR_IN, tag_action, data_ptr, dxfer_len, sense_len, sizeof(*scsi_cmd), timeout); scsi_cmd = (struct scsi_request_sense *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = REQUEST_SENSE; scsi_cmd->length = dxfer_len; } void scsi_inquiry(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t *inq_buf, u_int32_t inq_len, int evpd, u_int8_t page_code, u_int8_t sense_len, u_int32_t timeout) { struct scsi_inquiry *scsi_cmd; cam_fill_csio(csio, retries, cbfcnp, /*flags*/CAM_DIR_IN, tag_action, /*data_ptr*/inq_buf, /*dxfer_len*/inq_len, sense_len, sizeof(*scsi_cmd), timeout); scsi_cmd = (struct scsi_inquiry *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = INQUIRY; if (evpd) { scsi_cmd->byte2 |= SI_EVPD; scsi_cmd->page_code = page_code; } scsi_ulto2b(inq_len, scsi_cmd->length); } void scsi_mode_sense(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len, uint8_t sense_len, uint32_t timeout) { scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd, pc, page, 0, param_buf, param_len, 0, sense_len, timeout); } void scsi_mode_sense_len(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len, int minimum_cmd_size, uint8_t sense_len, uint32_t timeout) { scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd, pc, page, 0, param_buf, param_len, minimum_cmd_size, sense_len, timeout); } void scsi_mode_sense_subpage(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, int dbd, uint8_t pc, uint8_t page, uint8_t subpage, uint8_t *param_buf, uint32_t param_len, int minimum_cmd_size, uint8_t sense_len, uint32_t timeout) { u_int8_t cdb_len; /* * Use the smallest possible command to perform the operation. */ if ((param_len < 256) && (minimum_cmd_size < 10)) { /* * We can fit in a 6 byte cdb. */ struct scsi_mode_sense_6 *scsi_cmd; scsi_cmd = (struct scsi_mode_sense_6 *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = MODE_SENSE_6; if (dbd != 0) scsi_cmd->byte2 |= SMS_DBD; scsi_cmd->page = pc | page; scsi_cmd->subpage = subpage; scsi_cmd->length = param_len; cdb_len = sizeof(*scsi_cmd); } else { /* * Need a 10 byte cdb. */ struct scsi_mode_sense_10 *scsi_cmd; scsi_cmd = (struct scsi_mode_sense_10 *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = MODE_SENSE_10; if (dbd != 0) scsi_cmd->byte2 |= SMS_DBD; scsi_cmd->page = pc | page; scsi_cmd->subpage = subpage; scsi_ulto2b(param_len, scsi_cmd->length); cdb_len = sizeof(*scsi_cmd); } cam_fill_csio(csio, retries, cbfcnp, CAM_DIR_IN, tag_action, param_buf, param_len, sense_len, cdb_len, timeout); } void scsi_mode_select(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, int scsi_page_fmt, int save_pages, u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, u_int32_t timeout) { scsi_mode_select_len(csio, retries, cbfcnp, tag_action, scsi_page_fmt, save_pages, param_buf, param_len, 0, sense_len, timeout); } void scsi_mode_select_len(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, int scsi_page_fmt, int save_pages, u_int8_t *param_buf, u_int32_t param_len, int minimum_cmd_size, u_int8_t sense_len, u_int32_t timeout) { u_int8_t cdb_len; /* * Use the smallest possible command to perform the operation. */ if ((param_len < 256) && (minimum_cmd_size < 10)) { /* * We can fit in a 6 byte cdb. */ struct scsi_mode_select_6 *scsi_cmd; scsi_cmd = (struct scsi_mode_select_6 *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = MODE_SELECT_6; if (scsi_page_fmt != 0) scsi_cmd->byte2 |= SMS_PF; if (save_pages != 0) scsi_cmd->byte2 |= SMS_SP; scsi_cmd->length = param_len; cdb_len = sizeof(*scsi_cmd); } else { /* * Need a 10 byte cdb. */ struct scsi_mode_select_10 *scsi_cmd; scsi_cmd = (struct scsi_mode_select_10 *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = MODE_SELECT_10; if (scsi_page_fmt != 0) scsi_cmd->byte2 |= SMS_PF; if (save_pages != 0) scsi_cmd->byte2 |= SMS_SP; scsi_ulto2b(param_len, scsi_cmd->length); cdb_len = sizeof(*scsi_cmd); } cam_fill_csio(csio, retries, cbfcnp, CAM_DIR_OUT, tag_action, param_buf, param_len, sense_len, cdb_len, timeout); } void scsi_log_sense(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t page_code, u_int8_t page, int save_pages, int ppc, u_int32_t paramptr, u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, u_int32_t timeout) { struct scsi_log_sense *scsi_cmd; u_int8_t cdb_len; scsi_cmd = (struct scsi_log_sense *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = LOG_SENSE; scsi_cmd->page = page_code | page; if (save_pages != 0) scsi_cmd->byte2 |= SLS_SP; if (ppc != 0) scsi_cmd->byte2 |= SLS_PPC; scsi_ulto2b(paramptr, scsi_cmd->paramptr); scsi_ulto2b(param_len, scsi_cmd->length); cdb_len = sizeof(*scsi_cmd); cam_fill_csio(csio, retries, cbfcnp, /*flags*/CAM_DIR_IN, tag_action, /*data_ptr*/param_buf, /*dxfer_len*/param_len, sense_len, cdb_len, timeout); } void scsi_log_select(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t page_code, int save_pages, int pc_reset, u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, u_int32_t timeout) { struct scsi_log_select *scsi_cmd; u_int8_t cdb_len; scsi_cmd = (struct scsi_log_select *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = LOG_SELECT; scsi_cmd->page = page_code & SLS_PAGE_CODE; if (save_pages != 0) scsi_cmd->byte2 |= SLS_SP; if (pc_reset != 0) scsi_cmd->byte2 |= SLS_PCR; scsi_ulto2b(param_len, scsi_cmd->length); cdb_len = sizeof(*scsi_cmd); cam_fill_csio(csio, retries, cbfcnp, /*flags*/CAM_DIR_OUT, tag_action, /*data_ptr*/param_buf, /*dxfer_len*/param_len, sense_len, cdb_len, timeout); } /* * Prevent or allow the user to remove the media */ void scsi_prevent(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t action, u_int8_t sense_len, u_int32_t timeout) { struct scsi_prevent *scsi_cmd; cam_fill_csio(csio, retries, cbfcnp, /*flags*/CAM_DIR_NONE, tag_action, /*data_ptr*/NULL, /*dxfer_len*/0, sense_len, sizeof(*scsi_cmd), timeout); scsi_cmd = (struct scsi_prevent *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = PREVENT_ALLOW; scsi_cmd->how = action; } /* XXX allow specification of address and PMI bit and LBA */ void scsi_read_capacity(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, struct scsi_read_capacity_data *rcap_buf, u_int8_t sense_len, u_int32_t timeout) { struct scsi_read_capacity *scsi_cmd; cam_fill_csio(csio, retries, cbfcnp, /*flags*/CAM_DIR_IN, tag_action, /*data_ptr*/(u_int8_t *)rcap_buf, /*dxfer_len*/sizeof(*rcap_buf), sense_len, sizeof(*scsi_cmd), timeout); scsi_cmd = (struct scsi_read_capacity *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = READ_CAPACITY; } void scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, uint64_t lba, int reladr, int pmi, uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len, uint32_t timeout) { struct scsi_read_capacity_16 *scsi_cmd; cam_fill_csio(csio, retries, cbfcnp, /*flags*/CAM_DIR_IN, tag_action, /*data_ptr*/(u_int8_t *)rcap_buf, /*dxfer_len*/rcap_buf_len, sense_len, sizeof(*scsi_cmd), timeout); scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = SERVICE_ACTION_IN; scsi_cmd->service_action = SRC16_SERVICE_ACTION; scsi_u64to8b(lba, scsi_cmd->addr); scsi_ulto4b(rcap_buf_len, scsi_cmd->alloc_len); if (pmi) reladr |= SRC16_PMI; if (reladr) reladr |= SRC16_RELADR; } void scsi_report_luns(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t select_report, struct scsi_report_luns_data *rpl_buf, u_int32_t alloc_len, u_int8_t sense_len, u_int32_t timeout) { struct scsi_report_luns *scsi_cmd; cam_fill_csio(csio, retries, cbfcnp, /*flags*/CAM_DIR_IN, tag_action, /*data_ptr*/(u_int8_t *)rpl_buf, /*dxfer_len*/alloc_len, sense_len, sizeof(*scsi_cmd), timeout); scsi_cmd = (struct scsi_report_luns *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = REPORT_LUNS; scsi_cmd->select_report = select_report; scsi_ulto4b(alloc_len, scsi_cmd->length); } void scsi_report_target_group(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t pdf, void *buf, u_int32_t alloc_len, u_int8_t sense_len, u_int32_t timeout) { struct scsi_target_group *scsi_cmd; cam_fill_csio(csio, retries, cbfcnp, /*flags*/CAM_DIR_IN, tag_action, /*data_ptr*/(u_int8_t *)buf, /*dxfer_len*/alloc_len, sense_len, sizeof(*scsi_cmd), timeout); scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = MAINTENANCE_IN; scsi_cmd->service_action = REPORT_TARGET_PORT_GROUPS | pdf; scsi_ulto4b(alloc_len, scsi_cmd->length); } void scsi_report_timestamp(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t pdf, void *buf, u_int32_t alloc_len, u_int8_t sense_len, u_int32_t timeout) { struct scsi_timestamp *scsi_cmd; cam_fill_csio(csio, retries, cbfcnp, /*flags*/CAM_DIR_IN, tag_action, /*data_ptr*/(u_int8_t *)buf, /*dxfer_len*/alloc_len, sense_len, sizeof(*scsi_cmd), timeout); scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = MAINTENANCE_IN; scsi_cmd->service_action = REPORT_TIMESTAMP | pdf; scsi_ulto4b(alloc_len, scsi_cmd->length); } void scsi_set_target_group(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, void *buf, u_int32_t alloc_len, u_int8_t sense_len, u_int32_t timeout) { struct scsi_target_group *scsi_cmd; cam_fill_csio(csio, retries, cbfcnp, /*flags*/CAM_DIR_OUT, tag_action, /*data_ptr*/(u_int8_t *)buf, /*dxfer_len*/alloc_len, sense_len, sizeof(*scsi_cmd), timeout); scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = MAINTENANCE_OUT; scsi_cmd->service_action = SET_TARGET_PORT_GROUPS; scsi_ulto4b(alloc_len, scsi_cmd->length); } void scsi_create_timestamp(uint8_t *timestamp_6b_buf, uint64_t timestamp) { uint8_t buf[8]; scsi_u64to8b(timestamp, buf); /* * Using memcopy starting at buf[2] because the set timestamp parameters * only has six bytes for the timestamp to fit into, and we don't have a * scsi_u64to6b function. */ memcpy(timestamp_6b_buf, &buf[2], 6); } void scsi_set_timestamp(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, void *buf, u_int32_t alloc_len, u_int8_t sense_len, u_int32_t timeout) { struct scsi_timestamp *scsi_cmd; cam_fill_csio(csio, retries, cbfcnp, /*flags*/CAM_DIR_OUT, tag_action, /*data_ptr*/(u_int8_t *) buf, /*dxfer_len*/alloc_len, sense_len, sizeof(*scsi_cmd), timeout); scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = MAINTENANCE_OUT; scsi_cmd->service_action = SET_TIMESTAMP; scsi_ulto4b(alloc_len, scsi_cmd->length); } /* * Syncronize the media to the contents of the cache for * the given lba/count pair. Specifying 0/0 means sync * the whole cache. */ void scsi_synchronize_cache(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int32_t begin_lba, u_int16_t lb_count, u_int8_t sense_len, u_int32_t timeout) { struct scsi_sync_cache *scsi_cmd; cam_fill_csio(csio, retries, cbfcnp, /*flags*/CAM_DIR_NONE, tag_action, /*data_ptr*/NULL, /*dxfer_len*/0, sense_len, sizeof(*scsi_cmd), timeout); scsi_cmd = (struct scsi_sync_cache *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = SYNCHRONIZE_CACHE; scsi_ulto4b(begin_lba, scsi_cmd->begin_lba); scsi_ulto2b(lb_count, scsi_cmd->lb_count); } void scsi_read_write(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, int readop, u_int8_t byte2, int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, u_int32_t timeout) { int read; u_int8_t cdb_len; read = (readop & SCSI_RW_DIRMASK) == SCSI_RW_READ; /* * Use the smallest possible command to perform the operation * as some legacy hardware does not support the 10 byte commands. * If any of the bits in byte2 is set, we have to go with a larger * command. */ if ((minimum_cmd_size < 10) && ((lba & 0x1fffff) == lba) && ((block_count & 0xff) == block_count) && (byte2 == 0)) { /* * We can fit in a 6 byte cdb. */ struct scsi_rw_6 *scsi_cmd; scsi_cmd = (struct scsi_rw_6 *)&csio->cdb_io.cdb_bytes; scsi_cmd->opcode = read ? READ_6 : WRITE_6; scsi_ulto3b(lba, scsi_cmd->addr); scsi_cmd->length = block_count & 0xff; scsi_cmd->control = 0; cdb_len = sizeof(*scsi_cmd); CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, ("6byte: %x%x%x:%d:%d\n", scsi_cmd->addr[0], scsi_cmd->addr[1], scsi_cmd->addr[2], scsi_cmd->length, dxfer_len)); } else if ((minimum_cmd_size < 12) && ((block_count & 0xffff) == block_count) && ((lba & 0xffffffff) == lba)) { /* * Need a 10 byte cdb. */ struct scsi_rw_10 *scsi_cmd; scsi_cmd = (struct scsi_rw_10 *)&csio->cdb_io.cdb_bytes; scsi_cmd->opcode = read ? READ_10 : WRITE_10; scsi_cmd->byte2 = byte2; scsi_ulto4b(lba, scsi_cmd->addr); scsi_cmd->reserved = 0; scsi_ulto2b(block_count, scsi_cmd->length); scsi_cmd->control = 0; cdb_len = sizeof(*scsi_cmd); CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], scsi_cmd->addr[1], scsi_cmd->addr[2], scsi_cmd->addr[3], scsi_cmd->length[0], scsi_cmd->length[1], dxfer_len)); } else if ((minimum_cmd_size < 16) && ((block_count & 0xffffffff) == block_count) && ((lba & 0xffffffff) == lba)) { /* * The block count is too big for a 10 byte CDB, use a 12 * byte CDB. */ struct scsi_rw_12 *scsi_cmd; scsi_cmd = (struct scsi_rw_12 *)&csio->cdb_io.cdb_bytes; scsi_cmd->opcode = read ? READ_12 : WRITE_12; scsi_cmd->byte2 = byte2; scsi_ulto4b(lba, scsi_cmd->addr); scsi_cmd->reserved = 0; scsi_ulto4b(block_count, scsi_cmd->length); scsi_cmd->control = 0; cdb_len = sizeof(*scsi_cmd); CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, ("12byte: %x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0], scsi_cmd->addr[1], scsi_cmd->addr[2], scsi_cmd->addr[3], scsi_cmd->length[0], scsi_cmd->length[1], scsi_cmd->length[2], scsi_cmd->length[3], dxfer_len)); } else { /* * 16 byte CDB. We'll only get here if the LBA is larger * than 2^32, or if the user asks for a 16 byte command. */ struct scsi_rw_16 *scsi_cmd; scsi_cmd = (struct scsi_rw_16 *)&csio->cdb_io.cdb_bytes; scsi_cmd->opcode = read ? READ_16 : WRITE_16; scsi_cmd->byte2 = byte2; scsi_u64to8b(lba, scsi_cmd->addr); scsi_cmd->reserved = 0; scsi_ulto4b(block_count, scsi_cmd->length); scsi_cmd->control = 0; cdb_len = sizeof(*scsi_cmd); } cam_fill_csio(csio, retries, cbfcnp, (read ? CAM_DIR_IN : CAM_DIR_OUT) | ((readop & SCSI_RW_BIO) != 0 ? CAM_DATA_BIO : 0), tag_action, data_ptr, dxfer_len, sense_len, cdb_len, timeout); } void scsi_write_same(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t byte2, int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, u_int32_t timeout) { u_int8_t cdb_len; if ((minimum_cmd_size < 16) && ((block_count & 0xffff) == block_count) && ((lba & 0xffffffff) == lba)) { /* * Need a 10 byte cdb. */ struct scsi_write_same_10 *scsi_cmd; scsi_cmd = (struct scsi_write_same_10 *)&csio->cdb_io.cdb_bytes; scsi_cmd->opcode = WRITE_SAME_10; scsi_cmd->byte2 = byte2; scsi_ulto4b(lba, scsi_cmd->addr); scsi_cmd->group = 0; scsi_ulto2b(block_count, scsi_cmd->length); scsi_cmd->control = 0; cdb_len = sizeof(*scsi_cmd); CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], scsi_cmd->addr[1], scsi_cmd->addr[2], scsi_cmd->addr[3], scsi_cmd->length[0], scsi_cmd->length[1], dxfer_len)); } else { /* * 16 byte CDB. We'll only get here if the LBA is larger * than 2^32, or if the user asks for a 16 byte command. */ struct scsi_write_same_16 *scsi_cmd; scsi_cmd = (struct scsi_write_same_16 *)&csio->cdb_io.cdb_bytes; scsi_cmd->opcode = WRITE_SAME_16; scsi_cmd->byte2 = byte2; scsi_u64to8b(lba, scsi_cmd->addr); scsi_ulto4b(block_count, scsi_cmd->length); scsi_cmd->group = 0; scsi_cmd->control = 0; cdb_len = sizeof(*scsi_cmd); CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, ("16byte: %x%x%x%x%x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0], scsi_cmd->addr[1], scsi_cmd->addr[2], scsi_cmd->addr[3], scsi_cmd->addr[4], scsi_cmd->addr[5], scsi_cmd->addr[6], scsi_cmd->addr[7], scsi_cmd->length[0], scsi_cmd->length[1], scsi_cmd->length[2], scsi_cmd->length[3], dxfer_len)); } cam_fill_csio(csio, retries, cbfcnp, /*flags*/CAM_DIR_OUT, tag_action, data_ptr, dxfer_len, sense_len, cdb_len, timeout); } void scsi_ata_identify(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, u_int32_t timeout) { scsi_ata_pass(csio, retries, cbfcnp, /*flags*/CAM_DIR_IN, tag_action, /*protocol*/AP_PROTO_PIO_IN, /*ata_flags*/AP_FLAG_TDIR_FROM_DEV | AP_FLAG_BYT_BLOK_BLOCKS | AP_FLAG_TLEN_SECT_CNT, /*features*/0, /*sector_count*/dxfer_len / 512, /*lba*/0, /*command*/ATA_ATA_IDENTIFY, /*device*/ 0, /*icc*/ 0, /*auxiliary*/ 0, /*control*/0, data_ptr, dxfer_len, /*cdb_storage*/ NULL, /*cdb_storage_len*/ 0, /*minimum_cmd_size*/ 0, sense_len, timeout); } void scsi_ata_trim(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int16_t block_count, u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, u_int32_t timeout) { scsi_ata_pass_16(csio, retries, cbfcnp, /*flags*/CAM_DIR_OUT, tag_action, /*protocol*/AP_EXTEND|AP_PROTO_DMA, /*ata_flags*/AP_FLAG_TLEN_SECT_CNT|AP_FLAG_BYT_BLOK_BLOCKS, /*features*/ATA_DSM_TRIM, /*sector_count*/block_count, /*lba*/0, /*command*/ATA_DATA_SET_MANAGEMENT, /*control*/0, data_ptr, dxfer_len, sense_len, timeout); } int scsi_ata_read_log(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, uint32_t log_address, uint32_t page_number, uint16_t block_count, uint8_t protocol, uint8_t *data_ptr, uint32_t dxfer_len, uint8_t sense_len, uint32_t timeout) { uint8_t command, protocol_out; uint16_t count_out; uint64_t lba; int retval; retval = 0; switch (protocol) { case AP_PROTO_DMA: count_out = block_count; command = ATA_READ_LOG_DMA_EXT; protocol_out = AP_PROTO_DMA; break; case AP_PROTO_PIO_IN: default: count_out = block_count; command = ATA_READ_LOG_EXT; protocol_out = AP_PROTO_PIO_IN; break; } lba = (((uint64_t)page_number & 0xff00) << 32) | ((page_number & 0x00ff) << 8) | (log_address & 0xff); protocol_out |= AP_EXTEND; retval = scsi_ata_pass(csio, retries, cbfcnp, /*flags*/CAM_DIR_IN, tag_action, /*protocol*/ protocol_out, /*ata_flags*/AP_FLAG_TLEN_SECT_CNT | AP_FLAG_BYT_BLOK_BLOCKS | AP_FLAG_TDIR_FROM_DEV, /*feature*/ 0, /*sector_count*/ count_out, /*lba*/ lba, /*command*/ command, /*device*/ 0, /*icc*/ 0, /*auxiliary*/ 0, /*control*/0, data_ptr, dxfer_len, /*cdb_storage*/ NULL, /*cdb_storage_len*/ 0, /*minimum_cmd_size*/ 0, sense_len, timeout); return (retval); } int scsi_ata_setfeatures(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, uint8_t feature, uint64_t lba, uint32_t count, uint8_t sense_len, uint32_t timeout) { return (scsi_ata_pass(csio, retries, cbfcnp, /*flags*/CAM_DIR_NONE, tag_action, /*protocol*/AP_PROTO_PIO_IN, /*ata_flags*/AP_FLAG_TDIR_FROM_DEV | AP_FLAG_BYT_BLOK_BYTES | AP_FLAG_TLEN_SECT_CNT, /*features*/feature, /*sector_count*/count, /*lba*/lba, /*command*/ATA_SETFEATURES, /*device*/ 0, /*icc*/ 0, /*auxiliary*/0, /*control*/0, /*data_ptr*/NULL, /*dxfer_len*/0, /*cdb_storage*/NULL, /*cdb_storage_len*/0, /*minimum_cmd_size*/0, sense_len, timeout)); } /* * Note! This is an unusual CDB building function because it can return * an error in the event that the command in question requires a variable * length CDB, but the caller has not given storage space for one or has not * given enough storage space. If there is enough space available in the * standard SCSI CCB CDB bytes, we'll prefer that over passed in storage. */ int scsi_ata_pass(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint32_t flags, uint8_t tag_action, uint8_t protocol, uint8_t ata_flags, uint16_t features, uint16_t sector_count, uint64_t lba, uint8_t command, uint8_t device, uint8_t icc, uint32_t auxiliary, uint8_t control, u_int8_t *data_ptr, uint32_t dxfer_len, uint8_t *cdb_storage, size_t cdb_storage_len, int minimum_cmd_size, u_int8_t sense_len, u_int32_t timeout) { uint32_t cam_flags; uint8_t *cdb_ptr; int cmd_size; int retval; uint8_t cdb_len; retval = 0; cam_flags = flags; /* * Round the user's request to the nearest command size that is at * least as big as what he requested. */ if (minimum_cmd_size <= 12) cmd_size = 12; else if (minimum_cmd_size > 16) cmd_size = 32; else cmd_size = 16; /* * If we have parameters that require a 48-bit ATA command, we have to * use the 16 byte ATA PASS-THROUGH command at least. */ if (((lba > ATA_MAX_28BIT_LBA) || (sector_count > 255) || (features > 255) || (protocol & AP_EXTEND)) && ((cmd_size < 16) || ((protocol & AP_EXTEND) == 0))) { if (cmd_size < 16) cmd_size = 16; protocol |= AP_EXTEND; } /* * The icc and auxiliary ATA registers are only supported in the * 32-byte version of the ATA PASS-THROUGH command. */ if ((icc != 0) || (auxiliary != 0)) { cmd_size = 32; protocol |= AP_EXTEND; } if ((cmd_size > sizeof(csio->cdb_io.cdb_bytes)) && ((cdb_storage == NULL) || (cdb_storage_len < cmd_size))) { retval = 1; goto bailout; } /* * At this point we know we have enough space to store the command * in one place or another. We prefer the built-in array, but used * the passed in storage if necessary. */ if (cmd_size <= sizeof(csio->cdb_io.cdb_bytes)) cdb_ptr = csio->cdb_io.cdb_bytes; else { cdb_ptr = cdb_storage; cam_flags |= CAM_CDB_POINTER; } if (cmd_size <= 12) { struct ata_pass_12 *cdb; cdb = (struct ata_pass_12 *)cdb_ptr; cdb_len = sizeof(*cdb); bzero(cdb, cdb_len); cdb->opcode = ATA_PASS_12; cdb->protocol = protocol; cdb->flags = ata_flags; cdb->features = features; cdb->sector_count = sector_count; cdb->lba_low = lba & 0xff; cdb->lba_mid = (lba >> 8) & 0xff; cdb->lba_high = (lba >> 16) & 0xff; cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; cdb->command = command; cdb->control = control; } else if (cmd_size <= 16) { struct ata_pass_16 *cdb; cdb = (struct ata_pass_16 *)cdb_ptr; cdb_len = sizeof(*cdb); bzero(cdb, cdb_len); cdb->opcode = ATA_PASS_16; cdb->protocol = protocol; cdb->flags = ata_flags; cdb->features = features & 0xff; cdb->sector_count = sector_count & 0xff; cdb->lba_low = lba & 0xff; cdb->lba_mid = (lba >> 8) & 0xff; cdb->lba_high = (lba >> 16) & 0xff; /* * If AP_EXTEND is set, we're sending a 48-bit command. * Otherwise it's a 28-bit command. */ if (protocol & AP_EXTEND) { cdb->lba_low_ext = (lba >> 24) & 0xff; cdb->lba_mid_ext = (lba >> 32) & 0xff; cdb->lba_high_ext = (lba >> 40) & 0xff; cdb->features_ext = (features >> 8) & 0xff; cdb->sector_count_ext = (sector_count >> 8) & 0xff; cdb->device = device | ATA_DEV_LBA; } else { cdb->lba_low_ext = (lba >> 24) & 0xf; cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; } cdb->command = command; cdb->control = control; } else { struct ata_pass_32 *cdb; uint8_t tmp_lba[8]; cdb = (struct ata_pass_32 *)cdb_ptr; cdb_len = sizeof(*cdb); bzero(cdb, cdb_len); cdb->opcode = VARIABLE_LEN_CDB; cdb->control = control; cdb->length = sizeof(*cdb) - __offsetof(struct ata_pass_32, service_action); scsi_ulto2b(ATA_PASS_32_SA, cdb->service_action); cdb->protocol = protocol; cdb->flags = ata_flags; if ((protocol & AP_EXTEND) == 0) { lba &= 0x0fffffff; cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; features &= 0xff; sector_count &= 0xff; } else { cdb->device = device | ATA_DEV_LBA; } scsi_u64to8b(lba, tmp_lba); bcopy(&tmp_lba[2], cdb->lba, sizeof(cdb->lba)); scsi_ulto2b(features, cdb->features); scsi_ulto2b(sector_count, cdb->count); cdb->command = command; cdb->icc = icc; scsi_ulto4b(auxiliary, cdb->auxiliary); } cam_fill_csio(csio, retries, cbfcnp, cam_flags, tag_action, data_ptr, dxfer_len, sense_len, cmd_size, timeout); bailout: return (retval); } void scsi_ata_pass_16(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int32_t flags, u_int8_t tag_action, u_int8_t protocol, u_int8_t ata_flags, u_int16_t features, u_int16_t sector_count, uint64_t lba, u_int8_t command, u_int8_t control, u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, u_int32_t timeout) { struct ata_pass_16 *ata_cmd; ata_cmd = (struct ata_pass_16 *)&csio->cdb_io.cdb_bytes; ata_cmd->opcode = ATA_PASS_16; ata_cmd->protocol = protocol; ata_cmd->flags = ata_flags; ata_cmd->features_ext = features >> 8; ata_cmd->features = features; ata_cmd->sector_count_ext = sector_count >> 8; ata_cmd->sector_count = sector_count; ata_cmd->lba_low = lba; ata_cmd->lba_mid = lba >> 8; ata_cmd->lba_high = lba >> 16; ata_cmd->device = ATA_DEV_LBA; if (protocol & AP_EXTEND) { ata_cmd->lba_low_ext = lba >> 24; ata_cmd->lba_mid_ext = lba >> 32; ata_cmd->lba_high_ext = lba >> 40; } else ata_cmd->device |= (lba >> 24) & 0x0f; ata_cmd->command = command; ata_cmd->control = control; cam_fill_csio(csio, retries, cbfcnp, flags, tag_action, data_ptr, dxfer_len, sense_len, sizeof(*ata_cmd), timeout); } void scsi_unmap(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t byte2, u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, u_int32_t timeout) { struct scsi_unmap *scsi_cmd; scsi_cmd = (struct scsi_unmap *)&csio->cdb_io.cdb_bytes; scsi_cmd->opcode = UNMAP; scsi_cmd->byte2 = byte2; scsi_ulto4b(0, scsi_cmd->reserved); scsi_cmd->group = 0; scsi_ulto2b(dxfer_len, scsi_cmd->length); scsi_cmd->control = 0; cam_fill_csio(csio, retries, cbfcnp, /*flags*/CAM_DIR_OUT, tag_action, data_ptr, dxfer_len, sense_len, sizeof(*scsi_cmd), timeout); } void scsi_receive_diagnostic_results(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb*), uint8_t tag_action, int pcv, uint8_t page_code, uint8_t *data_ptr, uint16_t allocation_length, uint8_t sense_len, uint32_t timeout) { struct scsi_receive_diag *scsi_cmd; scsi_cmd = (struct scsi_receive_diag *)&csio->cdb_io.cdb_bytes; memset(scsi_cmd, 0, sizeof(*scsi_cmd)); scsi_cmd->opcode = RECEIVE_DIAGNOSTIC; if (pcv) { scsi_cmd->byte2 |= SRD_PCV; scsi_cmd->page_code = page_code; } scsi_ulto2b(allocation_length, scsi_cmd->length); cam_fill_csio(csio, retries, cbfcnp, /*flags*/CAM_DIR_IN, tag_action, data_ptr, allocation_length, sense_len, sizeof(*scsi_cmd), timeout); } void scsi_send_diagnostic(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, int unit_offline, int device_offline, int self_test, int page_format, int self_test_code, uint8_t *data_ptr, uint16_t param_list_length, uint8_t sense_len, uint32_t timeout) { struct scsi_send_diag *scsi_cmd; scsi_cmd = (struct scsi_send_diag *)&csio->cdb_io.cdb_bytes; memset(scsi_cmd, 0, sizeof(*scsi_cmd)); scsi_cmd->opcode = SEND_DIAGNOSTIC; /* * The default self-test mode control and specific test * control are mutually exclusive. */ if (self_test) self_test_code = SSD_SELF_TEST_CODE_NONE; scsi_cmd->byte2 = ((self_test_code << SSD_SELF_TEST_CODE_SHIFT) & SSD_SELF_TEST_CODE_MASK) | (unit_offline ? SSD_UNITOFFL : 0) | (device_offline ? SSD_DEVOFFL : 0) | (self_test ? SSD_SELFTEST : 0) | (page_format ? SSD_PF : 0); scsi_ulto2b(param_list_length, scsi_cmd->length); cam_fill_csio(csio, retries, cbfcnp, /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE, tag_action, data_ptr, param_list_length, sense_len, sizeof(*scsi_cmd), timeout); } void scsi_read_buffer(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb*), uint8_t tag_action, int mode, uint8_t buffer_id, u_int32_t offset, uint8_t *data_ptr, uint32_t allocation_length, uint8_t sense_len, uint32_t timeout) { struct scsi_read_buffer *scsi_cmd; scsi_cmd = (struct scsi_read_buffer *)&csio->cdb_io.cdb_bytes; memset(scsi_cmd, 0, sizeof(*scsi_cmd)); scsi_cmd->opcode = READ_BUFFER; scsi_cmd->byte2 = mode; scsi_cmd->buffer_id = buffer_id; scsi_ulto3b(offset, scsi_cmd->offset); scsi_ulto3b(allocation_length, scsi_cmd->length); cam_fill_csio(csio, retries, cbfcnp, /*flags*/CAM_DIR_IN, tag_action, data_ptr, allocation_length, sense_len, sizeof(*scsi_cmd), timeout); } void scsi_write_buffer(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, int mode, uint8_t buffer_id, u_int32_t offset, uint8_t *data_ptr, uint32_t param_list_length, uint8_t sense_len, uint32_t timeout) { struct scsi_write_buffer *scsi_cmd; scsi_cmd = (struct scsi_write_buffer *)&csio->cdb_io.cdb_bytes; memset(scsi_cmd, 0, sizeof(*scsi_cmd)); scsi_cmd->opcode = WRITE_BUFFER; scsi_cmd->byte2 = mode; scsi_cmd->buffer_id = buffer_id; scsi_ulto3b(offset, scsi_cmd->offset); scsi_ulto3b(param_list_length, scsi_cmd->length); cam_fill_csio(csio, retries, cbfcnp, /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE, tag_action, data_ptr, param_list_length, sense_len, sizeof(*scsi_cmd), timeout); } void scsi_start_stop(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, int start, int load_eject, int immediate, u_int8_t sense_len, u_int32_t timeout) { struct scsi_start_stop_unit *scsi_cmd; int extra_flags = 0; scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = START_STOP_UNIT; if (start != 0) { scsi_cmd->how |= SSS_START; /* it takes a lot of power to start a drive */ extra_flags |= CAM_HIGH_POWER; } if (load_eject != 0) scsi_cmd->how |= SSS_LOEJ; if (immediate != 0) scsi_cmd->byte2 |= SSS_IMMED; cam_fill_csio(csio, retries, cbfcnp, /*flags*/CAM_DIR_NONE | extra_flags, tag_action, /*data_ptr*/NULL, /*dxfer_len*/0, sense_len, sizeof(*scsi_cmd), timeout); } void scsi_read_attribute(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t service_action, uint32_t element, u_int8_t elem_type, int logical_volume, int partition, u_int32_t first_attribute, int cache, u_int8_t *data_ptr, u_int32_t length, int sense_len, u_int32_t timeout) { struct scsi_read_attribute *scsi_cmd; scsi_cmd = (struct scsi_read_attribute *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = READ_ATTRIBUTE; scsi_cmd->service_action = service_action; scsi_ulto2b(element, scsi_cmd->element); scsi_cmd->elem_type = elem_type; scsi_cmd->logical_volume = logical_volume; scsi_cmd->partition = partition; scsi_ulto2b(first_attribute, scsi_cmd->first_attribute); scsi_ulto4b(length, scsi_cmd->length); if (cache != 0) scsi_cmd->cache |= SRA_CACHE; cam_fill_csio(csio, retries, cbfcnp, /*flags*/CAM_DIR_IN, tag_action, /*data_ptr*/data_ptr, /*dxfer_len*/length, sense_len, sizeof(*scsi_cmd), timeout); } void scsi_write_attribute(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, uint32_t element, int logical_volume, int partition, int wtc, u_int8_t *data_ptr, u_int32_t length, int sense_len, u_int32_t timeout) { struct scsi_write_attribute *scsi_cmd; scsi_cmd = (struct scsi_write_attribute *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = WRITE_ATTRIBUTE; if (wtc != 0) scsi_cmd->byte2 = SWA_WTC; scsi_ulto3b(element, scsi_cmd->element); scsi_cmd->logical_volume = logical_volume; scsi_cmd->partition = partition; scsi_ulto4b(length, scsi_cmd->length); cam_fill_csio(csio, retries, cbfcnp, /*flags*/CAM_DIR_OUT, tag_action, /*data_ptr*/data_ptr, /*dxfer_len*/length, sense_len, sizeof(*scsi_cmd), timeout); } void scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, int service_action, uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, int timeout) { struct scsi_per_res_in *scsi_cmd; scsi_cmd = (struct scsi_per_res_in *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = PERSISTENT_RES_IN; scsi_cmd->action = service_action; scsi_ulto2b(dxfer_len, scsi_cmd->length); cam_fill_csio(csio, retries, cbfcnp, /*flags*/CAM_DIR_IN, tag_action, data_ptr, dxfer_len, sense_len, sizeof(*scsi_cmd), timeout); } void scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, int service_action, int scope, int res_type, uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, int timeout) { struct scsi_per_res_out *scsi_cmd; scsi_cmd = (struct scsi_per_res_out *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = PERSISTENT_RES_OUT; scsi_cmd->action = service_action; scsi_cmd->scope_type = scope | res_type; scsi_ulto4b(dxfer_len, scsi_cmd->length); cam_fill_csio(csio, retries, cbfcnp, /*flags*/CAM_DIR_OUT, tag_action, /*data_ptr*/data_ptr, /*dxfer_len*/dxfer_len, sense_len, sizeof(*scsi_cmd), timeout); } void scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, uint32_t security_protocol, uint32_t security_protocol_specific, int byte4, uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, int timeout) { struct scsi_security_protocol_in *scsi_cmd; scsi_cmd = (struct scsi_security_protocol_in *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = SECURITY_PROTOCOL_IN; scsi_cmd->security_protocol = security_protocol; scsi_ulto2b(security_protocol_specific, scsi_cmd->security_protocol_specific); scsi_cmd->byte4 = byte4; scsi_ulto4b(dxfer_len, scsi_cmd->length); cam_fill_csio(csio, retries, cbfcnp, /*flags*/CAM_DIR_IN, tag_action, data_ptr, dxfer_len, sense_len, sizeof(*scsi_cmd), timeout); } void scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, uint32_t security_protocol, uint32_t security_protocol_specific, int byte4, uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, int timeout) { struct scsi_security_protocol_out *scsi_cmd; scsi_cmd = (struct scsi_security_protocol_out *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = SECURITY_PROTOCOL_OUT; scsi_cmd->security_protocol = security_protocol; scsi_ulto2b(security_protocol_specific, scsi_cmd->security_protocol_specific); scsi_cmd->byte4 = byte4; scsi_ulto4b(dxfer_len, scsi_cmd->length); cam_fill_csio(csio, retries, cbfcnp, /*flags*/CAM_DIR_OUT, tag_action, data_ptr, dxfer_len, sense_len, sizeof(*scsi_cmd), timeout); } void scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, int options, int req_opcode, int req_service_action, uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, int timeout) { struct scsi_report_supported_opcodes *scsi_cmd; scsi_cmd = (struct scsi_report_supported_opcodes *) &csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = MAINTENANCE_IN; scsi_cmd->service_action = REPORT_SUPPORTED_OPERATION_CODES; scsi_cmd->options = options; scsi_cmd->requested_opcode = req_opcode; scsi_ulto2b(req_service_action, scsi_cmd->requested_service_action); scsi_ulto4b(dxfer_len, scsi_cmd->length); cam_fill_csio(csio, retries, cbfcnp, /*flags*/CAM_DIR_IN, tag_action, data_ptr, dxfer_len, sense_len, sizeof(*scsi_cmd), timeout); } /* * Try make as good a match as possible with * available sub drivers */ int scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) { struct scsi_inquiry_pattern *entry; struct scsi_inquiry_data *inq; entry = (struct scsi_inquiry_pattern *)table_entry; inq = (struct scsi_inquiry_data *)inqbuffer; if (((SID_TYPE(inq) == entry->type) || (entry->type == T_ANY)) && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE : entry->media_type & SIP_MEDIA_FIXED) && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) && (cam_strmatch(inq->product, entry->product, sizeof(inq->product)) == 0) && (cam_strmatch(inq->revision, entry->revision, sizeof(inq->revision)) == 0)) { return (0); } return (-1); } /* * Try make as good a match as possible with * available sub drivers */ int scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) { struct scsi_static_inquiry_pattern *entry; struct scsi_inquiry_data *inq; entry = (struct scsi_static_inquiry_pattern *)table_entry; inq = (struct scsi_inquiry_data *)inqbuffer; if (((SID_TYPE(inq) == entry->type) || (entry->type == T_ANY)) && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE : entry->media_type & SIP_MEDIA_FIXED) && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) && (cam_strmatch(inq->product, entry->product, sizeof(inq->product)) == 0) && (cam_strmatch(inq->revision, entry->revision, sizeof(inq->revision)) == 0)) { return (0); } return (-1); } /** * Compare two buffers of vpd device descriptors for a match. * * \param lhs Pointer to first buffer of descriptors to compare. * \param lhs_len The length of the first buffer. * \param rhs Pointer to second buffer of descriptors to compare. * \param rhs_len The length of the second buffer. * * \return 0 on a match, -1 otherwise. * * Treat rhs and lhs as arrays of vpd device id descriptors. Walk lhs matching * against each element in rhs until all data are exhausted or we have found * a match. */ int scsi_devid_match(uint8_t *lhs, size_t lhs_len, uint8_t *rhs, size_t rhs_len) { struct scsi_vpd_id_descriptor *lhs_id; struct scsi_vpd_id_descriptor *lhs_last; struct scsi_vpd_id_descriptor *rhs_last; uint8_t *lhs_end; uint8_t *rhs_end; lhs_end = lhs + lhs_len; rhs_end = rhs + rhs_len; /* * rhs_last and lhs_last are the last posible position of a valid * descriptor assuming it had a zero length identifier. We use * these variables to insure we can safely dereference the length * field in our loop termination tests. */ lhs_last = (struct scsi_vpd_id_descriptor *) (lhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); rhs_last = (struct scsi_vpd_id_descriptor *) (rhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); lhs_id = (struct scsi_vpd_id_descriptor *)lhs; while (lhs_id <= lhs_last && (lhs_id->identifier + lhs_id->length) <= lhs_end) { struct scsi_vpd_id_descriptor *rhs_id; rhs_id = (struct scsi_vpd_id_descriptor *)rhs; while (rhs_id <= rhs_last && (rhs_id->identifier + rhs_id->length) <= rhs_end) { if ((rhs_id->id_type & (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) == (lhs_id->id_type & (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) && rhs_id->length == lhs_id->length && memcmp(rhs_id->identifier, lhs_id->identifier, rhs_id->length) == 0) return (0); rhs_id = (struct scsi_vpd_id_descriptor *) (rhs_id->identifier + rhs_id->length); } lhs_id = (struct scsi_vpd_id_descriptor *) (lhs_id->identifier + lhs_id->length); } return (-1); } #ifdef _KERNEL int scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id) { struct cam_ed *device; struct scsi_vpd_supported_pages *vpds; int i, num_pages; device = periph->path->device; vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds; if (vpds != NULL) { num_pages = device->supported_vpds_len - SVPD_SUPPORTED_PAGES_HDR_LEN; for (i = 0; i < num_pages; i++) { if (vpds->page_list[i] == page_id) return (1); } } return (0); } static void init_scsi_delay(void) { int delay; delay = SCSI_DELAY; TUNABLE_INT_FETCH("kern.cam.scsi_delay", &delay); if (set_scsi_delay(delay) != 0) { printf("cam: invalid value for tunable kern.cam.scsi_delay\n"); set_scsi_delay(SCSI_DELAY); } } SYSINIT(scsi_delay, SI_SUB_TUNABLES, SI_ORDER_ANY, init_scsi_delay, NULL); static int sysctl_scsi_delay(SYSCTL_HANDLER_ARGS) { int error, delay; delay = scsi_delay; error = sysctl_handle_int(oidp, &delay, 0, req); if (error != 0 || req->newptr == NULL) return (error); return (set_scsi_delay(delay)); } SYSCTL_PROC(_kern_cam, OID_AUTO, scsi_delay, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, 0, sysctl_scsi_delay, "I", "Delay to allow devices to settle after a SCSI bus reset (ms)"); static int set_scsi_delay(int delay) { /* * If someone sets this to 0, we assume that they want the * minimum allowable bus settle delay. */ if (delay == 0) { printf("cam: using minimum scsi_delay (%dms)\n", SCSI_MIN_DELAY); delay = SCSI_MIN_DELAY; } if (delay < SCSI_MIN_DELAY) return (EINVAL); scsi_delay = delay; return (0); } #endif /* _KERNEL */