1 /*- 2 * Copyright (c) 2009 Alexander Motin <mav@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification, immediately at the beginning of the file. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 32 #ifdef _KERNEL 33 #include <opt_scsi.h> 34 35 #include <sys/systm.h> 36 #include <sys/libkern.h> 37 #include <sys/kernel.h> 38 #include <sys/sysctl.h> 39 #else 40 #include <errno.h> 41 #include <stdio.h> 42 #include <stdlib.h> 43 #include <string.h> 44 #ifndef min 45 #define min(a,b) (((a)<(b))?(a):(b)) 46 #endif 47 #endif 48 49 #include <cam/cam.h> 50 #include <cam/cam_ccb.h> 51 #include <cam/cam_queue.h> 52 #include <cam/cam_xpt.h> 53 #include <sys/ata.h> 54 #include <cam/ata/ata_all.h> 55 #include <sys/sbuf.h> 56 #include <sys/endian.h> 57 58 int 59 ata_version(int ver) 60 { 61 int bit; 62 63 if (ver == 0xffff) 64 return 0; 65 for (bit = 15; bit >= 0; bit--) 66 if (ver & (1<<bit)) 67 return bit; 68 return 0; 69 } 70 71 char * 72 ata_op_string(struct ata_cmd *cmd) 73 { 74 75 if (cmd->control & 0x04) 76 return ("SOFT_RESET"); 77 switch (cmd->command) { 78 case 0x00: 79 switch (cmd->features) { 80 case 0x00: return ("NOP FLUSHQUEUE"); 81 case 0x01: return ("NOP AUTOPOLL"); 82 } 83 return ("NOP"); 84 case 0x03: return ("CFA_REQUEST_EXTENDED_ERROR"); 85 case 0x06: 86 switch (cmd->features) { 87 case 0x01: return ("DSM TRIM"); 88 } 89 return "DSM"; 90 case 0x08: return ("DEVICE_RESET"); 91 case 0x0b: return ("REQUEST_SENSE_DATA_EXT"); 92 case 0x20: return ("READ"); 93 case 0x24: return ("READ48"); 94 case 0x25: return ("READ_DMA48"); 95 case 0x26: return ("READ_DMA_QUEUED48"); 96 case 0x27: return ("READ_NATIVE_MAX_ADDRESS48"); 97 case 0x29: return ("READ_MUL48"); 98 case 0x2a: return ("READ_STREAM_DMA48"); 99 case 0x2b: return ("READ_STREAM48"); 100 case 0x2f: return ("READ_LOG_EXT"); 101 case 0x30: return ("WRITE"); 102 case 0x34: return ("WRITE48"); 103 case 0x35: return ("WRITE_DMA48"); 104 case 0x36: return ("WRITE_DMA_QUEUED48"); 105 case 0x37: return ("SET_MAX_ADDRESS48"); 106 case 0x39: return ("WRITE_MUL48"); 107 case 0x3a: return ("WRITE_STREAM_DMA48"); 108 case 0x3b: return ("WRITE_STREAM48"); 109 case 0x3d: return ("WRITE_DMA_FUA48"); 110 case 0x3e: return ("WRITE_DMA_QUEUED_FUA48"); 111 case 0x3f: return ("WRITE_LOG_EXT"); 112 case 0x40: return ("READ_VERIFY"); 113 case 0x42: return ("READ_VERIFY48"); 114 case 0x44: return ("ZERO_EXT"); 115 case 0x45: 116 switch (cmd->features) { 117 case 0x55: return ("WRITE_UNCORRECTABLE48 PSEUDO"); 118 case 0xaa: return ("WRITE_UNCORRECTABLE48 FLAGGED"); 119 } 120 return "WRITE_UNCORRECTABLE48"; 121 case 0x47: return ("READ_LOG_DMA_EXT"); 122 case 0x4a: return ("ZAC_MANAGEMENT_IN"); 123 case 0x51: return ("CONFIGURE_STREAM"); 124 case 0x57: return ("WRITE_LOG_DMA_EXT"); 125 case 0x5b: return ("TRUSTED_NON_DATA"); 126 case 0x5c: return ("TRUSTED_RECEIVE"); 127 case 0x5d: return ("TRUSTED_RECEIVE_DMA"); 128 case 0x5e: return ("TRUSTED_SEND"); 129 case 0x5f: return ("TRUSTED_SEND_DMA"); 130 case 0x60: return ("READ_FPDMA_QUEUED"); 131 case 0x61: return ("WRITE_FPDMA_QUEUED"); 132 case 0x63: 133 switch (cmd->features & 0xf) { 134 case 0x00: return ("NCQ_NON_DATA ABORT NCQ QUEUE"); 135 case 0x01: return ("NCQ_NON_DATA DEADLINE HANDLING"); 136 case 0x05: return ("NCQ_NON_DATA SET FEATURES"); 137 /* 138 * XXX KDM need common decoding between NCQ and non-NCQ 139 * versions of SET FEATURES. 140 */ 141 case 0x06: return ("NCQ_NON_DATA ZERO EXT"); 142 case 0x07: return ("NCQ_NON_DATA ZAC MANAGEMENT OUT"); 143 } 144 return ("NCQ_NON_DATA"); 145 case 0x64: 146 switch (cmd->sector_count_exp & 0xf) { 147 case 0x00: return ("SEND_FPDMA_QUEUED DATA SET MANAGEMENT"); 148 case 0x02: return ("SEND_FPDMA_QUEUED WRITE LOG DMA EXT"); 149 case 0x03: return ("SEND_FPDMA_QUEUED ZAC MANAGEMENT OUT"); 150 case 0x04: return ("SEND_FPDMA_QUEUED DATA SET MANAGEMENT XL"); 151 } 152 return ("SEND_FPDMA_QUEUED"); 153 case 0x65: 154 switch (cmd->sector_count_exp & 0xf) { 155 case 0x01: return ("RECEIVE_FPDMA_QUEUED READ LOG DMA EXT"); 156 case 0x02: return ("RECEIVE_FPDMA_QUEUED ZAC MANAGEMENT IN"); 157 } 158 return ("RECEIVE_FPDMA_QUEUED"); 159 case 0x67: 160 if (cmd->features == 0xec) 161 return ("SEP_ATTN IDENTIFY"); 162 switch (cmd->lba_low) { 163 case 0x00: return ("SEP_ATTN READ BUFFER"); 164 case 0x02: return ("SEP_ATTN RECEIVE DIAGNOSTIC RESULTS"); 165 case 0x80: return ("SEP_ATTN WRITE BUFFER"); 166 case 0x82: return ("SEP_ATTN SEND DIAGNOSTIC"); 167 } 168 return ("SEP_ATTN"); 169 case 0x70: return ("SEEK"); 170 case 0x77: return ("SET_DATE_TIME_EXT"); 171 case 0x78: return ("ACCESSIBLE_MAX_ADDRESS_CONFIGURATION"); 172 case 0x87: return ("CFA_TRANSLATE_SECTOR"); 173 case 0x90: return ("EXECUTE_DEVICE_DIAGNOSTIC"); 174 case 0x92: return ("DOWNLOAD_MICROCODE"); 175 case 0x93: return ("DOWNLOAD_MICROCODE_DMA"); 176 case 0x9a: return ("ZAC_MANAGEMENT_OUT"); 177 case 0xa0: return ("PACKET"); 178 case 0xa1: return ("ATAPI_IDENTIFY"); 179 case 0xa2: return ("SERVICE"); 180 case 0xb0: 181 switch(cmd->features) { 182 case 0xd0: return ("SMART READ ATTR VALUES"); 183 case 0xd1: return ("SMART READ ATTR THRESHOLDS"); 184 case 0xd3: return ("SMART SAVE ATTR VALUES"); 185 case 0xd4: return ("SMART EXECUTE OFFLINE IMMEDIATE"); 186 case 0xd5: return ("SMART READ LOG DATA"); 187 case 0xd8: return ("SMART ENABLE OPERATION"); 188 case 0xd9: return ("SMART DISABLE OPERATION"); 189 case 0xda: return ("SMART RETURN STATUS"); 190 } 191 return ("SMART"); 192 case 0xb1: return ("DEVICE CONFIGURATION"); 193 case 0xb4: return ("SANITIZE_DEVICE"); 194 case 0xc0: return ("CFA_ERASE"); 195 case 0xc4: return ("READ_MUL"); 196 case 0xc5: return ("WRITE_MUL"); 197 case 0xc6: return ("SET_MULTI"); 198 case 0xc7: return ("READ_DMA_QUEUED"); 199 case 0xc8: return ("READ_DMA"); 200 case 0xca: return ("WRITE_DMA"); 201 case 0xcc: return ("WRITE_DMA_QUEUED"); 202 case 0xcd: return ("CFA_WRITE_MULTIPLE_WITHOUT_ERASE"); 203 case 0xce: return ("WRITE_MUL_FUA48"); 204 case 0xd1: return ("CHECK_MEDIA_CARD_TYPE"); 205 case 0xda: return ("GET_MEDIA_STATUS"); 206 case 0xde: return ("MEDIA_LOCK"); 207 case 0xdf: return ("MEDIA_UNLOCK"); 208 case 0xe0: return ("STANDBY_IMMEDIATE"); 209 case 0xe1: return ("IDLE_IMMEDIATE"); 210 case 0xe2: return ("STANDBY"); 211 case 0xe3: return ("IDLE"); 212 case 0xe4: return ("READ_BUFFER/PM"); 213 case 0xe5: return ("CHECK_POWER_MODE"); 214 case 0xe6: return ("SLEEP"); 215 case 0xe7: return ("FLUSHCACHE"); 216 case 0xe8: return ("WRITE_PM"); 217 case 0xea: return ("FLUSHCACHE48"); 218 case 0xec: return ("ATA_IDENTIFY"); 219 case 0xed: return ("MEDIA_EJECT"); 220 case 0xef: 221 /* 222 * XXX KDM need common decoding between NCQ and non-NCQ 223 * versions of SET FEATURES. 224 */ 225 switch (cmd->features) { 226 case 0x02: return ("SETFEATURES ENABLE WCACHE"); 227 case 0x03: return ("SETFEATURES SET TRANSFER MODE"); 228 case 0x04: return ("SETFEATURES ENABLE APM"); 229 case 0x06: return ("SETFEATURES ENABLE PUIS"); 230 case 0x07: return ("SETFEATURES SPIN-UP"); 231 case 0x0b: return ("SETFEATURES ENABLE WRITE READ VERIFY"); 232 case 0x0c: return ("SETFEATURES ENABLE DEVICE LIFE CONTROL"); 233 case 0x10: return ("SETFEATURES ENABLE SATA FEATURE"); 234 case 0x41: return ("SETFEATURES ENABLE FREEFALL CONTROL"); 235 case 0x43: return ("SETFEATURES SET MAX HOST INT SECT TIMES"); 236 case 0x45: return ("SETFEATURES SET RATE BASIS"); 237 case 0x4a: return ("SETFEATURES EXTENDED POWER CONDITIONS"); 238 case 0x55: return ("SETFEATURES DISABLE RCACHE"); 239 case 0x5d: return ("SETFEATURES ENABLE RELIRQ"); 240 case 0x5e: return ("SETFEATURES ENABLE SRVIRQ"); 241 case 0x62: return ("SETFEATURES LONG PHYS SECT ALIGN ERC"); 242 case 0x63: return ("SETFEATURES DSN"); 243 case 0x66: return ("SETFEATURES DISABLE DEFAULTS"); 244 case 0x82: return ("SETFEATURES DISABLE WCACHE"); 245 case 0x85: return ("SETFEATURES DISABLE APM"); 246 case 0x86: return ("SETFEATURES DISABLE PUIS"); 247 case 0x8b: return ("SETFEATURES DISABLE WRITE READ VERIFY"); 248 case 0x8c: return ("SETFEATURES DISABLE DEVICE LIFE CONTROL"); 249 case 0x90: return ("SETFEATURES DISABLE SATA FEATURE"); 250 case 0xaa: return ("SETFEATURES ENABLE RCACHE"); 251 case 0xC1: return ("SETFEATURES DISABLE FREEFALL CONTROL"); 252 case 0xC3: return ("SETFEATURES SENSE DATA REPORTING"); 253 case 0xC4: return ("SETFEATURES NCQ SENSE DATA RETURN"); 254 case 0xCC: return ("SETFEATURES ENABLE DEFAULTS"); 255 case 0xdd: return ("SETFEATURES DISABLE RELIRQ"); 256 case 0xde: return ("SETFEATURES DISABLE SRVIRQ"); 257 } 258 return "SETFEATURES"; 259 case 0xf1: return ("SECURITY_SET_PASSWORD"); 260 case 0xf2: return ("SECURITY_UNLOCK"); 261 case 0xf3: return ("SECURITY_ERASE_PREPARE"); 262 case 0xf4: return ("SECURITY_ERASE_UNIT"); 263 case 0xf5: return ("SECURITY_FREEZE_LOCK"); 264 case 0xf6: return ("SECURITY_DISABLE_PASSWORD"); 265 case 0xf8: return ("READ_NATIVE_MAX_ADDRESS"); 266 case 0xf9: return ("SET_MAX_ADDRESS"); 267 } 268 return "UNKNOWN"; 269 } 270 271 char * 272 ata_cmd_string(struct ata_cmd *cmd, char *cmd_string, size_t len) 273 { 274 struct sbuf sb; 275 int error; 276 277 if (len == 0) 278 return (""); 279 280 sbuf_new(&sb, cmd_string, len, SBUF_FIXEDLEN); 281 ata_cmd_sbuf(cmd, &sb); 282 283 error = sbuf_finish(&sb); 284 if (error != 0 && error != ENOMEM) 285 return (""); 286 287 return(sbuf_data(&sb)); 288 } 289 290 void 291 ata_cmd_sbuf(struct ata_cmd *cmd, struct sbuf *sb) 292 { 293 sbuf_printf(sb, "%02x %02x %02x %02x " 294 "%02x %02x %02x %02x %02x %02x %02x %02x", 295 cmd->command, cmd->features, 296 cmd->lba_low, cmd->lba_mid, cmd->lba_high, cmd->device, 297 cmd->lba_low_exp, cmd->lba_mid_exp, cmd->lba_high_exp, 298 cmd->features_exp, cmd->sector_count, cmd->sector_count_exp); 299 } 300 301 char * 302 ata_res_string(struct ata_res *res, char *res_string, size_t len) 303 { 304 struct sbuf sb; 305 int error; 306 307 if (len == 0) 308 return (""); 309 310 sbuf_new(&sb, res_string, len, SBUF_FIXEDLEN); 311 ata_res_sbuf(res, &sb); 312 313 error = sbuf_finish(&sb); 314 if (error != 0 && error != ENOMEM) 315 return (""); 316 317 return(sbuf_data(&sb)); 318 } 319 320 int 321 ata_res_sbuf(struct ata_res *res, struct sbuf *sb) 322 { 323 324 sbuf_printf(sb, "%02x %02x %02x %02x " 325 "%02x %02x %02x %02x %02x %02x %02x", 326 res->status, res->error, 327 res->lba_low, res->lba_mid, res->lba_high, res->device, 328 res->lba_low_exp, res->lba_mid_exp, res->lba_high_exp, 329 res->sector_count, res->sector_count_exp); 330 331 return (0); 332 } 333 334 /* 335 * ata_command_sbuf() returns 0 for success and -1 for failure. 336 */ 337 int 338 ata_command_sbuf(struct ccb_ataio *ataio, struct sbuf *sb) 339 { 340 341 sbuf_printf(sb, "%s. ACB: ", 342 ata_op_string(&ataio->cmd)); 343 ata_cmd_sbuf(&ataio->cmd, sb); 344 345 return(0); 346 } 347 348 /* 349 * ata_status_abuf() returns 0 for success and -1 for failure. 350 */ 351 int 352 ata_status_sbuf(struct ccb_ataio *ataio, struct sbuf *sb) 353 { 354 355 sbuf_printf(sb, "ATA status: %02x (%s%s%s%s%s%s%s%s)", 356 ataio->res.status, 357 (ataio->res.status & 0x80) ? "BSY " : "", 358 (ataio->res.status & 0x40) ? "DRDY " : "", 359 (ataio->res.status & 0x20) ? "DF " : "", 360 (ataio->res.status & 0x10) ? "SERV " : "", 361 (ataio->res.status & 0x08) ? "DRQ " : "", 362 (ataio->res.status & 0x04) ? "CORR " : "", 363 (ataio->res.status & 0x02) ? "IDX " : "", 364 (ataio->res.status & 0x01) ? "ERR" : ""); 365 if (ataio->res.status & 1) { 366 sbuf_printf(sb, ", error: %02x (%s%s%s%s%s%s%s%s)", 367 ataio->res.error, 368 (ataio->res.error & 0x80) ? "ICRC " : "", 369 (ataio->res.error & 0x40) ? "UNC " : "", 370 (ataio->res.error & 0x20) ? "MC " : "", 371 (ataio->res.error & 0x10) ? "IDNF " : "", 372 (ataio->res.error & 0x08) ? "MCR " : "", 373 (ataio->res.error & 0x04) ? "ABRT " : "", 374 (ataio->res.error & 0x02) ? "NM " : "", 375 (ataio->res.error & 0x01) ? "ILI" : ""); 376 } 377 378 return(0); 379 } 380 381 void 382 ata_print_ident(struct ata_params *ident_data) 383 { 384 const char *proto; 385 char ata[12], sata[12]; 386 387 ata_print_ident_short(ident_data); 388 389 proto = (ident_data->config == ATA_PROTO_CFA) ? "CFA" : 390 (ident_data->config & ATA_PROTO_ATAPI) ? "ATAPI" : "ATA"; 391 if (ata_version(ident_data->version_major) == 0) { 392 snprintf(ata, sizeof(ata), "%s", proto); 393 } else if (ata_version(ident_data->version_major) <= 7) { 394 snprintf(ata, sizeof(ata), "%s-%d", proto, 395 ata_version(ident_data->version_major)); 396 } else if (ata_version(ident_data->version_major) == 8) { 397 snprintf(ata, sizeof(ata), "%s8-ACS", proto); 398 } else { 399 snprintf(ata, sizeof(ata), "ACS-%d %s", 400 ata_version(ident_data->version_major) - 7, proto); 401 } 402 if (ident_data->satacapabilities && ident_data->satacapabilities != 0xffff) { 403 if (ident_data->satacapabilities & ATA_SATA_GEN3) 404 snprintf(sata, sizeof(sata), " SATA 3.x"); 405 else if (ident_data->satacapabilities & ATA_SATA_GEN2) 406 snprintf(sata, sizeof(sata), " SATA 2.x"); 407 else if (ident_data->satacapabilities & ATA_SATA_GEN1) 408 snprintf(sata, sizeof(sata), " SATA 1.x"); 409 else 410 snprintf(sata, sizeof(sata), " SATA"); 411 } else 412 sata[0] = 0; 413 printf(" %s%s device\n", ata, sata); 414 } 415 416 void 417 ata_print_ident_sbuf(struct ata_params *ident_data, struct sbuf *sb) 418 { 419 const char *proto, *sata; 420 int version; 421 422 ata_print_ident_short_sbuf(ident_data, sb); 423 sbuf_printf(sb, " "); 424 425 proto = (ident_data->config == ATA_PROTO_CFA) ? "CFA" : 426 (ident_data->config & ATA_PROTO_ATAPI) ? "ATAPI" : "ATA"; 427 version = ata_version(ident_data->version_major); 428 429 switch (version) { 430 case 0: 431 sbuf_printf(sb, "%s", proto); 432 break; 433 case 1: 434 case 2: 435 case 3: 436 case 4: 437 case 5: 438 case 6: 439 case 7: 440 sbuf_printf(sb, "%s-%d", proto, version); 441 break; 442 case 8: 443 sbuf_printf(sb, "%s8-ACS", proto); 444 break; 445 default: 446 sbuf_printf(sb, "ACS-%d %s", version - 7, proto); 447 break; 448 } 449 450 if (ident_data->satacapabilities && ident_data->satacapabilities != 0xffff) { 451 if (ident_data->satacapabilities & ATA_SATA_GEN3) 452 sata = " SATA 3.x"; 453 else if (ident_data->satacapabilities & ATA_SATA_GEN2) 454 sata = " SATA 2.x"; 455 else if (ident_data->satacapabilities & ATA_SATA_GEN1) 456 sata = " SATA 1.x"; 457 else 458 sata = " SATA"; 459 } else 460 sata = ""; 461 sbuf_printf(sb, "%s device\n", sata); 462 } 463 464 void 465 ata_print_ident_short(struct ata_params *ident_data) 466 { 467 char product[48], revision[16]; 468 469 cam_strvis(product, ident_data->model, sizeof(ident_data->model), 470 sizeof(product)); 471 cam_strvis(revision, ident_data->revision, sizeof(ident_data->revision), 472 sizeof(revision)); 473 printf("<%s %s>", product, revision); 474 } 475 476 void 477 ata_print_ident_short_sbuf(struct ata_params *ident_data, struct sbuf *sb) 478 { 479 480 sbuf_printf(sb, "<"); 481 cam_strvis_sbuf(sb, ident_data->model, sizeof(ident_data->model), 0); 482 sbuf_printf(sb, " "); 483 cam_strvis_sbuf(sb, ident_data->revision, sizeof(ident_data->revision), 0); 484 sbuf_printf(sb, ">"); 485 } 486 487 void 488 semb_print_ident(struct sep_identify_data *ident_data) 489 { 490 char in[7], ins[5]; 491 492 semb_print_ident_short(ident_data); 493 cam_strvis(in, ident_data->interface_id, 6, sizeof(in)); 494 cam_strvis(ins, ident_data->interface_rev, 4, sizeof(ins)); 495 printf(" SEMB %s %s device\n", in, ins); 496 } 497 498 void 499 semb_print_ident_sbuf(struct sep_identify_data *ident_data, struct sbuf *sb) 500 { 501 502 semb_print_ident_short_sbuf(ident_data, sb); 503 504 sbuf_printf(sb, " SEMB "); 505 cam_strvis_sbuf(sb, ident_data->interface_id, 6, 0); 506 sbuf_printf(sb, " "); 507 cam_strvis_sbuf(sb, ident_data->interface_rev, 4, 0); 508 sbuf_printf(sb, " device\n"); 509 } 510 511 void 512 semb_print_ident_short(struct sep_identify_data *ident_data) 513 { 514 char vendor[9], product[17], revision[5], fw[5]; 515 516 cam_strvis(vendor, ident_data->vendor_id, 8, sizeof(vendor)); 517 cam_strvis(product, ident_data->product_id, 16, sizeof(product)); 518 cam_strvis(revision, ident_data->product_rev, 4, sizeof(revision)); 519 cam_strvis(fw, ident_data->firmware_rev, 4, sizeof(fw)); 520 printf("<%s %s %s %s>", vendor, product, revision, fw); 521 } 522 523 void 524 semb_print_ident_short_sbuf(struct sep_identify_data *ident_data, struct sbuf *sb) 525 { 526 527 sbuf_printf(sb, "<"); 528 cam_strvis_sbuf(sb, ident_data->vendor_id, 8, 0); 529 sbuf_printf(sb, " "); 530 cam_strvis_sbuf(sb, ident_data->product_id, 16, 0); 531 sbuf_printf(sb, " "); 532 cam_strvis_sbuf(sb, ident_data->product_rev, 4, 0); 533 sbuf_printf(sb, " "); 534 cam_strvis_sbuf(sb, ident_data->firmware_rev, 4, 0); 535 sbuf_printf(sb, ">"); 536 } 537 538 uint32_t 539 ata_logical_sector_size(struct ata_params *ident_data) 540 { 541 if ((ident_data->pss & ATA_PSS_VALID_MASK) == ATA_PSS_VALID_VALUE && 542 (ident_data->pss & ATA_PSS_LSSABOVE512)) { 543 return (((u_int32_t)ident_data->lss_1 | 544 ((u_int32_t)ident_data->lss_2 << 16)) * 2); 545 } 546 return (512); 547 } 548 549 uint64_t 550 ata_physical_sector_size(struct ata_params *ident_data) 551 { 552 if ((ident_data->pss & ATA_PSS_VALID_MASK) == ATA_PSS_VALID_VALUE) { 553 if (ident_data->pss & ATA_PSS_MULTLS) { 554 return ((uint64_t)ata_logical_sector_size(ident_data) * 555 (1 << (ident_data->pss & ATA_PSS_LSPPS))); 556 } else { 557 return (uint64_t)ata_logical_sector_size(ident_data); 558 } 559 } 560 return (512); 561 } 562 563 uint64_t 564 ata_logical_sector_offset(struct ata_params *ident_data) 565 { 566 if ((ident_data->lsalign & 0xc000) == 0x4000) { 567 return ((uint64_t)ata_logical_sector_size(ident_data) * 568 (ident_data->lsalign & 0x3fff)); 569 } 570 return (0); 571 } 572 573 void 574 ata_28bit_cmd(struct ccb_ataio *ataio, uint8_t cmd, uint8_t features, 575 uint32_t lba, uint8_t sector_count) 576 { 577 bzero(&ataio->cmd, sizeof(ataio->cmd)); 578 ataio->cmd.flags = 0; 579 if (cmd == ATA_READ_DMA || 580 cmd == ATA_READ_DMA_QUEUED || 581 cmd == ATA_WRITE_DMA || 582 cmd == ATA_WRITE_DMA_QUEUED) 583 ataio->cmd.flags |= CAM_ATAIO_DMA; 584 ataio->cmd.command = cmd; 585 ataio->cmd.features = features; 586 ataio->cmd.lba_low = lba; 587 ataio->cmd.lba_mid = lba >> 8; 588 ataio->cmd.lba_high = lba >> 16; 589 ataio->cmd.device = ATA_DEV_LBA | ((lba >> 24) & 0x0f); 590 ataio->cmd.sector_count = sector_count; 591 } 592 593 void 594 ata_48bit_cmd(struct ccb_ataio *ataio, uint8_t cmd, uint16_t features, 595 uint64_t lba, uint16_t sector_count) 596 { 597 598 ataio->cmd.flags = CAM_ATAIO_48BIT; 599 if (cmd == ATA_READ_DMA48 || 600 cmd == ATA_READ_DMA_QUEUED48 || 601 cmd == ATA_READ_STREAM_DMA48 || 602 cmd == ATA_WRITE_DMA48 || 603 cmd == ATA_WRITE_DMA_FUA48 || 604 cmd == ATA_WRITE_DMA_QUEUED48 || 605 cmd == ATA_WRITE_DMA_QUEUED_FUA48 || 606 cmd == ATA_WRITE_STREAM_DMA48 || 607 cmd == ATA_DATA_SET_MANAGEMENT || 608 cmd == ATA_READ_LOG_DMA_EXT) 609 ataio->cmd.flags |= CAM_ATAIO_DMA; 610 ataio->cmd.command = cmd; 611 ataio->cmd.features = features; 612 ataio->cmd.lba_low = lba; 613 ataio->cmd.lba_mid = lba >> 8; 614 ataio->cmd.lba_high = lba >> 16; 615 ataio->cmd.device = ATA_DEV_LBA; 616 ataio->cmd.lba_low_exp = lba >> 24; 617 ataio->cmd.lba_mid_exp = lba >> 32; 618 ataio->cmd.lba_high_exp = lba >> 40; 619 ataio->cmd.features_exp = features >> 8; 620 ataio->cmd.sector_count = sector_count; 621 ataio->cmd.sector_count_exp = sector_count >> 8; 622 ataio->cmd.control = 0; 623 } 624 625 void 626 ata_ncq_cmd(struct ccb_ataio *ataio, uint8_t cmd, 627 uint64_t lba, uint16_t sector_count) 628 { 629 630 ataio->cmd.flags = CAM_ATAIO_48BIT | CAM_ATAIO_FPDMA; 631 ataio->cmd.command = cmd; 632 ataio->cmd.features = sector_count; 633 ataio->cmd.lba_low = lba; 634 ataio->cmd.lba_mid = lba >> 8; 635 ataio->cmd.lba_high = lba >> 16; 636 ataio->cmd.device = ATA_DEV_LBA; 637 ataio->cmd.lba_low_exp = lba >> 24; 638 ataio->cmd.lba_mid_exp = lba >> 32; 639 ataio->cmd.lba_high_exp = lba >> 40; 640 ataio->cmd.features_exp = sector_count >> 8; 641 ataio->cmd.sector_count = 0; 642 ataio->cmd.sector_count_exp = 0; 643 ataio->cmd.control = 0; 644 } 645 646 void 647 ata_reset_cmd(struct ccb_ataio *ataio) 648 { 649 bzero(&ataio->cmd, sizeof(ataio->cmd)); 650 ataio->cmd.flags = CAM_ATAIO_CONTROL | CAM_ATAIO_NEEDRESULT; 651 ataio->cmd.control = 0x04; 652 } 653 654 void 655 ata_pm_read_cmd(struct ccb_ataio *ataio, int reg, int port) 656 { 657 bzero(&ataio->cmd, sizeof(ataio->cmd)); 658 ataio->cmd.flags = CAM_ATAIO_NEEDRESULT; 659 ataio->cmd.command = ATA_READ_PM; 660 ataio->cmd.features = reg; 661 ataio->cmd.device = port & 0x0f; 662 } 663 664 void 665 ata_pm_write_cmd(struct ccb_ataio *ataio, int reg, int port, uint32_t val) 666 { 667 bzero(&ataio->cmd, sizeof(ataio->cmd)); 668 ataio->cmd.flags = 0; 669 ataio->cmd.command = ATA_WRITE_PM; 670 ataio->cmd.features = reg; 671 ataio->cmd.sector_count = val; 672 ataio->cmd.lba_low = val >> 8; 673 ataio->cmd.lba_mid = val >> 16; 674 ataio->cmd.lba_high = val >> 24; 675 ataio->cmd.device = port & 0x0f; 676 } 677 678 void 679 ata_read_log(struct ccb_ataio *ataio, uint32_t retries, 680 void (*cbfcnp)(struct cam_periph *, union ccb *), 681 uint32_t log_address, uint32_t page_number, uint16_t block_count, 682 uint32_t protocol, uint8_t *data_ptr, uint32_t dxfer_len, 683 uint32_t timeout) 684 { 685 uint64_t lba; 686 687 cam_fill_ataio(ataio, 688 /*retries*/ 1, 689 /*cbfcnp*/ cbfcnp, 690 /*flags*/ CAM_DIR_IN, 691 /*tag_action*/ 0, 692 /*data_ptr*/ data_ptr, 693 /*dxfer_len*/ dxfer_len, 694 /*timeout*/ timeout); 695 696 lba = (((uint64_t)page_number & 0xff00) << 32) | 697 ((page_number & 0x00ff) << 8) | 698 (log_address & 0xff); 699 700 ata_48bit_cmd(ataio, 701 /*cmd*/ (protocol & CAM_ATAIO_DMA) ? ATA_READ_LOG_DMA_EXT : 702 ATA_READ_LOG_EXT, 703 /*features*/ 0, 704 /*lba*/ lba, 705 /*sector_count*/ block_count); 706 } 707 708 void 709 ata_bswap(int8_t *buf, int len) 710 { 711 u_int16_t *ptr = (u_int16_t*)(buf + len); 712 713 while (--ptr >= (u_int16_t*)buf) 714 *ptr = be16toh(*ptr); 715 } 716 717 void 718 ata_btrim(int8_t *buf, int len) 719 { 720 int8_t *ptr; 721 722 for (ptr = buf; ptr < buf+len; ++ptr) 723 if (!*ptr || *ptr == '_') 724 *ptr = ' '; 725 for (ptr = buf + len - 1; ptr >= buf && *ptr == ' '; --ptr) 726 *ptr = 0; 727 } 728 729 void 730 ata_bpack(int8_t *src, int8_t *dst, int len) 731 { 732 int i, j, blank; 733 734 for (i = j = blank = 0 ; i < len; i++) { 735 if (blank && src[i] == ' ') continue; 736 if (blank && src[i] != ' ') { 737 dst[j++] = src[i]; 738 blank = 0; 739 continue; 740 } 741 if (src[i] == ' ') { 742 blank = 1; 743 if (i == 0) 744 continue; 745 } 746 dst[j++] = src[i]; 747 } 748 while (j < len) 749 dst[j++] = 0x00; 750 } 751 752 int 753 ata_max_pmode(struct ata_params *ap) 754 { 755 if (ap->atavalid & ATA_FLAG_64_70) { 756 if (ap->apiomodes & 0x02) 757 return ATA_PIO4; 758 if (ap->apiomodes & 0x01) 759 return ATA_PIO3; 760 } 761 if (ap->mwdmamodes & 0x04) 762 return ATA_PIO4; 763 if (ap->mwdmamodes & 0x02) 764 return ATA_PIO3; 765 if (ap->mwdmamodes & 0x01) 766 return ATA_PIO2; 767 if ((ap->retired_piomode & ATA_RETIRED_PIO_MASK) == 0x200) 768 return ATA_PIO2; 769 if ((ap->retired_piomode & ATA_RETIRED_PIO_MASK) == 0x100) 770 return ATA_PIO1; 771 if ((ap->retired_piomode & ATA_RETIRED_PIO_MASK) == 0x000) 772 return ATA_PIO0; 773 return ATA_PIO0; 774 } 775 776 int 777 ata_max_wmode(struct ata_params *ap) 778 { 779 if (ap->mwdmamodes & 0x04) 780 return ATA_WDMA2; 781 if (ap->mwdmamodes & 0x02) 782 return ATA_WDMA1; 783 if (ap->mwdmamodes & 0x01) 784 return ATA_WDMA0; 785 return -1; 786 } 787 788 int 789 ata_max_umode(struct ata_params *ap) 790 { 791 if (ap->atavalid & ATA_FLAG_88) { 792 if (ap->udmamodes & 0x40) 793 return ATA_UDMA6; 794 if (ap->udmamodes & 0x20) 795 return ATA_UDMA5; 796 if (ap->udmamodes & 0x10) 797 return ATA_UDMA4; 798 if (ap->udmamodes & 0x08) 799 return ATA_UDMA3; 800 if (ap->udmamodes & 0x04) 801 return ATA_UDMA2; 802 if (ap->udmamodes & 0x02) 803 return ATA_UDMA1; 804 if (ap->udmamodes & 0x01) 805 return ATA_UDMA0; 806 } 807 return -1; 808 } 809 810 int 811 ata_max_mode(struct ata_params *ap, int maxmode) 812 { 813 814 if (maxmode == 0) 815 maxmode = ATA_DMA_MAX; 816 if (maxmode >= ATA_UDMA0 && ata_max_umode(ap) > 0) 817 return (min(maxmode, ata_max_umode(ap))); 818 if (maxmode >= ATA_WDMA0 && ata_max_wmode(ap) > 0) 819 return (min(maxmode, ata_max_wmode(ap))); 820 return (min(maxmode, ata_max_pmode(ap))); 821 } 822 823 char * 824 ata_mode2string(int mode) 825 { 826 switch (mode) { 827 case -1: return "UNSUPPORTED"; 828 case 0: return "NONE"; 829 case ATA_PIO0: return "PIO0"; 830 case ATA_PIO1: return "PIO1"; 831 case ATA_PIO2: return "PIO2"; 832 case ATA_PIO3: return "PIO3"; 833 case ATA_PIO4: return "PIO4"; 834 case ATA_WDMA0: return "WDMA0"; 835 case ATA_WDMA1: return "WDMA1"; 836 case ATA_WDMA2: return "WDMA2"; 837 case ATA_UDMA0: return "UDMA0"; 838 case ATA_UDMA1: return "UDMA1"; 839 case ATA_UDMA2: return "UDMA2"; 840 case ATA_UDMA3: return "UDMA3"; 841 case ATA_UDMA4: return "UDMA4"; 842 case ATA_UDMA5: return "UDMA5"; 843 case ATA_UDMA6: return "UDMA6"; 844 default: 845 if (mode & ATA_DMA_MASK) 846 return "BIOSDMA"; 847 else 848 return "BIOSPIO"; 849 } 850 } 851 852 int 853 ata_string2mode(char *str) 854 { 855 if (!strcasecmp(str, "PIO0")) return (ATA_PIO0); 856 if (!strcasecmp(str, "PIO1")) return (ATA_PIO1); 857 if (!strcasecmp(str, "PIO2")) return (ATA_PIO2); 858 if (!strcasecmp(str, "PIO3")) return (ATA_PIO3); 859 if (!strcasecmp(str, "PIO4")) return (ATA_PIO4); 860 if (!strcasecmp(str, "WDMA0")) return (ATA_WDMA0); 861 if (!strcasecmp(str, "WDMA1")) return (ATA_WDMA1); 862 if (!strcasecmp(str, "WDMA2")) return (ATA_WDMA2); 863 if (!strcasecmp(str, "UDMA0")) return (ATA_UDMA0); 864 if (!strcasecmp(str, "UDMA16")) return (ATA_UDMA0); 865 if (!strcasecmp(str, "UDMA1")) return (ATA_UDMA1); 866 if (!strcasecmp(str, "UDMA25")) return (ATA_UDMA1); 867 if (!strcasecmp(str, "UDMA2")) return (ATA_UDMA2); 868 if (!strcasecmp(str, "UDMA33")) return (ATA_UDMA2); 869 if (!strcasecmp(str, "UDMA3")) return (ATA_UDMA3); 870 if (!strcasecmp(str, "UDMA44")) return (ATA_UDMA3); 871 if (!strcasecmp(str, "UDMA4")) return (ATA_UDMA4); 872 if (!strcasecmp(str, "UDMA66")) return (ATA_UDMA4); 873 if (!strcasecmp(str, "UDMA5")) return (ATA_UDMA5); 874 if (!strcasecmp(str, "UDMA100")) return (ATA_UDMA5); 875 if (!strcasecmp(str, "UDMA6")) return (ATA_UDMA6); 876 if (!strcasecmp(str, "UDMA133")) return (ATA_UDMA6); 877 return (-1); 878 } 879 880 881 u_int 882 ata_mode2speed(int mode) 883 { 884 switch (mode) { 885 case ATA_PIO0: 886 default: 887 return (3300); 888 case ATA_PIO1: 889 return (5200); 890 case ATA_PIO2: 891 return (8300); 892 case ATA_PIO3: 893 return (11100); 894 case ATA_PIO4: 895 return (16700); 896 case ATA_WDMA0: 897 return (4200); 898 case ATA_WDMA1: 899 return (13300); 900 case ATA_WDMA2: 901 return (16700); 902 case ATA_UDMA0: 903 return (16700); 904 case ATA_UDMA1: 905 return (25000); 906 case ATA_UDMA2: 907 return (33300); 908 case ATA_UDMA3: 909 return (44400); 910 case ATA_UDMA4: 911 return (66700); 912 case ATA_UDMA5: 913 return (100000); 914 case ATA_UDMA6: 915 return (133000); 916 } 917 } 918 919 u_int 920 ata_revision2speed(int revision) 921 { 922 switch (revision) { 923 case 1: 924 default: 925 return (150000); 926 case 2: 927 return (300000); 928 case 3: 929 return (600000); 930 } 931 } 932 933 int 934 ata_speed2revision(u_int speed) 935 { 936 switch (speed) { 937 case 0: 938 return (0); 939 case 150000: 940 return (1); 941 case 300000: 942 return (2); 943 case 600000: 944 return (3); 945 default: 946 return (-1); 947 } 948 } 949 950 int 951 ata_identify_match(caddr_t identbuffer, caddr_t table_entry) 952 { 953 struct scsi_inquiry_pattern *entry; 954 struct ata_params *ident; 955 956 entry = (struct scsi_inquiry_pattern *)table_entry; 957 ident = (struct ata_params *)identbuffer; 958 959 if ((cam_strmatch(ident->model, entry->product, 960 sizeof(ident->model)) == 0) 961 && (cam_strmatch(ident->revision, entry->revision, 962 sizeof(ident->revision)) == 0)) { 963 return (0); 964 } 965 return (-1); 966 } 967 968 int 969 ata_static_identify_match(caddr_t identbuffer, caddr_t table_entry) 970 { 971 struct scsi_static_inquiry_pattern *entry; 972 struct ata_params *ident; 973 974 entry = (struct scsi_static_inquiry_pattern *)table_entry; 975 ident = (struct ata_params *)identbuffer; 976 977 if ((cam_strmatch(ident->model, entry->product, 978 sizeof(ident->model)) == 0) 979 && (cam_strmatch(ident->revision, entry->revision, 980 sizeof(ident->revision)) == 0)) { 981 return (0); 982 } 983 return (-1); 984 } 985 986 void 987 semb_receive_diagnostic_results(struct ccb_ataio *ataio, 988 u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb*), 989 uint8_t tag_action, int pcv, uint8_t page_code, 990 uint8_t *data_ptr, uint16_t length, uint32_t timeout) 991 { 992 993 length = min(length, 1020); 994 length = (length + 3) & ~3; 995 cam_fill_ataio(ataio, 996 retries, 997 cbfcnp, 998 /*flags*/CAM_DIR_IN, 999 tag_action, 1000 data_ptr, 1001 length, 1002 timeout); 1003 ata_28bit_cmd(ataio, ATA_SEP_ATTN, 1004 pcv ? page_code : 0, 0x02, length / 4); 1005 } 1006 1007 void 1008 semb_send_diagnostic(struct ccb_ataio *ataio, 1009 u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), 1010 uint8_t tag_action, uint8_t *data_ptr, uint16_t length, uint32_t timeout) 1011 { 1012 1013 length = min(length, 1020); 1014 length = (length + 3) & ~3; 1015 cam_fill_ataio(ataio, 1016 retries, 1017 cbfcnp, 1018 /*flags*/length ? CAM_DIR_OUT : CAM_DIR_NONE, 1019 tag_action, 1020 data_ptr, 1021 length, 1022 timeout); 1023 ata_28bit_cmd(ataio, ATA_SEP_ATTN, 1024 length > 0 ? data_ptr[0] : 0, 0x82, length / 4); 1025 } 1026 1027 void 1028 semb_read_buffer(struct ccb_ataio *ataio, 1029 u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb*), 1030 uint8_t tag_action, uint8_t page_code, 1031 uint8_t *data_ptr, uint16_t length, uint32_t timeout) 1032 { 1033 1034 length = min(length, 1020); 1035 length = (length + 3) & ~3; 1036 cam_fill_ataio(ataio, 1037 retries, 1038 cbfcnp, 1039 /*flags*/CAM_DIR_IN, 1040 tag_action, 1041 data_ptr, 1042 length, 1043 timeout); 1044 ata_28bit_cmd(ataio, ATA_SEP_ATTN, 1045 page_code, 0x00, length / 4); 1046 } 1047 1048 void 1049 semb_write_buffer(struct ccb_ataio *ataio, 1050 u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), 1051 uint8_t tag_action, uint8_t *data_ptr, uint16_t length, uint32_t timeout) 1052 { 1053 1054 length = min(length, 1020); 1055 length = (length + 3) & ~3; 1056 cam_fill_ataio(ataio, 1057 retries, 1058 cbfcnp, 1059 /*flags*/length ? CAM_DIR_OUT : CAM_DIR_NONE, 1060 tag_action, 1061 data_ptr, 1062 length, 1063 timeout); 1064 ata_28bit_cmd(ataio, ATA_SEP_ATTN, 1065 length > 0 ? data_ptr[0] : 0, 0x80, length / 4); 1066 } 1067 1068 1069 void 1070 ata_zac_mgmt_out(struct ccb_ataio *ataio, uint32_t retries, 1071 void (*cbfcnp)(struct cam_periph *, union ccb *), 1072 int use_ncq, uint8_t zm_action, uint64_t zone_id, 1073 uint8_t zone_flags, uint16_t sector_count, uint8_t *data_ptr, 1074 uint32_t dxfer_len, uint32_t timeout) 1075 { 1076 uint8_t command_out, ata_flags; 1077 uint16_t features_out, sectors_out; 1078 uint32_t auxiliary; 1079 1080 if (use_ncq == 0) { 1081 command_out = ATA_ZAC_MANAGEMENT_OUT; 1082 features_out = (zm_action & 0xf) | (zone_flags << 8); 1083 if (dxfer_len == 0) { 1084 ata_flags = 0; 1085 sectors_out = 0; 1086 } else { 1087 ata_flags = CAM_ATAIO_DMA; 1088 /* XXX KDM use sector count? */ 1089 sectors_out = ((dxfer_len >> 9) & 0xffff); 1090 } 1091 auxiliary = 0; 1092 } else { 1093 if (dxfer_len == 0) { 1094 command_out = ATA_NCQ_NON_DATA; 1095 features_out = ATA_NCQ_ZAC_MGMT_OUT; 1096 sectors_out = 0; 1097 } else { 1098 command_out = ATA_SEND_FPDMA_QUEUED; 1099 1100 /* Note that we're defaulting to normal priority */ 1101 sectors_out = ATA_SFPDMA_ZAC_MGMT_OUT << 8; 1102 1103 /* 1104 * For SEND FPDMA QUEUED, the transfer length is 1105 * encoded in the FEATURE register, and 0 means 1106 * that 65536 512 byte blocks are to be tranferred. 1107 * In practice, it seems unlikely that we'll see 1108 * a transfer that large. 1109 */ 1110 if (dxfer_len == (65536 * 512)) { 1111 features_out = 0; 1112 } else { 1113 /* 1114 * Yes, the caller can theoretically send a 1115 * transfer larger than we can handle. 1116 * Anyone using this function needs enough 1117 * knowledge to avoid doing that. 1118 */ 1119 features_out = ((dxfer_len >> 9) & 0xffff); 1120 } 1121 } 1122 auxiliary = (zm_action & 0xf) | (zone_flags << 8); 1123 1124 ata_flags = CAM_ATAIO_FPDMA; 1125 } 1126 1127 cam_fill_ataio(ataio, 1128 /*retries*/ retries, 1129 /*cbfcnp*/ cbfcnp, 1130 /*flags*/ (dxfer_len > 0) ? CAM_DIR_OUT : CAM_DIR_NONE, 1131 /*tag_action*/ 0, 1132 /*data_ptr*/ data_ptr, 1133 /*dxfer_len*/ dxfer_len, 1134 /*timeout*/ timeout); 1135 1136 ata_48bit_cmd(ataio, 1137 /*cmd*/ command_out, 1138 /*features*/ features_out, 1139 /*lba*/ zone_id, 1140 /*sector_count*/ sectors_out); 1141 1142 ataio->cmd.flags |= ata_flags; 1143 if (auxiliary != 0) { 1144 ataio->ata_flags |= ATA_FLAG_AUX; 1145 ataio->aux = auxiliary; 1146 } 1147 } 1148 1149 void 1150 ata_zac_mgmt_in(struct ccb_ataio *ataio, uint32_t retries, 1151 void (*cbfcnp)(struct cam_periph *, union ccb *), 1152 int use_ncq, uint8_t zm_action, uint64_t zone_id, 1153 uint8_t zone_flags, uint8_t *data_ptr, uint32_t dxfer_len, 1154 uint32_t timeout) 1155 { 1156 uint8_t command_out, ata_flags; 1157 uint16_t features_out, sectors_out; 1158 uint32_t auxiliary; 1159 1160 if (use_ncq == 0) { 1161 command_out = ATA_ZAC_MANAGEMENT_IN; 1162 /* XXX KDM put a macro here */ 1163 features_out = (zm_action & 0xf) | (zone_flags << 8); 1164 ata_flags = CAM_ATAIO_DMA; 1165 sectors_out = ((dxfer_len >> 9) & 0xffff); 1166 auxiliary = 0; 1167 } else { 1168 command_out = ATA_RECV_FPDMA_QUEUED; 1169 sectors_out = ATA_RFPDMA_ZAC_MGMT_IN << 8; 1170 auxiliary = (zm_action & 0xf) | (zone_flags << 8); 1171 ata_flags = CAM_ATAIO_FPDMA; 1172 /* 1173 * For RECEIVE FPDMA QUEUED, the transfer length is 1174 * encoded in the FEATURE register, and 0 means 1175 * that 65536 512 byte blocks are to be tranferred. 1176 * In practice, it is unlikely we will see a transfer that 1177 * large. 1178 */ 1179 if (dxfer_len == (65536 * 512)) { 1180 features_out = 0; 1181 } else { 1182 /* 1183 * Yes, the caller can theoretically request a 1184 * transfer larger than we can handle. 1185 * Anyone using this function needs enough 1186 * knowledge to avoid doing that. 1187 */ 1188 features_out = ((dxfer_len >> 9) & 0xffff); 1189 } 1190 } 1191 1192 cam_fill_ataio(ataio, 1193 /*retries*/ retries, 1194 /*cbfcnp*/ cbfcnp, 1195 /*flags*/ CAM_DIR_IN, 1196 /*tag_action*/ 0, 1197 /*data_ptr*/ data_ptr, 1198 /*dxfer_len*/ dxfer_len, 1199 /*timeout*/ timeout); 1200 1201 ata_48bit_cmd(ataio, 1202 /*cmd*/ command_out, 1203 /*features*/ features_out, 1204 /*lba*/ zone_id, 1205 /*sector_count*/ sectors_out); 1206 1207 ataio->cmd.flags |= ata_flags; 1208 if (auxiliary != 0) { 1209 ataio->ata_flags |= ATA_FLAG_AUX; 1210 ataio->aux = auxiliary; 1211 } 1212 } 1213