1 /*- 2 * Copyright (c) 2009 Alexander Motin <mav@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification, immediately at the beginning of the file. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 32 #ifdef _KERNEL 33 #include <opt_scsi.h> 34 35 #include <sys/systm.h> 36 #include <sys/libkern.h> 37 #include <sys/kernel.h> 38 #include <sys/sysctl.h> 39 #else 40 #include <errno.h> 41 #include <stdio.h> 42 #include <stdlib.h> 43 #include <string.h> 44 #ifndef min 45 #define min(a,b) (((a)<(b))?(a):(b)) 46 #endif 47 #endif 48 49 #include <cam/cam.h> 50 #include <cam/cam_ccb.h> 51 #include <cam/cam_queue.h> 52 #include <cam/cam_xpt.h> 53 #include <sys/ata.h> 54 #include <cam/ata/ata_all.h> 55 #include <sys/sbuf.h> 56 #include <sys/endian.h> 57 58 int 59 ata_version(int ver) 60 { 61 int bit; 62 63 if (ver == 0xffff) 64 return 0; 65 for (bit = 15; bit >= 0; bit--) 66 if (ver & (1<<bit)) 67 return bit; 68 return 0; 69 } 70 71 char * 72 ata_op_string(struct ata_cmd *cmd) 73 { 74 75 if (cmd->control & 0x04) 76 return ("SOFT_RESET"); 77 switch (cmd->command) { 78 case 0x00: 79 switch (cmd->features) { 80 case 0x00: return ("NOP FLUSHQUEUE"); 81 case 0x01: return ("NOP AUTOPOLL"); 82 } 83 return ("NOP"); 84 case 0x03: return ("CFA_REQUEST_EXTENDED_ERROR"); 85 case 0x06: 86 switch (cmd->features) { 87 case 0x01: return ("DSM TRIM"); 88 } 89 return "DSM"; 90 case 0x08: return ("DEVICE_RESET"); 91 case 0x0b: return ("REQUEST_SENSE_DATA_EXT"); 92 case 0x20: return ("READ"); 93 case 0x24: return ("READ48"); 94 case 0x25: return ("READ_DMA48"); 95 case 0x26: return ("READ_DMA_QUEUED48"); 96 case 0x27: return ("READ_NATIVE_MAX_ADDRESS48"); 97 case 0x29: return ("READ_MUL48"); 98 case 0x2a: return ("READ_STREAM_DMA48"); 99 case 0x2b: return ("READ_STREAM48"); 100 case 0x2f: return ("READ_LOG_EXT"); 101 case 0x30: return ("WRITE"); 102 case 0x34: return ("WRITE48"); 103 case 0x35: return ("WRITE_DMA48"); 104 case 0x36: return ("WRITE_DMA_QUEUED48"); 105 case 0x37: return ("SET_MAX_ADDRESS48"); 106 case 0x39: return ("WRITE_MUL48"); 107 case 0x3a: return ("WRITE_STREAM_DMA48"); 108 case 0x3b: return ("WRITE_STREAM48"); 109 case 0x3d: return ("WRITE_DMA_FUA48"); 110 case 0x3e: return ("WRITE_DMA_QUEUED_FUA48"); 111 case 0x3f: return ("WRITE_LOG_EXT"); 112 case 0x40: return ("READ_VERIFY"); 113 case 0x42: return ("READ_VERIFY48"); 114 case 0x44: return ("ZERO_EXT"); 115 case 0x45: 116 switch (cmd->features) { 117 case 0x55: return ("WRITE_UNCORRECTABLE48 PSEUDO"); 118 case 0xaa: return ("WRITE_UNCORRECTABLE48 FLAGGED"); 119 } 120 return "WRITE_UNCORRECTABLE48"; 121 case 0x47: return ("READ_LOG_DMA_EXT"); 122 case 0x4a: return ("ZAC_MANAGEMENT_IN"); 123 case 0x51: return ("CONFIGURE_STREAM"); 124 case 0x57: return ("WRITE_LOG_DMA_EXT"); 125 case 0x5b: return ("TRUSTED_NON_DATA"); 126 case 0x5c: return ("TRUSTED_RECEIVE"); 127 case 0x5d: return ("TRUSTED_RECEIVE_DMA"); 128 case 0x5e: return ("TRUSTED_SEND"); 129 case 0x5f: return ("TRUSTED_SEND_DMA"); 130 case 0x60: return ("READ_FPDMA_QUEUED"); 131 case 0x61: return ("WRITE_FPDMA_QUEUED"); 132 case 0x63: 133 switch (cmd->features & 0xf) { 134 case 0x00: return ("NCQ_NON_DATA ABORT NCQ QUEUE"); 135 case 0x01: return ("NCQ_NON_DATA DEADLINE HANDLING"); 136 case 0x05: return ("NCQ_NON_DATA SET FEATURES"); 137 /* 138 * XXX KDM need common decoding between NCQ and non-NCQ 139 * versions of SET FEATURES. 140 */ 141 case 0x06: return ("NCQ_NON_DATA ZERO EXT"); 142 case 0x07: return ("NCQ_NON_DATA ZAC MANAGEMENT OUT"); 143 } 144 return ("NCQ_NON_DATA"); 145 case 0x64: 146 switch (cmd->sector_count_exp & 0xf) { 147 case 0x00: return ("SEND_FPDMA_QUEUED DATA SET MANAGEMENT"); 148 case 0x02: return ("SEND_FPDMA_QUEUED WRITE LOG DMA EXT"); 149 case 0x03: return ("SEND_FPDMA_QUEUED ZAC MANAGEMENT OUT"); 150 case 0x04: return ("SEND_FPDMA_QUEUED DATA SET MANAGEMENT XL"); 151 } 152 return ("SEND_FPDMA_QUEUED"); 153 case 0x65: 154 switch (cmd->sector_count_exp & 0xf) { 155 case 0x01: return ("RECEIVE_FPDMA_QUEUED READ LOG DMA EXT"); 156 case 0x02: return ("RECEIVE_FPDMA_QUEUED ZAC MANAGEMENT IN"); 157 } 158 return ("RECEIVE_FPDMA_QUEUED"); 159 case 0x67: 160 if (cmd->features == 0xec) 161 return ("SEP_ATTN IDENTIFY"); 162 switch (cmd->lba_low) { 163 case 0x00: return ("SEP_ATTN READ BUFFER"); 164 case 0x02: return ("SEP_ATTN RECEIVE DIAGNOSTIC RESULTS"); 165 case 0x80: return ("SEP_ATTN WRITE BUFFER"); 166 case 0x82: return ("SEP_ATTN SEND DIAGNOSTIC"); 167 } 168 return ("SEP_ATTN"); 169 case 0x70: return ("SEEK"); 170 case 0x77: return ("SET_DATE_TIME_EXT"); 171 case 0x78: return ("ACCESSIBLE_MAX_ADDRESS_CONFIGURATION"); 172 case 0x87: return ("CFA_TRANSLATE_SECTOR"); 173 case 0x90: return ("EXECUTE_DEVICE_DIAGNOSTIC"); 174 case 0x92: return ("DOWNLOAD_MICROCODE"); 175 case 0x93: return ("DOWNLOAD_MICROCODE_DMA"); 176 case 0x9a: return ("ZAC_MANAGEMENT_OUT"); 177 case 0xa0: return ("PACKET"); 178 case 0xa1: return ("ATAPI_IDENTIFY"); 179 case 0xa2: return ("SERVICE"); 180 case 0xb0: 181 switch(cmd->features) { 182 case 0xd0: return ("SMART READ ATTR VALUES"); 183 case 0xd1: return ("SMART READ ATTR THRESHOLDS"); 184 case 0xd3: return ("SMART SAVE ATTR VALUES"); 185 case 0xd4: return ("SMART EXECUTE OFFLINE IMMEDIATE"); 186 case 0xd5: return ("SMART READ LOG DATA"); 187 case 0xd8: return ("SMART ENABLE OPERATION"); 188 case 0xd9: return ("SMART DISABLE OPERATION"); 189 case 0xda: return ("SMART RETURN STATUS"); 190 } 191 return ("SMART"); 192 case 0xb1: return ("DEVICE CONFIGURATION"); 193 case 0xb4: return ("SANITIZE_DEVICE"); 194 case 0xc0: return ("CFA_ERASE"); 195 case 0xc4: return ("READ_MUL"); 196 case 0xc5: return ("WRITE_MUL"); 197 case 0xc6: return ("SET_MULTI"); 198 case 0xc7: return ("READ_DMA_QUEUED"); 199 case 0xc8: return ("READ_DMA"); 200 case 0xca: return ("WRITE_DMA"); 201 case 0xcc: return ("WRITE_DMA_QUEUED"); 202 case 0xcd: return ("CFA_WRITE_MULTIPLE_WITHOUT_ERASE"); 203 case 0xce: return ("WRITE_MUL_FUA48"); 204 case 0xd1: return ("CHECK_MEDIA_CARD_TYPE"); 205 case 0xda: return ("GET_MEDIA_STATUS"); 206 case 0xde: return ("MEDIA_LOCK"); 207 case 0xdf: return ("MEDIA_UNLOCK"); 208 case 0xe0: return ("STANDBY_IMMEDIATE"); 209 case 0xe1: return ("IDLE_IMMEDIATE"); 210 case 0xe2: return ("STANDBY"); 211 case 0xe3: return ("IDLE"); 212 case 0xe4: return ("READ_BUFFER/PM"); 213 case 0xe5: return ("CHECK_POWER_MODE"); 214 case 0xe6: return ("SLEEP"); 215 case 0xe7: return ("FLUSHCACHE"); 216 case 0xe8: return ("WRITE_PM"); 217 case 0xea: return ("FLUSHCACHE48"); 218 case 0xec: return ("ATA_IDENTIFY"); 219 case 0xed: return ("MEDIA_EJECT"); 220 case 0xef: 221 /* 222 * XXX KDM need common decoding between NCQ and non-NCQ 223 * versions of SET FEATURES. 224 */ 225 switch (cmd->features) { 226 case 0x02: return ("SETFEATURES ENABLE WCACHE"); 227 case 0x03: return ("SETFEATURES SET TRANSFER MODE"); 228 case 0x04: return ("SETFEATURES ENABLE APM"); 229 case 0x06: return ("SETFEATURES ENABLE PUIS"); 230 case 0x07: return ("SETFEATURES SPIN-UP"); 231 case 0x0b: return ("SETFEATURES ENABLE WRITE READ VERIFY"); 232 case 0x0c: return ("SETFEATURES ENABLE DEVICE LIFE CONTROL"); 233 case 0x10: return ("SETFEATURES ENABLE SATA FEATURE"); 234 case 0x41: return ("SETFEATURES ENABLE FREEFALL CONTROL"); 235 case 0x43: return ("SETFEATURES SET MAX HOST INT SECT TIMES"); 236 case 0x45: return ("SETFEATURES SET RATE BASIS"); 237 case 0x4a: return ("SETFEATURES EXTENDED POWER CONDITIONS"); 238 case 0x55: return ("SETFEATURES DISABLE RCACHE"); 239 case 0x5d: return ("SETFEATURES ENABLE RELIRQ"); 240 case 0x5e: return ("SETFEATURES ENABLE SRVIRQ"); 241 case 0x62: return ("SETFEATURES LONG PHYS SECT ALIGN ERC"); 242 case 0x63: return ("SETFEATURES DSN"); 243 case 0x66: return ("SETFEATURES DISABLE DEFAULTS"); 244 case 0x82: return ("SETFEATURES DISABLE WCACHE"); 245 case 0x85: return ("SETFEATURES DISABLE APM"); 246 case 0x86: return ("SETFEATURES DISABLE PUIS"); 247 case 0x8b: return ("SETFEATURES DISABLE WRITE READ VERIFY"); 248 case 0x8c: return ("SETFEATURES DISABLE DEVICE LIFE CONTROL"); 249 case 0x90: return ("SETFEATURES DISABLE SATA FEATURE"); 250 case 0xaa: return ("SETFEATURES ENABLE RCACHE"); 251 case 0xC1: return ("SETFEATURES DISABLE FREEFALL CONTROL"); 252 case 0xC3: return ("SETFEATURES SENSE DATA REPORTING"); 253 case 0xC4: return ("SETFEATURES NCQ SENSE DATA RETURN"); 254 case 0xCC: return ("SETFEATURES ENABLE DEFAULTS"); 255 case 0xdd: return ("SETFEATURES DISABLE RELIRQ"); 256 case 0xde: return ("SETFEATURES DISABLE SRVIRQ"); 257 } 258 return "SETFEATURES"; 259 case 0xf1: return ("SECURITY_SET_PASSWORD"); 260 case 0xf2: return ("SECURITY_UNLOCK"); 261 case 0xf3: return ("SECURITY_ERASE_PREPARE"); 262 case 0xf4: return ("SECURITY_ERASE_UNIT"); 263 case 0xf5: return ("SECURITY_FREEZE_LOCK"); 264 case 0xf6: return ("SECURITY_DISABLE_PASSWORD"); 265 case 0xf8: return ("READ_NATIVE_MAX_ADDRESS"); 266 case 0xf9: return ("SET_MAX_ADDRESS"); 267 } 268 return "UNKNOWN"; 269 } 270 271 char * 272 ata_cmd_string(struct ata_cmd *cmd, char *cmd_string, size_t len) 273 { 274 struct sbuf sb; 275 int error; 276 277 if (len == 0) 278 return (""); 279 280 sbuf_new(&sb, cmd_string, len, SBUF_FIXEDLEN); 281 ata_cmd_sbuf(cmd, &sb); 282 283 error = sbuf_finish(&sb); 284 if (error != 0 && error != ENOMEM) 285 return (""); 286 287 return(sbuf_data(&sb)); 288 } 289 290 void 291 ata_cmd_sbuf(struct ata_cmd *cmd, struct sbuf *sb) 292 { 293 sbuf_printf(sb, "%02x %02x %02x %02x " 294 "%02x %02x %02x %02x %02x %02x %02x %02x", 295 cmd->command, cmd->features, 296 cmd->lba_low, cmd->lba_mid, cmd->lba_high, cmd->device, 297 cmd->lba_low_exp, cmd->lba_mid_exp, cmd->lba_high_exp, 298 cmd->features_exp, cmd->sector_count, cmd->sector_count_exp); 299 } 300 301 char * 302 ata_res_string(struct ata_res *res, char *res_string, size_t len) 303 { 304 struct sbuf sb; 305 int error; 306 307 if (len == 0) 308 return (""); 309 310 sbuf_new(&sb, res_string, len, SBUF_FIXEDLEN); 311 ata_res_sbuf(res, &sb); 312 313 error = sbuf_finish(&sb); 314 if (error != 0 && error != ENOMEM) 315 return (""); 316 317 return(sbuf_data(&sb)); 318 } 319 320 int 321 ata_res_sbuf(struct ata_res *res, struct sbuf *sb) 322 { 323 324 sbuf_printf(sb, "%02x %02x %02x %02x " 325 "%02x %02x %02x %02x %02x %02x %02x", 326 res->status, res->error, 327 res->lba_low, res->lba_mid, res->lba_high, res->device, 328 res->lba_low_exp, res->lba_mid_exp, res->lba_high_exp, 329 res->sector_count, res->sector_count_exp); 330 331 return (0); 332 } 333 334 /* 335 * ata_command_sbuf() returns 0 for success and -1 for failure. 336 */ 337 int 338 ata_command_sbuf(struct ccb_ataio *ataio, struct sbuf *sb) 339 { 340 341 sbuf_printf(sb, "%s. ACB: ", 342 ata_op_string(&ataio->cmd)); 343 ata_cmd_sbuf(&ataio->cmd, sb); 344 345 return(0); 346 } 347 348 /* 349 * ata_status_abuf() returns 0 for success and -1 for failure. 350 */ 351 int 352 ata_status_sbuf(struct ccb_ataio *ataio, struct sbuf *sb) 353 { 354 355 sbuf_printf(sb, "ATA status: %02x (%s%s%s%s%s%s%s%s)", 356 ataio->res.status, 357 (ataio->res.status & 0x80) ? "BSY " : "", 358 (ataio->res.status & 0x40) ? "DRDY " : "", 359 (ataio->res.status & 0x20) ? "DF " : "", 360 (ataio->res.status & 0x10) ? "SERV " : "", 361 (ataio->res.status & 0x08) ? "DRQ " : "", 362 (ataio->res.status & 0x04) ? "CORR " : "", 363 (ataio->res.status & 0x02) ? "IDX " : "", 364 (ataio->res.status & 0x01) ? "ERR" : ""); 365 if (ataio->res.status & 1) { 366 sbuf_printf(sb, ", error: %02x (%s%s%s%s%s%s%s%s)", 367 ataio->res.error, 368 (ataio->res.error & 0x80) ? "ICRC " : "", 369 (ataio->res.error & 0x40) ? "UNC " : "", 370 (ataio->res.error & 0x20) ? "MC " : "", 371 (ataio->res.error & 0x10) ? "IDNF " : "", 372 (ataio->res.error & 0x08) ? "MCR " : "", 373 (ataio->res.error & 0x04) ? "ABRT " : "", 374 (ataio->res.error & 0x02) ? "NM " : "", 375 (ataio->res.error & 0x01) ? "ILI" : ""); 376 } 377 378 return(0); 379 } 380 381 void 382 ata_print_ident(struct ata_params *ident_data) 383 { 384 const char *proto; 385 char product[48], revision[16], ata[12], sata[12]; 386 387 cam_strvis(product, ident_data->model, sizeof(ident_data->model), 388 sizeof(product)); 389 cam_strvis(revision, ident_data->revision, sizeof(ident_data->revision), 390 sizeof(revision)); 391 proto = (ident_data->config == ATA_PROTO_CFA) ? "CFA" : 392 (ident_data->config & ATA_PROTO_ATAPI) ? "ATAPI" : "ATA"; 393 if (ata_version(ident_data->version_major) == 0) { 394 snprintf(ata, sizeof(ata), "%s", proto); 395 } else if (ata_version(ident_data->version_major) <= 7) { 396 snprintf(ata, sizeof(ata), "%s-%d", proto, 397 ata_version(ident_data->version_major)); 398 } else if (ata_version(ident_data->version_major) == 8) { 399 snprintf(ata, sizeof(ata), "%s8-ACS", proto); 400 } else { 401 snprintf(ata, sizeof(ata), "ACS-%d %s", 402 ata_version(ident_data->version_major) - 7, proto); 403 } 404 if (ident_data->satacapabilities && ident_data->satacapabilities != 0xffff) { 405 if (ident_data->satacapabilities & ATA_SATA_GEN3) 406 snprintf(sata, sizeof(sata), " SATA 3.x"); 407 else if (ident_data->satacapabilities & ATA_SATA_GEN2) 408 snprintf(sata, sizeof(sata), " SATA 2.x"); 409 else if (ident_data->satacapabilities & ATA_SATA_GEN1) 410 snprintf(sata, sizeof(sata), " SATA 1.x"); 411 else 412 snprintf(sata, sizeof(sata), " SATA"); 413 } else 414 sata[0] = 0; 415 printf("<%s %s> %s%s device\n", product, revision, ata, sata); 416 } 417 418 void 419 ata_print_ident_short(struct ata_params *ident_data) 420 { 421 char product[48], revision[16]; 422 423 cam_strvis(product, ident_data->model, sizeof(ident_data->model), 424 sizeof(product)); 425 cam_strvis(revision, ident_data->revision, sizeof(ident_data->revision), 426 sizeof(revision)); 427 printf("<%s %s>", product, revision); 428 } 429 430 void 431 semb_print_ident(struct sep_identify_data *ident_data) 432 { 433 char vendor[9], product[17], revision[5], fw[5], in[7], ins[5]; 434 435 cam_strvis(vendor, ident_data->vendor_id, 8, sizeof(vendor)); 436 cam_strvis(product, ident_data->product_id, 16, sizeof(product)); 437 cam_strvis(revision, ident_data->product_rev, 4, sizeof(revision)); 438 cam_strvis(fw, ident_data->firmware_rev, 4, sizeof(fw)); 439 cam_strvis(in, ident_data->interface_id, 6, sizeof(in)); 440 cam_strvis(ins, ident_data->interface_rev, 4, sizeof(ins)); 441 printf("<%s %s %s %s> SEMB %s %s device\n", 442 vendor, product, revision, fw, in, ins); 443 } 444 445 void 446 semb_print_ident_short(struct sep_identify_data *ident_data) 447 { 448 char vendor[9], product[17], revision[5], fw[5]; 449 450 cam_strvis(vendor, ident_data->vendor_id, 8, sizeof(vendor)); 451 cam_strvis(product, ident_data->product_id, 16, sizeof(product)); 452 cam_strvis(revision, ident_data->product_rev, 4, sizeof(revision)); 453 cam_strvis(fw, ident_data->firmware_rev, 4, sizeof(fw)); 454 printf("<%s %s %s %s>", vendor, product, revision, fw); 455 } 456 457 uint32_t 458 ata_logical_sector_size(struct ata_params *ident_data) 459 { 460 if ((ident_data->pss & ATA_PSS_VALID_MASK) == ATA_PSS_VALID_VALUE && 461 (ident_data->pss & ATA_PSS_LSSABOVE512)) { 462 return (((u_int32_t)ident_data->lss_1 | 463 ((u_int32_t)ident_data->lss_2 << 16)) * 2); 464 } 465 return (512); 466 } 467 468 uint64_t 469 ata_physical_sector_size(struct ata_params *ident_data) 470 { 471 if ((ident_data->pss & ATA_PSS_VALID_MASK) == ATA_PSS_VALID_VALUE) { 472 if (ident_data->pss & ATA_PSS_MULTLS) { 473 return ((uint64_t)ata_logical_sector_size(ident_data) * 474 (1 << (ident_data->pss & ATA_PSS_LSPPS))); 475 } else { 476 return (uint64_t)ata_logical_sector_size(ident_data); 477 } 478 } 479 return (512); 480 } 481 482 uint64_t 483 ata_logical_sector_offset(struct ata_params *ident_data) 484 { 485 if ((ident_data->lsalign & 0xc000) == 0x4000) { 486 return ((uint64_t)ata_logical_sector_size(ident_data) * 487 (ident_data->lsalign & 0x3fff)); 488 } 489 return (0); 490 } 491 492 void 493 ata_28bit_cmd(struct ccb_ataio *ataio, uint8_t cmd, uint8_t features, 494 uint32_t lba, uint8_t sector_count) 495 { 496 bzero(&ataio->cmd, sizeof(ataio->cmd)); 497 ataio->cmd.flags = 0; 498 if (cmd == ATA_READ_DMA || 499 cmd == ATA_READ_DMA_QUEUED || 500 cmd == ATA_WRITE_DMA || 501 cmd == ATA_WRITE_DMA_QUEUED) 502 ataio->cmd.flags |= CAM_ATAIO_DMA; 503 ataio->cmd.command = cmd; 504 ataio->cmd.features = features; 505 ataio->cmd.lba_low = lba; 506 ataio->cmd.lba_mid = lba >> 8; 507 ataio->cmd.lba_high = lba >> 16; 508 ataio->cmd.device = ATA_DEV_LBA | ((lba >> 24) & 0x0f); 509 ataio->cmd.sector_count = sector_count; 510 } 511 512 void 513 ata_48bit_cmd(struct ccb_ataio *ataio, uint8_t cmd, uint16_t features, 514 uint64_t lba, uint16_t sector_count) 515 { 516 517 ataio->cmd.flags = CAM_ATAIO_48BIT; 518 if (cmd == ATA_READ_DMA48 || 519 cmd == ATA_READ_DMA_QUEUED48 || 520 cmd == ATA_READ_STREAM_DMA48 || 521 cmd == ATA_WRITE_DMA48 || 522 cmd == ATA_WRITE_DMA_FUA48 || 523 cmd == ATA_WRITE_DMA_QUEUED48 || 524 cmd == ATA_WRITE_DMA_QUEUED_FUA48 || 525 cmd == ATA_WRITE_STREAM_DMA48 || 526 cmd == ATA_DATA_SET_MANAGEMENT || 527 cmd == ATA_READ_LOG_DMA_EXT) 528 ataio->cmd.flags |= CAM_ATAIO_DMA; 529 ataio->cmd.command = cmd; 530 ataio->cmd.features = features; 531 ataio->cmd.lba_low = lba; 532 ataio->cmd.lba_mid = lba >> 8; 533 ataio->cmd.lba_high = lba >> 16; 534 ataio->cmd.device = ATA_DEV_LBA; 535 ataio->cmd.lba_low_exp = lba >> 24; 536 ataio->cmd.lba_mid_exp = lba >> 32; 537 ataio->cmd.lba_high_exp = lba >> 40; 538 ataio->cmd.features_exp = features >> 8; 539 ataio->cmd.sector_count = sector_count; 540 ataio->cmd.sector_count_exp = sector_count >> 8; 541 ataio->cmd.control = 0; 542 } 543 544 void 545 ata_ncq_cmd(struct ccb_ataio *ataio, uint8_t cmd, 546 uint64_t lba, uint16_t sector_count) 547 { 548 549 ataio->cmd.flags = CAM_ATAIO_48BIT | CAM_ATAIO_FPDMA; 550 ataio->cmd.command = cmd; 551 ataio->cmd.features = sector_count; 552 ataio->cmd.lba_low = lba; 553 ataio->cmd.lba_mid = lba >> 8; 554 ataio->cmd.lba_high = lba >> 16; 555 ataio->cmd.device = ATA_DEV_LBA; 556 ataio->cmd.lba_low_exp = lba >> 24; 557 ataio->cmd.lba_mid_exp = lba >> 32; 558 ataio->cmd.lba_high_exp = lba >> 40; 559 ataio->cmd.features_exp = sector_count >> 8; 560 ataio->cmd.sector_count = 0; 561 ataio->cmd.sector_count_exp = 0; 562 ataio->cmd.control = 0; 563 } 564 565 void 566 ata_reset_cmd(struct ccb_ataio *ataio) 567 { 568 bzero(&ataio->cmd, sizeof(ataio->cmd)); 569 ataio->cmd.flags = CAM_ATAIO_CONTROL | CAM_ATAIO_NEEDRESULT; 570 ataio->cmd.control = 0x04; 571 } 572 573 void 574 ata_pm_read_cmd(struct ccb_ataio *ataio, int reg, int port) 575 { 576 bzero(&ataio->cmd, sizeof(ataio->cmd)); 577 ataio->cmd.flags = CAM_ATAIO_NEEDRESULT; 578 ataio->cmd.command = ATA_READ_PM; 579 ataio->cmd.features = reg; 580 ataio->cmd.device = port & 0x0f; 581 } 582 583 void 584 ata_pm_write_cmd(struct ccb_ataio *ataio, int reg, int port, uint32_t val) 585 { 586 bzero(&ataio->cmd, sizeof(ataio->cmd)); 587 ataio->cmd.flags = 0; 588 ataio->cmd.command = ATA_WRITE_PM; 589 ataio->cmd.features = reg; 590 ataio->cmd.sector_count = val; 591 ataio->cmd.lba_low = val >> 8; 592 ataio->cmd.lba_mid = val >> 16; 593 ataio->cmd.lba_high = val >> 24; 594 ataio->cmd.device = port & 0x0f; 595 } 596 597 void 598 ata_read_log(struct ccb_ataio *ataio, uint32_t retries, 599 void (*cbfcnp)(struct cam_periph *, union ccb *), 600 uint32_t log_address, uint32_t page_number, uint16_t block_count, 601 uint32_t protocol, uint8_t *data_ptr, uint32_t dxfer_len, 602 uint32_t timeout) 603 { 604 uint64_t lba; 605 606 cam_fill_ataio(ataio, 607 /*retries*/ 1, 608 /*cbfcnp*/ cbfcnp, 609 /*flags*/ CAM_DIR_IN, 610 /*tag_action*/ 0, 611 /*data_ptr*/ data_ptr, 612 /*dxfer_len*/ dxfer_len, 613 /*timeout*/ timeout); 614 615 lba = (((uint64_t)page_number & 0xff00) << 32) | 616 ((page_number & 0x00ff) << 8) | 617 (log_address & 0xff); 618 619 ata_48bit_cmd(ataio, 620 /*cmd*/ (protocol & CAM_ATAIO_DMA) ? ATA_READ_LOG_DMA_EXT : 621 ATA_READ_LOG_EXT, 622 /*features*/ 0, 623 /*lba*/ lba, 624 /*sector_count*/ block_count); 625 } 626 627 void 628 ata_bswap(int8_t *buf, int len) 629 { 630 u_int16_t *ptr = (u_int16_t*)(buf + len); 631 632 while (--ptr >= (u_int16_t*)buf) 633 *ptr = be16toh(*ptr); 634 } 635 636 void 637 ata_btrim(int8_t *buf, int len) 638 { 639 int8_t *ptr; 640 641 for (ptr = buf; ptr < buf+len; ++ptr) 642 if (!*ptr || *ptr == '_') 643 *ptr = ' '; 644 for (ptr = buf + len - 1; ptr >= buf && *ptr == ' '; --ptr) 645 *ptr = 0; 646 } 647 648 void 649 ata_bpack(int8_t *src, int8_t *dst, int len) 650 { 651 int i, j, blank; 652 653 for (i = j = blank = 0 ; i < len; i++) { 654 if (blank && src[i] == ' ') continue; 655 if (blank && src[i] != ' ') { 656 dst[j++] = src[i]; 657 blank = 0; 658 continue; 659 } 660 if (src[i] == ' ') { 661 blank = 1; 662 if (i == 0) 663 continue; 664 } 665 dst[j++] = src[i]; 666 } 667 while (j < len) 668 dst[j++] = 0x00; 669 } 670 671 int 672 ata_max_pmode(struct ata_params *ap) 673 { 674 if (ap->atavalid & ATA_FLAG_64_70) { 675 if (ap->apiomodes & 0x02) 676 return ATA_PIO4; 677 if (ap->apiomodes & 0x01) 678 return ATA_PIO3; 679 } 680 if (ap->mwdmamodes & 0x04) 681 return ATA_PIO4; 682 if (ap->mwdmamodes & 0x02) 683 return ATA_PIO3; 684 if (ap->mwdmamodes & 0x01) 685 return ATA_PIO2; 686 if ((ap->retired_piomode & ATA_RETIRED_PIO_MASK) == 0x200) 687 return ATA_PIO2; 688 if ((ap->retired_piomode & ATA_RETIRED_PIO_MASK) == 0x100) 689 return ATA_PIO1; 690 if ((ap->retired_piomode & ATA_RETIRED_PIO_MASK) == 0x000) 691 return ATA_PIO0; 692 return ATA_PIO0; 693 } 694 695 int 696 ata_max_wmode(struct ata_params *ap) 697 { 698 if (ap->mwdmamodes & 0x04) 699 return ATA_WDMA2; 700 if (ap->mwdmamodes & 0x02) 701 return ATA_WDMA1; 702 if (ap->mwdmamodes & 0x01) 703 return ATA_WDMA0; 704 return -1; 705 } 706 707 int 708 ata_max_umode(struct ata_params *ap) 709 { 710 if (ap->atavalid & ATA_FLAG_88) { 711 if (ap->udmamodes & 0x40) 712 return ATA_UDMA6; 713 if (ap->udmamodes & 0x20) 714 return ATA_UDMA5; 715 if (ap->udmamodes & 0x10) 716 return ATA_UDMA4; 717 if (ap->udmamodes & 0x08) 718 return ATA_UDMA3; 719 if (ap->udmamodes & 0x04) 720 return ATA_UDMA2; 721 if (ap->udmamodes & 0x02) 722 return ATA_UDMA1; 723 if (ap->udmamodes & 0x01) 724 return ATA_UDMA0; 725 } 726 return -1; 727 } 728 729 int 730 ata_max_mode(struct ata_params *ap, int maxmode) 731 { 732 733 if (maxmode == 0) 734 maxmode = ATA_DMA_MAX; 735 if (maxmode >= ATA_UDMA0 && ata_max_umode(ap) > 0) 736 return (min(maxmode, ata_max_umode(ap))); 737 if (maxmode >= ATA_WDMA0 && ata_max_wmode(ap) > 0) 738 return (min(maxmode, ata_max_wmode(ap))); 739 return (min(maxmode, ata_max_pmode(ap))); 740 } 741 742 char * 743 ata_mode2string(int mode) 744 { 745 switch (mode) { 746 case -1: return "UNSUPPORTED"; 747 case 0: return "NONE"; 748 case ATA_PIO0: return "PIO0"; 749 case ATA_PIO1: return "PIO1"; 750 case ATA_PIO2: return "PIO2"; 751 case ATA_PIO3: return "PIO3"; 752 case ATA_PIO4: return "PIO4"; 753 case ATA_WDMA0: return "WDMA0"; 754 case ATA_WDMA1: return "WDMA1"; 755 case ATA_WDMA2: return "WDMA2"; 756 case ATA_UDMA0: return "UDMA0"; 757 case ATA_UDMA1: return "UDMA1"; 758 case ATA_UDMA2: return "UDMA2"; 759 case ATA_UDMA3: return "UDMA3"; 760 case ATA_UDMA4: return "UDMA4"; 761 case ATA_UDMA5: return "UDMA5"; 762 case ATA_UDMA6: return "UDMA6"; 763 default: 764 if (mode & ATA_DMA_MASK) 765 return "BIOSDMA"; 766 else 767 return "BIOSPIO"; 768 } 769 } 770 771 int 772 ata_string2mode(char *str) 773 { 774 if (!strcasecmp(str, "PIO0")) return (ATA_PIO0); 775 if (!strcasecmp(str, "PIO1")) return (ATA_PIO1); 776 if (!strcasecmp(str, "PIO2")) return (ATA_PIO2); 777 if (!strcasecmp(str, "PIO3")) return (ATA_PIO3); 778 if (!strcasecmp(str, "PIO4")) return (ATA_PIO4); 779 if (!strcasecmp(str, "WDMA0")) return (ATA_WDMA0); 780 if (!strcasecmp(str, "WDMA1")) return (ATA_WDMA1); 781 if (!strcasecmp(str, "WDMA2")) return (ATA_WDMA2); 782 if (!strcasecmp(str, "UDMA0")) return (ATA_UDMA0); 783 if (!strcasecmp(str, "UDMA16")) return (ATA_UDMA0); 784 if (!strcasecmp(str, "UDMA1")) return (ATA_UDMA1); 785 if (!strcasecmp(str, "UDMA25")) return (ATA_UDMA1); 786 if (!strcasecmp(str, "UDMA2")) return (ATA_UDMA2); 787 if (!strcasecmp(str, "UDMA33")) return (ATA_UDMA2); 788 if (!strcasecmp(str, "UDMA3")) return (ATA_UDMA3); 789 if (!strcasecmp(str, "UDMA44")) return (ATA_UDMA3); 790 if (!strcasecmp(str, "UDMA4")) return (ATA_UDMA4); 791 if (!strcasecmp(str, "UDMA66")) return (ATA_UDMA4); 792 if (!strcasecmp(str, "UDMA5")) return (ATA_UDMA5); 793 if (!strcasecmp(str, "UDMA100")) return (ATA_UDMA5); 794 if (!strcasecmp(str, "UDMA6")) return (ATA_UDMA6); 795 if (!strcasecmp(str, "UDMA133")) return (ATA_UDMA6); 796 return (-1); 797 } 798 799 800 u_int 801 ata_mode2speed(int mode) 802 { 803 switch (mode) { 804 case ATA_PIO0: 805 default: 806 return (3300); 807 case ATA_PIO1: 808 return (5200); 809 case ATA_PIO2: 810 return (8300); 811 case ATA_PIO3: 812 return (11100); 813 case ATA_PIO4: 814 return (16700); 815 case ATA_WDMA0: 816 return (4200); 817 case ATA_WDMA1: 818 return (13300); 819 case ATA_WDMA2: 820 return (16700); 821 case ATA_UDMA0: 822 return (16700); 823 case ATA_UDMA1: 824 return (25000); 825 case ATA_UDMA2: 826 return (33300); 827 case ATA_UDMA3: 828 return (44400); 829 case ATA_UDMA4: 830 return (66700); 831 case ATA_UDMA5: 832 return (100000); 833 case ATA_UDMA6: 834 return (133000); 835 } 836 } 837 838 u_int 839 ata_revision2speed(int revision) 840 { 841 switch (revision) { 842 case 1: 843 default: 844 return (150000); 845 case 2: 846 return (300000); 847 case 3: 848 return (600000); 849 } 850 } 851 852 int 853 ata_speed2revision(u_int speed) 854 { 855 switch (speed) { 856 case 0: 857 return (0); 858 case 150000: 859 return (1); 860 case 300000: 861 return (2); 862 case 600000: 863 return (3); 864 default: 865 return (-1); 866 } 867 } 868 869 int 870 ata_identify_match(caddr_t identbuffer, caddr_t table_entry) 871 { 872 struct scsi_inquiry_pattern *entry; 873 struct ata_params *ident; 874 875 entry = (struct scsi_inquiry_pattern *)table_entry; 876 ident = (struct ata_params *)identbuffer; 877 878 if ((cam_strmatch(ident->model, entry->product, 879 sizeof(ident->model)) == 0) 880 && (cam_strmatch(ident->revision, entry->revision, 881 sizeof(ident->revision)) == 0)) { 882 return (0); 883 } 884 return (-1); 885 } 886 887 int 888 ata_static_identify_match(caddr_t identbuffer, caddr_t table_entry) 889 { 890 struct scsi_static_inquiry_pattern *entry; 891 struct ata_params *ident; 892 893 entry = (struct scsi_static_inquiry_pattern *)table_entry; 894 ident = (struct ata_params *)identbuffer; 895 896 if ((cam_strmatch(ident->model, entry->product, 897 sizeof(ident->model)) == 0) 898 && (cam_strmatch(ident->revision, entry->revision, 899 sizeof(ident->revision)) == 0)) { 900 return (0); 901 } 902 return (-1); 903 } 904 905 void 906 semb_receive_diagnostic_results(struct ccb_ataio *ataio, 907 u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb*), 908 uint8_t tag_action, int pcv, uint8_t page_code, 909 uint8_t *data_ptr, uint16_t length, uint32_t timeout) 910 { 911 912 length = min(length, 1020); 913 length = (length + 3) & ~3; 914 cam_fill_ataio(ataio, 915 retries, 916 cbfcnp, 917 /*flags*/CAM_DIR_IN, 918 tag_action, 919 data_ptr, 920 length, 921 timeout); 922 ata_28bit_cmd(ataio, ATA_SEP_ATTN, 923 pcv ? page_code : 0, 0x02, length / 4); 924 } 925 926 void 927 semb_send_diagnostic(struct ccb_ataio *ataio, 928 u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), 929 uint8_t tag_action, uint8_t *data_ptr, uint16_t length, uint32_t timeout) 930 { 931 932 length = min(length, 1020); 933 length = (length + 3) & ~3; 934 cam_fill_ataio(ataio, 935 retries, 936 cbfcnp, 937 /*flags*/length ? CAM_DIR_OUT : CAM_DIR_NONE, 938 tag_action, 939 data_ptr, 940 length, 941 timeout); 942 ata_28bit_cmd(ataio, ATA_SEP_ATTN, 943 length > 0 ? data_ptr[0] : 0, 0x82, length / 4); 944 } 945 946 void 947 semb_read_buffer(struct ccb_ataio *ataio, 948 u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb*), 949 uint8_t tag_action, uint8_t page_code, 950 uint8_t *data_ptr, uint16_t length, uint32_t timeout) 951 { 952 953 length = min(length, 1020); 954 length = (length + 3) & ~3; 955 cam_fill_ataio(ataio, 956 retries, 957 cbfcnp, 958 /*flags*/CAM_DIR_IN, 959 tag_action, 960 data_ptr, 961 length, 962 timeout); 963 ata_28bit_cmd(ataio, ATA_SEP_ATTN, 964 page_code, 0x00, length / 4); 965 } 966 967 void 968 semb_write_buffer(struct ccb_ataio *ataio, 969 u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), 970 uint8_t tag_action, uint8_t *data_ptr, uint16_t length, uint32_t timeout) 971 { 972 973 length = min(length, 1020); 974 length = (length + 3) & ~3; 975 cam_fill_ataio(ataio, 976 retries, 977 cbfcnp, 978 /*flags*/length ? CAM_DIR_OUT : CAM_DIR_NONE, 979 tag_action, 980 data_ptr, 981 length, 982 timeout); 983 ata_28bit_cmd(ataio, ATA_SEP_ATTN, 984 length > 0 ? data_ptr[0] : 0, 0x80, length / 4); 985 } 986 987 988 void 989 ata_zac_mgmt_out(struct ccb_ataio *ataio, uint32_t retries, 990 void (*cbfcnp)(struct cam_periph *, union ccb *), 991 int use_ncq, uint8_t zm_action, uint64_t zone_id, 992 uint8_t zone_flags, uint16_t sector_count, uint8_t *data_ptr, 993 uint32_t dxfer_len, uint32_t timeout) 994 { 995 uint8_t command_out, ata_flags; 996 uint16_t features_out, sectors_out; 997 uint32_t auxiliary; 998 999 if (use_ncq == 0) { 1000 command_out = ATA_ZAC_MANAGEMENT_OUT; 1001 features_out = (zm_action & 0xf) | (zone_flags << 8); 1002 if (dxfer_len == 0) { 1003 ata_flags = 0; 1004 sectors_out = 0; 1005 } else { 1006 ata_flags = CAM_ATAIO_DMA; 1007 /* XXX KDM use sector count? */ 1008 sectors_out = ((dxfer_len >> 9) & 0xffff); 1009 } 1010 auxiliary = 0; 1011 } else { 1012 if (dxfer_len == 0) { 1013 command_out = ATA_NCQ_NON_DATA; 1014 features_out = ATA_NCQ_ZAC_MGMT_OUT; 1015 sectors_out = 0; 1016 } else { 1017 command_out = ATA_SEND_FPDMA_QUEUED; 1018 1019 /* Note that we're defaulting to normal priority */ 1020 sectors_out = ATA_SFPDMA_ZAC_MGMT_OUT << 8; 1021 1022 /* 1023 * For SEND FPDMA QUEUED, the transfer length is 1024 * encoded in the FEATURE register, and 0 means 1025 * that 65536 512 byte blocks are to be tranferred. 1026 * In practice, it seems unlikely that we'll see 1027 * a transfer that large. 1028 */ 1029 if (dxfer_len == (65536 * 512)) { 1030 features_out = 0; 1031 } else { 1032 /* 1033 * Yes, the caller can theoretically send a 1034 * transfer larger than we can handle. 1035 * Anyone using this function needs enough 1036 * knowledge to avoid doing that. 1037 */ 1038 features_out = ((dxfer_len >> 9) & 0xffff); 1039 } 1040 } 1041 auxiliary = (zm_action & 0xf) | (zone_flags << 8); 1042 1043 ata_flags = CAM_ATAIO_FPDMA; 1044 } 1045 1046 cam_fill_ataio(ataio, 1047 /*retries*/ retries, 1048 /*cbfcnp*/ cbfcnp, 1049 /*flags*/ (dxfer_len > 0) ? CAM_DIR_OUT : CAM_DIR_NONE, 1050 /*tag_action*/ 0, 1051 /*data_ptr*/ data_ptr, 1052 /*dxfer_len*/ dxfer_len, 1053 /*timeout*/ timeout); 1054 1055 ata_48bit_cmd(ataio, 1056 /*cmd*/ command_out, 1057 /*features*/ features_out, 1058 /*lba*/ zone_id, 1059 /*sector_count*/ sectors_out); 1060 1061 ataio->cmd.flags |= ata_flags; 1062 if (auxiliary != 0) { 1063 ataio->ata_flags |= ATA_FLAG_AUX; 1064 ataio->aux = auxiliary; 1065 } 1066 } 1067 1068 void 1069 ata_zac_mgmt_in(struct ccb_ataio *ataio, uint32_t retries, 1070 void (*cbfcnp)(struct cam_periph *, union ccb *), 1071 int use_ncq, uint8_t zm_action, uint64_t zone_id, 1072 uint8_t zone_flags, uint8_t *data_ptr, uint32_t dxfer_len, 1073 uint32_t timeout) 1074 { 1075 uint8_t command_out, ata_flags; 1076 uint16_t features_out, sectors_out; 1077 uint32_t auxiliary; 1078 1079 if (use_ncq == 0) { 1080 command_out = ATA_ZAC_MANAGEMENT_IN; 1081 /* XXX KDM put a macro here */ 1082 features_out = (zm_action & 0xf) | (zone_flags << 8); 1083 ata_flags = CAM_ATAIO_DMA; 1084 sectors_out = ((dxfer_len >> 9) & 0xffff); 1085 auxiliary = 0; 1086 } else { 1087 command_out = ATA_RECV_FPDMA_QUEUED; 1088 sectors_out = ATA_RFPDMA_ZAC_MGMT_IN << 8; 1089 auxiliary = (zm_action & 0xf) | (zone_flags << 8); 1090 ata_flags = CAM_ATAIO_FPDMA; 1091 /* 1092 * For RECEIVE FPDMA QUEUED, the transfer length is 1093 * encoded in the FEATURE register, and 0 means 1094 * that 65536 512 byte blocks are to be tranferred. 1095 * In practice, it is unlikely we will see a transfer that 1096 * large. 1097 */ 1098 if (dxfer_len == (65536 * 512)) { 1099 features_out = 0; 1100 } else { 1101 /* 1102 * Yes, the caller can theoretically request a 1103 * transfer larger than we can handle. 1104 * Anyone using this function needs enough 1105 * knowledge to avoid doing that. 1106 */ 1107 features_out = ((dxfer_len >> 9) & 0xffff); 1108 } 1109 } 1110 1111 cam_fill_ataio(ataio, 1112 /*retries*/ retries, 1113 /*cbfcnp*/ cbfcnp, 1114 /*flags*/ CAM_DIR_IN, 1115 /*tag_action*/ 0, 1116 /*data_ptr*/ data_ptr, 1117 /*dxfer_len*/ dxfer_len, 1118 /*timeout*/ timeout); 1119 1120 ata_48bit_cmd(ataio, 1121 /*cmd*/ command_out, 1122 /*features*/ features_out, 1123 /*lba*/ zone_id, 1124 /*sector_count*/ sectors_out); 1125 1126 ataio->cmd.flags |= ata_flags; 1127 if (auxiliary != 0) { 1128 ataio->ata_flags |= ATA_FLAG_AUX; 1129 ataio->aux = auxiliary; 1130 } 1131 } 1132