1 /*- 2 * Copyright (c) 2007 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * Stand-alone ZFS file reader. 32 */ 33 34 #include <sys/endian.h> 35 #include <sys/stat.h> 36 #include <sys/stdint.h> 37 #include <sys/list.h> 38 39 #include "zfsimpl.h" 40 #include "zfssubr.c" 41 42 43 struct zfsmount { 44 const spa_t *spa; 45 objset_phys_t objset; 46 uint64_t rootobj; 47 }; 48 static struct zfsmount zfsmount __unused; 49 50 /* 51 * The indirect_child_t represents the vdev that we will read from, when we 52 * need to read all copies of the data (e.g. for scrub or reconstruction). 53 * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror), 54 * ic_vdev is the same as is_vdev. However, for mirror top-level vdevs, 55 * ic_vdev is a child of the mirror. 56 */ 57 typedef struct indirect_child { 58 void *ic_data; 59 vdev_t *ic_vdev; 60 } indirect_child_t; 61 62 /* 63 * The indirect_split_t represents one mapped segment of an i/o to the 64 * indirect vdev. For non-split (contiguously-mapped) blocks, there will be 65 * only one indirect_split_t, with is_split_offset==0 and is_size==io_size. 66 * For split blocks, there will be several of these. 67 */ 68 typedef struct indirect_split { 69 list_node_t is_node; /* link on iv_splits */ 70 71 /* 72 * is_split_offset is the offset into the i/o. 73 * This is the sum of the previous splits' is_size's. 74 */ 75 uint64_t is_split_offset; 76 77 vdev_t *is_vdev; /* top-level vdev */ 78 uint64_t is_target_offset; /* offset on is_vdev */ 79 uint64_t is_size; 80 int is_children; /* number of entries in is_child[] */ 81 82 /* 83 * is_good_child is the child that we are currently using to 84 * attempt reconstruction. 85 */ 86 int is_good_child; 87 88 indirect_child_t is_child[1]; /* variable-length */ 89 } indirect_split_t; 90 91 /* 92 * The indirect_vsd_t is associated with each i/o to the indirect vdev. 93 * It is the "Vdev-Specific Data" in the zio_t's io_vsd. 94 */ 95 typedef struct indirect_vsd { 96 boolean_t iv_split_block; 97 boolean_t iv_reconstruct; 98 99 list_t iv_splits; /* list of indirect_split_t's */ 100 } indirect_vsd_t; 101 102 /* 103 * List of all vdevs, chained through v_alllink. 104 */ 105 static vdev_list_t zfs_vdevs; 106 107 /* 108 * List of ZFS features supported for read 109 */ 110 static const char *features_for_read[] = { 111 "org.illumos:lz4_compress", 112 "com.delphix:hole_birth", 113 "com.delphix:extensible_dataset", 114 "com.delphix:embedded_data", 115 "org.open-zfs:large_blocks", 116 "org.illumos:sha512", 117 "org.illumos:skein", 118 "org.zfsonlinux:large_dnode", 119 "com.joyent:multi_vdev_crash_dump", 120 "com.delphix:spacemap_histogram", 121 "com.delphix:zpool_checkpoint", 122 "com.delphix:spacemap_v2", 123 "com.datto:encryption", 124 "org.zfsonlinux:allocation_classes", 125 "com.datto:resilver_defer", 126 "com.delphix:device_removal", 127 "com.delphix:obsolete_counts", 128 "com.intel:allocation_classes", 129 NULL 130 }; 131 132 /* 133 * List of all pools, chained through spa_link. 134 */ 135 static spa_list_t zfs_pools; 136 137 static const dnode_phys_t *dnode_cache_obj; 138 static uint64_t dnode_cache_bn; 139 static char *dnode_cache_buf; 140 static char *zap_scratch; 141 static char *zfs_temp_buf, *zfs_temp_end, *zfs_temp_ptr; 142 143 #define TEMP_SIZE (1024 * 1024) 144 145 static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf); 146 static int zfs_get_root(const spa_t *spa, uint64_t *objid); 147 static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result); 148 static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, 149 const char *name, uint64_t integer_size, uint64_t num_integers, 150 void *value); 151 static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t, 152 dnode_phys_t *); 153 static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *, 154 size_t); 155 static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t, 156 size_t); 157 static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, size_t); 158 vdev_indirect_mapping_t *vdev_indirect_mapping_open(spa_t *, objset_phys_t *, 159 uint64_t); 160 vdev_indirect_mapping_entry_phys_t * 161 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *, uint64_t, 162 uint64_t, uint64_t *); 163 164 static void 165 zfs_init(void) 166 { 167 STAILQ_INIT(&zfs_vdevs); 168 STAILQ_INIT(&zfs_pools); 169 170 zfs_temp_buf = malloc(TEMP_SIZE); 171 zfs_temp_end = zfs_temp_buf + TEMP_SIZE; 172 zfs_temp_ptr = zfs_temp_buf; 173 dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE); 174 zap_scratch = malloc(SPA_MAXBLOCKSIZE); 175 176 zfs_init_crc(); 177 } 178 179 static void * 180 zfs_alloc(size_t size) 181 { 182 char *ptr; 183 184 if (zfs_temp_ptr + size > zfs_temp_end) { 185 panic("ZFS: out of temporary buffer space"); 186 } 187 ptr = zfs_temp_ptr; 188 zfs_temp_ptr += size; 189 190 return (ptr); 191 } 192 193 static void 194 zfs_free(void *ptr, size_t size) 195 { 196 197 zfs_temp_ptr -= size; 198 if (zfs_temp_ptr != ptr) { 199 panic("ZFS: zfs_alloc()/zfs_free() mismatch"); 200 } 201 } 202 203 static int 204 xdr_int(const unsigned char **xdr, int *ip) 205 { 206 *ip = be32dec(*xdr); 207 (*xdr) += 4; 208 return (0); 209 } 210 211 static int 212 xdr_u_int(const unsigned char **xdr, u_int *ip) 213 { 214 *ip = be32dec(*xdr); 215 (*xdr) += 4; 216 return (0); 217 } 218 219 static int 220 xdr_uint64_t(const unsigned char **xdr, uint64_t *lp) 221 { 222 u_int hi, lo; 223 224 xdr_u_int(xdr, &hi); 225 xdr_u_int(xdr, &lo); 226 *lp = (((uint64_t) hi) << 32) | lo; 227 return (0); 228 } 229 230 static int 231 nvlist_find(const unsigned char *nvlist, const char *name, int type, 232 int *elementsp, void *valuep) 233 { 234 const unsigned char *p, *pair; 235 int junk; 236 int encoded_size, decoded_size; 237 238 p = nvlist; 239 xdr_int(&p, &junk); 240 xdr_int(&p, &junk); 241 242 pair = p; 243 xdr_int(&p, &encoded_size); 244 xdr_int(&p, &decoded_size); 245 while (encoded_size && decoded_size) { 246 int namelen, pairtype, elements; 247 const char *pairname; 248 249 xdr_int(&p, &namelen); 250 pairname = (const char*) p; 251 p += roundup(namelen, 4); 252 xdr_int(&p, &pairtype); 253 254 if (!memcmp(name, pairname, namelen) && type == pairtype) { 255 xdr_int(&p, &elements); 256 if (elementsp) 257 *elementsp = elements; 258 if (type == DATA_TYPE_UINT64) { 259 xdr_uint64_t(&p, (uint64_t *) valuep); 260 return (0); 261 } else if (type == DATA_TYPE_STRING) { 262 int len; 263 xdr_int(&p, &len); 264 (*(const char**) valuep) = (const char*) p; 265 return (0); 266 } else if (type == DATA_TYPE_NVLIST 267 || type == DATA_TYPE_NVLIST_ARRAY) { 268 (*(const unsigned char**) valuep) = 269 (const unsigned char*) p; 270 return (0); 271 } else { 272 return (EIO); 273 } 274 } else { 275 /* 276 * Not the pair we are looking for, skip to the next one. 277 */ 278 p = pair + encoded_size; 279 } 280 281 pair = p; 282 xdr_int(&p, &encoded_size); 283 xdr_int(&p, &decoded_size); 284 } 285 286 return (EIO); 287 } 288 289 static int 290 nvlist_check_features_for_read(const unsigned char *nvlist) 291 { 292 const unsigned char *p, *pair; 293 int junk; 294 int encoded_size, decoded_size; 295 int rc; 296 297 rc = 0; 298 299 p = nvlist; 300 xdr_int(&p, &junk); 301 xdr_int(&p, &junk); 302 303 pair = p; 304 xdr_int(&p, &encoded_size); 305 xdr_int(&p, &decoded_size); 306 while (encoded_size && decoded_size) { 307 int namelen, pairtype; 308 const char *pairname; 309 int i, found; 310 311 found = 0; 312 313 xdr_int(&p, &namelen); 314 pairname = (const char*) p; 315 p += roundup(namelen, 4); 316 xdr_int(&p, &pairtype); 317 318 for (i = 0; features_for_read[i] != NULL; i++) { 319 if (!memcmp(pairname, features_for_read[i], namelen)) { 320 found = 1; 321 break; 322 } 323 } 324 325 if (!found) { 326 printf("ZFS: unsupported feature: %s\n", pairname); 327 rc = EIO; 328 } 329 330 p = pair + encoded_size; 331 332 pair = p; 333 xdr_int(&p, &encoded_size); 334 xdr_int(&p, &decoded_size); 335 } 336 337 return (rc); 338 } 339 340 /* 341 * Return the next nvlist in an nvlist array. 342 */ 343 static const unsigned char * 344 nvlist_next(const unsigned char *nvlist) 345 { 346 const unsigned char *p, *pair; 347 int junk; 348 int encoded_size, decoded_size; 349 350 p = nvlist; 351 xdr_int(&p, &junk); 352 xdr_int(&p, &junk); 353 354 pair = p; 355 xdr_int(&p, &encoded_size); 356 xdr_int(&p, &decoded_size); 357 while (encoded_size && decoded_size) { 358 p = pair + encoded_size; 359 360 pair = p; 361 xdr_int(&p, &encoded_size); 362 xdr_int(&p, &decoded_size); 363 } 364 365 return p; 366 } 367 368 #ifdef TEST 369 370 static const unsigned char * 371 nvlist_print(const unsigned char *nvlist, unsigned int indent) 372 { 373 static const char* typenames[] = { 374 "DATA_TYPE_UNKNOWN", 375 "DATA_TYPE_BOOLEAN", 376 "DATA_TYPE_BYTE", 377 "DATA_TYPE_INT16", 378 "DATA_TYPE_UINT16", 379 "DATA_TYPE_INT32", 380 "DATA_TYPE_UINT32", 381 "DATA_TYPE_INT64", 382 "DATA_TYPE_UINT64", 383 "DATA_TYPE_STRING", 384 "DATA_TYPE_BYTE_ARRAY", 385 "DATA_TYPE_INT16_ARRAY", 386 "DATA_TYPE_UINT16_ARRAY", 387 "DATA_TYPE_INT32_ARRAY", 388 "DATA_TYPE_UINT32_ARRAY", 389 "DATA_TYPE_INT64_ARRAY", 390 "DATA_TYPE_UINT64_ARRAY", 391 "DATA_TYPE_STRING_ARRAY", 392 "DATA_TYPE_HRTIME", 393 "DATA_TYPE_NVLIST", 394 "DATA_TYPE_NVLIST_ARRAY", 395 "DATA_TYPE_BOOLEAN_VALUE", 396 "DATA_TYPE_INT8", 397 "DATA_TYPE_UINT8", 398 "DATA_TYPE_BOOLEAN_ARRAY", 399 "DATA_TYPE_INT8_ARRAY", 400 "DATA_TYPE_UINT8_ARRAY" 401 }; 402 403 unsigned int i, j; 404 const unsigned char *p, *pair; 405 int junk; 406 int encoded_size, decoded_size; 407 408 p = nvlist; 409 xdr_int(&p, &junk); 410 xdr_int(&p, &junk); 411 412 pair = p; 413 xdr_int(&p, &encoded_size); 414 xdr_int(&p, &decoded_size); 415 while (encoded_size && decoded_size) { 416 int namelen, pairtype, elements; 417 const char *pairname; 418 419 xdr_int(&p, &namelen); 420 pairname = (const char*) p; 421 p += roundup(namelen, 4); 422 xdr_int(&p, &pairtype); 423 424 for (i = 0; i < indent; i++) 425 printf(" "); 426 printf("%s %s", typenames[pairtype], pairname); 427 428 xdr_int(&p, &elements); 429 switch (pairtype) { 430 case DATA_TYPE_UINT64: { 431 uint64_t val; 432 xdr_uint64_t(&p, &val); 433 printf(" = 0x%jx\n", (uintmax_t)val); 434 break; 435 } 436 437 case DATA_TYPE_STRING: { 438 int len; 439 xdr_int(&p, &len); 440 printf(" = \"%s\"\n", p); 441 break; 442 } 443 444 case DATA_TYPE_NVLIST: 445 printf("\n"); 446 nvlist_print(p, indent + 1); 447 break; 448 449 case DATA_TYPE_NVLIST_ARRAY: 450 for (j = 0; j < elements; j++) { 451 printf("[%d]\n", j); 452 p = nvlist_print(p, indent + 1); 453 if (j != elements - 1) { 454 for (i = 0; i < indent; i++) 455 printf(" "); 456 printf("%s %s", typenames[pairtype], pairname); 457 } 458 } 459 break; 460 461 default: 462 printf("\n"); 463 } 464 465 p = pair + encoded_size; 466 467 pair = p; 468 xdr_int(&p, &encoded_size); 469 xdr_int(&p, &decoded_size); 470 } 471 472 return p; 473 } 474 475 #endif 476 477 static int 478 vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf, 479 off_t offset, size_t size) 480 { 481 size_t psize; 482 int rc; 483 484 if (!vdev->v_phys_read) 485 return (EIO); 486 487 if (bp) { 488 psize = BP_GET_PSIZE(bp); 489 } else { 490 psize = size; 491 } 492 493 /*printf("ZFS: reading %zu bytes at 0x%jx to %p\n", psize, (uintmax_t)offset, buf);*/ 494 rc = vdev->v_phys_read(vdev, vdev->v_read_priv, offset, buf, psize); 495 if (rc) 496 return (rc); 497 if (bp != NULL) 498 return (zio_checksum_verify(vdev->spa, bp, buf)); 499 500 return (0); 501 } 502 503 typedef struct remap_segment { 504 vdev_t *rs_vd; 505 uint64_t rs_offset; 506 uint64_t rs_asize; 507 uint64_t rs_split_offset; 508 list_node_t rs_node; 509 } remap_segment_t; 510 511 static remap_segment_t * 512 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset) 513 { 514 remap_segment_t *rs = malloc(sizeof (remap_segment_t)); 515 516 if (rs != NULL) { 517 rs->rs_vd = vd; 518 rs->rs_offset = offset; 519 rs->rs_asize = asize; 520 rs->rs_split_offset = split_offset; 521 } 522 523 return (rs); 524 } 525 526 vdev_indirect_mapping_t * 527 vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os, 528 uint64_t mapping_object) 529 { 530 vdev_indirect_mapping_t *vim; 531 vdev_indirect_mapping_phys_t *vim_phys; 532 int rc; 533 534 vim = calloc(1, sizeof (*vim)); 535 if (vim == NULL) 536 return (NULL); 537 538 vim->vim_dn = calloc(1, sizeof (*vim->vim_dn)); 539 if (vim->vim_dn == NULL) { 540 free(vim); 541 return (NULL); 542 } 543 544 rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn); 545 if (rc != 0) { 546 free(vim->vim_dn); 547 free(vim); 548 return (NULL); 549 } 550 551 vim->vim_spa = spa; 552 vim->vim_phys = malloc(sizeof (*vim->vim_phys)); 553 if (vim->vim_phys == NULL) { 554 free(vim->vim_dn); 555 free(vim); 556 return (NULL); 557 } 558 559 vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn); 560 *vim->vim_phys = *vim_phys; 561 562 vim->vim_objset = os; 563 vim->vim_object = mapping_object; 564 vim->vim_entries = NULL; 565 566 vim->vim_havecounts = 567 (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0); 568 return (vim); 569 } 570 571 /* 572 * Compare an offset with an indirect mapping entry; there are three 573 * possible scenarios: 574 * 575 * 1. The offset is "less than" the mapping entry; meaning the 576 * offset is less than the source offset of the mapping entry. In 577 * this case, there is no overlap between the offset and the 578 * mapping entry and -1 will be returned. 579 * 580 * 2. The offset is "greater than" the mapping entry; meaning the 581 * offset is greater than the mapping entry's source offset plus 582 * the entry's size. In this case, there is no overlap between 583 * the offset and the mapping entry and 1 will be returned. 584 * 585 * NOTE: If the offset is actually equal to the entry's offset 586 * plus size, this is considered to be "greater" than the entry, 587 * and this case applies (i.e. 1 will be returned). Thus, the 588 * entry's "range" can be considered to be inclusive at its 589 * start, but exclusive at its end: e.g. [src, src + size). 590 * 591 * 3. The last case to consider is if the offset actually falls 592 * within the mapping entry's range. If this is the case, the 593 * offset is considered to be "equal to" the mapping entry and 594 * 0 will be returned. 595 * 596 * NOTE: If the offset is equal to the entry's source offset, 597 * this case applies and 0 will be returned. If the offset is 598 * equal to the entry's source plus its size, this case does 599 * *not* apply (see "NOTE" above for scenario 2), and 1 will be 600 * returned. 601 */ 602 static int 603 dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem) 604 { 605 const uint64_t *key = v_key; 606 const vdev_indirect_mapping_entry_phys_t *array_elem = 607 v_array_elem; 608 uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem); 609 610 if (*key < src_offset) { 611 return (-1); 612 } else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) { 613 return (0); 614 } else { 615 return (1); 616 } 617 } 618 619 /* 620 * Return array entry. 621 */ 622 static vdev_indirect_mapping_entry_phys_t * 623 vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index) 624 { 625 uint64_t size; 626 off_t offset = 0; 627 int rc; 628 629 if (vim->vim_phys->vimp_num_entries == 0) 630 return (NULL); 631 632 if (vim->vim_entries == NULL) { 633 uint64_t bsize; 634 635 bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT; 636 size = vim->vim_phys->vimp_num_entries * 637 sizeof (*vim->vim_entries); 638 if (size > bsize) { 639 size = bsize / sizeof (*vim->vim_entries); 640 size *= sizeof (*vim->vim_entries); 641 } 642 vim->vim_entries = malloc(size); 643 if (vim->vim_entries == NULL) 644 return (NULL); 645 vim->vim_num_entries = size / sizeof (*vim->vim_entries); 646 offset = index * sizeof (*vim->vim_entries); 647 } 648 649 /* We have data in vim_entries */ 650 if (offset == 0) { 651 if (index >= vim->vim_entry_offset && 652 index <= vim->vim_entry_offset + vim->vim_num_entries) { 653 index -= vim->vim_entry_offset; 654 return (&vim->vim_entries[index]); 655 } 656 offset = index * sizeof (*vim->vim_entries); 657 } 658 659 vim->vim_entry_offset = index; 660 size = vim->vim_num_entries * sizeof (*vim->vim_entries); 661 rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries, 662 size); 663 if (rc != 0) { 664 /* Read error, invalidate vim_entries. */ 665 free(vim->vim_entries); 666 vim->vim_entries = NULL; 667 return (NULL); 668 } 669 index -= vim->vim_entry_offset; 670 return (&vim->vim_entries[index]); 671 } 672 673 /* 674 * Returns the mapping entry for the given offset. 675 * 676 * It's possible that the given offset will not be in the mapping table 677 * (i.e. no mapping entries contain this offset), in which case, the 678 * return value value depends on the "next_if_missing" parameter. 679 * 680 * If the offset is not found in the table and "next_if_missing" is 681 * B_FALSE, then NULL will always be returned. The behavior is intended 682 * to allow consumers to get the entry corresponding to the offset 683 * parameter, iff the offset overlaps with an entry in the table. 684 * 685 * If the offset is not found in the table and "next_if_missing" is 686 * B_TRUE, then the entry nearest to the given offset will be returned, 687 * such that the entry's source offset is greater than the offset 688 * passed in (i.e. the "next" mapping entry in the table is returned, if 689 * the offset is missing from the table). If there are no entries whose 690 * source offset is greater than the passed in offset, NULL is returned. 691 */ 692 static vdev_indirect_mapping_entry_phys_t * 693 vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim, 694 uint64_t offset) 695 { 696 ASSERT(vim->vim_phys->vimp_num_entries > 0); 697 698 vdev_indirect_mapping_entry_phys_t *entry; 699 700 uint64_t last = vim->vim_phys->vimp_num_entries - 1; 701 uint64_t base = 0; 702 703 /* 704 * We don't define these inside of the while loop because we use 705 * their value in the case that offset isn't in the mapping. 706 */ 707 uint64_t mid; 708 int result; 709 710 while (last >= base) { 711 mid = base + ((last - base) >> 1); 712 713 entry = vdev_indirect_mapping_entry(vim, mid); 714 if (entry == NULL) 715 break; 716 result = dva_mapping_overlap_compare(&offset, entry); 717 718 if (result == 0) { 719 break; 720 } else if (result < 0) { 721 last = mid - 1; 722 } else { 723 base = mid + 1; 724 } 725 } 726 return (entry); 727 } 728 729 /* 730 * Given an indirect vdev and an extent on that vdev, it duplicates the 731 * physical entries of the indirect mapping that correspond to the extent 732 * to a new array and returns a pointer to it. In addition, copied_entries 733 * is populated with the number of mapping entries that were duplicated. 734 * 735 * Finally, since we are doing an allocation, it is up to the caller to 736 * free the array allocated in this function. 737 */ 738 vdev_indirect_mapping_entry_phys_t * 739 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset, 740 uint64_t asize, uint64_t *copied_entries) 741 { 742 vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL; 743 vdev_indirect_mapping_t *vim = vd->v_mapping; 744 uint64_t entries = 0; 745 746 vdev_indirect_mapping_entry_phys_t *first_mapping = 747 vdev_indirect_mapping_entry_for_offset(vim, offset); 748 ASSERT3P(first_mapping, !=, NULL); 749 750 vdev_indirect_mapping_entry_phys_t *m = first_mapping; 751 while (asize > 0) { 752 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); 753 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m); 754 uint64_t inner_size = MIN(asize, size - inner_offset); 755 756 offset += inner_size; 757 asize -= inner_size; 758 entries++; 759 m++; 760 } 761 762 size_t copy_length = entries * sizeof (*first_mapping); 763 duplicate_mappings = malloc(copy_length); 764 if (duplicate_mappings != NULL) 765 bcopy(first_mapping, duplicate_mappings, copy_length); 766 else 767 entries = 0; 768 769 *copied_entries = entries; 770 771 return (duplicate_mappings); 772 } 773 774 static vdev_t * 775 vdev_lookup_top(spa_t *spa, uint64_t vdev) 776 { 777 vdev_t *rvd; 778 779 STAILQ_FOREACH(rvd, &spa->spa_vdevs, v_childlink) 780 if (rvd->v_id == vdev) 781 break; 782 783 return (rvd); 784 } 785 786 /* 787 * This is a callback for vdev_indirect_remap() which allocates an 788 * indirect_split_t for each split segment and adds it to iv_splits. 789 */ 790 static void 791 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset, 792 uint64_t size, void *arg) 793 { 794 int n = 1; 795 zio_t *zio = arg; 796 indirect_vsd_t *iv = zio->io_vsd; 797 798 if (vd->v_read == vdev_indirect_read) 799 return; 800 801 if (vd->v_read == vdev_mirror_read) 802 n = vd->v_nchildren; 803 804 indirect_split_t *is = 805 malloc(offsetof(indirect_split_t, is_child[n])); 806 if (is == NULL) { 807 zio->io_error = ENOMEM; 808 return; 809 } 810 bzero(is, offsetof(indirect_split_t, is_child[n])); 811 812 is->is_children = n; 813 is->is_size = size; 814 is->is_split_offset = split_offset; 815 is->is_target_offset = offset; 816 is->is_vdev = vd; 817 818 /* 819 * Note that we only consider multiple copies of the data for 820 * *mirror* vdevs. We don't for "replacing" or "spare" vdevs, even 821 * though they use the same ops as mirror, because there's only one 822 * "good" copy under the replacing/spare. 823 */ 824 if (vd->v_read == vdev_mirror_read) { 825 int i = 0; 826 vdev_t *kid; 827 828 STAILQ_FOREACH(kid, &vd->v_children, v_childlink) { 829 is->is_child[i++].ic_vdev = kid; 830 } 831 } else { 832 is->is_child[0].ic_vdev = vd; 833 } 834 835 list_insert_tail(&iv->iv_splits, is); 836 } 837 838 static void 839 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg) 840 { 841 list_t stack; 842 spa_t *spa = vd->spa; 843 zio_t *zio = arg; 844 remap_segment_t *rs; 845 846 list_create(&stack, sizeof (remap_segment_t), 847 offsetof(remap_segment_t, rs_node)); 848 849 rs = rs_alloc(vd, offset, asize, 0); 850 if (rs == NULL) { 851 printf("vdev_indirect_remap: out of memory.\n"); 852 zio->io_error = ENOMEM; 853 } 854 for ( ; rs != NULL; rs = list_remove_head(&stack)) { 855 vdev_t *v = rs->rs_vd; 856 uint64_t num_entries = 0; 857 /* vdev_indirect_mapping_t *vim = v->v_mapping; */ 858 vdev_indirect_mapping_entry_phys_t *mapping = 859 vdev_indirect_mapping_duplicate_adjacent_entries(v, 860 rs->rs_offset, rs->rs_asize, &num_entries); 861 862 if (num_entries == 0) 863 zio->io_error = ENOMEM; 864 865 for (uint64_t i = 0; i < num_entries; i++) { 866 vdev_indirect_mapping_entry_phys_t *m = &mapping[i]; 867 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); 868 uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst); 869 uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst); 870 uint64_t inner_offset = rs->rs_offset - 871 DVA_MAPPING_GET_SRC_OFFSET(m); 872 uint64_t inner_size = 873 MIN(rs->rs_asize, size - inner_offset); 874 vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev); 875 876 if (dst_v->v_read == vdev_indirect_read) { 877 remap_segment_t *o; 878 879 o = rs_alloc(dst_v, dst_offset + inner_offset, 880 inner_size, rs->rs_split_offset); 881 if (o == NULL) { 882 printf("vdev_indirect_remap: " 883 "out of memory.\n"); 884 zio->io_error = ENOMEM; 885 break; 886 } 887 888 list_insert_head(&stack, o); 889 } 890 vdev_indirect_gather_splits(rs->rs_split_offset, dst_v, 891 dst_offset + inner_offset, 892 inner_size, arg); 893 894 /* 895 * vdev_indirect_gather_splits can have memory 896 * allocation error, we can not recover from it. 897 */ 898 if (zio->io_error != 0) 899 break; 900 901 rs->rs_offset += inner_size; 902 rs->rs_asize -= inner_size; 903 rs->rs_split_offset += inner_size; 904 } 905 906 free(mapping); 907 free(rs); 908 if (zio->io_error != 0) 909 break; 910 } 911 912 list_destroy(&stack); 913 } 914 915 static void 916 vdev_indirect_map_free(zio_t *zio) 917 { 918 indirect_vsd_t *iv = zio->io_vsd; 919 indirect_split_t *is; 920 921 while ((is = list_head(&iv->iv_splits)) != NULL) { 922 for (int c = 0; c < is->is_children; c++) { 923 indirect_child_t *ic = &is->is_child[c]; 924 free(ic->ic_data); 925 } 926 list_remove(&iv->iv_splits, is); 927 free(is); 928 } 929 free(iv); 930 } 931 932 static int 933 vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 934 off_t offset, size_t bytes) 935 { 936 zio_t zio = { 0 }; 937 spa_t *spa = vdev->spa; 938 indirect_vsd_t *iv = malloc(sizeof (*iv)); 939 indirect_split_t *first; 940 int rc = EIO; 941 942 if (iv == NULL) 943 return (ENOMEM); 944 bzero(iv, sizeof (*iv)); 945 946 list_create(&iv->iv_splits, 947 sizeof (indirect_split_t), offsetof(indirect_split_t, is_node)); 948 949 zio.io_spa = spa; 950 zio.io_bp = (blkptr_t *)bp; 951 zio.io_data = buf; 952 zio.io_size = bytes; 953 zio.io_offset = offset; 954 zio.io_vd = vdev; 955 zio.io_vsd = iv; 956 957 if (vdev->v_mapping == NULL) { 958 vdev_indirect_config_t *vic; 959 960 vic = &vdev->vdev_indirect_config; 961 vdev->v_mapping = vdev_indirect_mapping_open(spa, 962 &spa->spa_mos, vic->vic_mapping_object); 963 } 964 965 vdev_indirect_remap(vdev, offset, bytes, &zio); 966 if (zio.io_error != 0) 967 return (zio.io_error); 968 969 first = list_head(&iv->iv_splits); 970 if (first->is_size == zio.io_size) { 971 /* 972 * This is not a split block; we are pointing to the entire 973 * data, which will checksum the same as the original data. 974 * Pass the BP down so that the child i/o can verify the 975 * checksum, and try a different location if available 976 * (e.g. on a mirror). 977 * 978 * While this special case could be handled the same as the 979 * general (split block) case, doing it this way ensures 980 * that the vast majority of blocks on indirect vdevs 981 * (which are not split) are handled identically to blocks 982 * on non-indirect vdevs. This allows us to be less strict 983 * about performance in the general (but rare) case. 984 */ 985 rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp, 986 zio.io_data, first->is_target_offset, bytes); 987 } else { 988 iv->iv_split_block = B_TRUE; 989 /* 990 * Read one copy of each split segment, from the 991 * top-level vdev. Since we don't know the 992 * checksum of each split individually, the child 993 * zio can't ensure that we get the right data. 994 * E.g. if it's a mirror, it will just read from a 995 * random (healthy) leaf vdev. We have to verify 996 * the checksum in vdev_indirect_io_done(). 997 */ 998 for (indirect_split_t *is = list_head(&iv->iv_splits); 999 is != NULL; is = list_next(&iv->iv_splits, is)) { 1000 char *ptr = zio.io_data; 1001 1002 rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp, 1003 ptr + is->is_split_offset, is->is_target_offset, 1004 is->is_size); 1005 } 1006 if (zio_checksum_verify(spa, zio.io_bp, zio.io_data)) 1007 rc = ECKSUM; 1008 else 1009 rc = 0; 1010 } 1011 1012 vdev_indirect_map_free(&zio); 1013 if (rc == 0) 1014 rc = zio.io_error; 1015 1016 return (rc); 1017 } 1018 1019 static int 1020 vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 1021 off_t offset, size_t bytes) 1022 { 1023 1024 return (vdev_read_phys(vdev, bp, buf, 1025 offset + VDEV_LABEL_START_SIZE, bytes)); 1026 } 1027 1028 1029 static int 1030 vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 1031 off_t offset, size_t bytes) 1032 { 1033 vdev_t *kid; 1034 int rc; 1035 1036 rc = EIO; 1037 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1038 if (kid->v_state != VDEV_STATE_HEALTHY) 1039 continue; 1040 rc = kid->v_read(kid, bp, buf, offset, bytes); 1041 if (!rc) 1042 return (0); 1043 } 1044 1045 return (rc); 1046 } 1047 1048 static int 1049 vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 1050 off_t offset, size_t bytes) 1051 { 1052 vdev_t *kid; 1053 1054 /* 1055 * Here we should have two kids: 1056 * First one which is the one we are replacing and we can trust 1057 * only this one to have valid data, but it might not be present. 1058 * Second one is that one we are replacing with. It is most likely 1059 * healthy, but we can't trust it has needed data, so we won't use it. 1060 */ 1061 kid = STAILQ_FIRST(&vdev->v_children); 1062 if (kid == NULL) 1063 return (EIO); 1064 if (kid->v_state != VDEV_STATE_HEALTHY) 1065 return (EIO); 1066 return (kid->v_read(kid, bp, buf, offset, bytes)); 1067 } 1068 1069 static vdev_t * 1070 vdev_find(uint64_t guid) 1071 { 1072 vdev_t *vdev; 1073 1074 STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink) 1075 if (vdev->v_guid == guid) 1076 return (vdev); 1077 1078 return (0); 1079 } 1080 1081 static vdev_t * 1082 vdev_create(uint64_t guid, vdev_read_t *_read) 1083 { 1084 vdev_t *vdev; 1085 vdev_indirect_config_t *vic; 1086 1087 vdev = malloc(sizeof(vdev_t)); 1088 memset(vdev, 0, sizeof(vdev_t)); 1089 STAILQ_INIT(&vdev->v_children); 1090 vdev->v_guid = guid; 1091 vdev->v_state = VDEV_STATE_OFFLINE; 1092 vdev->v_read = _read; 1093 1094 vic = &vdev->vdev_indirect_config; 1095 vic->vic_prev_indirect_vdev = UINT64_MAX; 1096 STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink); 1097 1098 return (vdev); 1099 } 1100 1101 static int 1102 vdev_init_from_nvlist(const unsigned char *nvlist, vdev_t *pvdev, 1103 vdev_t **vdevp, int is_newer) 1104 { 1105 int rc; 1106 uint64_t guid, id, ashift, asize, nparity; 1107 const char *type; 1108 const char *path; 1109 vdev_t *vdev, *kid; 1110 const unsigned char *kids; 1111 int nkids, i, is_new; 1112 uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present; 1113 uint64_t is_log; 1114 1115 if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, 1116 NULL, &guid) 1117 || nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id) 1118 || nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, 1119 NULL, &type)) { 1120 printf("ZFS: can't find vdev details\n"); 1121 return (ENOENT); 1122 } 1123 1124 if (strcmp(type, VDEV_TYPE_MIRROR) 1125 && strcmp(type, VDEV_TYPE_DISK) 1126 #ifdef ZFS_TEST 1127 && strcmp(type, VDEV_TYPE_FILE) 1128 #endif 1129 && strcmp(type, VDEV_TYPE_RAIDZ) 1130 && strcmp(type, VDEV_TYPE_INDIRECT) 1131 && strcmp(type, VDEV_TYPE_REPLACING)) { 1132 printf("ZFS: can only boot from disk, mirror, raidz1, raidz2 and raidz3 vdevs\n"); 1133 return (EIO); 1134 } 1135 1136 is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0; 1137 is_log = 0; 1138 1139 nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL, 1140 &is_offline); 1141 nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL, 1142 &is_removed); 1143 nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL, 1144 &is_faulted); 1145 nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64, NULL, 1146 &is_degraded); 1147 nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64, NULL, 1148 &isnt_present); 1149 nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL, 1150 &is_log); 1151 1152 vdev = vdev_find(guid); 1153 if (!vdev) { 1154 is_new = 1; 1155 1156 if (!strcmp(type, VDEV_TYPE_MIRROR)) 1157 vdev = vdev_create(guid, vdev_mirror_read); 1158 else if (!strcmp(type, VDEV_TYPE_RAIDZ)) 1159 vdev = vdev_create(guid, vdev_raidz_read); 1160 else if (!strcmp(type, VDEV_TYPE_REPLACING)) 1161 vdev = vdev_create(guid, vdev_replacing_read); 1162 else if (!strcmp(type, VDEV_TYPE_INDIRECT)) { 1163 vdev_indirect_config_t *vic; 1164 1165 vdev = vdev_create(guid, vdev_indirect_read); 1166 vdev->v_state = VDEV_STATE_HEALTHY; 1167 vic = &vdev->vdev_indirect_config; 1168 1169 nvlist_find(nvlist, 1170 ZPOOL_CONFIG_INDIRECT_OBJECT, DATA_TYPE_UINT64, 1171 NULL, &vic->vic_mapping_object); 1172 nvlist_find(nvlist, 1173 ZPOOL_CONFIG_INDIRECT_BIRTHS, DATA_TYPE_UINT64, 1174 NULL, &vic->vic_births_object); 1175 nvlist_find(nvlist, 1176 ZPOOL_CONFIG_PREV_INDIRECT_VDEV, DATA_TYPE_UINT64, 1177 NULL, &vic->vic_prev_indirect_vdev); 1178 } else 1179 vdev = vdev_create(guid, vdev_disk_read); 1180 1181 vdev->v_id = id; 1182 vdev->v_top = pvdev != NULL ? pvdev : vdev; 1183 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT, 1184 DATA_TYPE_UINT64, NULL, &ashift) == 0) { 1185 vdev->v_ashift = ashift; 1186 } else { 1187 vdev->v_ashift = 0; 1188 } 1189 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE, 1190 DATA_TYPE_UINT64, NULL, &asize) == 0) { 1191 vdev->v_psize = asize + 1192 VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 1193 } 1194 if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY, 1195 DATA_TYPE_UINT64, NULL, &nparity) == 0) { 1196 vdev->v_nparity = nparity; 1197 } else { 1198 vdev->v_nparity = 0; 1199 } 1200 if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH, 1201 DATA_TYPE_STRING, NULL, &path) == 0) { 1202 if (strncmp(path, "/dev/", 5) == 0) 1203 path += 5; 1204 vdev->v_name = strdup(path); 1205 } else { 1206 char *name; 1207 1208 if (!strcmp(type, "raidz")) { 1209 if (vdev->v_nparity < 1 || 1210 vdev->v_nparity > 3) { 1211 printf("ZFS: can only boot from disk, " 1212 "mirror, raidz1, raidz2 and raidz3 " 1213 "vdevs\n"); 1214 return (EIO); 1215 } 1216 asprintf(&name, "%s%d-%jd", type, 1217 vdev->v_nparity, id); 1218 } else { 1219 asprintf(&name, "%s-%jd", type, id); 1220 } 1221 if (name == NULL) 1222 return (ENOMEM); 1223 vdev->v_name = name; 1224 } 1225 vdev->v_islog = is_log == 1; 1226 } else { 1227 is_new = 0; 1228 } 1229 1230 if (is_new || is_newer) { 1231 /* 1232 * This is either new vdev or we've already seen this vdev, 1233 * but from an older vdev label, so let's refresh its state 1234 * from the newer label. 1235 */ 1236 if (is_offline) 1237 vdev->v_state = VDEV_STATE_OFFLINE; 1238 else if (is_removed) 1239 vdev->v_state = VDEV_STATE_REMOVED; 1240 else if (is_faulted) 1241 vdev->v_state = VDEV_STATE_FAULTED; 1242 else if (is_degraded) 1243 vdev->v_state = VDEV_STATE_DEGRADED; 1244 else if (isnt_present) 1245 vdev->v_state = VDEV_STATE_CANT_OPEN; 1246 } 1247 1248 rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1249 &nkids, &kids); 1250 /* 1251 * Its ok if we don't have any kids. 1252 */ 1253 if (rc == 0) { 1254 vdev->v_nchildren = nkids; 1255 for (i = 0; i < nkids; i++) { 1256 rc = vdev_init_from_nvlist(kids, vdev, &kid, is_newer); 1257 if (rc) 1258 return (rc); 1259 if (is_new) 1260 STAILQ_INSERT_TAIL(&vdev->v_children, kid, 1261 v_childlink); 1262 kids = nvlist_next(kids); 1263 } 1264 } else { 1265 vdev->v_nchildren = 0; 1266 } 1267 1268 if (vdevp) 1269 *vdevp = vdev; 1270 return (0); 1271 } 1272 1273 static void 1274 vdev_set_state(vdev_t *vdev) 1275 { 1276 vdev_t *kid; 1277 int good_kids; 1278 int bad_kids; 1279 1280 /* 1281 * A mirror or raidz is healthy if all its kids are healthy. A 1282 * mirror is degraded if any of its kids is healthy; a raidz 1283 * is degraded if at most nparity kids are offline. 1284 */ 1285 if (STAILQ_FIRST(&vdev->v_children)) { 1286 good_kids = 0; 1287 bad_kids = 0; 1288 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1289 if (kid->v_state == VDEV_STATE_HEALTHY) 1290 good_kids++; 1291 else 1292 bad_kids++; 1293 } 1294 if (bad_kids == 0) { 1295 vdev->v_state = VDEV_STATE_HEALTHY; 1296 } else { 1297 if (vdev->v_read == vdev_mirror_read) { 1298 if (good_kids) { 1299 vdev->v_state = VDEV_STATE_DEGRADED; 1300 } else { 1301 vdev->v_state = VDEV_STATE_OFFLINE; 1302 } 1303 } else if (vdev->v_read == vdev_raidz_read) { 1304 if (bad_kids > vdev->v_nparity) { 1305 vdev->v_state = VDEV_STATE_OFFLINE; 1306 } else { 1307 vdev->v_state = VDEV_STATE_DEGRADED; 1308 } 1309 } 1310 } 1311 } 1312 } 1313 1314 static spa_t * 1315 spa_find_by_guid(uint64_t guid) 1316 { 1317 spa_t *spa; 1318 1319 STAILQ_FOREACH(spa, &zfs_pools, spa_link) 1320 if (spa->spa_guid == guid) 1321 return (spa); 1322 1323 return (0); 1324 } 1325 1326 static spa_t * 1327 spa_find_by_name(const char *name) 1328 { 1329 spa_t *spa; 1330 1331 STAILQ_FOREACH(spa, &zfs_pools, spa_link) 1332 if (!strcmp(spa->spa_name, name)) 1333 return (spa); 1334 1335 return (0); 1336 } 1337 1338 #ifdef BOOT2 1339 static spa_t * 1340 spa_get_primary(void) 1341 { 1342 1343 return (STAILQ_FIRST(&zfs_pools)); 1344 } 1345 1346 static vdev_t * 1347 spa_get_primary_vdev(const spa_t *spa) 1348 { 1349 vdev_t *vdev; 1350 vdev_t *kid; 1351 1352 if (spa == NULL) 1353 spa = spa_get_primary(); 1354 if (spa == NULL) 1355 return (NULL); 1356 vdev = STAILQ_FIRST(&spa->spa_vdevs); 1357 if (vdev == NULL) 1358 return (NULL); 1359 for (kid = STAILQ_FIRST(&vdev->v_children); kid != NULL; 1360 kid = STAILQ_FIRST(&vdev->v_children)) 1361 vdev = kid; 1362 return (vdev); 1363 } 1364 #endif 1365 1366 static spa_t * 1367 spa_create(uint64_t guid, const char *name) 1368 { 1369 spa_t *spa; 1370 1371 if ((spa = calloc(1, sizeof(spa_t))) == NULL) 1372 return (NULL); 1373 if ((spa->spa_name = strdup(name)) == NULL) { 1374 free(spa); 1375 return (NULL); 1376 } 1377 STAILQ_INIT(&spa->spa_vdevs); 1378 spa->spa_guid = guid; 1379 STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link); 1380 1381 return (spa); 1382 } 1383 1384 static const char * 1385 state_name(vdev_state_t state) 1386 { 1387 static const char* names[] = { 1388 "UNKNOWN", 1389 "CLOSED", 1390 "OFFLINE", 1391 "REMOVED", 1392 "CANT_OPEN", 1393 "FAULTED", 1394 "DEGRADED", 1395 "ONLINE" 1396 }; 1397 return names[state]; 1398 } 1399 1400 #ifdef BOOT2 1401 1402 #define pager_printf printf 1403 1404 #else 1405 1406 static int 1407 pager_printf(const char *fmt, ...) 1408 { 1409 char line[80]; 1410 va_list args; 1411 1412 va_start(args, fmt); 1413 vsprintf(line, fmt, args); 1414 va_end(args); 1415 1416 return (pager_output(line)); 1417 } 1418 1419 #endif 1420 1421 #define STATUS_FORMAT " %s %s\n" 1422 1423 static int 1424 print_state(int indent, const char *name, vdev_state_t state) 1425 { 1426 char buf[512]; 1427 int i; 1428 1429 buf[0] = 0; 1430 for (i = 0; i < indent; i++) 1431 strcat(buf, " "); 1432 strcat(buf, name); 1433 1434 return (pager_printf(STATUS_FORMAT, buf, state_name(state))); 1435 } 1436 1437 static int 1438 vdev_status(vdev_t *vdev, int indent) 1439 { 1440 vdev_t *kid; 1441 int ret; 1442 1443 if (vdev->v_islog) { 1444 (void)pager_output(" logs\n"); 1445 indent++; 1446 } 1447 1448 ret = print_state(indent, vdev->v_name, vdev->v_state); 1449 if (ret != 0) 1450 return (ret); 1451 1452 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1453 ret = vdev_status(kid, indent + 1); 1454 if (ret != 0) 1455 return (ret); 1456 } 1457 return (ret); 1458 } 1459 1460 static int 1461 spa_status(spa_t *spa) 1462 { 1463 static char bootfs[ZFS_MAXNAMELEN]; 1464 uint64_t rootid; 1465 vdev_t *vdev; 1466 int good_kids, bad_kids, degraded_kids, ret; 1467 vdev_state_t state; 1468 1469 ret = pager_printf(" pool: %s\n", spa->spa_name); 1470 if (ret != 0) 1471 return (ret); 1472 1473 if (zfs_get_root(spa, &rootid) == 0 && 1474 zfs_rlookup(spa, rootid, bootfs) == 0) { 1475 if (bootfs[0] == '\0') 1476 ret = pager_printf("bootfs: %s\n", spa->spa_name); 1477 else 1478 ret = pager_printf("bootfs: %s/%s\n", spa->spa_name, 1479 bootfs); 1480 if (ret != 0) 1481 return (ret); 1482 } 1483 ret = pager_printf("config:\n\n"); 1484 if (ret != 0) 1485 return (ret); 1486 ret = pager_printf(STATUS_FORMAT, "NAME", "STATE"); 1487 if (ret != 0) 1488 return (ret); 1489 1490 good_kids = 0; 1491 degraded_kids = 0; 1492 bad_kids = 0; 1493 STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) { 1494 if (vdev->v_state == VDEV_STATE_HEALTHY) 1495 good_kids++; 1496 else if (vdev->v_state == VDEV_STATE_DEGRADED) 1497 degraded_kids++; 1498 else 1499 bad_kids++; 1500 } 1501 1502 state = VDEV_STATE_CLOSED; 1503 if (good_kids > 0 && (degraded_kids + bad_kids) == 0) 1504 state = VDEV_STATE_HEALTHY; 1505 else if ((good_kids + degraded_kids) > 0) 1506 state = VDEV_STATE_DEGRADED; 1507 1508 ret = print_state(0, spa->spa_name, state); 1509 if (ret != 0) 1510 return (ret); 1511 STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) { 1512 ret = vdev_status(vdev, 1); 1513 if (ret != 0) 1514 return (ret); 1515 } 1516 return (ret); 1517 } 1518 1519 static int 1520 spa_all_status(void) 1521 { 1522 spa_t *spa; 1523 int first = 1, ret = 0; 1524 1525 STAILQ_FOREACH(spa, &zfs_pools, spa_link) { 1526 if (!first) { 1527 ret = pager_printf("\n"); 1528 if (ret != 0) 1529 return (ret); 1530 } 1531 first = 0; 1532 ret = spa_status(spa); 1533 if (ret != 0) 1534 return (ret); 1535 } 1536 return (ret); 1537 } 1538 1539 static uint64_t 1540 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 1541 { 1542 uint64_t label_offset; 1543 1544 if (l < VDEV_LABELS / 2) 1545 label_offset = 0; 1546 else 1547 label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t); 1548 1549 return (offset + l * sizeof (vdev_label_t) + label_offset); 1550 } 1551 1552 static int 1553 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2) 1554 { 1555 unsigned int seq1 = 0; 1556 unsigned int seq2 = 0; 1557 int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg); 1558 1559 if (cmp != 0) 1560 return (cmp); 1561 1562 cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp); 1563 if (cmp != 0) 1564 return (cmp); 1565 1566 if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1)) 1567 seq1 = MMP_SEQ(ub1); 1568 1569 if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2)) 1570 seq2 = MMP_SEQ(ub2); 1571 1572 return (AVL_CMP(seq1, seq2)); 1573 } 1574 1575 static int 1576 uberblock_verify(uberblock_t *ub) 1577 { 1578 if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) { 1579 byteswap_uint64_array(ub, sizeof (uberblock_t)); 1580 } 1581 1582 if (ub->ub_magic != UBERBLOCK_MAGIC || 1583 !SPA_VERSION_IS_SUPPORTED(ub->ub_version)) 1584 return (EINVAL); 1585 1586 return (0); 1587 } 1588 1589 static int 1590 vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset, 1591 size_t size) 1592 { 1593 blkptr_t bp; 1594 off_t off; 1595 1596 off = vdev_label_offset(vd->v_psize, l, offset); 1597 1598 BP_ZERO(&bp); 1599 BP_SET_LSIZE(&bp, size); 1600 BP_SET_PSIZE(&bp, size); 1601 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL); 1602 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF); 1603 DVA_SET_OFFSET(BP_IDENTITY(&bp), off); 1604 ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0); 1605 1606 return (vdev_read_phys(vd, &bp, buf, off, size)); 1607 } 1608 1609 static unsigned char * 1610 vdev_label_read_config(vdev_t *vd, uint64_t txg) 1611 { 1612 vdev_phys_t *label; 1613 uint64_t best_txg = 0; 1614 uint64_t label_txg = 0; 1615 uint64_t asize; 1616 unsigned char *nvl; 1617 size_t nvl_size; 1618 int error; 1619 1620 label = malloc(sizeof (vdev_phys_t)); 1621 if (label == NULL) 1622 return (NULL); 1623 1624 nvl_size = VDEV_PHYS_SIZE - sizeof (zio_eck_t) - 4; 1625 nvl = malloc(nvl_size); 1626 if (nvl == NULL) 1627 goto done; 1628 1629 for (int l = 0; l < VDEV_LABELS; l++) { 1630 const unsigned char *nvlist; 1631 1632 if (vdev_label_read(vd, l, label, 1633 offsetof(vdev_label_t, vl_vdev_phys), 1634 sizeof (vdev_phys_t))) 1635 continue; 1636 1637 if (label->vp_nvlist[0] != NV_ENCODE_XDR) 1638 continue; 1639 1640 nvlist = (const unsigned char *) label->vp_nvlist + 4; 1641 error = nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG, 1642 DATA_TYPE_UINT64, NULL, &label_txg); 1643 if (error != 0 || label_txg == 0) { 1644 memcpy(nvl, nvlist, nvl_size); 1645 goto done; 1646 } 1647 1648 if (label_txg <= txg && label_txg > best_txg) { 1649 best_txg = label_txg; 1650 memcpy(nvl, nvlist, nvl_size); 1651 1652 /* 1653 * Use asize from pool config. We need this 1654 * because we can get bad value from BIOS. 1655 */ 1656 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE, 1657 DATA_TYPE_UINT64, NULL, &asize) == 0) { 1658 vd->v_psize = asize + 1659 VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 1660 } 1661 } 1662 } 1663 1664 if (best_txg == 0) { 1665 free(nvl); 1666 nvl = NULL; 1667 } 1668 done: 1669 free(label); 1670 return (nvl); 1671 } 1672 1673 static void 1674 vdev_uberblock_load(vdev_t *vd, uberblock_t *ub) 1675 { 1676 uberblock_t *buf; 1677 1678 buf = malloc(VDEV_UBERBLOCK_SIZE(vd)); 1679 if (buf == NULL) 1680 return; 1681 1682 for (int l = 0; l < VDEV_LABELS; l++) { 1683 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 1684 if (vdev_label_read(vd, l, buf, 1685 VDEV_UBERBLOCK_OFFSET(vd, n), 1686 VDEV_UBERBLOCK_SIZE(vd))) 1687 continue; 1688 if (uberblock_verify(buf) != 0) 1689 continue; 1690 1691 if (vdev_uberblock_compare(buf, ub) > 0) 1692 *ub = *buf; 1693 } 1694 } 1695 free(buf); 1696 } 1697 1698 static int 1699 vdev_probe(vdev_phys_read_t *_read, void *read_priv, spa_t **spap) 1700 { 1701 vdev_t vtmp; 1702 spa_t *spa; 1703 vdev_t *vdev, *top_vdev, *pool_vdev; 1704 unsigned char *nvlist; 1705 uint64_t val; 1706 uint64_t guid; 1707 uint64_t pool_txg, pool_guid; 1708 const char *pool_name; 1709 const unsigned char *vdevs; 1710 const unsigned char *features; 1711 int rc, is_newer; 1712 1713 /* 1714 * Load the vdev label and figure out which 1715 * uberblock is most current. 1716 */ 1717 memset(&vtmp, 0, sizeof(vtmp)); 1718 vtmp.v_phys_read = _read; 1719 vtmp.v_read_priv = read_priv; 1720 vtmp.v_psize = P2ALIGN(ldi_get_size(read_priv), 1721 (uint64_t)sizeof (vdev_label_t)); 1722 1723 /* Test for minimum device size. */ 1724 if (vtmp.v_psize < SPA_MINDEVSIZE) 1725 return (EIO); 1726 1727 nvlist = vdev_label_read_config(&vtmp, UINT64_MAX); 1728 if (nvlist == NULL) 1729 return (EIO); 1730 1731 if (nvlist_find(nvlist, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64, 1732 NULL, &val) != 0) { 1733 free(nvlist); 1734 return (EIO); 1735 } 1736 1737 if (!SPA_VERSION_IS_SUPPORTED(val)) { 1738 printf("ZFS: unsupported ZFS version %u (should be %u)\n", 1739 (unsigned) val, (unsigned) SPA_VERSION); 1740 free(nvlist); 1741 return (EIO); 1742 } 1743 1744 /* Check ZFS features for read */ 1745 if (nvlist_find(nvlist, ZPOOL_CONFIG_FEATURES_FOR_READ, 1746 DATA_TYPE_NVLIST, NULL, &features) == 0 && 1747 nvlist_check_features_for_read(features) != 0) { 1748 free(nvlist); 1749 return (EIO); 1750 } 1751 1752 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64, 1753 NULL, &val) != 0) { 1754 free(nvlist); 1755 return (EIO); 1756 } 1757 1758 if (val == POOL_STATE_DESTROYED) { 1759 /* We don't boot only from destroyed pools. */ 1760 free(nvlist); 1761 return (EIO); 1762 } 1763 1764 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64, 1765 NULL, &pool_txg) != 0 || 1766 nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 1767 NULL, &pool_guid) != 0 || 1768 nvlist_find(nvlist, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING, 1769 NULL, &pool_name) != 0) { 1770 /* 1771 * Cache and spare devices end up here - just ignore 1772 * them. 1773 */ 1774 free(nvlist); 1775 return (EIO); 1776 } 1777 1778 /* 1779 * Create the pool if this is the first time we've seen it. 1780 */ 1781 spa = spa_find_by_guid(pool_guid); 1782 if (spa == NULL) { 1783 spa = spa_create(pool_guid, pool_name); 1784 if (spa == NULL) { 1785 free(nvlist); 1786 return (ENOMEM); 1787 } 1788 } 1789 if (pool_txg > spa->spa_txg) { 1790 spa->spa_txg = pool_txg; 1791 is_newer = 1; 1792 } else { 1793 is_newer = 0; 1794 } 1795 1796 /* 1797 * Get the vdev tree and create our in-core copy of it. 1798 * If we already have a vdev with this guid, this must 1799 * be some kind of alias (overlapping slices, dangerously dedicated 1800 * disks etc). 1801 */ 1802 if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, 1803 NULL, &guid) != 0) { 1804 free(nvlist); 1805 return (EIO); 1806 } 1807 vdev = vdev_find(guid); 1808 /* Has this vdev already been inited? */ 1809 if (vdev && vdev->v_phys_read) { 1810 free(nvlist); 1811 return (EIO); 1812 } 1813 1814 if (nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 1815 NULL, &vdevs)) { 1816 free(nvlist); 1817 return (EIO); 1818 } 1819 1820 rc = vdev_init_from_nvlist(vdevs, NULL, &top_vdev, is_newer); 1821 free(nvlist); 1822 if (rc != 0) 1823 return (rc); 1824 1825 /* 1826 * Add the toplevel vdev to the pool if its not already there. 1827 */ 1828 STAILQ_FOREACH(pool_vdev, &spa->spa_vdevs, v_childlink) 1829 if (top_vdev == pool_vdev) 1830 break; 1831 1832 if (!pool_vdev && top_vdev) { 1833 top_vdev->spa = spa; 1834 STAILQ_INSERT_TAIL(&spa->spa_vdevs, top_vdev, v_childlink); 1835 } 1836 1837 /* 1838 * We should already have created an incomplete vdev for this 1839 * vdev. Find it and initialise it with our read proc. 1840 */ 1841 vdev = vdev_find(guid); 1842 if (vdev) { 1843 vdev->v_phys_read = _read; 1844 vdev->v_read_priv = read_priv; 1845 vdev->v_state = VDEV_STATE_HEALTHY; 1846 vdev->v_psize = vtmp.v_psize; 1847 } else { 1848 printf("ZFS: inconsistent nvlist contents\n"); 1849 return (EIO); 1850 } 1851 1852 if (vdev->v_islog) 1853 spa->spa_with_log = vdev->v_islog; 1854 1855 /* 1856 * Re-evaluate top-level vdev state. 1857 */ 1858 vdev_set_state(top_vdev); 1859 1860 /* 1861 * Ok, we are happy with the pool so far. Lets find 1862 * the best uberblock and then we can actually access 1863 * the contents of the pool. 1864 */ 1865 vdev_uberblock_load(vdev, &spa->spa_uberblock); 1866 1867 vdev->spa = spa; 1868 if (spap != NULL) 1869 *spap = spa; 1870 return (0); 1871 } 1872 1873 static int 1874 ilog2(int n) 1875 { 1876 int v; 1877 1878 for (v = 0; v < 32; v++) 1879 if (n == (1 << v)) 1880 return v; 1881 return -1; 1882 } 1883 1884 static int 1885 zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf) 1886 { 1887 blkptr_t gbh_bp; 1888 zio_gbh_phys_t zio_gb; 1889 char *pbuf; 1890 int i; 1891 1892 /* Artificial BP for gang block header. */ 1893 gbh_bp = *bp; 1894 BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); 1895 BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); 1896 BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER); 1897 BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF); 1898 for (i = 0; i < SPA_DVAS_PER_BP; i++) 1899 DVA_SET_GANG(&gbh_bp.blk_dva[i], 0); 1900 1901 /* Read gang header block using the artificial BP. */ 1902 if (zio_read(spa, &gbh_bp, &zio_gb)) 1903 return (EIO); 1904 1905 pbuf = buf; 1906 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 1907 blkptr_t *gbp = &zio_gb.zg_blkptr[i]; 1908 1909 if (BP_IS_HOLE(gbp)) 1910 continue; 1911 if (zio_read(spa, gbp, pbuf)) 1912 return (EIO); 1913 pbuf += BP_GET_PSIZE(gbp); 1914 } 1915 1916 if (zio_checksum_verify(spa, bp, buf)) 1917 return (EIO); 1918 return (0); 1919 } 1920 1921 static int 1922 zio_read(const spa_t *spa, const blkptr_t *bp, void *buf) 1923 { 1924 int cpfunc = BP_GET_COMPRESS(bp); 1925 uint64_t align, size; 1926 void *pbuf; 1927 int i, error; 1928 1929 /* 1930 * Process data embedded in block pointer 1931 */ 1932 if (BP_IS_EMBEDDED(bp)) { 1933 ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 1934 1935 size = BPE_GET_PSIZE(bp); 1936 ASSERT(size <= BPE_PAYLOAD_SIZE); 1937 1938 if (cpfunc != ZIO_COMPRESS_OFF) 1939 pbuf = zfs_alloc(size); 1940 else 1941 pbuf = buf; 1942 1943 decode_embedded_bp_compressed(bp, pbuf); 1944 error = 0; 1945 1946 if (cpfunc != ZIO_COMPRESS_OFF) { 1947 error = zio_decompress_data(cpfunc, pbuf, 1948 size, buf, BP_GET_LSIZE(bp)); 1949 zfs_free(pbuf, size); 1950 } 1951 if (error != 0) 1952 printf("ZFS: i/o error - unable to decompress block pointer data, error %d\n", 1953 error); 1954 return (error); 1955 } 1956 1957 error = EIO; 1958 1959 for (i = 0; i < SPA_DVAS_PER_BP; i++) { 1960 const dva_t *dva = &bp->blk_dva[i]; 1961 vdev_t *vdev; 1962 int vdevid; 1963 off_t offset; 1964 1965 if (!dva->dva_word[0] && !dva->dva_word[1]) 1966 continue; 1967 1968 vdevid = DVA_GET_VDEV(dva); 1969 offset = DVA_GET_OFFSET(dva); 1970 STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) { 1971 if (vdev->v_id == vdevid) 1972 break; 1973 } 1974 if (!vdev || !vdev->v_read) 1975 continue; 1976 1977 size = BP_GET_PSIZE(bp); 1978 if (vdev->v_read == vdev_raidz_read) { 1979 align = 1ULL << vdev->v_top->v_ashift; 1980 if (P2PHASE(size, align) != 0) 1981 size = P2ROUNDUP(size, align); 1982 } 1983 if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF) 1984 pbuf = zfs_alloc(size); 1985 else 1986 pbuf = buf; 1987 1988 if (DVA_GET_GANG(dva)) 1989 error = zio_read_gang(spa, bp, pbuf); 1990 else 1991 error = vdev->v_read(vdev, bp, pbuf, offset, size); 1992 if (error == 0) { 1993 if (cpfunc != ZIO_COMPRESS_OFF) 1994 error = zio_decompress_data(cpfunc, pbuf, 1995 BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp)); 1996 else if (size != BP_GET_PSIZE(bp)) 1997 bcopy(pbuf, buf, BP_GET_PSIZE(bp)); 1998 } 1999 if (buf != pbuf) 2000 zfs_free(pbuf, size); 2001 if (error == 0) 2002 break; 2003 } 2004 if (error != 0) 2005 printf("ZFS: i/o error - all block copies unavailable\n"); 2006 return (error); 2007 } 2008 2009 static int 2010 dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset, void *buf, size_t buflen) 2011 { 2012 int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT; 2013 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2014 int nlevels = dnode->dn_nlevels; 2015 int i, rc; 2016 2017 if (bsize > SPA_MAXBLOCKSIZE) { 2018 printf("ZFS: I/O error - blocks larger than %llu are not " 2019 "supported\n", SPA_MAXBLOCKSIZE); 2020 return (EIO); 2021 } 2022 2023 /* 2024 * Note: bsize may not be a power of two here so we need to do an 2025 * actual divide rather than a bitshift. 2026 */ 2027 while (buflen > 0) { 2028 uint64_t bn = offset / bsize; 2029 int boff = offset % bsize; 2030 int ibn; 2031 const blkptr_t *indbp; 2032 blkptr_t bp; 2033 2034 if (bn > dnode->dn_maxblkid) 2035 return (EIO); 2036 2037 if (dnode == dnode_cache_obj && bn == dnode_cache_bn) 2038 goto cached; 2039 2040 indbp = dnode->dn_blkptr; 2041 for (i = 0; i < nlevels; i++) { 2042 /* 2043 * Copy the bp from the indirect array so that 2044 * we can re-use the scratch buffer for multi-level 2045 * objects. 2046 */ 2047 ibn = bn >> ((nlevels - i - 1) * ibshift); 2048 ibn &= ((1 << ibshift) - 1); 2049 bp = indbp[ibn]; 2050 if (BP_IS_HOLE(&bp)) { 2051 memset(dnode_cache_buf, 0, bsize); 2052 break; 2053 } 2054 rc = zio_read(spa, &bp, dnode_cache_buf); 2055 if (rc) 2056 return (rc); 2057 indbp = (const blkptr_t *) dnode_cache_buf; 2058 } 2059 dnode_cache_obj = dnode; 2060 dnode_cache_bn = bn; 2061 cached: 2062 2063 /* 2064 * The buffer contains our data block. Copy what we 2065 * need from it and loop. 2066 */ 2067 i = bsize - boff; 2068 if (i > buflen) i = buflen; 2069 memcpy(buf, &dnode_cache_buf[boff], i); 2070 buf = ((char*) buf) + i; 2071 offset += i; 2072 buflen -= i; 2073 } 2074 2075 return (0); 2076 } 2077 2078 /* 2079 * Lookup a value in a microzap directory. Assumes that the zap 2080 * scratch buffer contains the directory contents. 2081 */ 2082 static int 2083 mzap_lookup(const dnode_phys_t *dnode, const char *name, uint64_t *value) 2084 { 2085 const mzap_phys_t *mz; 2086 const mzap_ent_phys_t *mze; 2087 size_t size; 2088 int chunks, i; 2089 2090 /* 2091 * Microzap objects use exactly one block. Read the whole 2092 * thing. 2093 */ 2094 size = dnode->dn_datablkszsec * 512; 2095 2096 mz = (const mzap_phys_t *) zap_scratch; 2097 chunks = size / MZAP_ENT_LEN - 1; 2098 2099 for (i = 0; i < chunks; i++) { 2100 mze = &mz->mz_chunk[i]; 2101 if (!strcmp(mze->mze_name, name)) { 2102 *value = mze->mze_value; 2103 return (0); 2104 } 2105 } 2106 2107 return (ENOENT); 2108 } 2109 2110 /* 2111 * Compare a name with a zap leaf entry. Return non-zero if the name 2112 * matches. 2113 */ 2114 static int 2115 fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, const char *name) 2116 { 2117 size_t namelen; 2118 const zap_leaf_chunk_t *nc; 2119 const char *p; 2120 2121 namelen = zc->l_entry.le_name_numints; 2122 2123 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); 2124 p = name; 2125 while (namelen > 0) { 2126 size_t len; 2127 len = namelen; 2128 if (len > ZAP_LEAF_ARRAY_BYTES) 2129 len = ZAP_LEAF_ARRAY_BYTES; 2130 if (memcmp(p, nc->l_array.la_array, len)) 2131 return (0); 2132 p += len; 2133 namelen -= len; 2134 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); 2135 } 2136 2137 return 1; 2138 } 2139 2140 /* 2141 * Extract a uint64_t value from a zap leaf entry. 2142 */ 2143 static uint64_t 2144 fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc) 2145 { 2146 const zap_leaf_chunk_t *vc; 2147 int i; 2148 uint64_t value; 2149 const uint8_t *p; 2150 2151 vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk); 2152 for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) { 2153 value = (value << 8) | p[i]; 2154 } 2155 2156 return value; 2157 } 2158 2159 static void 2160 stv(int len, void *addr, uint64_t value) 2161 { 2162 switch (len) { 2163 case 1: 2164 *(uint8_t *)addr = value; 2165 return; 2166 case 2: 2167 *(uint16_t *)addr = value; 2168 return; 2169 case 4: 2170 *(uint32_t *)addr = value; 2171 return; 2172 case 8: 2173 *(uint64_t *)addr = value; 2174 return; 2175 } 2176 } 2177 2178 /* 2179 * Extract a array from a zap leaf entry. 2180 */ 2181 static void 2182 fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, 2183 uint64_t integer_size, uint64_t num_integers, void *buf) 2184 { 2185 uint64_t array_int_len = zc->l_entry.le_value_intlen; 2186 uint64_t value = 0; 2187 uint64_t *u64 = buf; 2188 char *p = buf; 2189 int len = MIN(zc->l_entry.le_value_numints, num_integers); 2190 int chunk = zc->l_entry.le_value_chunk; 2191 int byten = 0; 2192 2193 if (integer_size == 8 && len == 1) { 2194 *u64 = fzap_leaf_value(zl, zc); 2195 return; 2196 } 2197 2198 while (len > 0) { 2199 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array; 2200 int i; 2201 2202 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl)); 2203 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) { 2204 value = (value << 8) | la->la_array[i]; 2205 byten++; 2206 if (byten == array_int_len) { 2207 stv(integer_size, p, value); 2208 byten = 0; 2209 len--; 2210 if (len == 0) 2211 return; 2212 p += integer_size; 2213 } 2214 } 2215 chunk = la->la_next; 2216 } 2217 } 2218 2219 /* 2220 * Lookup a value in a fatzap directory. Assumes that the zap scratch 2221 * buffer contains the directory header. 2222 */ 2223 static int 2224 fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name, 2225 uint64_t integer_size, uint64_t num_integers, void *value) 2226 { 2227 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2228 zap_phys_t zh = *(zap_phys_t *) zap_scratch; 2229 fat_zap_t z; 2230 uint64_t *ptrtbl; 2231 uint64_t hash; 2232 int rc; 2233 2234 if (zh.zap_magic != ZAP_MAGIC) 2235 return (EIO); 2236 2237 z.zap_block_shift = ilog2(bsize); 2238 z.zap_phys = (zap_phys_t *) zap_scratch; 2239 2240 /* 2241 * Figure out where the pointer table is and read it in if necessary. 2242 */ 2243 if (zh.zap_ptrtbl.zt_blk) { 2244 rc = dnode_read(spa, dnode, zh.zap_ptrtbl.zt_blk * bsize, 2245 zap_scratch, bsize); 2246 if (rc) 2247 return (rc); 2248 ptrtbl = (uint64_t *) zap_scratch; 2249 } else { 2250 ptrtbl = &ZAP_EMBEDDED_PTRTBL_ENT(&z, 0); 2251 } 2252 2253 hash = zap_hash(zh.zap_salt, name); 2254 2255 zap_leaf_t zl; 2256 zl.l_bs = z.zap_block_shift; 2257 2258 off_t off = ptrtbl[hash >> (64 - zh.zap_ptrtbl.zt_shift)] << zl.l_bs; 2259 zap_leaf_chunk_t *zc; 2260 2261 rc = dnode_read(spa, dnode, off, zap_scratch, bsize); 2262 if (rc) 2263 return (rc); 2264 2265 zl.l_phys = (zap_leaf_phys_t *) zap_scratch; 2266 2267 /* 2268 * Make sure this chunk matches our hash. 2269 */ 2270 if (zl.l_phys->l_hdr.lh_prefix_len > 0 2271 && zl.l_phys->l_hdr.lh_prefix 2272 != hash >> (64 - zl.l_phys->l_hdr.lh_prefix_len)) 2273 return (ENOENT); 2274 2275 /* 2276 * Hash within the chunk to find our entry. 2277 */ 2278 int shift = (64 - ZAP_LEAF_HASH_SHIFT(&zl) - zl.l_phys->l_hdr.lh_prefix_len); 2279 int h = (hash >> shift) & ((1 << ZAP_LEAF_HASH_SHIFT(&zl)) - 1); 2280 h = zl.l_phys->l_hash[h]; 2281 if (h == 0xffff) 2282 return (ENOENT); 2283 zc = &ZAP_LEAF_CHUNK(&zl, h); 2284 while (zc->l_entry.le_hash != hash) { 2285 if (zc->l_entry.le_next == 0xffff) 2286 return (ENOENT); 2287 zc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_next); 2288 } 2289 if (fzap_name_equal(&zl, zc, name)) { 2290 if (zc->l_entry.le_value_intlen * zc->l_entry.le_value_numints > 2291 integer_size * num_integers) 2292 return (E2BIG); 2293 fzap_leaf_array(&zl, zc, integer_size, num_integers, value); 2294 return (0); 2295 } 2296 2297 return (ENOENT); 2298 } 2299 2300 /* 2301 * Lookup a name in a zap object and return its value as a uint64_t. 2302 */ 2303 static int 2304 zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name, 2305 uint64_t integer_size, uint64_t num_integers, void *value) 2306 { 2307 int rc; 2308 uint64_t zap_type; 2309 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2310 2311 rc = dnode_read(spa, dnode, 0, zap_scratch, size); 2312 if (rc) 2313 return (rc); 2314 2315 zap_type = *(uint64_t *) zap_scratch; 2316 if (zap_type == ZBT_MICRO) 2317 return mzap_lookup(dnode, name, value); 2318 else if (zap_type == ZBT_HEADER) { 2319 return fzap_lookup(spa, dnode, name, integer_size, 2320 num_integers, value); 2321 } 2322 printf("ZFS: invalid zap_type=%d\n", (int)zap_type); 2323 return (EIO); 2324 } 2325 2326 /* 2327 * List a microzap directory. Assumes that the zap scratch buffer contains 2328 * the directory contents. 2329 */ 2330 static int 2331 mzap_list(const dnode_phys_t *dnode, int (*callback)(const char *, uint64_t)) 2332 { 2333 const mzap_phys_t *mz; 2334 const mzap_ent_phys_t *mze; 2335 size_t size; 2336 int chunks, i, rc; 2337 2338 /* 2339 * Microzap objects use exactly one block. Read the whole 2340 * thing. 2341 */ 2342 size = dnode->dn_datablkszsec * 512; 2343 mz = (const mzap_phys_t *) zap_scratch; 2344 chunks = size / MZAP_ENT_LEN - 1; 2345 2346 for (i = 0; i < chunks; i++) { 2347 mze = &mz->mz_chunk[i]; 2348 if (mze->mze_name[0]) { 2349 rc = callback(mze->mze_name, mze->mze_value); 2350 if (rc != 0) 2351 return (rc); 2352 } 2353 } 2354 2355 return (0); 2356 } 2357 2358 /* 2359 * List a fatzap directory. Assumes that the zap scratch buffer contains 2360 * the directory header. 2361 */ 2362 static int 2363 fzap_list(const spa_t *spa, const dnode_phys_t *dnode, int (*callback)(const char *, uint64_t)) 2364 { 2365 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2366 zap_phys_t zh = *(zap_phys_t *) zap_scratch; 2367 fat_zap_t z; 2368 int i, j, rc; 2369 2370 if (zh.zap_magic != ZAP_MAGIC) 2371 return (EIO); 2372 2373 z.zap_block_shift = ilog2(bsize); 2374 z.zap_phys = (zap_phys_t *) zap_scratch; 2375 2376 /* 2377 * This assumes that the leaf blocks start at block 1. The 2378 * documentation isn't exactly clear on this. 2379 */ 2380 zap_leaf_t zl; 2381 zl.l_bs = z.zap_block_shift; 2382 for (i = 0; i < zh.zap_num_leafs; i++) { 2383 off_t off = (i + 1) << zl.l_bs; 2384 char name[256], *p; 2385 uint64_t value; 2386 2387 if (dnode_read(spa, dnode, off, zap_scratch, bsize)) 2388 return (EIO); 2389 2390 zl.l_phys = (zap_leaf_phys_t *) zap_scratch; 2391 2392 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { 2393 zap_leaf_chunk_t *zc, *nc; 2394 int namelen; 2395 2396 zc = &ZAP_LEAF_CHUNK(&zl, j); 2397 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) 2398 continue; 2399 namelen = zc->l_entry.le_name_numints; 2400 if (namelen > sizeof(name)) 2401 namelen = sizeof(name); 2402 2403 /* 2404 * Paste the name back together. 2405 */ 2406 nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk); 2407 p = name; 2408 while (namelen > 0) { 2409 int len; 2410 len = namelen; 2411 if (len > ZAP_LEAF_ARRAY_BYTES) 2412 len = ZAP_LEAF_ARRAY_BYTES; 2413 memcpy(p, nc->l_array.la_array, len); 2414 p += len; 2415 namelen -= len; 2416 nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next); 2417 } 2418 2419 /* 2420 * Assume the first eight bytes of the value are 2421 * a uint64_t. 2422 */ 2423 value = fzap_leaf_value(&zl, zc); 2424 2425 //printf("%s 0x%jx\n", name, (uintmax_t)value); 2426 rc = callback((const char *)name, value); 2427 if (rc != 0) 2428 return (rc); 2429 } 2430 } 2431 2432 return (0); 2433 } 2434 2435 static int zfs_printf(const char *name, uint64_t value __unused) 2436 { 2437 2438 printf("%s\n", name); 2439 2440 return (0); 2441 } 2442 2443 /* 2444 * List a zap directory. 2445 */ 2446 static int 2447 zap_list(const spa_t *spa, const dnode_phys_t *dnode) 2448 { 2449 uint64_t zap_type; 2450 size_t size = dnode->dn_datablkszsec * 512; 2451 2452 if (dnode_read(spa, dnode, 0, zap_scratch, size)) 2453 return (EIO); 2454 2455 zap_type = *(uint64_t *) zap_scratch; 2456 if (zap_type == ZBT_MICRO) 2457 return mzap_list(dnode, zfs_printf); 2458 else 2459 return fzap_list(spa, dnode, zfs_printf); 2460 } 2461 2462 static int 2463 objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum, dnode_phys_t *dnode) 2464 { 2465 off_t offset; 2466 2467 offset = objnum * sizeof(dnode_phys_t); 2468 return dnode_read(spa, &os->os_meta_dnode, offset, 2469 dnode, sizeof(dnode_phys_t)); 2470 } 2471 2472 static int 2473 mzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value) 2474 { 2475 const mzap_phys_t *mz; 2476 const mzap_ent_phys_t *mze; 2477 size_t size; 2478 int chunks, i; 2479 2480 /* 2481 * Microzap objects use exactly one block. Read the whole 2482 * thing. 2483 */ 2484 size = dnode->dn_datablkszsec * 512; 2485 2486 mz = (const mzap_phys_t *) zap_scratch; 2487 chunks = size / MZAP_ENT_LEN - 1; 2488 2489 for (i = 0; i < chunks; i++) { 2490 mze = &mz->mz_chunk[i]; 2491 if (value == mze->mze_value) { 2492 strcpy(name, mze->mze_name); 2493 return (0); 2494 } 2495 } 2496 2497 return (ENOENT); 2498 } 2499 2500 static void 2501 fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name) 2502 { 2503 size_t namelen; 2504 const zap_leaf_chunk_t *nc; 2505 char *p; 2506 2507 namelen = zc->l_entry.le_name_numints; 2508 2509 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); 2510 p = name; 2511 while (namelen > 0) { 2512 size_t len; 2513 len = namelen; 2514 if (len > ZAP_LEAF_ARRAY_BYTES) 2515 len = ZAP_LEAF_ARRAY_BYTES; 2516 memcpy(p, nc->l_array.la_array, len); 2517 p += len; 2518 namelen -= len; 2519 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); 2520 } 2521 2522 *p = '\0'; 2523 } 2524 2525 static int 2526 fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value) 2527 { 2528 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2529 zap_phys_t zh = *(zap_phys_t *) zap_scratch; 2530 fat_zap_t z; 2531 int i, j; 2532 2533 if (zh.zap_magic != ZAP_MAGIC) 2534 return (EIO); 2535 2536 z.zap_block_shift = ilog2(bsize); 2537 z.zap_phys = (zap_phys_t *) zap_scratch; 2538 2539 /* 2540 * This assumes that the leaf blocks start at block 1. The 2541 * documentation isn't exactly clear on this. 2542 */ 2543 zap_leaf_t zl; 2544 zl.l_bs = z.zap_block_shift; 2545 for (i = 0; i < zh.zap_num_leafs; i++) { 2546 off_t off = (i + 1) << zl.l_bs; 2547 2548 if (dnode_read(spa, dnode, off, zap_scratch, bsize)) 2549 return (EIO); 2550 2551 zl.l_phys = (zap_leaf_phys_t *) zap_scratch; 2552 2553 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { 2554 zap_leaf_chunk_t *zc; 2555 2556 zc = &ZAP_LEAF_CHUNK(&zl, j); 2557 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) 2558 continue; 2559 if (zc->l_entry.le_value_intlen != 8 || 2560 zc->l_entry.le_value_numints != 1) 2561 continue; 2562 2563 if (fzap_leaf_value(&zl, zc) == value) { 2564 fzap_name_copy(&zl, zc, name); 2565 return (0); 2566 } 2567 } 2568 } 2569 2570 return (ENOENT); 2571 } 2572 2573 static int 2574 zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value) 2575 { 2576 int rc; 2577 uint64_t zap_type; 2578 size_t size = dnode->dn_datablkszsec * 512; 2579 2580 rc = dnode_read(spa, dnode, 0, zap_scratch, size); 2581 if (rc) 2582 return (rc); 2583 2584 zap_type = *(uint64_t *) zap_scratch; 2585 if (zap_type == ZBT_MICRO) 2586 return mzap_rlookup(spa, dnode, name, value); 2587 else 2588 return fzap_rlookup(spa, dnode, name, value); 2589 } 2590 2591 static int 2592 zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result) 2593 { 2594 char name[256]; 2595 char component[256]; 2596 uint64_t dir_obj, parent_obj, child_dir_zapobj; 2597 dnode_phys_t child_dir_zap, dataset, dir, parent; 2598 dsl_dir_phys_t *dd; 2599 dsl_dataset_phys_t *ds; 2600 char *p; 2601 int len; 2602 2603 p = &name[sizeof(name) - 1]; 2604 *p = '\0'; 2605 2606 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 2607 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2608 return (EIO); 2609 } 2610 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 2611 dir_obj = ds->ds_dir_obj; 2612 2613 for (;;) { 2614 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir) != 0) 2615 return (EIO); 2616 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2617 2618 /* Actual loop condition. */ 2619 parent_obj = dd->dd_parent_obj; 2620 if (parent_obj == 0) 2621 break; 2622 2623 if (objset_get_dnode(spa, &spa->spa_mos, parent_obj, &parent) != 0) 2624 return (EIO); 2625 dd = (dsl_dir_phys_t *)&parent.dn_bonus; 2626 child_dir_zapobj = dd->dd_child_dir_zapobj; 2627 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0) 2628 return (EIO); 2629 if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0) 2630 return (EIO); 2631 2632 len = strlen(component); 2633 p -= len; 2634 memcpy(p, component, len); 2635 --p; 2636 *p = '/'; 2637 2638 /* Actual loop iteration. */ 2639 dir_obj = parent_obj; 2640 } 2641 2642 if (*p != '\0') 2643 ++p; 2644 strcpy(result, p); 2645 2646 return (0); 2647 } 2648 2649 static int 2650 zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum) 2651 { 2652 char element[256]; 2653 uint64_t dir_obj, child_dir_zapobj; 2654 dnode_phys_t child_dir_zap, dir; 2655 dsl_dir_phys_t *dd; 2656 const char *p, *q; 2657 2658 if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, &dir)) 2659 return (EIO); 2660 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj), 2661 1, &dir_obj)) 2662 return (EIO); 2663 2664 p = name; 2665 for (;;) { 2666 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) 2667 return (EIO); 2668 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2669 2670 while (*p == '/') 2671 p++; 2672 /* Actual loop condition #1. */ 2673 if (*p == '\0') 2674 break; 2675 2676 q = strchr(p, '/'); 2677 if (q) { 2678 memcpy(element, p, q - p); 2679 element[q - p] = '\0'; 2680 p = q + 1; 2681 } else { 2682 strcpy(element, p); 2683 p += strlen(p); 2684 } 2685 2686 child_dir_zapobj = dd->dd_child_dir_zapobj; 2687 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0) 2688 return (EIO); 2689 2690 /* Actual loop condition #2. */ 2691 if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj), 2692 1, &dir_obj) != 0) 2693 return (ENOENT); 2694 } 2695 2696 *objnum = dd->dd_head_dataset_obj; 2697 return (0); 2698 } 2699 2700 #ifndef BOOT2 2701 static int 2702 zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/) 2703 { 2704 uint64_t dir_obj, child_dir_zapobj; 2705 dnode_phys_t child_dir_zap, dir, dataset; 2706 dsl_dataset_phys_t *ds; 2707 dsl_dir_phys_t *dd; 2708 2709 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 2710 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2711 return (EIO); 2712 } 2713 ds = (dsl_dataset_phys_t *) &dataset.dn_bonus; 2714 dir_obj = ds->ds_dir_obj; 2715 2716 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) { 2717 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); 2718 return (EIO); 2719 } 2720 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2721 2722 child_dir_zapobj = dd->dd_child_dir_zapobj; 2723 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0) { 2724 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); 2725 return (EIO); 2726 } 2727 2728 return (zap_list(spa, &child_dir_zap) != 0); 2729 } 2730 2731 int 2732 zfs_callback_dataset(const spa_t *spa, uint64_t objnum, int (*callback)(const char *, uint64_t)) 2733 { 2734 uint64_t dir_obj, child_dir_zapobj, zap_type; 2735 dnode_phys_t child_dir_zap, dir, dataset; 2736 dsl_dataset_phys_t *ds; 2737 dsl_dir_phys_t *dd; 2738 int err; 2739 2740 err = objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset); 2741 if (err != 0) { 2742 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2743 return (err); 2744 } 2745 ds = (dsl_dataset_phys_t *) &dataset.dn_bonus; 2746 dir_obj = ds->ds_dir_obj; 2747 2748 err = objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir); 2749 if (err != 0) { 2750 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); 2751 return (err); 2752 } 2753 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2754 2755 child_dir_zapobj = dd->dd_child_dir_zapobj; 2756 err = objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap); 2757 if (err != 0) { 2758 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); 2759 return (err); 2760 } 2761 2762 err = dnode_read(spa, &child_dir_zap, 0, zap_scratch, child_dir_zap.dn_datablkszsec * 512); 2763 if (err != 0) 2764 return (err); 2765 2766 zap_type = *(uint64_t *) zap_scratch; 2767 if (zap_type == ZBT_MICRO) 2768 return mzap_list(&child_dir_zap, callback); 2769 else 2770 return fzap_list(spa, &child_dir_zap, callback); 2771 } 2772 #endif 2773 2774 /* 2775 * Find the object set given the object number of its dataset object 2776 * and return its details in *objset 2777 */ 2778 static int 2779 zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset) 2780 { 2781 dnode_phys_t dataset; 2782 dsl_dataset_phys_t *ds; 2783 2784 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 2785 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2786 return (EIO); 2787 } 2788 2789 ds = (dsl_dataset_phys_t *) &dataset.dn_bonus; 2790 if (zio_read(spa, &ds->ds_bp, objset)) { 2791 printf("ZFS: can't read object set for dataset %ju\n", 2792 (uintmax_t)objnum); 2793 return (EIO); 2794 } 2795 2796 return (0); 2797 } 2798 2799 /* 2800 * Find the object set pointed to by the BOOTFS property or the root 2801 * dataset if there is none and return its details in *objset 2802 */ 2803 static int 2804 zfs_get_root(const spa_t *spa, uint64_t *objid) 2805 { 2806 dnode_phys_t dir, propdir; 2807 uint64_t props, bootfs, root; 2808 2809 *objid = 0; 2810 2811 /* 2812 * Start with the MOS directory object. 2813 */ 2814 if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, &dir)) { 2815 printf("ZFS: can't read MOS object directory\n"); 2816 return (EIO); 2817 } 2818 2819 /* 2820 * Lookup the pool_props and see if we can find a bootfs. 2821 */ 2822 if (zap_lookup(spa, &dir, DMU_POOL_PROPS, sizeof (props), 1, &props) == 0 2823 && objset_get_dnode(spa, &spa->spa_mos, props, &propdir) == 0 2824 && zap_lookup(spa, &propdir, "bootfs", sizeof (bootfs), 1, &bootfs) == 0 2825 && bootfs != 0) 2826 { 2827 *objid = bootfs; 2828 return (0); 2829 } 2830 /* 2831 * Lookup the root dataset directory 2832 */ 2833 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (root), 1, &root) 2834 || objset_get_dnode(spa, &spa->spa_mos, root, &dir)) { 2835 printf("ZFS: can't find root dsl_dir\n"); 2836 return (EIO); 2837 } 2838 2839 /* 2840 * Use the information from the dataset directory's bonus buffer 2841 * to find the dataset object and from that the object set itself. 2842 */ 2843 dsl_dir_phys_t *dd = (dsl_dir_phys_t *) &dir.dn_bonus; 2844 *objid = dd->dd_head_dataset_obj; 2845 return (0); 2846 } 2847 2848 static int 2849 zfs_mount(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount) 2850 { 2851 2852 mount->spa = spa; 2853 2854 /* 2855 * Find the root object set if not explicitly provided 2856 */ 2857 if (rootobj == 0 && zfs_get_root(spa, &rootobj)) { 2858 printf("ZFS: can't find root filesystem\n"); 2859 return (EIO); 2860 } 2861 2862 if (zfs_mount_dataset(spa, rootobj, &mount->objset)) { 2863 printf("ZFS: can't open root filesystem\n"); 2864 return (EIO); 2865 } 2866 2867 mount->rootobj = rootobj; 2868 2869 return (0); 2870 } 2871 2872 /* 2873 * callback function for feature name checks. 2874 */ 2875 static int 2876 check_feature(const char *name, uint64_t value) 2877 { 2878 int i; 2879 2880 if (value == 0) 2881 return (0); 2882 if (name[0] == '\0') 2883 return (0); 2884 2885 for (i = 0; features_for_read[i] != NULL; i++) { 2886 if (strcmp(name, features_for_read[i]) == 0) 2887 return (0); 2888 } 2889 printf("ZFS: unsupported feature: %s\n", name); 2890 return (EIO); 2891 } 2892 2893 /* 2894 * Checks whether the MOS features that are active are supported. 2895 */ 2896 static int 2897 check_mos_features(const spa_t *spa) 2898 { 2899 dnode_phys_t dir; 2900 uint64_t objnum, zap_type; 2901 size_t size; 2902 int rc; 2903 2904 if ((rc = objset_get_dnode(spa, &spa->spa_mos, DMU_OT_OBJECT_DIRECTORY, 2905 &dir)) != 0) 2906 return (rc); 2907 if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ, 2908 sizeof (objnum), 1, &objnum)) != 0) { 2909 /* 2910 * It is older pool without features. As we have already 2911 * tested the label, just return without raising the error. 2912 */ 2913 return (0); 2914 } 2915 2916 if ((rc = objset_get_dnode(spa, &spa->spa_mos, objnum, &dir)) != 0) 2917 return (rc); 2918 2919 if (dir.dn_type != DMU_OTN_ZAP_METADATA) 2920 return (EIO); 2921 2922 size = dir.dn_datablkszsec * 512; 2923 if (dnode_read(spa, &dir, 0, zap_scratch, size)) 2924 return (EIO); 2925 2926 zap_type = *(uint64_t *) zap_scratch; 2927 if (zap_type == ZBT_MICRO) 2928 rc = mzap_list(&dir, check_feature); 2929 else 2930 rc = fzap_list(spa, &dir, check_feature); 2931 2932 return (rc); 2933 } 2934 2935 static int 2936 load_nvlist(spa_t *spa, uint64_t obj, unsigned char **value) 2937 { 2938 dnode_phys_t dir; 2939 size_t size; 2940 int rc; 2941 unsigned char *nv; 2942 2943 *value = NULL; 2944 if ((rc = objset_get_dnode(spa, &spa->spa_mos, obj, &dir)) != 0) 2945 return (rc); 2946 if (dir.dn_type != DMU_OT_PACKED_NVLIST && 2947 dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) { 2948 return (EIO); 2949 } 2950 2951 if (dir.dn_bonuslen != sizeof (uint64_t)) 2952 return (EIO); 2953 2954 size = *(uint64_t *)DN_BONUS(&dir); 2955 nv = malloc(size); 2956 if (nv == NULL) 2957 return (ENOMEM); 2958 2959 rc = dnode_read(spa, &dir, 0, nv, size); 2960 if (rc != 0) { 2961 free(nv); 2962 nv = NULL; 2963 return (rc); 2964 } 2965 *value = nv; 2966 return (rc); 2967 } 2968 2969 static int 2970 zfs_spa_init(spa_t *spa) 2971 { 2972 dnode_phys_t dir; 2973 uint64_t config_object; 2974 unsigned char *nvlist; 2975 char *type; 2976 const unsigned char *nv; 2977 int nkids, rc; 2978 2979 if (zio_read(spa, &spa->spa_uberblock.ub_rootbp, &spa->spa_mos)) { 2980 printf("ZFS: can't read MOS of pool %s\n", spa->spa_name); 2981 return (EIO); 2982 } 2983 if (spa->spa_mos.os_type != DMU_OST_META) { 2984 printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name); 2985 return (EIO); 2986 } 2987 2988 if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, 2989 &dir)) { 2990 printf("ZFS: failed to read pool %s directory object\n", 2991 spa->spa_name); 2992 return (EIO); 2993 } 2994 /* this is allowed to fail, older pools do not have salt */ 2995 rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1, 2996 sizeof (spa->spa_cksum_salt.zcs_bytes), 2997 spa->spa_cksum_salt.zcs_bytes); 2998 2999 rc = check_mos_features(spa); 3000 if (rc != 0) { 3001 printf("ZFS: pool %s is not supported\n", spa->spa_name); 3002 return (rc); 3003 } 3004 3005 rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG, 3006 sizeof (config_object), 1, &config_object); 3007 if (rc != 0) { 3008 printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG); 3009 return (EIO); 3010 } 3011 rc = load_nvlist(spa, config_object, &nvlist); 3012 if (rc != 0) 3013 return (rc); 3014 3015 /* Update vdevs from MOS config. */ 3016 if (nvlist_find(nvlist + 4, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 3017 NULL, &nv)) { 3018 rc = EIO; 3019 goto done; 3020 } 3021 3022 if (nvlist_find(nv, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, 3023 NULL, &type)) { 3024 printf("ZFS: can't find vdev details\n"); 3025 rc = ENOENT; 3026 goto done; 3027 } 3028 if (strcmp(type, VDEV_TYPE_ROOT) != 0) { 3029 rc = ENOENT; 3030 goto done; 3031 } 3032 3033 rc = nvlist_find(nv, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 3034 &nkids, &nv); 3035 if (rc != 0) 3036 goto done; 3037 3038 for (int i = 0; i < nkids; i++) { 3039 vdev_t *vd, *prev, *kid = NULL; 3040 rc = vdev_init_from_nvlist(nv, NULL, &kid, 0); 3041 if (rc != 0) { 3042 printf("vdev_init_from_nvlist: %d\n", rc); 3043 break; 3044 } 3045 kid->spa = spa; 3046 prev = NULL; 3047 STAILQ_FOREACH(vd, &spa->spa_vdevs, v_childlink) { 3048 /* Already present? */ 3049 if (kid->v_id == vd->v_id) { 3050 kid = NULL; 3051 break; 3052 } 3053 if (vd->v_id > kid->v_id) { 3054 if (prev == NULL) { 3055 STAILQ_INSERT_HEAD(&spa->spa_vdevs, 3056 kid, v_childlink); 3057 } else { 3058 STAILQ_INSERT_AFTER(&spa->spa_vdevs, 3059 prev, kid, v_childlink); 3060 } 3061 kid = NULL; 3062 break; 3063 } 3064 prev = vd; 3065 } 3066 if (kid != NULL) 3067 STAILQ_INSERT_TAIL(&spa->spa_vdevs, kid, v_childlink); 3068 nv = nvlist_next(nv); 3069 } 3070 rc = 0; 3071 done: 3072 free(nvlist); 3073 return (rc); 3074 } 3075 3076 static int 3077 zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb) 3078 { 3079 3080 if (dn->dn_bonustype != DMU_OT_SA) { 3081 znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus; 3082 3083 sb->st_mode = zp->zp_mode; 3084 sb->st_uid = zp->zp_uid; 3085 sb->st_gid = zp->zp_gid; 3086 sb->st_size = zp->zp_size; 3087 } else { 3088 sa_hdr_phys_t *sahdrp; 3089 int hdrsize; 3090 size_t size = 0; 3091 void *buf = NULL; 3092 3093 if (dn->dn_bonuslen != 0) 3094 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); 3095 else { 3096 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) { 3097 blkptr_t *bp = DN_SPILL_BLKPTR(dn); 3098 int error; 3099 3100 size = BP_GET_LSIZE(bp); 3101 buf = zfs_alloc(size); 3102 error = zio_read(spa, bp, buf); 3103 if (error != 0) { 3104 zfs_free(buf, size); 3105 return (error); 3106 } 3107 sahdrp = buf; 3108 } else { 3109 return (EIO); 3110 } 3111 } 3112 hdrsize = SA_HDR_SIZE(sahdrp); 3113 sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize + 3114 SA_MODE_OFFSET); 3115 sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize + 3116 SA_UID_OFFSET); 3117 sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize + 3118 SA_GID_OFFSET); 3119 sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize + 3120 SA_SIZE_OFFSET); 3121 if (buf != NULL) 3122 zfs_free(buf, size); 3123 } 3124 3125 return (0); 3126 } 3127 3128 static int 3129 zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize) 3130 { 3131 int rc = 0; 3132 3133 if (dn->dn_bonustype == DMU_OT_SA) { 3134 sa_hdr_phys_t *sahdrp = NULL; 3135 size_t size = 0; 3136 void *buf = NULL; 3137 int hdrsize; 3138 char *p; 3139 3140 if (dn->dn_bonuslen != 0) 3141 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); 3142 else { 3143 blkptr_t *bp; 3144 3145 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0) 3146 return (EIO); 3147 bp = DN_SPILL_BLKPTR(dn); 3148 3149 size = BP_GET_LSIZE(bp); 3150 buf = zfs_alloc(size); 3151 rc = zio_read(spa, bp, buf); 3152 if (rc != 0) { 3153 zfs_free(buf, size); 3154 return (rc); 3155 } 3156 sahdrp = buf; 3157 } 3158 hdrsize = SA_HDR_SIZE(sahdrp); 3159 p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET); 3160 memcpy(path, p, psize); 3161 if (buf != NULL) 3162 zfs_free(buf, size); 3163 return (0); 3164 } 3165 /* 3166 * Second test is purely to silence bogus compiler 3167 * warning about accessing past the end of dn_bonus. 3168 */ 3169 if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen && 3170 sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) { 3171 memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize); 3172 } else { 3173 rc = dnode_read(spa, dn, 0, path, psize); 3174 } 3175 return (rc); 3176 } 3177 3178 struct obj_list { 3179 uint64_t objnum; 3180 STAILQ_ENTRY(obj_list) entry; 3181 }; 3182 3183 /* 3184 * Lookup a file and return its dnode. 3185 */ 3186 static int 3187 zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode) 3188 { 3189 int rc; 3190 uint64_t objnum; 3191 const spa_t *spa; 3192 dnode_phys_t dn; 3193 const char *p, *q; 3194 char element[256]; 3195 char path[1024]; 3196 int symlinks_followed = 0; 3197 struct stat sb; 3198 struct obj_list *entry, *tentry; 3199 STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache); 3200 3201 spa = mount->spa; 3202 if (mount->objset.os_type != DMU_OST_ZFS) { 3203 printf("ZFS: unexpected object set type %ju\n", 3204 (uintmax_t)mount->objset.os_type); 3205 return (EIO); 3206 } 3207 3208 if ((entry = malloc(sizeof(struct obj_list))) == NULL) 3209 return (ENOMEM); 3210 3211 /* 3212 * Get the root directory dnode. 3213 */ 3214 rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn); 3215 if (rc) { 3216 free(entry); 3217 return (rc); 3218 } 3219 3220 rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof (objnum), 1, &objnum); 3221 if (rc) { 3222 free(entry); 3223 return (rc); 3224 } 3225 entry->objnum = objnum; 3226 STAILQ_INSERT_HEAD(&on_cache, entry, entry); 3227 3228 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3229 if (rc != 0) 3230 goto done; 3231 3232 p = upath; 3233 while (p && *p) { 3234 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3235 if (rc != 0) 3236 goto done; 3237 3238 while (*p == '/') 3239 p++; 3240 if (*p == '\0') 3241 break; 3242 q = p; 3243 while (*q != '\0' && *q != '/') 3244 q++; 3245 3246 /* skip dot */ 3247 if (p + 1 == q && p[0] == '.') { 3248 p++; 3249 continue; 3250 } 3251 /* double dot */ 3252 if (p + 2 == q && p[0] == '.' && p[1] == '.') { 3253 p += 2; 3254 if (STAILQ_FIRST(&on_cache) == 3255 STAILQ_LAST(&on_cache, obj_list, entry)) { 3256 rc = ENOENT; 3257 goto done; 3258 } 3259 entry = STAILQ_FIRST(&on_cache); 3260 STAILQ_REMOVE_HEAD(&on_cache, entry); 3261 free(entry); 3262 objnum = (STAILQ_FIRST(&on_cache))->objnum; 3263 continue; 3264 } 3265 if (q - p + 1 > sizeof(element)) { 3266 rc = ENAMETOOLONG; 3267 goto done; 3268 } 3269 memcpy(element, p, q - p); 3270 element[q - p] = 0; 3271 p = q; 3272 3273 if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0) 3274 goto done; 3275 if (!S_ISDIR(sb.st_mode)) { 3276 rc = ENOTDIR; 3277 goto done; 3278 } 3279 3280 rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum); 3281 if (rc) 3282 goto done; 3283 objnum = ZFS_DIRENT_OBJ(objnum); 3284 3285 if ((entry = malloc(sizeof(struct obj_list))) == NULL) { 3286 rc = ENOMEM; 3287 goto done; 3288 } 3289 entry->objnum = objnum; 3290 STAILQ_INSERT_HEAD(&on_cache, entry, entry); 3291 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3292 if (rc) 3293 goto done; 3294 3295 /* 3296 * Check for symlink. 3297 */ 3298 rc = zfs_dnode_stat(spa, &dn, &sb); 3299 if (rc) 3300 goto done; 3301 if (S_ISLNK(sb.st_mode)) { 3302 if (symlinks_followed > 10) { 3303 rc = EMLINK; 3304 goto done; 3305 } 3306 symlinks_followed++; 3307 3308 /* 3309 * Read the link value and copy the tail of our 3310 * current path onto the end. 3311 */ 3312 if (sb.st_size + strlen(p) + 1 > sizeof(path)) { 3313 rc = ENAMETOOLONG; 3314 goto done; 3315 } 3316 strcpy(&path[sb.st_size], p); 3317 3318 rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size); 3319 if (rc != 0) 3320 goto done; 3321 3322 /* 3323 * Restart with the new path, starting either at 3324 * the root or at the parent depending whether or 3325 * not the link is relative. 3326 */ 3327 p = path; 3328 if (*p == '/') { 3329 while (STAILQ_FIRST(&on_cache) != 3330 STAILQ_LAST(&on_cache, obj_list, entry)) { 3331 entry = STAILQ_FIRST(&on_cache); 3332 STAILQ_REMOVE_HEAD(&on_cache, entry); 3333 free(entry); 3334 } 3335 } else { 3336 entry = STAILQ_FIRST(&on_cache); 3337 STAILQ_REMOVE_HEAD(&on_cache, entry); 3338 free(entry); 3339 } 3340 objnum = (STAILQ_FIRST(&on_cache))->objnum; 3341 } 3342 } 3343 3344 *dnode = dn; 3345 done: 3346 STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry) 3347 free(entry); 3348 return (rc); 3349 } 3350