xref: /freebsd/stand/libsa/zfs/zfsimpl.c (revision 0610f417a4a664b7e3a8c57de800ae1f326a40e3)
1 /*-
2  * Copyright (c) 2007 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  *	Stand-alone ZFS file reader.
32  */
33 
34 #include <sys/endian.h>
35 #include <sys/stat.h>
36 #include <sys/stdint.h>
37 #include <sys/list.h>
38 
39 #include "zfsimpl.h"
40 #include "zfssubr.c"
41 
42 
43 struct zfsmount {
44 	const spa_t	*spa;
45 	objset_phys_t	objset;
46 	uint64_t	rootobj;
47 };
48 static struct zfsmount zfsmount __unused;
49 
50 /*
51  * The indirect_child_t represents the vdev that we will read from, when we
52  * need to read all copies of the data (e.g. for scrub or reconstruction).
53  * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
54  * ic_vdev is the same as is_vdev.  However, for mirror top-level vdevs,
55  * ic_vdev is a child of the mirror.
56  */
57 typedef struct indirect_child {
58 	void *ic_data;
59 	vdev_t *ic_vdev;
60 } indirect_child_t;
61 
62 /*
63  * The indirect_split_t represents one mapped segment of an i/o to the
64  * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
65  * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
66  * For split blocks, there will be several of these.
67  */
68 typedef struct indirect_split {
69 	list_node_t is_node; /* link on iv_splits */
70 
71 	/*
72 	 * is_split_offset is the offset into the i/o.
73 	 * This is the sum of the previous splits' is_size's.
74 	 */
75 	uint64_t is_split_offset;
76 
77 	vdev_t *is_vdev; /* top-level vdev */
78 	uint64_t is_target_offset; /* offset on is_vdev */
79 	uint64_t is_size;
80 	int is_children; /* number of entries in is_child[] */
81 
82 	/*
83 	 * is_good_child is the child that we are currently using to
84 	 * attempt reconstruction.
85 	 */
86 	int is_good_child;
87 
88 	indirect_child_t is_child[1]; /* variable-length */
89 } indirect_split_t;
90 
91 /*
92  * The indirect_vsd_t is associated with each i/o to the indirect vdev.
93  * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
94  */
95 typedef struct indirect_vsd {
96 	boolean_t iv_split_block;
97 	boolean_t iv_reconstruct;
98 
99 	list_t iv_splits; /* list of indirect_split_t's */
100 } indirect_vsd_t;
101 
102 /*
103  * List of all vdevs, chained through v_alllink.
104  */
105 static vdev_list_t zfs_vdevs;
106 
107  /*
108  * List of ZFS features supported for read
109  */
110 static const char *features_for_read[] = {
111 	"org.illumos:lz4_compress",
112 	"com.delphix:hole_birth",
113 	"com.delphix:extensible_dataset",
114 	"com.delphix:embedded_data",
115 	"org.open-zfs:large_blocks",
116 	"org.illumos:sha512",
117 	"org.illumos:skein",
118 	"org.zfsonlinux:large_dnode",
119 	"com.joyent:multi_vdev_crash_dump",
120 	"com.delphix:spacemap_histogram",
121 	"com.delphix:zpool_checkpoint",
122 	"com.delphix:spacemap_v2",
123 	"com.datto:encryption",
124 	"org.zfsonlinux:allocation_classes",
125 	"com.datto:resilver_defer",
126 	"com.delphix:device_removal",
127 	"com.delphix:obsolete_counts",
128 	"com.intel:allocation_classes",
129 	NULL
130 };
131 
132 /*
133  * List of all pools, chained through spa_link.
134  */
135 static spa_list_t zfs_pools;
136 
137 static const dnode_phys_t *dnode_cache_obj;
138 static uint64_t dnode_cache_bn;
139 static char *dnode_cache_buf;
140 static char *zap_scratch;
141 static char *zfs_temp_buf, *zfs_temp_end, *zfs_temp_ptr;
142 
143 #define TEMP_SIZE	(1024 * 1024)
144 
145 static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf);
146 static int zfs_get_root(const spa_t *spa, uint64_t *objid);
147 static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result);
148 static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode,
149     const char *name, uint64_t integer_size, uint64_t num_integers,
150     void *value);
151 static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t,
152     dnode_phys_t *);
153 static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *,
154     size_t);
155 static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t,
156     size_t);
157 static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, size_t);
158 vdev_indirect_mapping_t *vdev_indirect_mapping_open(spa_t *, objset_phys_t *,
159     uint64_t);
160 vdev_indirect_mapping_entry_phys_t *
161     vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *, uint64_t,
162     uint64_t, uint64_t *);
163 
164 static void
165 zfs_init(void)
166 {
167 	STAILQ_INIT(&zfs_vdevs);
168 	STAILQ_INIT(&zfs_pools);
169 
170 	zfs_temp_buf = malloc(TEMP_SIZE);
171 	zfs_temp_end = zfs_temp_buf + TEMP_SIZE;
172 	zfs_temp_ptr = zfs_temp_buf;
173 	dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE);
174 	zap_scratch = malloc(SPA_MAXBLOCKSIZE);
175 
176 	zfs_init_crc();
177 }
178 
179 static void *
180 zfs_alloc(size_t size)
181 {
182 	char *ptr;
183 
184 	if (zfs_temp_ptr + size > zfs_temp_end) {
185 		panic("ZFS: out of temporary buffer space");
186 	}
187 	ptr = zfs_temp_ptr;
188 	zfs_temp_ptr += size;
189 
190 	return (ptr);
191 }
192 
193 static void
194 zfs_free(void *ptr, size_t size)
195 {
196 
197 	zfs_temp_ptr -= size;
198 	if (zfs_temp_ptr != ptr) {
199 		panic("ZFS: zfs_alloc()/zfs_free() mismatch");
200 	}
201 }
202 
203 static int
204 xdr_int(const unsigned char **xdr, int *ip)
205 {
206 	*ip = be32dec(*xdr);
207 	(*xdr) += 4;
208 	return (0);
209 }
210 
211 static int
212 xdr_u_int(const unsigned char **xdr, u_int *ip)
213 {
214 	*ip = be32dec(*xdr);
215 	(*xdr) += 4;
216 	return (0);
217 }
218 
219 static int
220 xdr_uint64_t(const unsigned char **xdr, uint64_t *lp)
221 {
222 	u_int hi, lo;
223 
224 	xdr_u_int(xdr, &hi);
225 	xdr_u_int(xdr, &lo);
226 	*lp = (((uint64_t) hi) << 32) | lo;
227 	return (0);
228 }
229 
230 static int
231 nvlist_find(const unsigned char *nvlist, const char *name, int type,
232 	    int *elementsp, void *valuep)
233 {
234 	const unsigned char *p, *pair;
235 	int junk;
236 	int encoded_size, decoded_size;
237 
238 	p = nvlist;
239 	xdr_int(&p, &junk);
240 	xdr_int(&p, &junk);
241 
242 	pair = p;
243 	xdr_int(&p, &encoded_size);
244 	xdr_int(&p, &decoded_size);
245 	while (encoded_size && decoded_size) {
246 		int namelen, pairtype, elements;
247 		const char *pairname;
248 
249 		xdr_int(&p, &namelen);
250 		pairname = (const char*) p;
251 		p += roundup(namelen, 4);
252 		xdr_int(&p, &pairtype);
253 
254 		if (!memcmp(name, pairname, namelen) && type == pairtype) {
255 			xdr_int(&p, &elements);
256 			if (elementsp)
257 				*elementsp = elements;
258 			if (type == DATA_TYPE_UINT64) {
259 				xdr_uint64_t(&p, (uint64_t *) valuep);
260 				return (0);
261 			} else if (type == DATA_TYPE_STRING) {
262 				int len;
263 				xdr_int(&p, &len);
264 				(*(const char**) valuep) = (const char*) p;
265 				return (0);
266 			} else if (type == DATA_TYPE_NVLIST
267 				   || type == DATA_TYPE_NVLIST_ARRAY) {
268 				(*(const unsigned char**) valuep) =
269 					 (const unsigned char*) p;
270 				return (0);
271 			} else {
272 				return (EIO);
273 			}
274 		} else {
275 			/*
276 			 * Not the pair we are looking for, skip to the next one.
277 			 */
278 			p = pair + encoded_size;
279 		}
280 
281 		pair = p;
282 		xdr_int(&p, &encoded_size);
283 		xdr_int(&p, &decoded_size);
284 	}
285 
286 	return (EIO);
287 }
288 
289 static int
290 nvlist_check_features_for_read(const unsigned char *nvlist)
291 {
292 	const unsigned char *p, *pair;
293 	int junk;
294 	int encoded_size, decoded_size;
295 	int rc;
296 
297 	rc = 0;
298 
299 	p = nvlist;
300 	xdr_int(&p, &junk);
301 	xdr_int(&p, &junk);
302 
303 	pair = p;
304 	xdr_int(&p, &encoded_size);
305 	xdr_int(&p, &decoded_size);
306 	while (encoded_size && decoded_size) {
307 		int namelen, pairtype;
308 		const char *pairname;
309 		int i, found;
310 
311 		found = 0;
312 
313 		xdr_int(&p, &namelen);
314 		pairname = (const char*) p;
315 		p += roundup(namelen, 4);
316 		xdr_int(&p, &pairtype);
317 
318 		for (i = 0; features_for_read[i] != NULL; i++) {
319 			if (!memcmp(pairname, features_for_read[i], namelen)) {
320 				found = 1;
321 				break;
322 			}
323 		}
324 
325 		if (!found) {
326 			printf("ZFS: unsupported feature: %s\n", pairname);
327 			rc = EIO;
328 		}
329 
330 		p = pair + encoded_size;
331 
332 		pair = p;
333 		xdr_int(&p, &encoded_size);
334 		xdr_int(&p, &decoded_size);
335 	}
336 
337 	return (rc);
338 }
339 
340 /*
341  * Return the next nvlist in an nvlist array.
342  */
343 static const unsigned char *
344 nvlist_next(const unsigned char *nvlist)
345 {
346 	const unsigned char *p, *pair;
347 	int junk;
348 	int encoded_size, decoded_size;
349 
350 	p = nvlist;
351 	xdr_int(&p, &junk);
352 	xdr_int(&p, &junk);
353 
354 	pair = p;
355 	xdr_int(&p, &encoded_size);
356 	xdr_int(&p, &decoded_size);
357 	while (encoded_size && decoded_size) {
358 		p = pair + encoded_size;
359 
360 		pair = p;
361 		xdr_int(&p, &encoded_size);
362 		xdr_int(&p, &decoded_size);
363 	}
364 
365 	return p;
366 }
367 
368 #ifdef TEST
369 
370 static const unsigned char *
371 nvlist_print(const unsigned char *nvlist, unsigned int indent)
372 {
373 	static const char* typenames[] = {
374 		"DATA_TYPE_UNKNOWN",
375 		"DATA_TYPE_BOOLEAN",
376 		"DATA_TYPE_BYTE",
377 		"DATA_TYPE_INT16",
378 		"DATA_TYPE_UINT16",
379 		"DATA_TYPE_INT32",
380 		"DATA_TYPE_UINT32",
381 		"DATA_TYPE_INT64",
382 		"DATA_TYPE_UINT64",
383 		"DATA_TYPE_STRING",
384 		"DATA_TYPE_BYTE_ARRAY",
385 		"DATA_TYPE_INT16_ARRAY",
386 		"DATA_TYPE_UINT16_ARRAY",
387 		"DATA_TYPE_INT32_ARRAY",
388 		"DATA_TYPE_UINT32_ARRAY",
389 		"DATA_TYPE_INT64_ARRAY",
390 		"DATA_TYPE_UINT64_ARRAY",
391 		"DATA_TYPE_STRING_ARRAY",
392 		"DATA_TYPE_HRTIME",
393 		"DATA_TYPE_NVLIST",
394 		"DATA_TYPE_NVLIST_ARRAY",
395 		"DATA_TYPE_BOOLEAN_VALUE",
396 		"DATA_TYPE_INT8",
397 		"DATA_TYPE_UINT8",
398 		"DATA_TYPE_BOOLEAN_ARRAY",
399 		"DATA_TYPE_INT8_ARRAY",
400 		"DATA_TYPE_UINT8_ARRAY"
401 	};
402 
403 	unsigned int i, j;
404 	const unsigned char *p, *pair;
405 	int junk;
406 	int encoded_size, decoded_size;
407 
408 	p = nvlist;
409 	xdr_int(&p, &junk);
410 	xdr_int(&p, &junk);
411 
412 	pair = p;
413 	xdr_int(&p, &encoded_size);
414 	xdr_int(&p, &decoded_size);
415 	while (encoded_size && decoded_size) {
416 		int namelen, pairtype, elements;
417 		const char *pairname;
418 
419 		xdr_int(&p, &namelen);
420 		pairname = (const char*) p;
421 		p += roundup(namelen, 4);
422 		xdr_int(&p, &pairtype);
423 
424 		for (i = 0; i < indent; i++)
425 			printf(" ");
426 		printf("%s %s", typenames[pairtype], pairname);
427 
428 		xdr_int(&p, &elements);
429 		switch (pairtype) {
430 		case DATA_TYPE_UINT64: {
431 			uint64_t val;
432 			xdr_uint64_t(&p, &val);
433 			printf(" = 0x%jx\n", (uintmax_t)val);
434 			break;
435 		}
436 
437 		case DATA_TYPE_STRING: {
438 			int len;
439 			xdr_int(&p, &len);
440 			printf(" = \"%s\"\n", p);
441 			break;
442 		}
443 
444 		case DATA_TYPE_NVLIST:
445 			printf("\n");
446 			nvlist_print(p, indent + 1);
447 			break;
448 
449 		case DATA_TYPE_NVLIST_ARRAY:
450 			for (j = 0; j < elements; j++) {
451 				printf("[%d]\n", j);
452 				p = nvlist_print(p, indent + 1);
453 				if (j != elements - 1) {
454 					for (i = 0; i < indent; i++)
455 						printf(" ");
456 					printf("%s %s", typenames[pairtype], pairname);
457 				}
458 			}
459 			break;
460 
461 		default:
462 			printf("\n");
463 		}
464 
465 		p = pair + encoded_size;
466 
467 		pair = p;
468 		xdr_int(&p, &encoded_size);
469 		xdr_int(&p, &decoded_size);
470 	}
471 
472 	return p;
473 }
474 
475 #endif
476 
477 static int
478 vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf,
479     off_t offset, size_t size)
480 {
481 	size_t psize;
482 	int rc;
483 
484 	if (!vdev->v_phys_read)
485 		return (EIO);
486 
487 	if (bp) {
488 		psize = BP_GET_PSIZE(bp);
489 	} else {
490 		psize = size;
491 	}
492 
493 	/*printf("ZFS: reading %zu bytes at 0x%jx to %p\n", psize, (uintmax_t)offset, buf);*/
494 	rc = vdev->v_phys_read(vdev, vdev->v_read_priv, offset, buf, psize);
495 	if (rc)
496 		return (rc);
497 	if (bp != NULL)
498 		return (zio_checksum_verify(vdev->spa, bp, buf));
499 
500 	return (0);
501 }
502 
503 typedef struct remap_segment {
504 	vdev_t *rs_vd;
505 	uint64_t rs_offset;
506 	uint64_t rs_asize;
507 	uint64_t rs_split_offset;
508 	list_node_t rs_node;
509 } remap_segment_t;
510 
511 static remap_segment_t *
512 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
513 {
514 	remap_segment_t *rs = malloc(sizeof (remap_segment_t));
515 
516 	if (rs != NULL) {
517 		rs->rs_vd = vd;
518 		rs->rs_offset = offset;
519 		rs->rs_asize = asize;
520 		rs->rs_split_offset = split_offset;
521 	}
522 
523 	return (rs);
524 }
525 
526 vdev_indirect_mapping_t *
527 vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os,
528     uint64_t mapping_object)
529 {
530 	vdev_indirect_mapping_t *vim;
531 	vdev_indirect_mapping_phys_t *vim_phys;
532 	int rc;
533 
534 	vim = calloc(1, sizeof (*vim));
535 	if (vim == NULL)
536 		return (NULL);
537 
538 	vim->vim_dn = calloc(1, sizeof (*vim->vim_dn));
539 	if (vim->vim_dn == NULL) {
540 		free(vim);
541 		return (NULL);
542 	}
543 
544 	rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn);
545 	if (rc != 0) {
546 		free(vim->vim_dn);
547 		free(vim);
548 		return (NULL);
549 	}
550 
551 	vim->vim_spa = spa;
552 	vim->vim_phys = malloc(sizeof (*vim->vim_phys));
553 	if (vim->vim_phys == NULL) {
554 		free(vim->vim_dn);
555 		free(vim);
556 		return (NULL);
557 	}
558 
559 	vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn);
560 	*vim->vim_phys = *vim_phys;
561 
562 	vim->vim_objset = os;
563 	vim->vim_object = mapping_object;
564 	vim->vim_entries = NULL;
565 
566 	vim->vim_havecounts =
567 	    (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0);
568 	return (vim);
569 }
570 
571 /*
572  * Compare an offset with an indirect mapping entry; there are three
573  * possible scenarios:
574  *
575  *     1. The offset is "less than" the mapping entry; meaning the
576  *        offset is less than the source offset of the mapping entry. In
577  *        this case, there is no overlap between the offset and the
578  *        mapping entry and -1 will be returned.
579  *
580  *     2. The offset is "greater than" the mapping entry; meaning the
581  *        offset is greater than the mapping entry's source offset plus
582  *        the entry's size. In this case, there is no overlap between
583  *        the offset and the mapping entry and 1 will be returned.
584  *
585  *        NOTE: If the offset is actually equal to the entry's offset
586  *        plus size, this is considered to be "greater" than the entry,
587  *        and this case applies (i.e. 1 will be returned). Thus, the
588  *        entry's "range" can be considered to be inclusive at its
589  *        start, but exclusive at its end: e.g. [src, src + size).
590  *
591  *     3. The last case to consider is if the offset actually falls
592  *        within the mapping entry's range. If this is the case, the
593  *        offset is considered to be "equal to" the mapping entry and
594  *        0 will be returned.
595  *
596  *        NOTE: If the offset is equal to the entry's source offset,
597  *        this case applies and 0 will be returned. If the offset is
598  *        equal to the entry's source plus its size, this case does
599  *        *not* apply (see "NOTE" above for scenario 2), and 1 will be
600  *        returned.
601  */
602 static int
603 dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem)
604 {
605 	const uint64_t *key = v_key;
606 	const vdev_indirect_mapping_entry_phys_t *array_elem =
607 	    v_array_elem;
608 	uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem);
609 
610 	if (*key < src_offset) {
611 		return (-1);
612 	} else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) {
613 		return (0);
614 	} else {
615 		return (1);
616 	}
617 }
618 
619 /*
620  * Return array entry.
621  */
622 static vdev_indirect_mapping_entry_phys_t *
623 vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index)
624 {
625 	uint64_t size;
626 	off_t offset = 0;
627 	int rc;
628 
629 	if (vim->vim_phys->vimp_num_entries == 0)
630 		return (NULL);
631 
632 	if (vim->vim_entries == NULL) {
633 		uint64_t bsize;
634 
635 		bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT;
636 		size = vim->vim_phys->vimp_num_entries *
637 		    sizeof (*vim->vim_entries);
638 		if (size > bsize) {
639 			size = bsize / sizeof (*vim->vim_entries);
640 			size *= sizeof (*vim->vim_entries);
641 		}
642 		vim->vim_entries = malloc(size);
643 		if (vim->vim_entries == NULL)
644 			return (NULL);
645 		vim->vim_num_entries = size / sizeof (*vim->vim_entries);
646 		offset = index * sizeof (*vim->vim_entries);
647 	}
648 
649 	/* We have data in vim_entries */
650 	if (offset == 0) {
651 		if (index >= vim->vim_entry_offset &&
652 		    index <= vim->vim_entry_offset + vim->vim_num_entries) {
653 			index -= vim->vim_entry_offset;
654 			return (&vim->vim_entries[index]);
655 		}
656 		offset = index * sizeof (*vim->vim_entries);
657 	}
658 
659 	vim->vim_entry_offset = index;
660 	size = vim->vim_num_entries * sizeof (*vim->vim_entries);
661 	rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries,
662 	    size);
663 	if (rc != 0) {
664 		/* Read error, invalidate vim_entries. */
665 		free(vim->vim_entries);
666 		vim->vim_entries = NULL;
667 		return (NULL);
668 	}
669 	index -= vim->vim_entry_offset;
670 	return (&vim->vim_entries[index]);
671 }
672 
673 /*
674  * Returns the mapping entry for the given offset.
675  *
676  * It's possible that the given offset will not be in the mapping table
677  * (i.e. no mapping entries contain this offset), in which case, the
678  * return value value depends on the "next_if_missing" parameter.
679  *
680  * If the offset is not found in the table and "next_if_missing" is
681  * B_FALSE, then NULL will always be returned. The behavior is intended
682  * to allow consumers to get the entry corresponding to the offset
683  * parameter, iff the offset overlaps with an entry in the table.
684  *
685  * If the offset is not found in the table and "next_if_missing" is
686  * B_TRUE, then the entry nearest to the given offset will be returned,
687  * such that the entry's source offset is greater than the offset
688  * passed in (i.e. the "next" mapping entry in the table is returned, if
689  * the offset is missing from the table). If there are no entries whose
690  * source offset is greater than the passed in offset, NULL is returned.
691  */
692 static vdev_indirect_mapping_entry_phys_t *
693 vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim,
694     uint64_t offset)
695 {
696 	ASSERT(vim->vim_phys->vimp_num_entries > 0);
697 
698 	vdev_indirect_mapping_entry_phys_t *entry;
699 
700 	uint64_t last = vim->vim_phys->vimp_num_entries - 1;
701 	uint64_t base = 0;
702 
703 	/*
704 	 * We don't define these inside of the while loop because we use
705 	 * their value in the case that offset isn't in the mapping.
706 	 */
707 	uint64_t mid;
708 	int result;
709 
710 	while (last >= base) {
711 		mid = base + ((last - base) >> 1);
712 
713 		entry = vdev_indirect_mapping_entry(vim, mid);
714 		if (entry == NULL)
715 			break;
716 		result = dva_mapping_overlap_compare(&offset, entry);
717 
718 		if (result == 0) {
719 			break;
720 		} else if (result < 0) {
721 			last = mid - 1;
722 		} else {
723 			base = mid + 1;
724 		}
725 	}
726 	return (entry);
727 }
728 
729 /*
730  * Given an indirect vdev and an extent on that vdev, it duplicates the
731  * physical entries of the indirect mapping that correspond to the extent
732  * to a new array and returns a pointer to it. In addition, copied_entries
733  * is populated with the number of mapping entries that were duplicated.
734  *
735  * Finally, since we are doing an allocation, it is up to the caller to
736  * free the array allocated in this function.
737  */
738 vdev_indirect_mapping_entry_phys_t *
739 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
740     uint64_t asize, uint64_t *copied_entries)
741 {
742 	vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
743 	vdev_indirect_mapping_t *vim = vd->v_mapping;
744 	uint64_t entries = 0;
745 
746 	vdev_indirect_mapping_entry_phys_t *first_mapping =
747 	    vdev_indirect_mapping_entry_for_offset(vim, offset);
748 	ASSERT3P(first_mapping, !=, NULL);
749 
750 	vdev_indirect_mapping_entry_phys_t *m = first_mapping;
751 	while (asize > 0) {
752 		uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
753 		uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
754 		uint64_t inner_size = MIN(asize, size - inner_offset);
755 
756 		offset += inner_size;
757 		asize -= inner_size;
758 		entries++;
759 		m++;
760 	}
761 
762 	size_t copy_length = entries * sizeof (*first_mapping);
763 	duplicate_mappings = malloc(copy_length);
764 	if (duplicate_mappings != NULL)
765 		bcopy(first_mapping, duplicate_mappings, copy_length);
766 	else
767 		entries = 0;
768 
769 	*copied_entries = entries;
770 
771 	return (duplicate_mappings);
772 }
773 
774 static vdev_t *
775 vdev_lookup_top(spa_t *spa, uint64_t vdev)
776 {
777 	vdev_t *rvd;
778 
779 	STAILQ_FOREACH(rvd, &spa->spa_vdevs, v_childlink)
780 		if (rvd->v_id == vdev)
781 			break;
782 
783 	return (rvd);
784 }
785 
786 /*
787  * This is a callback for vdev_indirect_remap() which allocates an
788  * indirect_split_t for each split segment and adds it to iv_splits.
789  */
790 static void
791 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
792     uint64_t size, void *arg)
793 {
794 	int n = 1;
795 	zio_t *zio = arg;
796 	indirect_vsd_t *iv = zio->io_vsd;
797 
798 	if (vd->v_read == vdev_indirect_read)
799 		return;
800 
801 	if (vd->v_read == vdev_mirror_read)
802 		n = vd->v_nchildren;
803 
804 	indirect_split_t *is =
805 	    malloc(offsetof(indirect_split_t, is_child[n]));
806 	if (is == NULL) {
807 		zio->io_error = ENOMEM;
808 		return;
809 	}
810 	bzero(is, offsetof(indirect_split_t, is_child[n]));
811 
812 	is->is_children = n;
813 	is->is_size = size;
814 	is->is_split_offset = split_offset;
815 	is->is_target_offset = offset;
816 	is->is_vdev = vd;
817 
818 	/*
819 	 * Note that we only consider multiple copies of the data for
820 	 * *mirror* vdevs.  We don't for "replacing" or "spare" vdevs, even
821 	 * though they use the same ops as mirror, because there's only one
822 	 * "good" copy under the replacing/spare.
823 	 */
824 	if (vd->v_read == vdev_mirror_read) {
825 		int i = 0;
826 		vdev_t *kid;
827 
828 		STAILQ_FOREACH(kid, &vd->v_children, v_childlink) {
829 			is->is_child[i++].ic_vdev = kid;
830 		}
831 	} else {
832 		is->is_child[0].ic_vdev = vd;
833 	}
834 
835 	list_insert_tail(&iv->iv_splits, is);
836 }
837 
838 static void
839 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg)
840 {
841 	list_t stack;
842 	spa_t *spa = vd->spa;
843 	zio_t *zio = arg;
844 	remap_segment_t *rs;
845 
846 	list_create(&stack, sizeof (remap_segment_t),
847 	    offsetof(remap_segment_t, rs_node));
848 
849 	rs = rs_alloc(vd, offset, asize, 0);
850 	if (rs == NULL) {
851 		printf("vdev_indirect_remap: out of memory.\n");
852 		zio->io_error = ENOMEM;
853 	}
854 	for ( ; rs != NULL; rs = list_remove_head(&stack)) {
855 		vdev_t *v = rs->rs_vd;
856 		uint64_t num_entries = 0;
857 		/* vdev_indirect_mapping_t *vim = v->v_mapping; */
858 		vdev_indirect_mapping_entry_phys_t *mapping =
859 		    vdev_indirect_mapping_duplicate_adjacent_entries(v,
860 		    rs->rs_offset, rs->rs_asize, &num_entries);
861 
862 		if (num_entries == 0)
863 			zio->io_error = ENOMEM;
864 
865 		for (uint64_t i = 0; i < num_entries; i++) {
866 			vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
867 			uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
868 			uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
869 			uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
870 			uint64_t inner_offset = rs->rs_offset -
871 			    DVA_MAPPING_GET_SRC_OFFSET(m);
872 			uint64_t inner_size =
873 			    MIN(rs->rs_asize, size - inner_offset);
874 			vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
875 
876 			if (dst_v->v_read == vdev_indirect_read) {
877 				remap_segment_t *o;
878 
879 				o = rs_alloc(dst_v, dst_offset + inner_offset,
880 				    inner_size, rs->rs_split_offset);
881 				if (o == NULL) {
882 					printf("vdev_indirect_remap: "
883 					    "out of memory.\n");
884 					zio->io_error = ENOMEM;
885 					break;
886 				}
887 
888 				list_insert_head(&stack, o);
889 			}
890 			vdev_indirect_gather_splits(rs->rs_split_offset, dst_v,
891 			    dst_offset + inner_offset,
892 			    inner_size, arg);
893 
894 			/*
895 			 * vdev_indirect_gather_splits can have memory
896 			 * allocation error, we can not recover from it.
897 			 */
898 			if (zio->io_error != 0)
899 				break;
900 
901 			rs->rs_offset += inner_size;
902 			rs->rs_asize -= inner_size;
903 			rs->rs_split_offset += inner_size;
904 		}
905 
906 		free(mapping);
907 		free(rs);
908 		if (zio->io_error != 0)
909 			break;
910 	}
911 
912 	list_destroy(&stack);
913 }
914 
915 static void
916 vdev_indirect_map_free(zio_t *zio)
917 {
918 	indirect_vsd_t *iv = zio->io_vsd;
919 	indirect_split_t *is;
920 
921 	while ((is = list_head(&iv->iv_splits)) != NULL) {
922 		for (int c = 0; c < is->is_children; c++) {
923 			indirect_child_t *ic = &is->is_child[c];
924 			free(ic->ic_data);
925 		}
926 		list_remove(&iv->iv_splits, is);
927 		free(is);
928 	}
929 	free(iv);
930 }
931 
932 static int
933 vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
934     off_t offset, size_t bytes)
935 {
936 	zio_t zio = { 0 };
937 	spa_t *spa = vdev->spa;
938 	indirect_vsd_t *iv = malloc(sizeof (*iv));
939 	indirect_split_t *first;
940 	int rc = EIO;
941 
942 	if (iv == NULL)
943 		return (ENOMEM);
944 	bzero(iv, sizeof (*iv));
945 
946 	list_create(&iv->iv_splits,
947 	    sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
948 
949 	zio.io_spa = spa;
950 	zio.io_bp = (blkptr_t *)bp;
951 	zio.io_data = buf;
952 	zio.io_size = bytes;
953 	zio.io_offset = offset;
954 	zio.io_vd = vdev;
955 	zio.io_vsd = iv;
956 
957 	if (vdev->v_mapping == NULL) {
958 		vdev_indirect_config_t *vic;
959 
960 		vic = &vdev->vdev_indirect_config;
961 		vdev->v_mapping = vdev_indirect_mapping_open(spa,
962 		    &spa->spa_mos, vic->vic_mapping_object);
963 	}
964 
965 	vdev_indirect_remap(vdev, offset, bytes, &zio);
966 	if (zio.io_error != 0)
967 		return (zio.io_error);
968 
969 	first = list_head(&iv->iv_splits);
970 	if (first->is_size == zio.io_size) {
971 		/*
972 		 * This is not a split block; we are pointing to the entire
973 		 * data, which will checksum the same as the original data.
974 		 * Pass the BP down so that the child i/o can verify the
975 		 * checksum, and try a different location if available
976 		 * (e.g. on a mirror).
977 		 *
978 		 * While this special case could be handled the same as the
979 		 * general (split block) case, doing it this way ensures
980 		 * that the vast majority of blocks on indirect vdevs
981 		 * (which are not split) are handled identically to blocks
982 		 * on non-indirect vdevs.  This allows us to be less strict
983 		 * about performance in the general (but rare) case.
984 		 */
985 		rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp,
986 		    zio.io_data, first->is_target_offset, bytes);
987 	} else {
988 		iv->iv_split_block = B_TRUE;
989 		/*
990 		 * Read one copy of each split segment, from the
991 		 * top-level vdev.  Since we don't know the
992 		 * checksum of each split individually, the child
993 		 * zio can't ensure that we get the right data.
994 		 * E.g. if it's a mirror, it will just read from a
995 		 * random (healthy) leaf vdev.  We have to verify
996 		 * the checksum in vdev_indirect_io_done().
997 		 */
998 		for (indirect_split_t *is = list_head(&iv->iv_splits);
999 		    is != NULL; is = list_next(&iv->iv_splits, is)) {
1000 			char *ptr = zio.io_data;
1001 
1002 			rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp,
1003 			    ptr + is->is_split_offset, is->is_target_offset,
1004 			    is->is_size);
1005 		}
1006 		if (zio_checksum_verify(spa, zio.io_bp, zio.io_data))
1007 			rc = ECKSUM;
1008 		else
1009 			rc = 0;
1010 	}
1011 
1012 	vdev_indirect_map_free(&zio);
1013 	if (rc == 0)
1014 		rc = zio.io_error;
1015 
1016 	return (rc);
1017 }
1018 
1019 static int
1020 vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
1021     off_t offset, size_t bytes)
1022 {
1023 
1024 	return (vdev_read_phys(vdev, bp, buf,
1025 		offset + VDEV_LABEL_START_SIZE, bytes));
1026 }
1027 
1028 
1029 static int
1030 vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
1031     off_t offset, size_t bytes)
1032 {
1033 	vdev_t *kid;
1034 	int rc;
1035 
1036 	rc = EIO;
1037 	STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1038 		if (kid->v_state != VDEV_STATE_HEALTHY)
1039 			continue;
1040 		rc = kid->v_read(kid, bp, buf, offset, bytes);
1041 		if (!rc)
1042 			return (0);
1043 	}
1044 
1045 	return (rc);
1046 }
1047 
1048 static int
1049 vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
1050     off_t offset, size_t bytes)
1051 {
1052 	vdev_t *kid;
1053 
1054 	/*
1055 	 * Here we should have two kids:
1056 	 * First one which is the one we are replacing and we can trust
1057 	 * only this one to have valid data, but it might not be present.
1058 	 * Second one is that one we are replacing with. It is most likely
1059 	 * healthy, but we can't trust it has needed data, so we won't use it.
1060 	 */
1061 	kid = STAILQ_FIRST(&vdev->v_children);
1062 	if (kid == NULL)
1063 		return (EIO);
1064 	if (kid->v_state != VDEV_STATE_HEALTHY)
1065 		return (EIO);
1066 	return (kid->v_read(kid, bp, buf, offset, bytes));
1067 }
1068 
1069 static vdev_t *
1070 vdev_find(uint64_t guid)
1071 {
1072 	vdev_t *vdev;
1073 
1074 	STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink)
1075 		if (vdev->v_guid == guid)
1076 			return (vdev);
1077 
1078 	return (0);
1079 }
1080 
1081 static vdev_t *
1082 vdev_create(uint64_t guid, vdev_read_t *_read)
1083 {
1084 	vdev_t *vdev;
1085 	vdev_indirect_config_t *vic;
1086 
1087 	vdev = malloc(sizeof(vdev_t));
1088 	memset(vdev, 0, sizeof(vdev_t));
1089 	STAILQ_INIT(&vdev->v_children);
1090 	vdev->v_guid = guid;
1091 	vdev->v_state = VDEV_STATE_OFFLINE;
1092 	vdev->v_read = _read;
1093 
1094 	vic = &vdev->vdev_indirect_config;
1095 	vic->vic_prev_indirect_vdev = UINT64_MAX;
1096 	STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink);
1097 
1098 	return (vdev);
1099 }
1100 
1101 static int
1102 vdev_init_from_nvlist(const unsigned char *nvlist, vdev_t *pvdev,
1103     vdev_t **vdevp, int is_newer)
1104 {
1105 	int rc;
1106 	uint64_t guid, id, ashift, asize, nparity;
1107 	const char *type;
1108 	const char *path;
1109 	vdev_t *vdev, *kid;
1110 	const unsigned char *kids;
1111 	int nkids, i, is_new;
1112 	uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present;
1113 	uint64_t is_log;
1114 
1115 	if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
1116 	    NULL, &guid)
1117 	    || nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id)
1118 	    || nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING,
1119 	    NULL, &type)) {
1120 		printf("ZFS: can't find vdev details\n");
1121 		return (ENOENT);
1122 	}
1123 
1124 	if (strcmp(type, VDEV_TYPE_MIRROR)
1125 	    && strcmp(type, VDEV_TYPE_DISK)
1126 #ifdef ZFS_TEST
1127 	    && strcmp(type, VDEV_TYPE_FILE)
1128 #endif
1129 	    && strcmp(type, VDEV_TYPE_RAIDZ)
1130 	    && strcmp(type, VDEV_TYPE_INDIRECT)
1131 	    && strcmp(type, VDEV_TYPE_REPLACING)) {
1132 		printf("ZFS: can only boot from disk, mirror, raidz1, raidz2 and raidz3 vdevs\n");
1133 		return (EIO);
1134 	}
1135 
1136 	is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0;
1137 	is_log = 0;
1138 
1139 	nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL,
1140 	    &is_offline);
1141 	nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL,
1142 	    &is_removed);
1143 	nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL,
1144 	    &is_faulted);
1145 	nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64, NULL,
1146 	    &is_degraded);
1147 	nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64, NULL,
1148 	    &isnt_present);
1149 	nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL,
1150 	    &is_log);
1151 
1152 	vdev = vdev_find(guid);
1153 	if (!vdev) {
1154 		is_new = 1;
1155 
1156 		if (!strcmp(type, VDEV_TYPE_MIRROR))
1157 			vdev = vdev_create(guid, vdev_mirror_read);
1158 		else if (!strcmp(type, VDEV_TYPE_RAIDZ))
1159 			vdev = vdev_create(guid, vdev_raidz_read);
1160 		else if (!strcmp(type, VDEV_TYPE_REPLACING))
1161 			vdev = vdev_create(guid, vdev_replacing_read);
1162 		else if (!strcmp(type, VDEV_TYPE_INDIRECT)) {
1163 			vdev_indirect_config_t *vic;
1164 
1165 			vdev = vdev_create(guid, vdev_indirect_read);
1166 			vdev->v_state = VDEV_STATE_HEALTHY;
1167 			vic = &vdev->vdev_indirect_config;
1168 
1169 			nvlist_find(nvlist,
1170 			    ZPOOL_CONFIG_INDIRECT_OBJECT, DATA_TYPE_UINT64,
1171 			    NULL, &vic->vic_mapping_object);
1172 			nvlist_find(nvlist,
1173 			    ZPOOL_CONFIG_INDIRECT_BIRTHS, DATA_TYPE_UINT64,
1174 			    NULL, &vic->vic_births_object);
1175 			nvlist_find(nvlist,
1176 			    ZPOOL_CONFIG_PREV_INDIRECT_VDEV, DATA_TYPE_UINT64,
1177 			    NULL, &vic->vic_prev_indirect_vdev);
1178 		} else
1179 			vdev = vdev_create(guid, vdev_disk_read);
1180 
1181 		vdev->v_id = id;
1182 		vdev->v_top = pvdev != NULL ? pvdev : vdev;
1183 		if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT,
1184 			DATA_TYPE_UINT64, NULL, &ashift) == 0) {
1185 			vdev->v_ashift = ashift;
1186 		} else {
1187 			vdev->v_ashift = 0;
1188 		}
1189 		if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE,
1190 		    DATA_TYPE_UINT64, NULL, &asize) == 0) {
1191 			vdev->v_psize = asize +
1192 			    VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
1193 		}
1194 		if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY,
1195 			DATA_TYPE_UINT64, NULL, &nparity) == 0) {
1196 			vdev->v_nparity = nparity;
1197 		} else {
1198 			vdev->v_nparity = 0;
1199 		}
1200 		if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH,
1201 				DATA_TYPE_STRING, NULL, &path) == 0) {
1202 			if (strncmp(path, "/dev/", 5) == 0)
1203 				path += 5;
1204 			vdev->v_name = strdup(path);
1205 		} else {
1206 			char *name;
1207 
1208 			if (!strcmp(type, "raidz")) {
1209 				if (vdev->v_nparity < 1 ||
1210 				    vdev->v_nparity > 3) {
1211 					printf("ZFS: can only boot from disk, "
1212 					    "mirror, raidz1, raidz2 and raidz3 "
1213 					    "vdevs\n");
1214 					return (EIO);
1215 				}
1216 				asprintf(&name, "%s%d-%jd", type,
1217 				    vdev->v_nparity, id);
1218 			} else {
1219 				asprintf(&name, "%s-%jd", type, id);
1220 			}
1221 			if (name == NULL)
1222 				return (ENOMEM);
1223 			vdev->v_name = name;
1224 		}
1225 		vdev->v_islog = is_log == 1;
1226 	} else {
1227 		is_new = 0;
1228 	}
1229 
1230 	if (is_new || is_newer) {
1231 		/*
1232 		 * This is either new vdev or we've already seen this vdev,
1233 		 * but from an older vdev label, so let's refresh its state
1234 		 * from the newer label.
1235 		 */
1236 		if (is_offline)
1237 			vdev->v_state = VDEV_STATE_OFFLINE;
1238 		else if (is_removed)
1239 			vdev->v_state = VDEV_STATE_REMOVED;
1240 		else if (is_faulted)
1241 			vdev->v_state = VDEV_STATE_FAULTED;
1242 		else if (is_degraded)
1243 			vdev->v_state = VDEV_STATE_DEGRADED;
1244 		else if (isnt_present)
1245 			vdev->v_state = VDEV_STATE_CANT_OPEN;
1246 	}
1247 
1248 	rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1249 	    &nkids, &kids);
1250 	/*
1251 	 * Its ok if we don't have any kids.
1252 	 */
1253 	if (rc == 0) {
1254 		vdev->v_nchildren = nkids;
1255 		for (i = 0; i < nkids; i++) {
1256 			rc = vdev_init_from_nvlist(kids, vdev, &kid, is_newer);
1257 			if (rc)
1258 				return (rc);
1259 			if (is_new)
1260 				STAILQ_INSERT_TAIL(&vdev->v_children, kid,
1261 						   v_childlink);
1262 			kids = nvlist_next(kids);
1263 		}
1264 	} else {
1265 		vdev->v_nchildren = 0;
1266 	}
1267 
1268 	if (vdevp)
1269 		*vdevp = vdev;
1270 	return (0);
1271 }
1272 
1273 static void
1274 vdev_set_state(vdev_t *vdev)
1275 {
1276 	vdev_t *kid;
1277 	int good_kids;
1278 	int bad_kids;
1279 
1280 	/*
1281 	 * A mirror or raidz is healthy if all its kids are healthy. A
1282 	 * mirror is degraded if any of its kids is healthy; a raidz
1283 	 * is degraded if at most nparity kids are offline.
1284 	 */
1285 	if (STAILQ_FIRST(&vdev->v_children)) {
1286 		good_kids = 0;
1287 		bad_kids = 0;
1288 		STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1289 			if (kid->v_state == VDEV_STATE_HEALTHY)
1290 				good_kids++;
1291 			else
1292 				bad_kids++;
1293 		}
1294 		if (bad_kids == 0) {
1295 			vdev->v_state = VDEV_STATE_HEALTHY;
1296 		} else {
1297 			if (vdev->v_read == vdev_mirror_read) {
1298 				if (good_kids) {
1299 					vdev->v_state = VDEV_STATE_DEGRADED;
1300 				} else {
1301 					vdev->v_state = VDEV_STATE_OFFLINE;
1302 				}
1303 			} else if (vdev->v_read == vdev_raidz_read) {
1304 				if (bad_kids > vdev->v_nparity) {
1305 					vdev->v_state = VDEV_STATE_OFFLINE;
1306 				} else {
1307 					vdev->v_state = VDEV_STATE_DEGRADED;
1308 				}
1309 			}
1310 		}
1311 	}
1312 }
1313 
1314 static spa_t *
1315 spa_find_by_guid(uint64_t guid)
1316 {
1317 	spa_t *spa;
1318 
1319 	STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1320 		if (spa->spa_guid == guid)
1321 			return (spa);
1322 
1323 	return (0);
1324 }
1325 
1326 static spa_t *
1327 spa_find_by_name(const char *name)
1328 {
1329 	spa_t *spa;
1330 
1331 	STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1332 		if (!strcmp(spa->spa_name, name))
1333 			return (spa);
1334 
1335 	return (0);
1336 }
1337 
1338 #ifdef BOOT2
1339 static spa_t *
1340 spa_get_primary(void)
1341 {
1342 
1343 	return (STAILQ_FIRST(&zfs_pools));
1344 }
1345 
1346 static vdev_t *
1347 spa_get_primary_vdev(const spa_t *spa)
1348 {
1349 	vdev_t *vdev;
1350 	vdev_t *kid;
1351 
1352 	if (spa == NULL)
1353 		spa = spa_get_primary();
1354 	if (spa == NULL)
1355 		return (NULL);
1356 	vdev = STAILQ_FIRST(&spa->spa_vdevs);
1357 	if (vdev == NULL)
1358 		return (NULL);
1359 	for (kid = STAILQ_FIRST(&vdev->v_children); kid != NULL;
1360 	     kid = STAILQ_FIRST(&vdev->v_children))
1361 		vdev = kid;
1362 	return (vdev);
1363 }
1364 #endif
1365 
1366 static spa_t *
1367 spa_create(uint64_t guid, const char *name)
1368 {
1369 	spa_t *spa;
1370 
1371 	if ((spa = calloc(1, sizeof(spa_t))) == NULL)
1372 		return (NULL);
1373 	if ((spa->spa_name = strdup(name)) == NULL) {
1374 		free(spa);
1375 		return (NULL);
1376 	}
1377 	STAILQ_INIT(&spa->spa_vdevs);
1378 	spa->spa_guid = guid;
1379 	STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link);
1380 
1381 	return (spa);
1382 }
1383 
1384 static const char *
1385 state_name(vdev_state_t state)
1386 {
1387 	static const char* names[] = {
1388 		"UNKNOWN",
1389 		"CLOSED",
1390 		"OFFLINE",
1391 		"REMOVED",
1392 		"CANT_OPEN",
1393 		"FAULTED",
1394 		"DEGRADED",
1395 		"ONLINE"
1396 	};
1397 	return names[state];
1398 }
1399 
1400 #ifdef BOOT2
1401 
1402 #define pager_printf printf
1403 
1404 #else
1405 
1406 static int
1407 pager_printf(const char *fmt, ...)
1408 {
1409 	char line[80];
1410 	va_list args;
1411 
1412 	va_start(args, fmt);
1413 	vsprintf(line, fmt, args);
1414 	va_end(args);
1415 
1416 	return (pager_output(line));
1417 }
1418 
1419 #endif
1420 
1421 #define STATUS_FORMAT	"        %s %s\n"
1422 
1423 static int
1424 print_state(int indent, const char *name, vdev_state_t state)
1425 {
1426 	char buf[512];
1427 	int i;
1428 
1429 	buf[0] = 0;
1430 	for (i = 0; i < indent; i++)
1431 		strcat(buf, "  ");
1432 	strcat(buf, name);
1433 
1434 	return (pager_printf(STATUS_FORMAT, buf, state_name(state)));
1435 }
1436 
1437 static int
1438 vdev_status(vdev_t *vdev, int indent)
1439 {
1440 	vdev_t *kid;
1441 	int ret;
1442 
1443 	if (vdev->v_islog) {
1444 		(void)pager_output("        logs\n");
1445 		indent++;
1446 	}
1447 
1448 	ret = print_state(indent, vdev->v_name, vdev->v_state);
1449 	if (ret != 0)
1450 		return (ret);
1451 
1452 	STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1453 		ret = vdev_status(kid, indent + 1);
1454 		if (ret != 0)
1455 			return (ret);
1456 	}
1457 	return (ret);
1458 }
1459 
1460 static int
1461 spa_status(spa_t *spa)
1462 {
1463 	static char bootfs[ZFS_MAXNAMELEN];
1464 	uint64_t rootid;
1465 	vdev_t *vdev;
1466 	int good_kids, bad_kids, degraded_kids, ret;
1467 	vdev_state_t state;
1468 
1469 	ret = pager_printf("  pool: %s\n", spa->spa_name);
1470 	if (ret != 0)
1471 		return (ret);
1472 
1473 	if (zfs_get_root(spa, &rootid) == 0 &&
1474 	    zfs_rlookup(spa, rootid, bootfs) == 0) {
1475 		if (bootfs[0] == '\0')
1476 			ret = pager_printf("bootfs: %s\n", spa->spa_name);
1477 		else
1478 			ret = pager_printf("bootfs: %s/%s\n", spa->spa_name,
1479 			    bootfs);
1480 		if (ret != 0)
1481 			return (ret);
1482 	}
1483 	ret = pager_printf("config:\n\n");
1484 	if (ret != 0)
1485 		return (ret);
1486 	ret = pager_printf(STATUS_FORMAT, "NAME", "STATE");
1487 	if (ret != 0)
1488 		return (ret);
1489 
1490 	good_kids = 0;
1491 	degraded_kids = 0;
1492 	bad_kids = 0;
1493 	STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) {
1494 		if (vdev->v_state == VDEV_STATE_HEALTHY)
1495 			good_kids++;
1496 		else if (vdev->v_state == VDEV_STATE_DEGRADED)
1497 			degraded_kids++;
1498 		else
1499 			bad_kids++;
1500 	}
1501 
1502 	state = VDEV_STATE_CLOSED;
1503 	if (good_kids > 0 && (degraded_kids + bad_kids) == 0)
1504 		state = VDEV_STATE_HEALTHY;
1505 	else if ((good_kids + degraded_kids) > 0)
1506 		state = VDEV_STATE_DEGRADED;
1507 
1508 	ret = print_state(0, spa->spa_name, state);
1509 	if (ret != 0)
1510 		return (ret);
1511 	STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) {
1512 		ret = vdev_status(vdev, 1);
1513 		if (ret != 0)
1514 			return (ret);
1515 	}
1516 	return (ret);
1517 }
1518 
1519 static int
1520 spa_all_status(void)
1521 {
1522 	spa_t *spa;
1523 	int first = 1, ret = 0;
1524 
1525 	STAILQ_FOREACH(spa, &zfs_pools, spa_link) {
1526 		if (!first) {
1527 			ret = pager_printf("\n");
1528 			if (ret != 0)
1529 				return (ret);
1530 		}
1531 		first = 0;
1532 		ret = spa_status(spa);
1533 		if (ret != 0)
1534 			return (ret);
1535 	}
1536 	return (ret);
1537 }
1538 
1539 static uint64_t
1540 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
1541 {
1542 	uint64_t label_offset;
1543 
1544 	if (l < VDEV_LABELS / 2)
1545 		label_offset = 0;
1546 	else
1547 		label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t);
1548 
1549 	return (offset + l * sizeof (vdev_label_t) + label_offset);
1550 }
1551 
1552 static int
1553 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1554 {
1555 	unsigned int seq1 = 0;
1556 	unsigned int seq2 = 0;
1557 	int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg);
1558 
1559 	if (cmp != 0)
1560 		return (cmp);
1561 
1562 	cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
1563 	if (cmp != 0)
1564 		return (cmp);
1565 
1566 	if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
1567 		seq1 = MMP_SEQ(ub1);
1568 
1569 	if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
1570 		seq2 = MMP_SEQ(ub2);
1571 
1572 	return (AVL_CMP(seq1, seq2));
1573 }
1574 
1575 static int
1576 uberblock_verify(uberblock_t *ub)
1577 {
1578 	if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) {
1579 		byteswap_uint64_array(ub, sizeof (uberblock_t));
1580 	}
1581 
1582 	if (ub->ub_magic != UBERBLOCK_MAGIC ||
1583 	    !SPA_VERSION_IS_SUPPORTED(ub->ub_version))
1584 		return (EINVAL);
1585 
1586 	return (0);
1587 }
1588 
1589 static int
1590 vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset,
1591     size_t size)
1592 {
1593 	blkptr_t bp;
1594 	off_t off;
1595 
1596 	off = vdev_label_offset(vd->v_psize, l, offset);
1597 
1598 	BP_ZERO(&bp);
1599 	BP_SET_LSIZE(&bp, size);
1600 	BP_SET_PSIZE(&bp, size);
1601 	BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
1602 	BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
1603 	DVA_SET_OFFSET(BP_IDENTITY(&bp), off);
1604 	ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0);
1605 
1606 	return (vdev_read_phys(vd, &bp, buf, off, size));
1607 }
1608 
1609 static unsigned char *
1610 vdev_label_read_config(vdev_t *vd, uint64_t txg)
1611 {
1612 	vdev_phys_t *label;
1613 	uint64_t best_txg = 0;
1614 	uint64_t label_txg = 0;
1615 	uint64_t asize;
1616 	unsigned char *nvl;
1617 	size_t nvl_size;
1618 	int error;
1619 
1620 	label = malloc(sizeof (vdev_phys_t));
1621 	if (label == NULL)
1622 		return (NULL);
1623 
1624 	nvl_size = VDEV_PHYS_SIZE - sizeof (zio_eck_t) - 4;
1625 	nvl = malloc(nvl_size);
1626 	if (nvl == NULL)
1627 		goto done;
1628 
1629 	for (int l = 0; l < VDEV_LABELS; l++) {
1630 		const unsigned char *nvlist;
1631 
1632 		if (vdev_label_read(vd, l, label,
1633 		    offsetof(vdev_label_t, vl_vdev_phys),
1634 		    sizeof (vdev_phys_t)))
1635 			continue;
1636 
1637 		if (label->vp_nvlist[0] != NV_ENCODE_XDR)
1638 			continue;
1639 
1640 		nvlist = (const unsigned char *) label->vp_nvlist + 4;
1641 		error = nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG,
1642 		    DATA_TYPE_UINT64, NULL, &label_txg);
1643 		if (error != 0 || label_txg == 0) {
1644 			memcpy(nvl, nvlist, nvl_size);
1645 			goto done;
1646 		}
1647 
1648 		if (label_txg <= txg && label_txg > best_txg) {
1649 			best_txg = label_txg;
1650 			memcpy(nvl, nvlist, nvl_size);
1651 
1652 			/*
1653 			 * Use asize from pool config. We need this
1654 			 * because we can get bad value from BIOS.
1655 			 */
1656 			if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE,
1657 			    DATA_TYPE_UINT64, NULL, &asize) == 0) {
1658 				vd->v_psize = asize +
1659 				    VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
1660 			}
1661 		}
1662 	}
1663 
1664 	if (best_txg == 0) {
1665 		free(nvl);
1666 		nvl = NULL;
1667 	}
1668 done:
1669 	free(label);
1670 	return (nvl);
1671 }
1672 
1673 static void
1674 vdev_uberblock_load(vdev_t *vd, uberblock_t *ub)
1675 {
1676 	uberblock_t *buf;
1677 
1678 	buf = malloc(VDEV_UBERBLOCK_SIZE(vd));
1679 	if (buf == NULL)
1680 		return;
1681 
1682 	for (int l = 0; l < VDEV_LABELS; l++) {
1683 		for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1684 			if (vdev_label_read(vd, l, buf,
1685 			    VDEV_UBERBLOCK_OFFSET(vd, n),
1686 			    VDEV_UBERBLOCK_SIZE(vd)))
1687 				continue;
1688 			if (uberblock_verify(buf) != 0)
1689 				continue;
1690 
1691 			if (vdev_uberblock_compare(buf, ub) > 0)
1692 				*ub = *buf;
1693 		}
1694 	}
1695 	free(buf);
1696 }
1697 
1698 static int
1699 vdev_probe(vdev_phys_read_t *_read, void *read_priv, spa_t **spap)
1700 {
1701 	vdev_t vtmp;
1702 	spa_t *spa;
1703 	vdev_t *vdev, *top_vdev, *pool_vdev;
1704 	unsigned char *nvlist;
1705 	uint64_t val;
1706 	uint64_t guid;
1707 	uint64_t pool_txg, pool_guid;
1708 	const char *pool_name;
1709 	const unsigned char *vdevs;
1710 	const unsigned char *features;
1711 	int rc, is_newer;
1712 
1713 	/*
1714 	 * Load the vdev label and figure out which
1715 	 * uberblock is most current.
1716 	 */
1717 	memset(&vtmp, 0, sizeof(vtmp));
1718 	vtmp.v_phys_read = _read;
1719 	vtmp.v_read_priv = read_priv;
1720 	vtmp.v_psize = P2ALIGN(ldi_get_size(read_priv),
1721 	    (uint64_t)sizeof (vdev_label_t));
1722 
1723 	/* Test for minimum device size. */
1724 	if (vtmp.v_psize < SPA_MINDEVSIZE)
1725 		return (EIO);
1726 
1727 	nvlist = vdev_label_read_config(&vtmp, UINT64_MAX);
1728 	if (nvlist == NULL)
1729 		return (EIO);
1730 
1731 	if (nvlist_find(nvlist, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64,
1732 	    NULL, &val) != 0) {
1733 		free(nvlist);
1734 		return (EIO);
1735 	}
1736 
1737 	if (!SPA_VERSION_IS_SUPPORTED(val)) {
1738 		printf("ZFS: unsupported ZFS version %u (should be %u)\n",
1739 		    (unsigned) val, (unsigned) SPA_VERSION);
1740 		free(nvlist);
1741 		return (EIO);
1742 	}
1743 
1744 	/* Check ZFS features for read */
1745 	if (nvlist_find(nvlist, ZPOOL_CONFIG_FEATURES_FOR_READ,
1746 	    DATA_TYPE_NVLIST, NULL, &features) == 0 &&
1747 	    nvlist_check_features_for_read(features) != 0) {
1748 		free(nvlist);
1749 		return (EIO);
1750 	}
1751 
1752 	if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64,
1753 	    NULL, &val) != 0) {
1754 		free(nvlist);
1755 		return (EIO);
1756 	}
1757 
1758 	if (val == POOL_STATE_DESTROYED) {
1759 		/* We don't boot only from destroyed pools. */
1760 		free(nvlist);
1761 		return (EIO);
1762 	}
1763 
1764 	if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64,
1765 	    NULL, &pool_txg) != 0 ||
1766 	    nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1767 	    NULL, &pool_guid) != 0 ||
1768 	    nvlist_find(nvlist, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING,
1769 	    NULL, &pool_name) != 0) {
1770 		/*
1771 		 * Cache and spare devices end up here - just ignore
1772 		 * them.
1773 		 */
1774 		free(nvlist);
1775 		return (EIO);
1776 	}
1777 
1778 	/*
1779 	 * Create the pool if this is the first time we've seen it.
1780 	 */
1781 	spa = spa_find_by_guid(pool_guid);
1782 	if (spa == NULL) {
1783 		spa = spa_create(pool_guid, pool_name);
1784 		if (spa == NULL) {
1785 			free(nvlist);
1786 			return (ENOMEM);
1787 		}
1788 	}
1789 	if (pool_txg > spa->spa_txg) {
1790 		spa->spa_txg = pool_txg;
1791 		is_newer = 1;
1792 	} else {
1793 		is_newer = 0;
1794 	}
1795 
1796 	/*
1797 	 * Get the vdev tree and create our in-core copy of it.
1798 	 * If we already have a vdev with this guid, this must
1799 	 * be some kind of alias (overlapping slices, dangerously dedicated
1800 	 * disks etc).
1801 	 */
1802 	if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
1803 	    NULL, &guid) != 0) {
1804 		free(nvlist);
1805 		return (EIO);
1806 	}
1807 	vdev = vdev_find(guid);
1808 	/* Has this vdev already been inited? */
1809 	if (vdev && vdev->v_phys_read) {
1810 		free(nvlist);
1811 		return (EIO);
1812 	}
1813 
1814 	if (nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1815 	    NULL, &vdevs)) {
1816 		free(nvlist);
1817 		return (EIO);
1818 	}
1819 
1820 	rc = vdev_init_from_nvlist(vdevs, NULL, &top_vdev, is_newer);
1821 	free(nvlist);
1822 	if (rc != 0)
1823 		return (rc);
1824 
1825 	/*
1826 	 * Add the toplevel vdev to the pool if its not already there.
1827 	 */
1828 	STAILQ_FOREACH(pool_vdev, &spa->spa_vdevs, v_childlink)
1829 		if (top_vdev == pool_vdev)
1830 			break;
1831 
1832 	if (!pool_vdev && top_vdev) {
1833 		top_vdev->spa = spa;
1834 		STAILQ_INSERT_TAIL(&spa->spa_vdevs, top_vdev, v_childlink);
1835 	}
1836 
1837 	/*
1838 	 * We should already have created an incomplete vdev for this
1839 	 * vdev. Find it and initialise it with our read proc.
1840 	 */
1841 	vdev = vdev_find(guid);
1842 	if (vdev) {
1843 		vdev->v_phys_read = _read;
1844 		vdev->v_read_priv = read_priv;
1845 		vdev->v_state = VDEV_STATE_HEALTHY;
1846 		vdev->v_psize = vtmp.v_psize;
1847 	} else {
1848 		printf("ZFS: inconsistent nvlist contents\n");
1849 		return (EIO);
1850 	}
1851 
1852 	if (vdev->v_islog)
1853 		spa->spa_with_log = vdev->v_islog;
1854 
1855 	/*
1856 	 * Re-evaluate top-level vdev state.
1857 	 */
1858 	vdev_set_state(top_vdev);
1859 
1860 	/*
1861 	 * Ok, we are happy with the pool so far. Lets find
1862 	 * the best uberblock and then we can actually access
1863 	 * the contents of the pool.
1864 	 */
1865 	vdev_uberblock_load(vdev, &spa->spa_uberblock);
1866 
1867 	vdev->spa = spa;
1868 	if (spap != NULL)
1869 		*spap = spa;
1870 	return (0);
1871 }
1872 
1873 static int
1874 ilog2(int n)
1875 {
1876 	int v;
1877 
1878 	for (v = 0; v < 32; v++)
1879 		if (n == (1 << v))
1880 			return v;
1881 	return -1;
1882 }
1883 
1884 static int
1885 zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf)
1886 {
1887 	blkptr_t gbh_bp;
1888 	zio_gbh_phys_t zio_gb;
1889 	char *pbuf;
1890 	int i;
1891 
1892 	/* Artificial BP for gang block header. */
1893 	gbh_bp = *bp;
1894 	BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
1895 	BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
1896 	BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER);
1897 	BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF);
1898 	for (i = 0; i < SPA_DVAS_PER_BP; i++)
1899 		DVA_SET_GANG(&gbh_bp.blk_dva[i], 0);
1900 
1901 	/* Read gang header block using the artificial BP. */
1902 	if (zio_read(spa, &gbh_bp, &zio_gb))
1903 		return (EIO);
1904 
1905 	pbuf = buf;
1906 	for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
1907 		blkptr_t *gbp = &zio_gb.zg_blkptr[i];
1908 
1909 		if (BP_IS_HOLE(gbp))
1910 			continue;
1911 		if (zio_read(spa, gbp, pbuf))
1912 			return (EIO);
1913 		pbuf += BP_GET_PSIZE(gbp);
1914 	}
1915 
1916 	if (zio_checksum_verify(spa, bp, buf))
1917 		return (EIO);
1918 	return (0);
1919 }
1920 
1921 static int
1922 zio_read(const spa_t *spa, const blkptr_t *bp, void *buf)
1923 {
1924 	int cpfunc = BP_GET_COMPRESS(bp);
1925 	uint64_t align, size;
1926 	void *pbuf;
1927 	int i, error;
1928 
1929 	/*
1930 	 * Process data embedded in block pointer
1931 	 */
1932 	if (BP_IS_EMBEDDED(bp)) {
1933 		ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
1934 
1935 		size = BPE_GET_PSIZE(bp);
1936 		ASSERT(size <= BPE_PAYLOAD_SIZE);
1937 
1938 		if (cpfunc != ZIO_COMPRESS_OFF)
1939 			pbuf = zfs_alloc(size);
1940 		else
1941 			pbuf = buf;
1942 
1943 		decode_embedded_bp_compressed(bp, pbuf);
1944 		error = 0;
1945 
1946 		if (cpfunc != ZIO_COMPRESS_OFF) {
1947 			error = zio_decompress_data(cpfunc, pbuf,
1948 			    size, buf, BP_GET_LSIZE(bp));
1949 			zfs_free(pbuf, size);
1950 		}
1951 		if (error != 0)
1952 			printf("ZFS: i/o error - unable to decompress block pointer data, error %d\n",
1953 			    error);
1954 		return (error);
1955 	}
1956 
1957 	error = EIO;
1958 
1959 	for (i = 0; i < SPA_DVAS_PER_BP; i++) {
1960 		const dva_t *dva = &bp->blk_dva[i];
1961 		vdev_t *vdev;
1962 		int vdevid;
1963 		off_t offset;
1964 
1965 		if (!dva->dva_word[0] && !dva->dva_word[1])
1966 			continue;
1967 
1968 		vdevid = DVA_GET_VDEV(dva);
1969 		offset = DVA_GET_OFFSET(dva);
1970 		STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) {
1971 			if (vdev->v_id == vdevid)
1972 				break;
1973 		}
1974 		if (!vdev || !vdev->v_read)
1975 			continue;
1976 
1977 		size = BP_GET_PSIZE(bp);
1978 		if (vdev->v_read == vdev_raidz_read) {
1979 			align = 1ULL << vdev->v_top->v_ashift;
1980 			if (P2PHASE(size, align) != 0)
1981 				size = P2ROUNDUP(size, align);
1982 		}
1983 		if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF)
1984 			pbuf = zfs_alloc(size);
1985 		else
1986 			pbuf = buf;
1987 
1988 		if (DVA_GET_GANG(dva))
1989 			error = zio_read_gang(spa, bp, pbuf);
1990 		else
1991 			error = vdev->v_read(vdev, bp, pbuf, offset, size);
1992 		if (error == 0) {
1993 			if (cpfunc != ZIO_COMPRESS_OFF)
1994 				error = zio_decompress_data(cpfunc, pbuf,
1995 				    BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp));
1996 			else if (size != BP_GET_PSIZE(bp))
1997 				bcopy(pbuf, buf, BP_GET_PSIZE(bp));
1998 		}
1999 		if (buf != pbuf)
2000 			zfs_free(pbuf, size);
2001 		if (error == 0)
2002 			break;
2003 	}
2004 	if (error != 0)
2005 		printf("ZFS: i/o error - all block copies unavailable\n");
2006 	return (error);
2007 }
2008 
2009 static int
2010 dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset, void *buf, size_t buflen)
2011 {
2012 	int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
2013 	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2014 	int nlevels = dnode->dn_nlevels;
2015 	int i, rc;
2016 
2017 	if (bsize > SPA_MAXBLOCKSIZE) {
2018 		printf("ZFS: I/O error - blocks larger than %llu are not "
2019 		    "supported\n", SPA_MAXBLOCKSIZE);
2020 		return (EIO);
2021 	}
2022 
2023 	/*
2024 	 * Note: bsize may not be a power of two here so we need to do an
2025 	 * actual divide rather than a bitshift.
2026 	 */
2027 	while (buflen > 0) {
2028 		uint64_t bn = offset / bsize;
2029 		int boff = offset % bsize;
2030 		int ibn;
2031 		const blkptr_t *indbp;
2032 		blkptr_t bp;
2033 
2034 		if (bn > dnode->dn_maxblkid)
2035 			return (EIO);
2036 
2037 		if (dnode == dnode_cache_obj && bn == dnode_cache_bn)
2038 			goto cached;
2039 
2040 		indbp = dnode->dn_blkptr;
2041 		for (i = 0; i < nlevels; i++) {
2042 			/*
2043 			 * Copy the bp from the indirect array so that
2044 			 * we can re-use the scratch buffer for multi-level
2045 			 * objects.
2046 			 */
2047 			ibn = bn >> ((nlevels - i - 1) * ibshift);
2048 			ibn &= ((1 << ibshift) - 1);
2049 			bp = indbp[ibn];
2050 			if (BP_IS_HOLE(&bp)) {
2051 				memset(dnode_cache_buf, 0, bsize);
2052 				break;
2053 			}
2054 			rc = zio_read(spa, &bp, dnode_cache_buf);
2055 			if (rc)
2056 				return (rc);
2057 			indbp = (const blkptr_t *) dnode_cache_buf;
2058 		}
2059 		dnode_cache_obj = dnode;
2060 		dnode_cache_bn = bn;
2061 	cached:
2062 
2063 		/*
2064 		 * The buffer contains our data block. Copy what we
2065 		 * need from it and loop.
2066 		 */
2067 		i = bsize - boff;
2068 		if (i > buflen) i = buflen;
2069 		memcpy(buf, &dnode_cache_buf[boff], i);
2070 		buf = ((char*) buf) + i;
2071 		offset += i;
2072 		buflen -= i;
2073 	}
2074 
2075 	return (0);
2076 }
2077 
2078 /*
2079  * Lookup a value in a microzap directory. Assumes that the zap
2080  * scratch buffer contains the directory contents.
2081  */
2082 static int
2083 mzap_lookup(const dnode_phys_t *dnode, const char *name, uint64_t *value)
2084 {
2085 	const mzap_phys_t *mz;
2086 	const mzap_ent_phys_t *mze;
2087 	size_t size;
2088 	int chunks, i;
2089 
2090 	/*
2091 	 * Microzap objects use exactly one block. Read the whole
2092 	 * thing.
2093 	 */
2094 	size = dnode->dn_datablkszsec * 512;
2095 
2096 	mz = (const mzap_phys_t *) zap_scratch;
2097 	chunks = size / MZAP_ENT_LEN - 1;
2098 
2099 	for (i = 0; i < chunks; i++) {
2100 		mze = &mz->mz_chunk[i];
2101 		if (!strcmp(mze->mze_name, name)) {
2102 			*value = mze->mze_value;
2103 			return (0);
2104 		}
2105 	}
2106 
2107 	return (ENOENT);
2108 }
2109 
2110 /*
2111  * Compare a name with a zap leaf entry. Return non-zero if the name
2112  * matches.
2113  */
2114 static int
2115 fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, const char *name)
2116 {
2117 	size_t namelen;
2118 	const zap_leaf_chunk_t *nc;
2119 	const char *p;
2120 
2121 	namelen = zc->l_entry.le_name_numints;
2122 
2123 	nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
2124 	p = name;
2125 	while (namelen > 0) {
2126 		size_t len;
2127 		len = namelen;
2128 		if (len > ZAP_LEAF_ARRAY_BYTES)
2129 			len = ZAP_LEAF_ARRAY_BYTES;
2130 		if (memcmp(p, nc->l_array.la_array, len))
2131 			return (0);
2132 		p += len;
2133 		namelen -= len;
2134 		nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
2135 	}
2136 
2137 	return 1;
2138 }
2139 
2140 /*
2141  * Extract a uint64_t value from a zap leaf entry.
2142  */
2143 static uint64_t
2144 fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc)
2145 {
2146 	const zap_leaf_chunk_t *vc;
2147 	int i;
2148 	uint64_t value;
2149 	const uint8_t *p;
2150 
2151 	vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk);
2152 	for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) {
2153 		value = (value << 8) | p[i];
2154 	}
2155 
2156 	return value;
2157 }
2158 
2159 static void
2160 stv(int len, void *addr, uint64_t value)
2161 {
2162 	switch (len) {
2163 	case 1:
2164 		*(uint8_t *)addr = value;
2165 		return;
2166 	case 2:
2167 		*(uint16_t *)addr = value;
2168 		return;
2169 	case 4:
2170 		*(uint32_t *)addr = value;
2171 		return;
2172 	case 8:
2173 		*(uint64_t *)addr = value;
2174 		return;
2175 	}
2176 }
2177 
2178 /*
2179  * Extract a array from a zap leaf entry.
2180  */
2181 static void
2182 fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
2183     uint64_t integer_size, uint64_t num_integers, void *buf)
2184 {
2185 	uint64_t array_int_len = zc->l_entry.le_value_intlen;
2186 	uint64_t value = 0;
2187 	uint64_t *u64 = buf;
2188 	char *p = buf;
2189 	int len = MIN(zc->l_entry.le_value_numints, num_integers);
2190 	int chunk = zc->l_entry.le_value_chunk;
2191 	int byten = 0;
2192 
2193 	if (integer_size == 8 && len == 1) {
2194 		*u64 = fzap_leaf_value(zl, zc);
2195 		return;
2196 	}
2197 
2198 	while (len > 0) {
2199 		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array;
2200 		int i;
2201 
2202 		ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl));
2203 		for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
2204 			value = (value << 8) | la->la_array[i];
2205 			byten++;
2206 			if (byten == array_int_len) {
2207 				stv(integer_size, p, value);
2208 				byten = 0;
2209 				len--;
2210 				if (len == 0)
2211 					return;
2212 				p += integer_size;
2213 			}
2214 		}
2215 		chunk = la->la_next;
2216 	}
2217 }
2218 
2219 /*
2220  * Lookup a value in a fatzap directory. Assumes that the zap scratch
2221  * buffer contains the directory header.
2222  */
2223 static int
2224 fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name,
2225     uint64_t integer_size, uint64_t num_integers, void *value)
2226 {
2227 	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2228 	zap_phys_t zh = *(zap_phys_t *) zap_scratch;
2229 	fat_zap_t z;
2230 	uint64_t *ptrtbl;
2231 	uint64_t hash;
2232 	int rc;
2233 
2234 	if (zh.zap_magic != ZAP_MAGIC)
2235 		return (EIO);
2236 
2237 	z.zap_block_shift = ilog2(bsize);
2238 	z.zap_phys = (zap_phys_t *) zap_scratch;
2239 
2240 	/*
2241 	 * Figure out where the pointer table is and read it in if necessary.
2242 	 */
2243 	if (zh.zap_ptrtbl.zt_blk) {
2244 		rc = dnode_read(spa, dnode, zh.zap_ptrtbl.zt_blk * bsize,
2245 			       zap_scratch, bsize);
2246 		if (rc)
2247 			return (rc);
2248 		ptrtbl = (uint64_t *) zap_scratch;
2249 	} else {
2250 		ptrtbl = &ZAP_EMBEDDED_PTRTBL_ENT(&z, 0);
2251 	}
2252 
2253 	hash = zap_hash(zh.zap_salt, name);
2254 
2255 	zap_leaf_t zl;
2256 	zl.l_bs = z.zap_block_shift;
2257 
2258 	off_t off = ptrtbl[hash >> (64 - zh.zap_ptrtbl.zt_shift)] << zl.l_bs;
2259 	zap_leaf_chunk_t *zc;
2260 
2261 	rc = dnode_read(spa, dnode, off, zap_scratch, bsize);
2262 	if (rc)
2263 		return (rc);
2264 
2265 	zl.l_phys = (zap_leaf_phys_t *) zap_scratch;
2266 
2267 	/*
2268 	 * Make sure this chunk matches our hash.
2269 	 */
2270 	if (zl.l_phys->l_hdr.lh_prefix_len > 0
2271 	    && zl.l_phys->l_hdr.lh_prefix
2272 	    != hash >> (64 - zl.l_phys->l_hdr.lh_prefix_len))
2273 		return (ENOENT);
2274 
2275 	/*
2276 	 * Hash within the chunk to find our entry.
2277 	 */
2278 	int shift = (64 - ZAP_LEAF_HASH_SHIFT(&zl) - zl.l_phys->l_hdr.lh_prefix_len);
2279 	int h = (hash >> shift) & ((1 << ZAP_LEAF_HASH_SHIFT(&zl)) - 1);
2280 	h = zl.l_phys->l_hash[h];
2281 	if (h == 0xffff)
2282 		return (ENOENT);
2283 	zc = &ZAP_LEAF_CHUNK(&zl, h);
2284 	while (zc->l_entry.le_hash != hash) {
2285 		if (zc->l_entry.le_next == 0xffff)
2286 			return (ENOENT);
2287 		zc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_next);
2288 	}
2289 	if (fzap_name_equal(&zl, zc, name)) {
2290 		if (zc->l_entry.le_value_intlen * zc->l_entry.le_value_numints >
2291 		    integer_size * num_integers)
2292 			return (E2BIG);
2293 		fzap_leaf_array(&zl, zc, integer_size, num_integers, value);
2294 		return (0);
2295 	}
2296 
2297 	return (ENOENT);
2298 }
2299 
2300 /*
2301  * Lookup a name in a zap object and return its value as a uint64_t.
2302  */
2303 static int
2304 zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name,
2305     uint64_t integer_size, uint64_t num_integers, void *value)
2306 {
2307 	int rc;
2308 	uint64_t zap_type;
2309 	size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2310 
2311 	rc = dnode_read(spa, dnode, 0, zap_scratch, size);
2312 	if (rc)
2313 		return (rc);
2314 
2315 	zap_type = *(uint64_t *) zap_scratch;
2316 	if (zap_type == ZBT_MICRO)
2317 		return mzap_lookup(dnode, name, value);
2318 	else if (zap_type == ZBT_HEADER) {
2319 		return fzap_lookup(spa, dnode, name, integer_size,
2320 		    num_integers, value);
2321 	}
2322 	printf("ZFS: invalid zap_type=%d\n", (int)zap_type);
2323 	return (EIO);
2324 }
2325 
2326 /*
2327  * List a microzap directory. Assumes that the zap scratch buffer contains
2328  * the directory contents.
2329  */
2330 static int
2331 mzap_list(const dnode_phys_t *dnode, int (*callback)(const char *, uint64_t))
2332 {
2333 	const mzap_phys_t *mz;
2334 	const mzap_ent_phys_t *mze;
2335 	size_t size;
2336 	int chunks, i, rc;
2337 
2338 	/*
2339 	 * Microzap objects use exactly one block. Read the whole
2340 	 * thing.
2341 	 */
2342 	size = dnode->dn_datablkszsec * 512;
2343 	mz = (const mzap_phys_t *) zap_scratch;
2344 	chunks = size / MZAP_ENT_LEN - 1;
2345 
2346 	for (i = 0; i < chunks; i++) {
2347 		mze = &mz->mz_chunk[i];
2348 		if (mze->mze_name[0]) {
2349 			rc = callback(mze->mze_name, mze->mze_value);
2350 			if (rc != 0)
2351 				return (rc);
2352 		}
2353 	}
2354 
2355 	return (0);
2356 }
2357 
2358 /*
2359  * List a fatzap directory. Assumes that the zap scratch buffer contains
2360  * the directory header.
2361  */
2362 static int
2363 fzap_list(const spa_t *spa, const dnode_phys_t *dnode, int (*callback)(const char *, uint64_t))
2364 {
2365 	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2366 	zap_phys_t zh = *(zap_phys_t *) zap_scratch;
2367 	fat_zap_t z;
2368 	int i, j, rc;
2369 
2370 	if (zh.zap_magic != ZAP_MAGIC)
2371 		return (EIO);
2372 
2373 	z.zap_block_shift = ilog2(bsize);
2374 	z.zap_phys = (zap_phys_t *) zap_scratch;
2375 
2376 	/*
2377 	 * This assumes that the leaf blocks start at block 1. The
2378 	 * documentation isn't exactly clear on this.
2379 	 */
2380 	zap_leaf_t zl;
2381 	zl.l_bs = z.zap_block_shift;
2382 	for (i = 0; i < zh.zap_num_leafs; i++) {
2383 		off_t off = (i + 1) << zl.l_bs;
2384 		char name[256], *p;
2385 		uint64_t value;
2386 
2387 		if (dnode_read(spa, dnode, off, zap_scratch, bsize))
2388 			return (EIO);
2389 
2390 		zl.l_phys = (zap_leaf_phys_t *) zap_scratch;
2391 
2392 		for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
2393 			zap_leaf_chunk_t *zc, *nc;
2394 			int namelen;
2395 
2396 			zc = &ZAP_LEAF_CHUNK(&zl, j);
2397 			if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
2398 				continue;
2399 			namelen = zc->l_entry.le_name_numints;
2400 			if (namelen > sizeof(name))
2401 				namelen = sizeof(name);
2402 
2403 			/*
2404 			 * Paste the name back together.
2405 			 */
2406 			nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk);
2407 			p = name;
2408 			while (namelen > 0) {
2409 				int len;
2410 				len = namelen;
2411 				if (len > ZAP_LEAF_ARRAY_BYTES)
2412 					len = ZAP_LEAF_ARRAY_BYTES;
2413 				memcpy(p, nc->l_array.la_array, len);
2414 				p += len;
2415 				namelen -= len;
2416 				nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next);
2417 			}
2418 
2419 			/*
2420 			 * Assume the first eight bytes of the value are
2421 			 * a uint64_t.
2422 			 */
2423 			value = fzap_leaf_value(&zl, zc);
2424 
2425 			//printf("%s 0x%jx\n", name, (uintmax_t)value);
2426 			rc = callback((const char *)name, value);
2427 			if (rc != 0)
2428 				return (rc);
2429 		}
2430 	}
2431 
2432 	return (0);
2433 }
2434 
2435 static int zfs_printf(const char *name, uint64_t value __unused)
2436 {
2437 
2438 	printf("%s\n", name);
2439 
2440 	return (0);
2441 }
2442 
2443 /*
2444  * List a zap directory.
2445  */
2446 static int
2447 zap_list(const spa_t *spa, const dnode_phys_t *dnode)
2448 {
2449 	uint64_t zap_type;
2450 	size_t size = dnode->dn_datablkszsec * 512;
2451 
2452 	if (dnode_read(spa, dnode, 0, zap_scratch, size))
2453 		return (EIO);
2454 
2455 	zap_type = *(uint64_t *) zap_scratch;
2456 	if (zap_type == ZBT_MICRO)
2457 		return mzap_list(dnode, zfs_printf);
2458 	else
2459 		return fzap_list(spa, dnode, zfs_printf);
2460 }
2461 
2462 static int
2463 objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum, dnode_phys_t *dnode)
2464 {
2465 	off_t offset;
2466 
2467 	offset = objnum * sizeof(dnode_phys_t);
2468 	return dnode_read(spa, &os->os_meta_dnode, offset,
2469 		dnode, sizeof(dnode_phys_t));
2470 }
2471 
2472 static int
2473 mzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value)
2474 {
2475 	const mzap_phys_t *mz;
2476 	const mzap_ent_phys_t *mze;
2477 	size_t size;
2478 	int chunks, i;
2479 
2480 	/*
2481 	 * Microzap objects use exactly one block. Read the whole
2482 	 * thing.
2483 	 */
2484 	size = dnode->dn_datablkszsec * 512;
2485 
2486 	mz = (const mzap_phys_t *) zap_scratch;
2487 	chunks = size / MZAP_ENT_LEN - 1;
2488 
2489 	for (i = 0; i < chunks; i++) {
2490 		mze = &mz->mz_chunk[i];
2491 		if (value == mze->mze_value) {
2492 			strcpy(name, mze->mze_name);
2493 			return (0);
2494 		}
2495 	}
2496 
2497 	return (ENOENT);
2498 }
2499 
2500 static void
2501 fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name)
2502 {
2503 	size_t namelen;
2504 	const zap_leaf_chunk_t *nc;
2505 	char *p;
2506 
2507 	namelen = zc->l_entry.le_name_numints;
2508 
2509 	nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
2510 	p = name;
2511 	while (namelen > 0) {
2512 		size_t len;
2513 		len = namelen;
2514 		if (len > ZAP_LEAF_ARRAY_BYTES)
2515 			len = ZAP_LEAF_ARRAY_BYTES;
2516 		memcpy(p, nc->l_array.la_array, len);
2517 		p += len;
2518 		namelen -= len;
2519 		nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
2520 	}
2521 
2522 	*p = '\0';
2523 }
2524 
2525 static int
2526 fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value)
2527 {
2528 	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2529 	zap_phys_t zh = *(zap_phys_t *) zap_scratch;
2530 	fat_zap_t z;
2531 	int i, j;
2532 
2533 	if (zh.zap_magic != ZAP_MAGIC)
2534 		return (EIO);
2535 
2536 	z.zap_block_shift = ilog2(bsize);
2537 	z.zap_phys = (zap_phys_t *) zap_scratch;
2538 
2539 	/*
2540 	 * This assumes that the leaf blocks start at block 1. The
2541 	 * documentation isn't exactly clear on this.
2542 	 */
2543 	zap_leaf_t zl;
2544 	zl.l_bs = z.zap_block_shift;
2545 	for (i = 0; i < zh.zap_num_leafs; i++) {
2546 		off_t off = (i + 1) << zl.l_bs;
2547 
2548 		if (dnode_read(spa, dnode, off, zap_scratch, bsize))
2549 			return (EIO);
2550 
2551 		zl.l_phys = (zap_leaf_phys_t *) zap_scratch;
2552 
2553 		for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
2554 			zap_leaf_chunk_t *zc;
2555 
2556 			zc = &ZAP_LEAF_CHUNK(&zl, j);
2557 			if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
2558 				continue;
2559 			if (zc->l_entry.le_value_intlen != 8 ||
2560 			    zc->l_entry.le_value_numints != 1)
2561 				continue;
2562 
2563 			if (fzap_leaf_value(&zl, zc) == value) {
2564 				fzap_name_copy(&zl, zc, name);
2565 				return (0);
2566 			}
2567 		}
2568 	}
2569 
2570 	return (ENOENT);
2571 }
2572 
2573 static int
2574 zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value)
2575 {
2576 	int rc;
2577 	uint64_t zap_type;
2578 	size_t size = dnode->dn_datablkszsec * 512;
2579 
2580 	rc = dnode_read(spa, dnode, 0, zap_scratch, size);
2581 	if (rc)
2582 		return (rc);
2583 
2584 	zap_type = *(uint64_t *) zap_scratch;
2585 	if (zap_type == ZBT_MICRO)
2586 		return mzap_rlookup(spa, dnode, name, value);
2587 	else
2588 		return fzap_rlookup(spa, dnode, name, value);
2589 }
2590 
2591 static int
2592 zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result)
2593 {
2594 	char name[256];
2595 	char component[256];
2596 	uint64_t dir_obj, parent_obj, child_dir_zapobj;
2597 	dnode_phys_t child_dir_zap, dataset, dir, parent;
2598 	dsl_dir_phys_t *dd;
2599 	dsl_dataset_phys_t *ds;
2600 	char *p;
2601 	int len;
2602 
2603 	p = &name[sizeof(name) - 1];
2604 	*p = '\0';
2605 
2606 	if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
2607 		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
2608 		return (EIO);
2609 	}
2610 	ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
2611 	dir_obj = ds->ds_dir_obj;
2612 
2613 	for (;;) {
2614 		if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir) != 0)
2615 			return (EIO);
2616 		dd = (dsl_dir_phys_t *)&dir.dn_bonus;
2617 
2618 		/* Actual loop condition. */
2619 		parent_obj  = dd->dd_parent_obj;
2620 		if (parent_obj == 0)
2621 			break;
2622 
2623 		if (objset_get_dnode(spa, &spa->spa_mos, parent_obj, &parent) != 0)
2624 			return (EIO);
2625 		dd = (dsl_dir_phys_t *)&parent.dn_bonus;
2626 		child_dir_zapobj = dd->dd_child_dir_zapobj;
2627 		if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0)
2628 			return (EIO);
2629 		if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0)
2630 			return (EIO);
2631 
2632 		len = strlen(component);
2633 		p -= len;
2634 		memcpy(p, component, len);
2635 		--p;
2636 		*p = '/';
2637 
2638 		/* Actual loop iteration. */
2639 		dir_obj = parent_obj;
2640 	}
2641 
2642 	if (*p != '\0')
2643 		++p;
2644 	strcpy(result, p);
2645 
2646 	return (0);
2647 }
2648 
2649 static int
2650 zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum)
2651 {
2652 	char element[256];
2653 	uint64_t dir_obj, child_dir_zapobj;
2654 	dnode_phys_t child_dir_zap, dir;
2655 	dsl_dir_phys_t *dd;
2656 	const char *p, *q;
2657 
2658 	if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, &dir))
2659 		return (EIO);
2660 	if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj),
2661 	    1, &dir_obj))
2662 		return (EIO);
2663 
2664 	p = name;
2665 	for (;;) {
2666 		if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir))
2667 			return (EIO);
2668 		dd = (dsl_dir_phys_t *)&dir.dn_bonus;
2669 
2670 		while (*p == '/')
2671 			p++;
2672 		/* Actual loop condition #1. */
2673 		if (*p == '\0')
2674 			break;
2675 
2676 		q = strchr(p, '/');
2677 		if (q) {
2678 			memcpy(element, p, q - p);
2679 			element[q - p] = '\0';
2680 			p = q + 1;
2681 		} else {
2682 			strcpy(element, p);
2683 			p += strlen(p);
2684 		}
2685 
2686 		child_dir_zapobj = dd->dd_child_dir_zapobj;
2687 		if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0)
2688 			return (EIO);
2689 
2690 		/* Actual loop condition #2. */
2691 		if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj),
2692 		    1, &dir_obj) != 0)
2693 			return (ENOENT);
2694 	}
2695 
2696 	*objnum = dd->dd_head_dataset_obj;
2697 	return (0);
2698 }
2699 
2700 #ifndef BOOT2
2701 static int
2702 zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/)
2703 {
2704 	uint64_t dir_obj, child_dir_zapobj;
2705 	dnode_phys_t child_dir_zap, dir, dataset;
2706 	dsl_dataset_phys_t *ds;
2707 	dsl_dir_phys_t *dd;
2708 
2709 	if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
2710 		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
2711 		return (EIO);
2712 	}
2713 	ds = (dsl_dataset_phys_t *) &dataset.dn_bonus;
2714 	dir_obj = ds->ds_dir_obj;
2715 
2716 	if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) {
2717 		printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
2718 		return (EIO);
2719 	}
2720 	dd = (dsl_dir_phys_t *)&dir.dn_bonus;
2721 
2722 	child_dir_zapobj = dd->dd_child_dir_zapobj;
2723 	if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0) {
2724 		printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
2725 		return (EIO);
2726 	}
2727 
2728 	return (zap_list(spa, &child_dir_zap) != 0);
2729 }
2730 
2731 int
2732 zfs_callback_dataset(const spa_t *spa, uint64_t objnum, int (*callback)(const char *, uint64_t))
2733 {
2734 	uint64_t dir_obj, child_dir_zapobj, zap_type;
2735 	dnode_phys_t child_dir_zap, dir, dataset;
2736 	dsl_dataset_phys_t *ds;
2737 	dsl_dir_phys_t *dd;
2738 	int err;
2739 
2740 	err = objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset);
2741 	if (err != 0) {
2742 		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
2743 		return (err);
2744 	}
2745 	ds = (dsl_dataset_phys_t *) &dataset.dn_bonus;
2746 	dir_obj = ds->ds_dir_obj;
2747 
2748 	err = objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir);
2749 	if (err != 0) {
2750 		printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
2751 		return (err);
2752 	}
2753 	dd = (dsl_dir_phys_t *)&dir.dn_bonus;
2754 
2755 	child_dir_zapobj = dd->dd_child_dir_zapobj;
2756 	err = objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap);
2757 	if (err != 0) {
2758 		printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
2759 		return (err);
2760 	}
2761 
2762 	err = dnode_read(spa, &child_dir_zap, 0, zap_scratch, child_dir_zap.dn_datablkszsec * 512);
2763 	if (err != 0)
2764 		return (err);
2765 
2766 	zap_type = *(uint64_t *) zap_scratch;
2767 	if (zap_type == ZBT_MICRO)
2768 		return mzap_list(&child_dir_zap, callback);
2769 	else
2770 		return fzap_list(spa, &child_dir_zap, callback);
2771 }
2772 #endif
2773 
2774 /*
2775  * Find the object set given the object number of its dataset object
2776  * and return its details in *objset
2777  */
2778 static int
2779 zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset)
2780 {
2781 	dnode_phys_t dataset;
2782 	dsl_dataset_phys_t *ds;
2783 
2784 	if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
2785 		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
2786 		return (EIO);
2787 	}
2788 
2789 	ds = (dsl_dataset_phys_t *) &dataset.dn_bonus;
2790 	if (zio_read(spa, &ds->ds_bp, objset)) {
2791 		printf("ZFS: can't read object set for dataset %ju\n",
2792 		    (uintmax_t)objnum);
2793 		return (EIO);
2794 	}
2795 
2796 	return (0);
2797 }
2798 
2799 /*
2800  * Find the object set pointed to by the BOOTFS property or the root
2801  * dataset if there is none and return its details in *objset
2802  */
2803 static int
2804 zfs_get_root(const spa_t *spa, uint64_t *objid)
2805 {
2806 	dnode_phys_t dir, propdir;
2807 	uint64_t props, bootfs, root;
2808 
2809 	*objid = 0;
2810 
2811 	/*
2812 	 * Start with the MOS directory object.
2813 	 */
2814 	if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, &dir)) {
2815 		printf("ZFS: can't read MOS object directory\n");
2816 		return (EIO);
2817 	}
2818 
2819 	/*
2820 	 * Lookup the pool_props and see if we can find a bootfs.
2821 	 */
2822 	if (zap_lookup(spa, &dir, DMU_POOL_PROPS, sizeof (props), 1, &props) == 0
2823 	     && objset_get_dnode(spa, &spa->spa_mos, props, &propdir) == 0
2824 	     && zap_lookup(spa, &propdir, "bootfs", sizeof (bootfs), 1, &bootfs) == 0
2825 	     && bootfs != 0)
2826 	{
2827 		*objid = bootfs;
2828 		return (0);
2829 	}
2830 	/*
2831 	 * Lookup the root dataset directory
2832 	 */
2833 	if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (root), 1, &root)
2834 	    || objset_get_dnode(spa, &spa->spa_mos, root, &dir)) {
2835 		printf("ZFS: can't find root dsl_dir\n");
2836 		return (EIO);
2837 	}
2838 
2839 	/*
2840 	 * Use the information from the dataset directory's bonus buffer
2841 	 * to find the dataset object and from that the object set itself.
2842 	 */
2843 	dsl_dir_phys_t *dd = (dsl_dir_phys_t *) &dir.dn_bonus;
2844 	*objid = dd->dd_head_dataset_obj;
2845 	return (0);
2846 }
2847 
2848 static int
2849 zfs_mount(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount)
2850 {
2851 
2852 	mount->spa = spa;
2853 
2854 	/*
2855 	 * Find the root object set if not explicitly provided
2856 	 */
2857 	if (rootobj == 0 && zfs_get_root(spa, &rootobj)) {
2858 		printf("ZFS: can't find root filesystem\n");
2859 		return (EIO);
2860 	}
2861 
2862 	if (zfs_mount_dataset(spa, rootobj, &mount->objset)) {
2863 		printf("ZFS: can't open root filesystem\n");
2864 		return (EIO);
2865 	}
2866 
2867 	mount->rootobj = rootobj;
2868 
2869 	return (0);
2870 }
2871 
2872 /*
2873  * callback function for feature name checks.
2874  */
2875 static int
2876 check_feature(const char *name, uint64_t value)
2877 {
2878 	int i;
2879 
2880 	if (value == 0)
2881 		return (0);
2882 	if (name[0] == '\0')
2883 		return (0);
2884 
2885 	for (i = 0; features_for_read[i] != NULL; i++) {
2886 		if (strcmp(name, features_for_read[i]) == 0)
2887 			return (0);
2888 	}
2889 	printf("ZFS: unsupported feature: %s\n", name);
2890 	return (EIO);
2891 }
2892 
2893 /*
2894  * Checks whether the MOS features that are active are supported.
2895  */
2896 static int
2897 check_mos_features(const spa_t *spa)
2898 {
2899 	dnode_phys_t dir;
2900 	uint64_t objnum, zap_type;
2901 	size_t size;
2902 	int rc;
2903 
2904 	if ((rc = objset_get_dnode(spa, &spa->spa_mos, DMU_OT_OBJECT_DIRECTORY,
2905 	    &dir)) != 0)
2906 		return (rc);
2907 	if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ,
2908 	    sizeof (objnum), 1, &objnum)) != 0) {
2909 		/*
2910 		 * It is older pool without features. As we have already
2911 		 * tested the label, just return without raising the error.
2912 		 */
2913 		return (0);
2914 	}
2915 
2916 	if ((rc = objset_get_dnode(spa, &spa->spa_mos, objnum, &dir)) != 0)
2917 		return (rc);
2918 
2919 	if (dir.dn_type != DMU_OTN_ZAP_METADATA)
2920 		return (EIO);
2921 
2922 	size = dir.dn_datablkszsec * 512;
2923 	if (dnode_read(spa, &dir, 0, zap_scratch, size))
2924 		return (EIO);
2925 
2926 	zap_type = *(uint64_t *) zap_scratch;
2927 	if (zap_type == ZBT_MICRO)
2928 		rc = mzap_list(&dir, check_feature);
2929 	else
2930 		rc = fzap_list(spa, &dir, check_feature);
2931 
2932 	return (rc);
2933 }
2934 
2935 static int
2936 load_nvlist(spa_t *spa, uint64_t obj, unsigned char **value)
2937 {
2938 	dnode_phys_t dir;
2939 	size_t size;
2940 	int rc;
2941 	unsigned char *nv;
2942 
2943 	*value = NULL;
2944 	if ((rc = objset_get_dnode(spa, &spa->spa_mos, obj, &dir)) != 0)
2945 		return (rc);
2946 	if (dir.dn_type != DMU_OT_PACKED_NVLIST &&
2947 	    dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) {
2948 		return (EIO);
2949 	}
2950 
2951 	if (dir.dn_bonuslen != sizeof (uint64_t))
2952 		return (EIO);
2953 
2954 	size = *(uint64_t *)DN_BONUS(&dir);
2955 	nv = malloc(size);
2956 	if (nv == NULL)
2957 		return (ENOMEM);
2958 
2959 	rc = dnode_read(spa, &dir, 0, nv, size);
2960 	if (rc != 0) {
2961 		free(nv);
2962 		nv = NULL;
2963 		return (rc);
2964 	}
2965 	*value = nv;
2966 	return (rc);
2967 }
2968 
2969 static int
2970 zfs_spa_init(spa_t *spa)
2971 {
2972 	dnode_phys_t dir;
2973 	uint64_t config_object;
2974 	unsigned char *nvlist;
2975 	char *type;
2976 	const unsigned char *nv;
2977 	int nkids, rc;
2978 
2979 	if (zio_read(spa, &spa->spa_uberblock.ub_rootbp, &spa->spa_mos)) {
2980 		printf("ZFS: can't read MOS of pool %s\n", spa->spa_name);
2981 		return (EIO);
2982 	}
2983 	if (spa->spa_mos.os_type != DMU_OST_META) {
2984 		printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name);
2985 		return (EIO);
2986 	}
2987 
2988 	if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT,
2989 	    &dir)) {
2990 		printf("ZFS: failed to read pool %s directory object\n",
2991 		    spa->spa_name);
2992 		return (EIO);
2993 	}
2994 	/* this is allowed to fail, older pools do not have salt */
2995 	rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1,
2996 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
2997 	    spa->spa_cksum_salt.zcs_bytes);
2998 
2999 	rc = check_mos_features(spa);
3000 	if (rc != 0) {
3001 		printf("ZFS: pool %s is not supported\n", spa->spa_name);
3002 		return (rc);
3003 	}
3004 
3005 	rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG,
3006 	    sizeof (config_object), 1, &config_object);
3007 	if (rc != 0) {
3008 		printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG);
3009 		return (EIO);
3010 	}
3011 	rc = load_nvlist(spa, config_object, &nvlist);
3012 	if (rc != 0)
3013 		return (rc);
3014 
3015 	/* Update vdevs from MOS config. */
3016 	if (nvlist_find(nvlist + 4, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
3017 	    NULL, &nv)) {
3018 		rc = EIO;
3019 		goto done;
3020 	}
3021 
3022 	if (nvlist_find(nv, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING,
3023             NULL, &type)) {
3024 		printf("ZFS: can't find vdev details\n");
3025 		rc = ENOENT;
3026 		goto done;
3027 	}
3028 	if (strcmp(type, VDEV_TYPE_ROOT) != 0) {
3029 		rc = ENOENT;
3030 		goto done;
3031 	}
3032 
3033 	rc = nvlist_find(nv, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
3034             &nkids, &nv);
3035 	if (rc != 0)
3036 		goto done;
3037 
3038 	for (int i = 0; i < nkids; i++) {
3039 		vdev_t *vd, *prev, *kid = NULL;
3040 		rc = vdev_init_from_nvlist(nv, NULL, &kid, 0);
3041 		if (rc != 0) {
3042 			printf("vdev_init_from_nvlist: %d\n", rc);
3043 			break;
3044 		}
3045 		kid->spa = spa;
3046 		prev = NULL;
3047 		STAILQ_FOREACH(vd, &spa->spa_vdevs, v_childlink) {
3048 			/* Already present? */
3049 			if (kid->v_id == vd->v_id) {
3050 				kid = NULL;
3051 				break;
3052 			}
3053 			if (vd->v_id > kid->v_id) {
3054 				if (prev == NULL) {
3055 					STAILQ_INSERT_HEAD(&spa->spa_vdevs,
3056 					    kid, v_childlink);
3057 				} else {
3058 					STAILQ_INSERT_AFTER(&spa->spa_vdevs,
3059 					    prev, kid, v_childlink);
3060 				}
3061 				kid = NULL;
3062 				break;
3063 			}
3064 			prev = vd;
3065 		}
3066 		if (kid != NULL)
3067 			STAILQ_INSERT_TAIL(&spa->spa_vdevs, kid, v_childlink);
3068 		nv = nvlist_next(nv);
3069 	}
3070 	rc = 0;
3071 done:
3072 	free(nvlist);
3073 	return (rc);
3074 }
3075 
3076 static int
3077 zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb)
3078 {
3079 
3080 	if (dn->dn_bonustype != DMU_OT_SA) {
3081 		znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus;
3082 
3083 		sb->st_mode = zp->zp_mode;
3084 		sb->st_uid = zp->zp_uid;
3085 		sb->st_gid = zp->zp_gid;
3086 		sb->st_size = zp->zp_size;
3087 	} else {
3088 		sa_hdr_phys_t *sahdrp;
3089 		int hdrsize;
3090 		size_t size = 0;
3091 		void *buf = NULL;
3092 
3093 		if (dn->dn_bonuslen != 0)
3094 			sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3095 		else {
3096 			if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) {
3097 				blkptr_t *bp = DN_SPILL_BLKPTR(dn);
3098 				int error;
3099 
3100 				size = BP_GET_LSIZE(bp);
3101 				buf = zfs_alloc(size);
3102 				error = zio_read(spa, bp, buf);
3103 				if (error != 0) {
3104 					zfs_free(buf, size);
3105 					return (error);
3106 				}
3107 				sahdrp = buf;
3108 			} else {
3109 				return (EIO);
3110 			}
3111 		}
3112 		hdrsize = SA_HDR_SIZE(sahdrp);
3113 		sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize +
3114 		    SA_MODE_OFFSET);
3115 		sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize +
3116 		    SA_UID_OFFSET);
3117 		sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize +
3118 		    SA_GID_OFFSET);
3119 		sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize +
3120 		    SA_SIZE_OFFSET);
3121 		if (buf != NULL)
3122 			zfs_free(buf, size);
3123 	}
3124 
3125 	return (0);
3126 }
3127 
3128 static int
3129 zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize)
3130 {
3131 	int rc = 0;
3132 
3133 	if (dn->dn_bonustype == DMU_OT_SA) {
3134 		sa_hdr_phys_t *sahdrp = NULL;
3135 		size_t size = 0;
3136 		void *buf = NULL;
3137 		int hdrsize;
3138 		char *p;
3139 
3140 		if (dn->dn_bonuslen != 0)
3141 			sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3142 		else {
3143 			blkptr_t *bp;
3144 
3145 			if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0)
3146 				return (EIO);
3147 			bp = DN_SPILL_BLKPTR(dn);
3148 
3149 			size = BP_GET_LSIZE(bp);
3150 			buf = zfs_alloc(size);
3151 			rc = zio_read(spa, bp, buf);
3152 			if (rc != 0) {
3153 				zfs_free(buf, size);
3154 				return (rc);
3155 			}
3156 			sahdrp = buf;
3157 		}
3158 		hdrsize = SA_HDR_SIZE(sahdrp);
3159 		p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET);
3160 		memcpy(path, p, psize);
3161 		if (buf != NULL)
3162 			zfs_free(buf, size);
3163 		return (0);
3164 	}
3165 	/*
3166 	 * Second test is purely to silence bogus compiler
3167 	 * warning about accessing past the end of dn_bonus.
3168 	 */
3169 	if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen &&
3170 	    sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) {
3171 		memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize);
3172 	} else {
3173 		rc = dnode_read(spa, dn, 0, path, psize);
3174 	}
3175 	return (rc);
3176 }
3177 
3178 struct obj_list {
3179 	uint64_t		objnum;
3180 	STAILQ_ENTRY(obj_list)	entry;
3181 };
3182 
3183 /*
3184  * Lookup a file and return its dnode.
3185  */
3186 static int
3187 zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode)
3188 {
3189 	int rc;
3190 	uint64_t objnum;
3191 	const spa_t *spa;
3192 	dnode_phys_t dn;
3193 	const char *p, *q;
3194 	char element[256];
3195 	char path[1024];
3196 	int symlinks_followed = 0;
3197 	struct stat sb;
3198 	struct obj_list *entry, *tentry;
3199 	STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache);
3200 
3201 	spa = mount->spa;
3202 	if (mount->objset.os_type != DMU_OST_ZFS) {
3203 		printf("ZFS: unexpected object set type %ju\n",
3204 		    (uintmax_t)mount->objset.os_type);
3205 		return (EIO);
3206 	}
3207 
3208 	if ((entry = malloc(sizeof(struct obj_list))) == NULL)
3209 		return (ENOMEM);
3210 
3211 	/*
3212 	 * Get the root directory dnode.
3213 	 */
3214 	rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn);
3215 	if (rc) {
3216 		free(entry);
3217 		return (rc);
3218 	}
3219 
3220 	rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof (objnum), 1, &objnum);
3221 	if (rc) {
3222 		free(entry);
3223 		return (rc);
3224 	}
3225 	entry->objnum = objnum;
3226 	STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3227 
3228 	rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3229 	if (rc != 0)
3230 		goto done;
3231 
3232 	p = upath;
3233 	while (p && *p) {
3234 		rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3235 		if (rc != 0)
3236 			goto done;
3237 
3238 		while (*p == '/')
3239 			p++;
3240 		if (*p == '\0')
3241 			break;
3242 		q = p;
3243 		while (*q != '\0' && *q != '/')
3244 			q++;
3245 
3246 		/* skip dot */
3247 		if (p + 1 == q && p[0] == '.') {
3248 			p++;
3249 			continue;
3250 		}
3251 		/* double dot */
3252 		if (p + 2 == q && p[0] == '.' && p[1] == '.') {
3253 			p += 2;
3254 			if (STAILQ_FIRST(&on_cache) ==
3255 			    STAILQ_LAST(&on_cache, obj_list, entry)) {
3256 				rc = ENOENT;
3257 				goto done;
3258 			}
3259 			entry = STAILQ_FIRST(&on_cache);
3260 			STAILQ_REMOVE_HEAD(&on_cache, entry);
3261 			free(entry);
3262 			objnum = (STAILQ_FIRST(&on_cache))->objnum;
3263 			continue;
3264 		}
3265 		if (q - p + 1 > sizeof(element)) {
3266 			rc = ENAMETOOLONG;
3267 			goto done;
3268 		}
3269 		memcpy(element, p, q - p);
3270 		element[q - p] = 0;
3271 		p = q;
3272 
3273 		if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0)
3274 			goto done;
3275 		if (!S_ISDIR(sb.st_mode)) {
3276 			rc = ENOTDIR;
3277 			goto done;
3278 		}
3279 
3280 		rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum);
3281 		if (rc)
3282 			goto done;
3283 		objnum = ZFS_DIRENT_OBJ(objnum);
3284 
3285 		if ((entry = malloc(sizeof(struct obj_list))) == NULL) {
3286 			rc = ENOMEM;
3287 			goto done;
3288 		}
3289 		entry->objnum = objnum;
3290 		STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3291 		rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3292 		if (rc)
3293 			goto done;
3294 
3295 		/*
3296 		 * Check for symlink.
3297 		 */
3298 		rc = zfs_dnode_stat(spa, &dn, &sb);
3299 		if (rc)
3300 			goto done;
3301 		if (S_ISLNK(sb.st_mode)) {
3302 			if (symlinks_followed > 10) {
3303 				rc = EMLINK;
3304 				goto done;
3305 			}
3306 			symlinks_followed++;
3307 
3308 			/*
3309 			 * Read the link value and copy the tail of our
3310 			 * current path onto the end.
3311 			 */
3312 			if (sb.st_size + strlen(p) + 1 > sizeof(path)) {
3313 				rc = ENAMETOOLONG;
3314 				goto done;
3315 			}
3316 			strcpy(&path[sb.st_size], p);
3317 
3318 			rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size);
3319 			if (rc != 0)
3320 				goto done;
3321 
3322 			/*
3323 			 * Restart with the new path, starting either at
3324 			 * the root or at the parent depending whether or
3325 			 * not the link is relative.
3326 			 */
3327 			p = path;
3328 			if (*p == '/') {
3329 				while (STAILQ_FIRST(&on_cache) !=
3330 				    STAILQ_LAST(&on_cache, obj_list, entry)) {
3331 					entry = STAILQ_FIRST(&on_cache);
3332 					STAILQ_REMOVE_HEAD(&on_cache, entry);
3333 					free(entry);
3334 				}
3335 			} else {
3336 				entry = STAILQ_FIRST(&on_cache);
3337 				STAILQ_REMOVE_HEAD(&on_cache, entry);
3338 				free(entry);
3339 			}
3340 			objnum = (STAILQ_FIRST(&on_cache))->objnum;
3341 		}
3342 	}
3343 
3344 	*dnode = dn;
3345 done:
3346 	STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry)
3347 		free(entry);
3348 	return (rc);
3349 }
3350