/*- * Copyright (c) 2007 Doug Rabson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * Stand-alone ZFS file reader. */ #include #include #include #include #include "zfsimpl.h" #include "zfssubr.c" struct zfsmount { const spa_t *spa; objset_phys_t objset; uint64_t rootobj; }; static struct zfsmount zfsmount __unused; /* * The indirect_child_t represents the vdev that we will read from, when we * need to read all copies of the data (e.g. for scrub or reconstruction). * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror), * ic_vdev is the same as is_vdev. However, for mirror top-level vdevs, * ic_vdev is a child of the mirror. */ typedef struct indirect_child { void *ic_data; vdev_t *ic_vdev; } indirect_child_t; /* * The indirect_split_t represents one mapped segment of an i/o to the * indirect vdev. For non-split (contiguously-mapped) blocks, there will be * only one indirect_split_t, with is_split_offset==0 and is_size==io_size. * For split blocks, there will be several of these. */ typedef struct indirect_split { list_node_t is_node; /* link on iv_splits */ /* * is_split_offset is the offset into the i/o. * This is the sum of the previous splits' is_size's. */ uint64_t is_split_offset; vdev_t *is_vdev; /* top-level vdev */ uint64_t is_target_offset; /* offset on is_vdev */ uint64_t is_size; int is_children; /* number of entries in is_child[] */ /* * is_good_child is the child that we are currently using to * attempt reconstruction. */ int is_good_child; indirect_child_t is_child[1]; /* variable-length */ } indirect_split_t; /* * The indirect_vsd_t is associated with each i/o to the indirect vdev. * It is the "Vdev-Specific Data" in the zio_t's io_vsd. */ typedef struct indirect_vsd { boolean_t iv_split_block; boolean_t iv_reconstruct; list_t iv_splits; /* list of indirect_split_t's */ } indirect_vsd_t; /* * List of all vdevs, chained through v_alllink. */ static vdev_list_t zfs_vdevs; /* * List of ZFS features supported for read */ static const char *features_for_read[] = { "org.illumos:lz4_compress", "com.delphix:hole_birth", "com.delphix:extensible_dataset", "com.delphix:embedded_data", "org.open-zfs:large_blocks", "org.illumos:sha512", "org.illumos:skein", "org.zfsonlinux:large_dnode", "com.joyent:multi_vdev_crash_dump", "com.delphix:spacemap_histogram", "com.delphix:zpool_checkpoint", "com.delphix:spacemap_v2", "com.datto:encryption", "org.zfsonlinux:allocation_classes", "com.datto:resilver_defer", "com.delphix:device_removal", "com.delphix:obsolete_counts", "com.intel:allocation_classes", NULL }; /* * List of all pools, chained through spa_link. */ static spa_list_t zfs_pools; static const dnode_phys_t *dnode_cache_obj; static uint64_t dnode_cache_bn; static char *dnode_cache_buf; static char *zap_scratch; static char *zfs_temp_buf, *zfs_temp_end, *zfs_temp_ptr; #define TEMP_SIZE (1024 * 1024) static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf); static int zfs_get_root(const spa_t *spa, uint64_t *objid); static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result); static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name, uint64_t integer_size, uint64_t num_integers, void *value); static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t, dnode_phys_t *); static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *, size_t); static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t, size_t); static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, size_t); vdev_indirect_mapping_t *vdev_indirect_mapping_open(spa_t *, objset_phys_t *, uint64_t); vdev_indirect_mapping_entry_phys_t * vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *, uint64_t, uint64_t, uint64_t *); static void zfs_init(void) { STAILQ_INIT(&zfs_vdevs); STAILQ_INIT(&zfs_pools); zfs_temp_buf = malloc(TEMP_SIZE); zfs_temp_end = zfs_temp_buf + TEMP_SIZE; zfs_temp_ptr = zfs_temp_buf; dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE); zap_scratch = malloc(SPA_MAXBLOCKSIZE); zfs_init_crc(); } static void * zfs_alloc(size_t size) { char *ptr; if (zfs_temp_ptr + size > zfs_temp_end) { panic("ZFS: out of temporary buffer space"); } ptr = zfs_temp_ptr; zfs_temp_ptr += size; return (ptr); } static void zfs_free(void *ptr, size_t size) { zfs_temp_ptr -= size; if (zfs_temp_ptr != ptr) { panic("ZFS: zfs_alloc()/zfs_free() mismatch"); } } static int xdr_int(const unsigned char **xdr, int *ip) { *ip = be32dec(*xdr); (*xdr) += 4; return (0); } static int xdr_u_int(const unsigned char **xdr, u_int *ip) { *ip = be32dec(*xdr); (*xdr) += 4; return (0); } static int xdr_uint64_t(const unsigned char **xdr, uint64_t *lp) { u_int hi, lo; xdr_u_int(xdr, &hi); xdr_u_int(xdr, &lo); *lp = (((uint64_t) hi) << 32) | lo; return (0); } static int nvlist_find(const unsigned char *nvlist, const char *name, int type, int *elementsp, void *valuep) { const unsigned char *p, *pair; int junk; int encoded_size, decoded_size; p = nvlist; xdr_int(&p, &junk); xdr_int(&p, &junk); pair = p; xdr_int(&p, &encoded_size); xdr_int(&p, &decoded_size); while (encoded_size && decoded_size) { int namelen, pairtype, elements; const char *pairname; xdr_int(&p, &namelen); pairname = (const char*) p; p += roundup(namelen, 4); xdr_int(&p, &pairtype); if (!memcmp(name, pairname, namelen) && type == pairtype) { xdr_int(&p, &elements); if (elementsp) *elementsp = elements; if (type == DATA_TYPE_UINT64) { xdr_uint64_t(&p, (uint64_t *) valuep); return (0); } else if (type == DATA_TYPE_STRING) { int len; xdr_int(&p, &len); (*(const char**) valuep) = (const char*) p; return (0); } else if (type == DATA_TYPE_NVLIST || type == DATA_TYPE_NVLIST_ARRAY) { (*(const unsigned char**) valuep) = (const unsigned char*) p; return (0); } else { return (EIO); } } else { /* * Not the pair we are looking for, skip to the next one. */ p = pair + encoded_size; } pair = p; xdr_int(&p, &encoded_size); xdr_int(&p, &decoded_size); } return (EIO); } static int nvlist_check_features_for_read(const unsigned char *nvlist) { const unsigned char *p, *pair; int junk; int encoded_size, decoded_size; int rc; rc = 0; p = nvlist; xdr_int(&p, &junk); xdr_int(&p, &junk); pair = p; xdr_int(&p, &encoded_size); xdr_int(&p, &decoded_size); while (encoded_size && decoded_size) { int namelen, pairtype; const char *pairname; int i, found; found = 0; xdr_int(&p, &namelen); pairname = (const char*) p; p += roundup(namelen, 4); xdr_int(&p, &pairtype); for (i = 0; features_for_read[i] != NULL; i++) { if (!memcmp(pairname, features_for_read[i], namelen)) { found = 1; break; } } if (!found) { printf("ZFS: unsupported feature: %s\n", pairname); rc = EIO; } p = pair + encoded_size; pair = p; xdr_int(&p, &encoded_size); xdr_int(&p, &decoded_size); } return (rc); } /* * Return the next nvlist in an nvlist array. */ static const unsigned char * nvlist_next(const unsigned char *nvlist) { const unsigned char *p, *pair; int junk; int encoded_size, decoded_size; p = nvlist; xdr_int(&p, &junk); xdr_int(&p, &junk); pair = p; xdr_int(&p, &encoded_size); xdr_int(&p, &decoded_size); while (encoded_size && decoded_size) { p = pair + encoded_size; pair = p; xdr_int(&p, &encoded_size); xdr_int(&p, &decoded_size); } return p; } #ifdef TEST static const unsigned char * nvlist_print(const unsigned char *nvlist, unsigned int indent) { static const char* typenames[] = { "DATA_TYPE_UNKNOWN", "DATA_TYPE_BOOLEAN", "DATA_TYPE_BYTE", "DATA_TYPE_INT16", "DATA_TYPE_UINT16", "DATA_TYPE_INT32", "DATA_TYPE_UINT32", "DATA_TYPE_INT64", "DATA_TYPE_UINT64", "DATA_TYPE_STRING", "DATA_TYPE_BYTE_ARRAY", "DATA_TYPE_INT16_ARRAY", "DATA_TYPE_UINT16_ARRAY", "DATA_TYPE_INT32_ARRAY", "DATA_TYPE_UINT32_ARRAY", "DATA_TYPE_INT64_ARRAY", "DATA_TYPE_UINT64_ARRAY", "DATA_TYPE_STRING_ARRAY", "DATA_TYPE_HRTIME", "DATA_TYPE_NVLIST", "DATA_TYPE_NVLIST_ARRAY", "DATA_TYPE_BOOLEAN_VALUE", "DATA_TYPE_INT8", "DATA_TYPE_UINT8", "DATA_TYPE_BOOLEAN_ARRAY", "DATA_TYPE_INT8_ARRAY", "DATA_TYPE_UINT8_ARRAY" }; unsigned int i, j; const unsigned char *p, *pair; int junk; int encoded_size, decoded_size; p = nvlist; xdr_int(&p, &junk); xdr_int(&p, &junk); pair = p; xdr_int(&p, &encoded_size); xdr_int(&p, &decoded_size); while (encoded_size && decoded_size) { int namelen, pairtype, elements; const char *pairname; xdr_int(&p, &namelen); pairname = (const char*) p; p += roundup(namelen, 4); xdr_int(&p, &pairtype); for (i = 0; i < indent; i++) printf(" "); printf("%s %s", typenames[pairtype], pairname); xdr_int(&p, &elements); switch (pairtype) { case DATA_TYPE_UINT64: { uint64_t val; xdr_uint64_t(&p, &val); printf(" = 0x%jx\n", (uintmax_t)val); break; } case DATA_TYPE_STRING: { int len; xdr_int(&p, &len); printf(" = \"%s\"\n", p); break; } case DATA_TYPE_NVLIST: printf("\n"); nvlist_print(p, indent + 1); break; case DATA_TYPE_NVLIST_ARRAY: for (j = 0; j < elements; j++) { printf("[%d]\n", j); p = nvlist_print(p, indent + 1); if (j != elements - 1) { for (i = 0; i < indent; i++) printf(" "); printf("%s %s", typenames[pairtype], pairname); } } break; default: printf("\n"); } p = pair + encoded_size; pair = p; xdr_int(&p, &encoded_size); xdr_int(&p, &decoded_size); } return p; } #endif static int vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf, off_t offset, size_t size) { size_t psize; int rc; if (!vdev->v_phys_read) return (EIO); if (bp) { psize = BP_GET_PSIZE(bp); } else { psize = size; } /*printf("ZFS: reading %zu bytes at 0x%jx to %p\n", psize, (uintmax_t)offset, buf);*/ rc = vdev->v_phys_read(vdev, vdev->v_read_priv, offset, buf, psize); if (rc) return (rc); if (bp != NULL) return (zio_checksum_verify(vdev->spa, bp, buf)); return (0); } typedef struct remap_segment { vdev_t *rs_vd; uint64_t rs_offset; uint64_t rs_asize; uint64_t rs_split_offset; list_node_t rs_node; } remap_segment_t; static remap_segment_t * rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset) { remap_segment_t *rs = malloc(sizeof (remap_segment_t)); if (rs != NULL) { rs->rs_vd = vd; rs->rs_offset = offset; rs->rs_asize = asize; rs->rs_split_offset = split_offset; } return (rs); } vdev_indirect_mapping_t * vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os, uint64_t mapping_object) { vdev_indirect_mapping_t *vim; vdev_indirect_mapping_phys_t *vim_phys; int rc; vim = calloc(1, sizeof (*vim)); if (vim == NULL) return (NULL); vim->vim_dn = calloc(1, sizeof (*vim->vim_dn)); if (vim->vim_dn == NULL) { free(vim); return (NULL); } rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn); if (rc != 0) { free(vim->vim_dn); free(vim); return (NULL); } vim->vim_spa = spa; vim->vim_phys = malloc(sizeof (*vim->vim_phys)); if (vim->vim_phys == NULL) { free(vim->vim_dn); free(vim); return (NULL); } vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn); *vim->vim_phys = *vim_phys; vim->vim_objset = os; vim->vim_object = mapping_object; vim->vim_entries = NULL; vim->vim_havecounts = (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0); return (vim); } /* * Compare an offset with an indirect mapping entry; there are three * possible scenarios: * * 1. The offset is "less than" the mapping entry; meaning the * offset is less than the source offset of the mapping entry. In * this case, there is no overlap between the offset and the * mapping entry and -1 will be returned. * * 2. The offset is "greater than" the mapping entry; meaning the * offset is greater than the mapping entry's source offset plus * the entry's size. In this case, there is no overlap between * the offset and the mapping entry and 1 will be returned. * * NOTE: If the offset is actually equal to the entry's offset * plus size, this is considered to be "greater" than the entry, * and this case applies (i.e. 1 will be returned). Thus, the * entry's "range" can be considered to be inclusive at its * start, but exclusive at its end: e.g. [src, src + size). * * 3. The last case to consider is if the offset actually falls * within the mapping entry's range. If this is the case, the * offset is considered to be "equal to" the mapping entry and * 0 will be returned. * * NOTE: If the offset is equal to the entry's source offset, * this case applies and 0 will be returned. If the offset is * equal to the entry's source plus its size, this case does * *not* apply (see "NOTE" above for scenario 2), and 1 will be * returned. */ static int dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem) { const uint64_t *key = v_key; const vdev_indirect_mapping_entry_phys_t *array_elem = v_array_elem; uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem); if (*key < src_offset) { return (-1); } else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) { return (0); } else { return (1); } } /* * Return array entry. */ static vdev_indirect_mapping_entry_phys_t * vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index) { uint64_t size; off_t offset = 0; int rc; if (vim->vim_phys->vimp_num_entries == 0) return (NULL); if (vim->vim_entries == NULL) { uint64_t bsize; bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT; size = vim->vim_phys->vimp_num_entries * sizeof (*vim->vim_entries); if (size > bsize) { size = bsize / sizeof (*vim->vim_entries); size *= sizeof (*vim->vim_entries); } vim->vim_entries = malloc(size); if (vim->vim_entries == NULL) return (NULL); vim->vim_num_entries = size / sizeof (*vim->vim_entries); offset = index * sizeof (*vim->vim_entries); } /* We have data in vim_entries */ if (offset == 0) { if (index >= vim->vim_entry_offset && index <= vim->vim_entry_offset + vim->vim_num_entries) { index -= vim->vim_entry_offset; return (&vim->vim_entries[index]); } offset = index * sizeof (*vim->vim_entries); } vim->vim_entry_offset = index; size = vim->vim_num_entries * sizeof (*vim->vim_entries); rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries, size); if (rc != 0) { /* Read error, invalidate vim_entries. */ free(vim->vim_entries); vim->vim_entries = NULL; return (NULL); } index -= vim->vim_entry_offset; return (&vim->vim_entries[index]); } /* * Returns the mapping entry for the given offset. * * It's possible that the given offset will not be in the mapping table * (i.e. no mapping entries contain this offset), in which case, the * return value value depends on the "next_if_missing" parameter. * * If the offset is not found in the table and "next_if_missing" is * B_FALSE, then NULL will always be returned. The behavior is intended * to allow consumers to get the entry corresponding to the offset * parameter, iff the offset overlaps with an entry in the table. * * If the offset is not found in the table and "next_if_missing" is * B_TRUE, then the entry nearest to the given offset will be returned, * such that the entry's source offset is greater than the offset * passed in (i.e. the "next" mapping entry in the table is returned, if * the offset is missing from the table). If there are no entries whose * source offset is greater than the passed in offset, NULL is returned. */ static vdev_indirect_mapping_entry_phys_t * vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim, uint64_t offset) { ASSERT(vim->vim_phys->vimp_num_entries > 0); vdev_indirect_mapping_entry_phys_t *entry; uint64_t last = vim->vim_phys->vimp_num_entries - 1; uint64_t base = 0; /* * We don't define these inside of the while loop because we use * their value in the case that offset isn't in the mapping. */ uint64_t mid; int result; while (last >= base) { mid = base + ((last - base) >> 1); entry = vdev_indirect_mapping_entry(vim, mid); if (entry == NULL) break; result = dva_mapping_overlap_compare(&offset, entry); if (result == 0) { break; } else if (result < 0) { last = mid - 1; } else { base = mid + 1; } } return (entry); } /* * Given an indirect vdev and an extent on that vdev, it duplicates the * physical entries of the indirect mapping that correspond to the extent * to a new array and returns a pointer to it. In addition, copied_entries * is populated with the number of mapping entries that were duplicated. * * Finally, since we are doing an allocation, it is up to the caller to * free the array allocated in this function. */ vdev_indirect_mapping_entry_phys_t * vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t *copied_entries) { vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL; vdev_indirect_mapping_t *vim = vd->v_mapping; uint64_t entries = 0; vdev_indirect_mapping_entry_phys_t *first_mapping = vdev_indirect_mapping_entry_for_offset(vim, offset); ASSERT3P(first_mapping, !=, NULL); vdev_indirect_mapping_entry_phys_t *m = first_mapping; while (asize > 0) { uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m); uint64_t inner_size = MIN(asize, size - inner_offset); offset += inner_size; asize -= inner_size; entries++; m++; } size_t copy_length = entries * sizeof (*first_mapping); duplicate_mappings = malloc(copy_length); if (duplicate_mappings != NULL) bcopy(first_mapping, duplicate_mappings, copy_length); else entries = 0; *copied_entries = entries; return (duplicate_mappings); } static vdev_t * vdev_lookup_top(spa_t *spa, uint64_t vdev) { vdev_t *rvd; STAILQ_FOREACH(rvd, &spa->spa_vdevs, v_childlink) if (rvd->v_id == vdev) break; return (rvd); } /* * This is a callback for vdev_indirect_remap() which allocates an * indirect_split_t for each split segment and adds it to iv_splits. */ static void vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset, uint64_t size, void *arg) { int n = 1; zio_t *zio = arg; indirect_vsd_t *iv = zio->io_vsd; if (vd->v_read == vdev_indirect_read) return; if (vd->v_read == vdev_mirror_read) n = vd->v_nchildren; indirect_split_t *is = malloc(offsetof(indirect_split_t, is_child[n])); if (is == NULL) { zio->io_error = ENOMEM; return; } bzero(is, offsetof(indirect_split_t, is_child[n])); is->is_children = n; is->is_size = size; is->is_split_offset = split_offset; is->is_target_offset = offset; is->is_vdev = vd; /* * Note that we only consider multiple copies of the data for * *mirror* vdevs. We don't for "replacing" or "spare" vdevs, even * though they use the same ops as mirror, because there's only one * "good" copy under the replacing/spare. */ if (vd->v_read == vdev_mirror_read) { int i = 0; vdev_t *kid; STAILQ_FOREACH(kid, &vd->v_children, v_childlink) { is->is_child[i++].ic_vdev = kid; } } else { is->is_child[0].ic_vdev = vd; } list_insert_tail(&iv->iv_splits, is); } static void vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg) { list_t stack; spa_t *spa = vd->spa; zio_t *zio = arg; remap_segment_t *rs; list_create(&stack, sizeof (remap_segment_t), offsetof(remap_segment_t, rs_node)); rs = rs_alloc(vd, offset, asize, 0); if (rs == NULL) { printf("vdev_indirect_remap: out of memory.\n"); zio->io_error = ENOMEM; } for ( ; rs != NULL; rs = list_remove_head(&stack)) { vdev_t *v = rs->rs_vd; uint64_t num_entries = 0; /* vdev_indirect_mapping_t *vim = v->v_mapping; */ vdev_indirect_mapping_entry_phys_t *mapping = vdev_indirect_mapping_duplicate_adjacent_entries(v, rs->rs_offset, rs->rs_asize, &num_entries); if (num_entries == 0) zio->io_error = ENOMEM; for (uint64_t i = 0; i < num_entries; i++) { vdev_indirect_mapping_entry_phys_t *m = &mapping[i]; uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst); uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst); uint64_t inner_offset = rs->rs_offset - DVA_MAPPING_GET_SRC_OFFSET(m); uint64_t inner_size = MIN(rs->rs_asize, size - inner_offset); vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev); if (dst_v->v_read == vdev_indirect_read) { remap_segment_t *o; o = rs_alloc(dst_v, dst_offset + inner_offset, inner_size, rs->rs_split_offset); if (o == NULL) { printf("vdev_indirect_remap: " "out of memory.\n"); zio->io_error = ENOMEM; break; } list_insert_head(&stack, o); } vdev_indirect_gather_splits(rs->rs_split_offset, dst_v, dst_offset + inner_offset, inner_size, arg); /* * vdev_indirect_gather_splits can have memory * allocation error, we can not recover from it. */ if (zio->io_error != 0) break; rs->rs_offset += inner_size; rs->rs_asize -= inner_size; rs->rs_split_offset += inner_size; } free(mapping); free(rs); if (zio->io_error != 0) break; } list_destroy(&stack); } static void vdev_indirect_map_free(zio_t *zio) { indirect_vsd_t *iv = zio->io_vsd; indirect_split_t *is; while ((is = list_head(&iv->iv_splits)) != NULL) { for (int c = 0; c < is->is_children; c++) { indirect_child_t *ic = &is->is_child[c]; free(ic->ic_data); } list_remove(&iv->iv_splits, is); free(is); } free(iv); } static int vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf, off_t offset, size_t bytes) { zio_t zio = { 0 }; spa_t *spa = vdev->spa; indirect_vsd_t *iv = malloc(sizeof (*iv)); indirect_split_t *first; int rc = EIO; if (iv == NULL) return (ENOMEM); bzero(iv, sizeof (*iv)); list_create(&iv->iv_splits, sizeof (indirect_split_t), offsetof(indirect_split_t, is_node)); zio.io_spa = spa; zio.io_bp = (blkptr_t *)bp; zio.io_data = buf; zio.io_size = bytes; zio.io_offset = offset; zio.io_vd = vdev; zio.io_vsd = iv; if (vdev->v_mapping == NULL) { vdev_indirect_config_t *vic; vic = &vdev->vdev_indirect_config; vdev->v_mapping = vdev_indirect_mapping_open(spa, &spa->spa_mos, vic->vic_mapping_object); } vdev_indirect_remap(vdev, offset, bytes, &zio); if (zio.io_error != 0) return (zio.io_error); first = list_head(&iv->iv_splits); if (first->is_size == zio.io_size) { /* * This is not a split block; we are pointing to the entire * data, which will checksum the same as the original data. * Pass the BP down so that the child i/o can verify the * checksum, and try a different location if available * (e.g. on a mirror). * * While this special case could be handled the same as the * general (split block) case, doing it this way ensures * that the vast majority of blocks on indirect vdevs * (which are not split) are handled identically to blocks * on non-indirect vdevs. This allows us to be less strict * about performance in the general (but rare) case. */ rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp, zio.io_data, first->is_target_offset, bytes); } else { iv->iv_split_block = B_TRUE; /* * Read one copy of each split segment, from the * top-level vdev. Since we don't know the * checksum of each split individually, the child * zio can't ensure that we get the right data. * E.g. if it's a mirror, it will just read from a * random (healthy) leaf vdev. We have to verify * the checksum in vdev_indirect_io_done(). */ for (indirect_split_t *is = list_head(&iv->iv_splits); is != NULL; is = list_next(&iv->iv_splits, is)) { char *ptr = zio.io_data; rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp, ptr + is->is_split_offset, is->is_target_offset, is->is_size); } if (zio_checksum_verify(spa, zio.io_bp, zio.io_data)) rc = ECKSUM; else rc = 0; } vdev_indirect_map_free(&zio); if (rc == 0) rc = zio.io_error; return (rc); } static int vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf, off_t offset, size_t bytes) { return (vdev_read_phys(vdev, bp, buf, offset + VDEV_LABEL_START_SIZE, bytes)); } static int vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf, off_t offset, size_t bytes) { vdev_t *kid; int rc; rc = EIO; STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { if (kid->v_state != VDEV_STATE_HEALTHY) continue; rc = kid->v_read(kid, bp, buf, offset, bytes); if (!rc) return (0); } return (rc); } static int vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf, off_t offset, size_t bytes) { vdev_t *kid; /* * Here we should have two kids: * First one which is the one we are replacing and we can trust * only this one to have valid data, but it might not be present. * Second one is that one we are replacing with. It is most likely * healthy, but we can't trust it has needed data, so we won't use it. */ kid = STAILQ_FIRST(&vdev->v_children); if (kid == NULL) return (EIO); if (kid->v_state != VDEV_STATE_HEALTHY) return (EIO); return (kid->v_read(kid, bp, buf, offset, bytes)); } static vdev_t * vdev_find(uint64_t guid) { vdev_t *vdev; STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink) if (vdev->v_guid == guid) return (vdev); return (0); } static vdev_t * vdev_create(uint64_t guid, vdev_read_t *_read) { vdev_t *vdev; vdev_indirect_config_t *vic; vdev = malloc(sizeof(vdev_t)); memset(vdev, 0, sizeof(vdev_t)); STAILQ_INIT(&vdev->v_children); vdev->v_guid = guid; vdev->v_state = VDEV_STATE_OFFLINE; vdev->v_read = _read; vic = &vdev->vdev_indirect_config; vic->vic_prev_indirect_vdev = UINT64_MAX; STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink); return (vdev); } static int vdev_init_from_nvlist(const unsigned char *nvlist, vdev_t *pvdev, vdev_t **vdevp, int is_newer) { int rc; uint64_t guid, id, ashift, asize, nparity; const char *type; const char *path; vdev_t *vdev, *kid; const unsigned char *kids; int nkids, i, is_new; uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present; uint64_t is_log; if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, NULL, &guid) || nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id) || nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, NULL, &type)) { printf("ZFS: can't find vdev details\n"); return (ENOENT); } if (strcmp(type, VDEV_TYPE_MIRROR) && strcmp(type, VDEV_TYPE_DISK) #ifdef ZFS_TEST && strcmp(type, VDEV_TYPE_FILE) #endif && strcmp(type, VDEV_TYPE_RAIDZ) && strcmp(type, VDEV_TYPE_INDIRECT) && strcmp(type, VDEV_TYPE_REPLACING)) { printf("ZFS: can only boot from disk, mirror, raidz1, raidz2 and raidz3 vdevs\n"); return (EIO); } is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0; is_log = 0; nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL, &is_offline); nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL, &is_removed); nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL, &is_faulted); nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64, NULL, &is_degraded); nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64, NULL, &isnt_present); nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL, &is_log); vdev = vdev_find(guid); if (!vdev) { is_new = 1; if (!strcmp(type, VDEV_TYPE_MIRROR)) vdev = vdev_create(guid, vdev_mirror_read); else if (!strcmp(type, VDEV_TYPE_RAIDZ)) vdev = vdev_create(guid, vdev_raidz_read); else if (!strcmp(type, VDEV_TYPE_REPLACING)) vdev = vdev_create(guid, vdev_replacing_read); else if (!strcmp(type, VDEV_TYPE_INDIRECT)) { vdev_indirect_config_t *vic; vdev = vdev_create(guid, vdev_indirect_read); vdev->v_state = VDEV_STATE_HEALTHY; vic = &vdev->vdev_indirect_config; nvlist_find(nvlist, ZPOOL_CONFIG_INDIRECT_OBJECT, DATA_TYPE_UINT64, NULL, &vic->vic_mapping_object); nvlist_find(nvlist, ZPOOL_CONFIG_INDIRECT_BIRTHS, DATA_TYPE_UINT64, NULL, &vic->vic_births_object); nvlist_find(nvlist, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, DATA_TYPE_UINT64, NULL, &vic->vic_prev_indirect_vdev); } else vdev = vdev_create(guid, vdev_disk_read); vdev->v_id = id; vdev->v_top = pvdev != NULL ? pvdev : vdev; if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT, DATA_TYPE_UINT64, NULL, &ashift) == 0) { vdev->v_ashift = ashift; } else { vdev->v_ashift = 0; } if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE, DATA_TYPE_UINT64, NULL, &asize) == 0) { vdev->v_psize = asize + VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; } if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY, DATA_TYPE_UINT64, NULL, &nparity) == 0) { vdev->v_nparity = nparity; } else { vdev->v_nparity = 0; } if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH, DATA_TYPE_STRING, NULL, &path) == 0) { if (strncmp(path, "/dev/", 5) == 0) path += 5; vdev->v_name = strdup(path); } else { char *name; if (!strcmp(type, "raidz")) { if (vdev->v_nparity < 1 || vdev->v_nparity > 3) { printf("ZFS: can only boot from disk, " "mirror, raidz1, raidz2 and raidz3 " "vdevs\n"); return (EIO); } asprintf(&name, "%s%d-%jd", type, vdev->v_nparity, id); } else { asprintf(&name, "%s-%jd", type, id); } if (name == NULL) return (ENOMEM); vdev->v_name = name; } vdev->v_islog = is_log == 1; } else { is_new = 0; } if (is_new || is_newer) { /* * This is either new vdev or we've already seen this vdev, * but from an older vdev label, so let's refresh its state * from the newer label. */ if (is_offline) vdev->v_state = VDEV_STATE_OFFLINE; else if (is_removed) vdev->v_state = VDEV_STATE_REMOVED; else if (is_faulted) vdev->v_state = VDEV_STATE_FAULTED; else if (is_degraded) vdev->v_state = VDEV_STATE_DEGRADED; else if (isnt_present) vdev->v_state = VDEV_STATE_CANT_OPEN; } rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, &nkids, &kids); /* * Its ok if we don't have any kids. */ if (rc == 0) { vdev->v_nchildren = nkids; for (i = 0; i < nkids; i++) { rc = vdev_init_from_nvlist(kids, vdev, &kid, is_newer); if (rc) return (rc); if (is_new) STAILQ_INSERT_TAIL(&vdev->v_children, kid, v_childlink); kids = nvlist_next(kids); } } else { vdev->v_nchildren = 0; } if (vdevp) *vdevp = vdev; return (0); } static void vdev_set_state(vdev_t *vdev) { vdev_t *kid; int good_kids; int bad_kids; /* * A mirror or raidz is healthy if all its kids are healthy. A * mirror is degraded if any of its kids is healthy; a raidz * is degraded if at most nparity kids are offline. */ if (STAILQ_FIRST(&vdev->v_children)) { good_kids = 0; bad_kids = 0; STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { if (kid->v_state == VDEV_STATE_HEALTHY) good_kids++; else bad_kids++; } if (bad_kids == 0) { vdev->v_state = VDEV_STATE_HEALTHY; } else { if (vdev->v_read == vdev_mirror_read) { if (good_kids) { vdev->v_state = VDEV_STATE_DEGRADED; } else { vdev->v_state = VDEV_STATE_OFFLINE; } } else if (vdev->v_read == vdev_raidz_read) { if (bad_kids > vdev->v_nparity) { vdev->v_state = VDEV_STATE_OFFLINE; } else { vdev->v_state = VDEV_STATE_DEGRADED; } } } } } static spa_t * spa_find_by_guid(uint64_t guid) { spa_t *spa; STAILQ_FOREACH(spa, &zfs_pools, spa_link) if (spa->spa_guid == guid) return (spa); return (0); } static spa_t * spa_find_by_name(const char *name) { spa_t *spa; STAILQ_FOREACH(spa, &zfs_pools, spa_link) if (!strcmp(spa->spa_name, name)) return (spa); return (0); } #ifdef BOOT2 static spa_t * spa_get_primary(void) { return (STAILQ_FIRST(&zfs_pools)); } static vdev_t * spa_get_primary_vdev(const spa_t *spa) { vdev_t *vdev; vdev_t *kid; if (spa == NULL) spa = spa_get_primary(); if (spa == NULL) return (NULL); vdev = STAILQ_FIRST(&spa->spa_vdevs); if (vdev == NULL) return (NULL); for (kid = STAILQ_FIRST(&vdev->v_children); kid != NULL; kid = STAILQ_FIRST(&vdev->v_children)) vdev = kid; return (vdev); } #endif static spa_t * spa_create(uint64_t guid, const char *name) { spa_t *spa; if ((spa = calloc(1, sizeof(spa_t))) == NULL) return (NULL); if ((spa->spa_name = strdup(name)) == NULL) { free(spa); return (NULL); } STAILQ_INIT(&spa->spa_vdevs); spa->spa_guid = guid; STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link); return (spa); } static const char * state_name(vdev_state_t state) { static const char* names[] = { "UNKNOWN", "CLOSED", "OFFLINE", "REMOVED", "CANT_OPEN", "FAULTED", "DEGRADED", "ONLINE" }; return names[state]; } #ifdef BOOT2 #define pager_printf printf #else static int pager_printf(const char *fmt, ...) { char line[80]; va_list args; va_start(args, fmt); vsprintf(line, fmt, args); va_end(args); return (pager_output(line)); } #endif #define STATUS_FORMAT " %s %s\n" static int print_state(int indent, const char *name, vdev_state_t state) { char buf[512]; int i; buf[0] = 0; for (i = 0; i < indent; i++) strcat(buf, " "); strcat(buf, name); return (pager_printf(STATUS_FORMAT, buf, state_name(state))); } static int vdev_status(vdev_t *vdev, int indent) { vdev_t *kid; int ret; if (vdev->v_islog) { (void)pager_output(" logs\n"); indent++; } ret = print_state(indent, vdev->v_name, vdev->v_state); if (ret != 0) return (ret); STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { ret = vdev_status(kid, indent + 1); if (ret != 0) return (ret); } return (ret); } static int spa_status(spa_t *spa) { static char bootfs[ZFS_MAXNAMELEN]; uint64_t rootid; vdev_t *vdev; int good_kids, bad_kids, degraded_kids, ret; vdev_state_t state; ret = pager_printf(" pool: %s\n", spa->spa_name); if (ret != 0) return (ret); if (zfs_get_root(spa, &rootid) == 0 && zfs_rlookup(spa, rootid, bootfs) == 0) { if (bootfs[0] == '\0') ret = pager_printf("bootfs: %s\n", spa->spa_name); else ret = pager_printf("bootfs: %s/%s\n", spa->spa_name, bootfs); if (ret != 0) return (ret); } ret = pager_printf("config:\n\n"); if (ret != 0) return (ret); ret = pager_printf(STATUS_FORMAT, "NAME", "STATE"); if (ret != 0) return (ret); good_kids = 0; degraded_kids = 0; bad_kids = 0; STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) { if (vdev->v_state == VDEV_STATE_HEALTHY) good_kids++; else if (vdev->v_state == VDEV_STATE_DEGRADED) degraded_kids++; else bad_kids++; } state = VDEV_STATE_CLOSED; if (good_kids > 0 && (degraded_kids + bad_kids) == 0) state = VDEV_STATE_HEALTHY; else if ((good_kids + degraded_kids) > 0) state = VDEV_STATE_DEGRADED; ret = print_state(0, spa->spa_name, state); if (ret != 0) return (ret); STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) { ret = vdev_status(vdev, 1); if (ret != 0) return (ret); } return (ret); } static int spa_all_status(void) { spa_t *spa; int first = 1, ret = 0; STAILQ_FOREACH(spa, &zfs_pools, spa_link) { if (!first) { ret = pager_printf("\n"); if (ret != 0) return (ret); } first = 0; ret = spa_status(spa); if (ret != 0) return (ret); } return (ret); } static uint64_t vdev_label_offset(uint64_t psize, int l, uint64_t offset) { uint64_t label_offset; if (l < VDEV_LABELS / 2) label_offset = 0; else label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t); return (offset + l * sizeof (vdev_label_t) + label_offset); } static int vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2) { unsigned int seq1 = 0; unsigned int seq2 = 0; int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg); if (cmp != 0) return (cmp); cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp); if (cmp != 0) return (cmp); if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1)) seq1 = MMP_SEQ(ub1); if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2)) seq2 = MMP_SEQ(ub2); return (AVL_CMP(seq1, seq2)); } static int uberblock_verify(uberblock_t *ub) { if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) { byteswap_uint64_array(ub, sizeof (uberblock_t)); } if (ub->ub_magic != UBERBLOCK_MAGIC || !SPA_VERSION_IS_SUPPORTED(ub->ub_version)) return (EINVAL); return (0); } static int vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset, size_t size) { blkptr_t bp; off_t off; off = vdev_label_offset(vd->v_psize, l, offset); BP_ZERO(&bp); BP_SET_LSIZE(&bp, size); BP_SET_PSIZE(&bp, size); BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL); BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF); DVA_SET_OFFSET(BP_IDENTITY(&bp), off); ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0); return (vdev_read_phys(vd, &bp, buf, off, size)); } static unsigned char * vdev_label_read_config(vdev_t *vd, uint64_t txg) { vdev_phys_t *label; uint64_t best_txg = 0; uint64_t label_txg = 0; uint64_t asize; unsigned char *nvl; size_t nvl_size; int error; label = malloc(sizeof (vdev_phys_t)); if (label == NULL) return (NULL); nvl_size = VDEV_PHYS_SIZE - sizeof (zio_eck_t) - 4; nvl = malloc(nvl_size); if (nvl == NULL) goto done; for (int l = 0; l < VDEV_LABELS; l++) { const unsigned char *nvlist; if (vdev_label_read(vd, l, label, offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t))) continue; if (label->vp_nvlist[0] != NV_ENCODE_XDR) continue; nvlist = (const unsigned char *) label->vp_nvlist + 4; error = nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64, NULL, &label_txg); if (error != 0 || label_txg == 0) { memcpy(nvl, nvlist, nvl_size); goto done; } if (label_txg <= txg && label_txg > best_txg) { best_txg = label_txg; memcpy(nvl, nvlist, nvl_size); /* * Use asize from pool config. We need this * because we can get bad value from BIOS. */ if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE, DATA_TYPE_UINT64, NULL, &asize) == 0) { vd->v_psize = asize + VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; } } } if (best_txg == 0) { free(nvl); nvl = NULL; } done: free(label); return (nvl); } static void vdev_uberblock_load(vdev_t *vd, uberblock_t *ub) { uberblock_t *buf; buf = malloc(VDEV_UBERBLOCK_SIZE(vd)); if (buf == NULL) return; for (int l = 0; l < VDEV_LABELS; l++) { for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { if (vdev_label_read(vd, l, buf, VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd))) continue; if (uberblock_verify(buf) != 0) continue; if (vdev_uberblock_compare(buf, ub) > 0) *ub = *buf; } } free(buf); } static int vdev_probe(vdev_phys_read_t *_read, void *read_priv, spa_t **spap) { vdev_t vtmp; spa_t *spa; vdev_t *vdev, *top_vdev, *pool_vdev; unsigned char *nvlist; uint64_t val; uint64_t guid; uint64_t pool_txg, pool_guid; const char *pool_name; const unsigned char *vdevs; const unsigned char *features; int rc, is_newer; /* * Load the vdev label and figure out which * uberblock is most current. */ memset(&vtmp, 0, sizeof(vtmp)); vtmp.v_phys_read = _read; vtmp.v_read_priv = read_priv; vtmp.v_psize = P2ALIGN(ldi_get_size(read_priv), (uint64_t)sizeof (vdev_label_t)); /* Test for minimum device size. */ if (vtmp.v_psize < SPA_MINDEVSIZE) return (EIO); nvlist = vdev_label_read_config(&vtmp, UINT64_MAX); if (nvlist == NULL) return (EIO); if (nvlist_find(nvlist, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64, NULL, &val) != 0) { free(nvlist); return (EIO); } if (!SPA_VERSION_IS_SUPPORTED(val)) { printf("ZFS: unsupported ZFS version %u (should be %u)\n", (unsigned) val, (unsigned) SPA_VERSION); free(nvlist); return (EIO); } /* Check ZFS features for read */ if (nvlist_find(nvlist, ZPOOL_CONFIG_FEATURES_FOR_READ, DATA_TYPE_NVLIST, NULL, &features) == 0 && nvlist_check_features_for_read(features) != 0) { free(nvlist); return (EIO); } if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64, NULL, &val) != 0) { free(nvlist); return (EIO); } if (val == POOL_STATE_DESTROYED) { /* We don't boot only from destroyed pools. */ free(nvlist); return (EIO); } if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64, NULL, &pool_txg) != 0 || nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, NULL, &pool_guid) != 0 || nvlist_find(nvlist, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING, NULL, &pool_name) != 0) { /* * Cache and spare devices end up here - just ignore * them. */ free(nvlist); return (EIO); } /* * Create the pool if this is the first time we've seen it. */ spa = spa_find_by_guid(pool_guid); if (spa == NULL) { spa = spa_create(pool_guid, pool_name); if (spa == NULL) { free(nvlist); return (ENOMEM); } } if (pool_txg > spa->spa_txg) { spa->spa_txg = pool_txg; is_newer = 1; } else { is_newer = 0; } /* * Get the vdev tree and create our in-core copy of it. * If we already have a vdev with this guid, this must * be some kind of alias (overlapping slices, dangerously dedicated * disks etc). */ if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, NULL, &guid) != 0) { free(nvlist); return (EIO); } vdev = vdev_find(guid); /* Has this vdev already been inited? */ if (vdev && vdev->v_phys_read) { free(nvlist); return (EIO); } if (nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, NULL, &vdevs)) { free(nvlist); return (EIO); } rc = vdev_init_from_nvlist(vdevs, NULL, &top_vdev, is_newer); free(nvlist); if (rc != 0) return (rc); /* * Add the toplevel vdev to the pool if its not already there. */ STAILQ_FOREACH(pool_vdev, &spa->spa_vdevs, v_childlink) if (top_vdev == pool_vdev) break; if (!pool_vdev && top_vdev) { top_vdev->spa = spa; STAILQ_INSERT_TAIL(&spa->spa_vdevs, top_vdev, v_childlink); } /* * We should already have created an incomplete vdev for this * vdev. Find it and initialise it with our read proc. */ vdev = vdev_find(guid); if (vdev) { vdev->v_phys_read = _read; vdev->v_read_priv = read_priv; vdev->v_state = VDEV_STATE_HEALTHY; vdev->v_psize = vtmp.v_psize; } else { printf("ZFS: inconsistent nvlist contents\n"); return (EIO); } if (vdev->v_islog) spa->spa_with_log = vdev->v_islog; /* * Re-evaluate top-level vdev state. */ vdev_set_state(top_vdev); /* * Ok, we are happy with the pool so far. Lets find * the best uberblock and then we can actually access * the contents of the pool. */ vdev_uberblock_load(vdev, &spa->spa_uberblock); vdev->spa = spa; if (spap != NULL) *spap = spa; return (0); } static int ilog2(int n) { int v; for (v = 0; v < 32; v++) if (n == (1 << v)) return v; return -1; } static int zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf) { blkptr_t gbh_bp; zio_gbh_phys_t zio_gb; char *pbuf; int i; /* Artificial BP for gang block header. */ gbh_bp = *bp; BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER); BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF); for (i = 0; i < SPA_DVAS_PER_BP; i++) DVA_SET_GANG(&gbh_bp.blk_dva[i], 0); /* Read gang header block using the artificial BP. */ if (zio_read(spa, &gbh_bp, &zio_gb)) return (EIO); pbuf = buf; for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { blkptr_t *gbp = &zio_gb.zg_blkptr[i]; if (BP_IS_HOLE(gbp)) continue; if (zio_read(spa, gbp, pbuf)) return (EIO); pbuf += BP_GET_PSIZE(gbp); } if (zio_checksum_verify(spa, bp, buf)) return (EIO); return (0); } static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf) { int cpfunc = BP_GET_COMPRESS(bp); uint64_t align, size; void *pbuf; int i, error; /* * Process data embedded in block pointer */ if (BP_IS_EMBEDDED(bp)) { ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); size = BPE_GET_PSIZE(bp); ASSERT(size <= BPE_PAYLOAD_SIZE); if (cpfunc != ZIO_COMPRESS_OFF) pbuf = zfs_alloc(size); else pbuf = buf; decode_embedded_bp_compressed(bp, pbuf); error = 0; if (cpfunc != ZIO_COMPRESS_OFF) { error = zio_decompress_data(cpfunc, pbuf, size, buf, BP_GET_LSIZE(bp)); zfs_free(pbuf, size); } if (error != 0) printf("ZFS: i/o error - unable to decompress block pointer data, error %d\n", error); return (error); } error = EIO; for (i = 0; i < SPA_DVAS_PER_BP; i++) { const dva_t *dva = &bp->blk_dva[i]; vdev_t *vdev; int vdevid; off_t offset; if (!dva->dva_word[0] && !dva->dva_word[1]) continue; vdevid = DVA_GET_VDEV(dva); offset = DVA_GET_OFFSET(dva); STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) { if (vdev->v_id == vdevid) break; } if (!vdev || !vdev->v_read) continue; size = BP_GET_PSIZE(bp); if (vdev->v_read == vdev_raidz_read) { align = 1ULL << vdev->v_top->v_ashift; if (P2PHASE(size, align) != 0) size = P2ROUNDUP(size, align); } if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF) pbuf = zfs_alloc(size); else pbuf = buf; if (DVA_GET_GANG(dva)) error = zio_read_gang(spa, bp, pbuf); else error = vdev->v_read(vdev, bp, pbuf, offset, size); if (error == 0) { if (cpfunc != ZIO_COMPRESS_OFF) error = zio_decompress_data(cpfunc, pbuf, BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp)); else if (size != BP_GET_PSIZE(bp)) bcopy(pbuf, buf, BP_GET_PSIZE(bp)); } if (buf != pbuf) zfs_free(pbuf, size); if (error == 0) break; } if (error != 0) printf("ZFS: i/o error - all block copies unavailable\n"); return (error); } static int dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset, void *buf, size_t buflen) { int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT; int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; int nlevels = dnode->dn_nlevels; int i, rc; if (bsize > SPA_MAXBLOCKSIZE) { printf("ZFS: I/O error - blocks larger than %llu are not " "supported\n", SPA_MAXBLOCKSIZE); return (EIO); } /* * Note: bsize may not be a power of two here so we need to do an * actual divide rather than a bitshift. */ while (buflen > 0) { uint64_t bn = offset / bsize; int boff = offset % bsize; int ibn; const blkptr_t *indbp; blkptr_t bp; if (bn > dnode->dn_maxblkid) return (EIO); if (dnode == dnode_cache_obj && bn == dnode_cache_bn) goto cached; indbp = dnode->dn_blkptr; for (i = 0; i < nlevels; i++) { /* * Copy the bp from the indirect array so that * we can re-use the scratch buffer for multi-level * objects. */ ibn = bn >> ((nlevels - i - 1) * ibshift); ibn &= ((1 << ibshift) - 1); bp = indbp[ibn]; if (BP_IS_HOLE(&bp)) { memset(dnode_cache_buf, 0, bsize); break; } rc = zio_read(spa, &bp, dnode_cache_buf); if (rc) return (rc); indbp = (const blkptr_t *) dnode_cache_buf; } dnode_cache_obj = dnode; dnode_cache_bn = bn; cached: /* * The buffer contains our data block. Copy what we * need from it and loop. */ i = bsize - boff; if (i > buflen) i = buflen; memcpy(buf, &dnode_cache_buf[boff], i); buf = ((char*) buf) + i; offset += i; buflen -= i; } return (0); } /* * Lookup a value in a microzap directory. Assumes that the zap * scratch buffer contains the directory contents. */ static int mzap_lookup(const dnode_phys_t *dnode, const char *name, uint64_t *value) { const mzap_phys_t *mz; const mzap_ent_phys_t *mze; size_t size; int chunks, i; /* * Microzap objects use exactly one block. Read the whole * thing. */ size = dnode->dn_datablkszsec * 512; mz = (const mzap_phys_t *) zap_scratch; chunks = size / MZAP_ENT_LEN - 1; for (i = 0; i < chunks; i++) { mze = &mz->mz_chunk[i]; if (!strcmp(mze->mze_name, name)) { *value = mze->mze_value; return (0); } } return (ENOENT); } /* * Compare a name with a zap leaf entry. Return non-zero if the name * matches. */ static int fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, const char *name) { size_t namelen; const zap_leaf_chunk_t *nc; const char *p; namelen = zc->l_entry.le_name_numints; nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); p = name; while (namelen > 0) { size_t len; len = namelen; if (len > ZAP_LEAF_ARRAY_BYTES) len = ZAP_LEAF_ARRAY_BYTES; if (memcmp(p, nc->l_array.la_array, len)) return (0); p += len; namelen -= len; nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); } return 1; } /* * Extract a uint64_t value from a zap leaf entry. */ static uint64_t fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc) { const zap_leaf_chunk_t *vc; int i; uint64_t value; const uint8_t *p; vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk); for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) { value = (value << 8) | p[i]; } return value; } static void stv(int len, void *addr, uint64_t value) { switch (len) { case 1: *(uint8_t *)addr = value; return; case 2: *(uint16_t *)addr = value; return; case 4: *(uint32_t *)addr = value; return; case 8: *(uint64_t *)addr = value; return; } } /* * Extract a array from a zap leaf entry. */ static void fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, uint64_t integer_size, uint64_t num_integers, void *buf) { uint64_t array_int_len = zc->l_entry.le_value_intlen; uint64_t value = 0; uint64_t *u64 = buf; char *p = buf; int len = MIN(zc->l_entry.le_value_numints, num_integers); int chunk = zc->l_entry.le_value_chunk; int byten = 0; if (integer_size == 8 && len == 1) { *u64 = fzap_leaf_value(zl, zc); return; } while (len > 0) { struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array; int i; ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl)); for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) { value = (value << 8) | la->la_array[i]; byten++; if (byten == array_int_len) { stv(integer_size, p, value); byten = 0; len--; if (len == 0) return; p += integer_size; } } chunk = la->la_next; } } /* * Lookup a value in a fatzap directory. Assumes that the zap scratch * buffer contains the directory header. */ static int fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name, uint64_t integer_size, uint64_t num_integers, void *value) { int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; zap_phys_t zh = *(zap_phys_t *) zap_scratch; fat_zap_t z; uint64_t *ptrtbl; uint64_t hash; int rc; if (zh.zap_magic != ZAP_MAGIC) return (EIO); z.zap_block_shift = ilog2(bsize); z.zap_phys = (zap_phys_t *) zap_scratch; /* * Figure out where the pointer table is and read it in if necessary. */ if (zh.zap_ptrtbl.zt_blk) { rc = dnode_read(spa, dnode, zh.zap_ptrtbl.zt_blk * bsize, zap_scratch, bsize); if (rc) return (rc); ptrtbl = (uint64_t *) zap_scratch; } else { ptrtbl = &ZAP_EMBEDDED_PTRTBL_ENT(&z, 0); } hash = zap_hash(zh.zap_salt, name); zap_leaf_t zl; zl.l_bs = z.zap_block_shift; off_t off = ptrtbl[hash >> (64 - zh.zap_ptrtbl.zt_shift)] << zl.l_bs; zap_leaf_chunk_t *zc; rc = dnode_read(spa, dnode, off, zap_scratch, bsize); if (rc) return (rc); zl.l_phys = (zap_leaf_phys_t *) zap_scratch; /* * Make sure this chunk matches our hash. */ if (zl.l_phys->l_hdr.lh_prefix_len > 0 && zl.l_phys->l_hdr.lh_prefix != hash >> (64 - zl.l_phys->l_hdr.lh_prefix_len)) return (ENOENT); /* * Hash within the chunk to find our entry. */ int shift = (64 - ZAP_LEAF_HASH_SHIFT(&zl) - zl.l_phys->l_hdr.lh_prefix_len); int h = (hash >> shift) & ((1 << ZAP_LEAF_HASH_SHIFT(&zl)) - 1); h = zl.l_phys->l_hash[h]; if (h == 0xffff) return (ENOENT); zc = &ZAP_LEAF_CHUNK(&zl, h); while (zc->l_entry.le_hash != hash) { if (zc->l_entry.le_next == 0xffff) return (ENOENT); zc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_next); } if (fzap_name_equal(&zl, zc, name)) { if (zc->l_entry.le_value_intlen * zc->l_entry.le_value_numints > integer_size * num_integers) return (E2BIG); fzap_leaf_array(&zl, zc, integer_size, num_integers, value); return (0); } return (ENOENT); } /* * Lookup a name in a zap object and return its value as a uint64_t. */ static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name, uint64_t integer_size, uint64_t num_integers, void *value) { int rc; uint64_t zap_type; size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; rc = dnode_read(spa, dnode, 0, zap_scratch, size); if (rc) return (rc); zap_type = *(uint64_t *) zap_scratch; if (zap_type == ZBT_MICRO) return mzap_lookup(dnode, name, value); else if (zap_type == ZBT_HEADER) { return fzap_lookup(spa, dnode, name, integer_size, num_integers, value); } printf("ZFS: invalid zap_type=%d\n", (int)zap_type); return (EIO); } /* * List a microzap directory. Assumes that the zap scratch buffer contains * the directory contents. */ static int mzap_list(const dnode_phys_t *dnode, int (*callback)(const char *, uint64_t)) { const mzap_phys_t *mz; const mzap_ent_phys_t *mze; size_t size; int chunks, i, rc; /* * Microzap objects use exactly one block. Read the whole * thing. */ size = dnode->dn_datablkszsec * 512; mz = (const mzap_phys_t *) zap_scratch; chunks = size / MZAP_ENT_LEN - 1; for (i = 0; i < chunks; i++) { mze = &mz->mz_chunk[i]; if (mze->mze_name[0]) { rc = callback(mze->mze_name, mze->mze_value); if (rc != 0) return (rc); } } return (0); } /* * List a fatzap directory. Assumes that the zap scratch buffer contains * the directory header. */ static int fzap_list(const spa_t *spa, const dnode_phys_t *dnode, int (*callback)(const char *, uint64_t)) { int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; zap_phys_t zh = *(zap_phys_t *) zap_scratch; fat_zap_t z; int i, j, rc; if (zh.zap_magic != ZAP_MAGIC) return (EIO); z.zap_block_shift = ilog2(bsize); z.zap_phys = (zap_phys_t *) zap_scratch; /* * This assumes that the leaf blocks start at block 1. The * documentation isn't exactly clear on this. */ zap_leaf_t zl; zl.l_bs = z.zap_block_shift; for (i = 0; i < zh.zap_num_leafs; i++) { off_t off = (i + 1) << zl.l_bs; char name[256], *p; uint64_t value; if (dnode_read(spa, dnode, off, zap_scratch, bsize)) return (EIO); zl.l_phys = (zap_leaf_phys_t *) zap_scratch; for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { zap_leaf_chunk_t *zc, *nc; int namelen; zc = &ZAP_LEAF_CHUNK(&zl, j); if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) continue; namelen = zc->l_entry.le_name_numints; if (namelen > sizeof(name)) namelen = sizeof(name); /* * Paste the name back together. */ nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk); p = name; while (namelen > 0) { int len; len = namelen; if (len > ZAP_LEAF_ARRAY_BYTES) len = ZAP_LEAF_ARRAY_BYTES; memcpy(p, nc->l_array.la_array, len); p += len; namelen -= len; nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next); } /* * Assume the first eight bytes of the value are * a uint64_t. */ value = fzap_leaf_value(&zl, zc); //printf("%s 0x%jx\n", name, (uintmax_t)value); rc = callback((const char *)name, value); if (rc != 0) return (rc); } } return (0); } static int zfs_printf(const char *name, uint64_t value __unused) { printf("%s\n", name); return (0); } /* * List a zap directory. */ static int zap_list(const spa_t *spa, const dnode_phys_t *dnode) { uint64_t zap_type; size_t size = dnode->dn_datablkszsec * 512; if (dnode_read(spa, dnode, 0, zap_scratch, size)) return (EIO); zap_type = *(uint64_t *) zap_scratch; if (zap_type == ZBT_MICRO) return mzap_list(dnode, zfs_printf); else return fzap_list(spa, dnode, zfs_printf); } static int objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum, dnode_phys_t *dnode) { off_t offset; offset = objnum * sizeof(dnode_phys_t); return dnode_read(spa, &os->os_meta_dnode, offset, dnode, sizeof(dnode_phys_t)); } static int mzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value) { const mzap_phys_t *mz; const mzap_ent_phys_t *mze; size_t size; int chunks, i; /* * Microzap objects use exactly one block. Read the whole * thing. */ size = dnode->dn_datablkszsec * 512; mz = (const mzap_phys_t *) zap_scratch; chunks = size / MZAP_ENT_LEN - 1; for (i = 0; i < chunks; i++) { mze = &mz->mz_chunk[i]; if (value == mze->mze_value) { strcpy(name, mze->mze_name); return (0); } } return (ENOENT); } static void fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name) { size_t namelen; const zap_leaf_chunk_t *nc; char *p; namelen = zc->l_entry.le_name_numints; nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); p = name; while (namelen > 0) { size_t len; len = namelen; if (len > ZAP_LEAF_ARRAY_BYTES) len = ZAP_LEAF_ARRAY_BYTES; memcpy(p, nc->l_array.la_array, len); p += len; namelen -= len; nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); } *p = '\0'; } static int fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value) { int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; zap_phys_t zh = *(zap_phys_t *) zap_scratch; fat_zap_t z; int i, j; if (zh.zap_magic != ZAP_MAGIC) return (EIO); z.zap_block_shift = ilog2(bsize); z.zap_phys = (zap_phys_t *) zap_scratch; /* * This assumes that the leaf blocks start at block 1. The * documentation isn't exactly clear on this. */ zap_leaf_t zl; zl.l_bs = z.zap_block_shift; for (i = 0; i < zh.zap_num_leafs; i++) { off_t off = (i + 1) << zl.l_bs; if (dnode_read(spa, dnode, off, zap_scratch, bsize)) return (EIO); zl.l_phys = (zap_leaf_phys_t *) zap_scratch; for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { zap_leaf_chunk_t *zc; zc = &ZAP_LEAF_CHUNK(&zl, j); if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) continue; if (zc->l_entry.le_value_intlen != 8 || zc->l_entry.le_value_numints != 1) continue; if (fzap_leaf_value(&zl, zc) == value) { fzap_name_copy(&zl, zc, name); return (0); } } } return (ENOENT); } static int zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value) { int rc; uint64_t zap_type; size_t size = dnode->dn_datablkszsec * 512; rc = dnode_read(spa, dnode, 0, zap_scratch, size); if (rc) return (rc); zap_type = *(uint64_t *) zap_scratch; if (zap_type == ZBT_MICRO) return mzap_rlookup(spa, dnode, name, value); else return fzap_rlookup(spa, dnode, name, value); } static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result) { char name[256]; char component[256]; uint64_t dir_obj, parent_obj, child_dir_zapobj; dnode_phys_t child_dir_zap, dataset, dir, parent; dsl_dir_phys_t *dd; dsl_dataset_phys_t *ds; char *p; int len; p = &name[sizeof(name) - 1]; *p = '\0'; if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); return (EIO); } ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; dir_obj = ds->ds_dir_obj; for (;;) { if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir) != 0) return (EIO); dd = (dsl_dir_phys_t *)&dir.dn_bonus; /* Actual loop condition. */ parent_obj = dd->dd_parent_obj; if (parent_obj == 0) break; if (objset_get_dnode(spa, &spa->spa_mos, parent_obj, &parent) != 0) return (EIO); dd = (dsl_dir_phys_t *)&parent.dn_bonus; child_dir_zapobj = dd->dd_child_dir_zapobj; if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0) return (EIO); if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0) return (EIO); len = strlen(component); p -= len; memcpy(p, component, len); --p; *p = '/'; /* Actual loop iteration. */ dir_obj = parent_obj; } if (*p != '\0') ++p; strcpy(result, p); return (0); } static int zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum) { char element[256]; uint64_t dir_obj, child_dir_zapobj; dnode_phys_t child_dir_zap, dir; dsl_dir_phys_t *dd; const char *p, *q; if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, &dir)) return (EIO); if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj), 1, &dir_obj)) return (EIO); p = name; for (;;) { if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) return (EIO); dd = (dsl_dir_phys_t *)&dir.dn_bonus; while (*p == '/') p++; /* Actual loop condition #1. */ if (*p == '\0') break; q = strchr(p, '/'); if (q) { memcpy(element, p, q - p); element[q - p] = '\0'; p = q + 1; } else { strcpy(element, p); p += strlen(p); } child_dir_zapobj = dd->dd_child_dir_zapobj; if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0) return (EIO); /* Actual loop condition #2. */ if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj), 1, &dir_obj) != 0) return (ENOENT); } *objnum = dd->dd_head_dataset_obj; return (0); } #ifndef BOOT2 static int zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/) { uint64_t dir_obj, child_dir_zapobj; dnode_phys_t child_dir_zap, dir, dataset; dsl_dataset_phys_t *ds; dsl_dir_phys_t *dd; if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); return (EIO); } ds = (dsl_dataset_phys_t *) &dataset.dn_bonus; dir_obj = ds->ds_dir_obj; if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) { printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); return (EIO); } dd = (dsl_dir_phys_t *)&dir.dn_bonus; child_dir_zapobj = dd->dd_child_dir_zapobj; if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0) { printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); return (EIO); } return (zap_list(spa, &child_dir_zap) != 0); } int zfs_callback_dataset(const spa_t *spa, uint64_t objnum, int (*callback)(const char *, uint64_t)) { uint64_t dir_obj, child_dir_zapobj, zap_type; dnode_phys_t child_dir_zap, dir, dataset; dsl_dataset_phys_t *ds; dsl_dir_phys_t *dd; int err; err = objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset); if (err != 0) { printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); return (err); } ds = (dsl_dataset_phys_t *) &dataset.dn_bonus; dir_obj = ds->ds_dir_obj; err = objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir); if (err != 0) { printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); return (err); } dd = (dsl_dir_phys_t *)&dir.dn_bonus; child_dir_zapobj = dd->dd_child_dir_zapobj; err = objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap); if (err != 0) { printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); return (err); } err = dnode_read(spa, &child_dir_zap, 0, zap_scratch, child_dir_zap.dn_datablkszsec * 512); if (err != 0) return (err); zap_type = *(uint64_t *) zap_scratch; if (zap_type == ZBT_MICRO) return mzap_list(&child_dir_zap, callback); else return fzap_list(spa, &child_dir_zap, callback); } #endif /* * Find the object set given the object number of its dataset object * and return its details in *objset */ static int zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset) { dnode_phys_t dataset; dsl_dataset_phys_t *ds; if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); return (EIO); } ds = (dsl_dataset_phys_t *) &dataset.dn_bonus; if (zio_read(spa, &ds->ds_bp, objset)) { printf("ZFS: can't read object set for dataset %ju\n", (uintmax_t)objnum); return (EIO); } return (0); } /* * Find the object set pointed to by the BOOTFS property or the root * dataset if there is none and return its details in *objset */ static int zfs_get_root(const spa_t *spa, uint64_t *objid) { dnode_phys_t dir, propdir; uint64_t props, bootfs, root; *objid = 0; /* * Start with the MOS directory object. */ if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, &dir)) { printf("ZFS: can't read MOS object directory\n"); return (EIO); } /* * Lookup the pool_props and see if we can find a bootfs. */ if (zap_lookup(spa, &dir, DMU_POOL_PROPS, sizeof (props), 1, &props) == 0 && objset_get_dnode(spa, &spa->spa_mos, props, &propdir) == 0 && zap_lookup(spa, &propdir, "bootfs", sizeof (bootfs), 1, &bootfs) == 0 && bootfs != 0) { *objid = bootfs; return (0); } /* * Lookup the root dataset directory */ if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (root), 1, &root) || objset_get_dnode(spa, &spa->spa_mos, root, &dir)) { printf("ZFS: can't find root dsl_dir\n"); return (EIO); } /* * Use the information from the dataset directory's bonus buffer * to find the dataset object and from that the object set itself. */ dsl_dir_phys_t *dd = (dsl_dir_phys_t *) &dir.dn_bonus; *objid = dd->dd_head_dataset_obj; return (0); } static int zfs_mount(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount) { mount->spa = spa; /* * Find the root object set if not explicitly provided */ if (rootobj == 0 && zfs_get_root(spa, &rootobj)) { printf("ZFS: can't find root filesystem\n"); return (EIO); } if (zfs_mount_dataset(spa, rootobj, &mount->objset)) { printf("ZFS: can't open root filesystem\n"); return (EIO); } mount->rootobj = rootobj; return (0); } /* * callback function for feature name checks. */ static int check_feature(const char *name, uint64_t value) { int i; if (value == 0) return (0); if (name[0] == '\0') return (0); for (i = 0; features_for_read[i] != NULL; i++) { if (strcmp(name, features_for_read[i]) == 0) return (0); } printf("ZFS: unsupported feature: %s\n", name); return (EIO); } /* * Checks whether the MOS features that are active are supported. */ static int check_mos_features(const spa_t *spa) { dnode_phys_t dir; uint64_t objnum, zap_type; size_t size; int rc; if ((rc = objset_get_dnode(spa, &spa->spa_mos, DMU_OT_OBJECT_DIRECTORY, &dir)) != 0) return (rc); if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ, sizeof (objnum), 1, &objnum)) != 0) { /* * It is older pool without features. As we have already * tested the label, just return without raising the error. */ return (0); } if ((rc = objset_get_dnode(spa, &spa->spa_mos, objnum, &dir)) != 0) return (rc); if (dir.dn_type != DMU_OTN_ZAP_METADATA) return (EIO); size = dir.dn_datablkszsec * 512; if (dnode_read(spa, &dir, 0, zap_scratch, size)) return (EIO); zap_type = *(uint64_t *) zap_scratch; if (zap_type == ZBT_MICRO) rc = mzap_list(&dir, check_feature); else rc = fzap_list(spa, &dir, check_feature); return (rc); } static int load_nvlist(spa_t *spa, uint64_t obj, unsigned char **value) { dnode_phys_t dir; size_t size; int rc; unsigned char *nv; *value = NULL; if ((rc = objset_get_dnode(spa, &spa->spa_mos, obj, &dir)) != 0) return (rc); if (dir.dn_type != DMU_OT_PACKED_NVLIST && dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) { return (EIO); } if (dir.dn_bonuslen != sizeof (uint64_t)) return (EIO); size = *(uint64_t *)DN_BONUS(&dir); nv = malloc(size); if (nv == NULL) return (ENOMEM); rc = dnode_read(spa, &dir, 0, nv, size); if (rc != 0) { free(nv); nv = NULL; return (rc); } *value = nv; return (rc); } static int zfs_spa_init(spa_t *spa) { dnode_phys_t dir; uint64_t config_object; unsigned char *nvlist; char *type; const unsigned char *nv; int nkids, rc; if (zio_read(spa, &spa->spa_uberblock.ub_rootbp, &spa->spa_mos)) { printf("ZFS: can't read MOS of pool %s\n", spa->spa_name); return (EIO); } if (spa->spa_mos.os_type != DMU_OST_META) { printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name); return (EIO); } if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, &dir)) { printf("ZFS: failed to read pool %s directory object\n", spa->spa_name); return (EIO); } /* this is allowed to fail, older pools do not have salt */ rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1, sizeof (spa->spa_cksum_salt.zcs_bytes), spa->spa_cksum_salt.zcs_bytes); rc = check_mos_features(spa); if (rc != 0) { printf("ZFS: pool %s is not supported\n", spa->spa_name); return (rc); } rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG, sizeof (config_object), 1, &config_object); if (rc != 0) { printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG); return (EIO); } rc = load_nvlist(spa, config_object, &nvlist); if (rc != 0) return (rc); /* Update vdevs from MOS config. */ if (nvlist_find(nvlist + 4, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, NULL, &nv)) { rc = EIO; goto done; } if (nvlist_find(nv, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, NULL, &type)) { printf("ZFS: can't find vdev details\n"); rc = ENOENT; goto done; } if (strcmp(type, VDEV_TYPE_ROOT) != 0) { rc = ENOENT; goto done; } rc = nvlist_find(nv, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, &nkids, &nv); if (rc != 0) goto done; for (int i = 0; i < nkids; i++) { vdev_t *vd, *prev, *kid = NULL; rc = vdev_init_from_nvlist(nv, NULL, &kid, 0); if (rc != 0) { printf("vdev_init_from_nvlist: %d\n", rc); break; } kid->spa = spa; prev = NULL; STAILQ_FOREACH(vd, &spa->spa_vdevs, v_childlink) { /* Already present? */ if (kid->v_id == vd->v_id) { kid = NULL; break; } if (vd->v_id > kid->v_id) { if (prev == NULL) { STAILQ_INSERT_HEAD(&spa->spa_vdevs, kid, v_childlink); } else { STAILQ_INSERT_AFTER(&spa->spa_vdevs, prev, kid, v_childlink); } kid = NULL; break; } prev = vd; } if (kid != NULL) STAILQ_INSERT_TAIL(&spa->spa_vdevs, kid, v_childlink); nv = nvlist_next(nv); } rc = 0; done: free(nvlist); return (rc); } static int zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb) { if (dn->dn_bonustype != DMU_OT_SA) { znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus; sb->st_mode = zp->zp_mode; sb->st_uid = zp->zp_uid; sb->st_gid = zp->zp_gid; sb->st_size = zp->zp_size; } else { sa_hdr_phys_t *sahdrp; int hdrsize; size_t size = 0; void *buf = NULL; if (dn->dn_bonuslen != 0) sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); else { if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) { blkptr_t *bp = DN_SPILL_BLKPTR(dn); int error; size = BP_GET_LSIZE(bp); buf = zfs_alloc(size); error = zio_read(spa, bp, buf); if (error != 0) { zfs_free(buf, size); return (error); } sahdrp = buf; } else { return (EIO); } } hdrsize = SA_HDR_SIZE(sahdrp); sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize + SA_MODE_OFFSET); sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize + SA_UID_OFFSET); sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize + SA_GID_OFFSET); sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize + SA_SIZE_OFFSET); if (buf != NULL) zfs_free(buf, size); } return (0); } static int zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize) { int rc = 0; if (dn->dn_bonustype == DMU_OT_SA) { sa_hdr_phys_t *sahdrp = NULL; size_t size = 0; void *buf = NULL; int hdrsize; char *p; if (dn->dn_bonuslen != 0) sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); else { blkptr_t *bp; if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0) return (EIO); bp = DN_SPILL_BLKPTR(dn); size = BP_GET_LSIZE(bp); buf = zfs_alloc(size); rc = zio_read(spa, bp, buf); if (rc != 0) { zfs_free(buf, size); return (rc); } sahdrp = buf; } hdrsize = SA_HDR_SIZE(sahdrp); p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET); memcpy(path, p, psize); if (buf != NULL) zfs_free(buf, size); return (0); } /* * Second test is purely to silence bogus compiler * warning about accessing past the end of dn_bonus. */ if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen && sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) { memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize); } else { rc = dnode_read(spa, dn, 0, path, psize); } return (rc); } struct obj_list { uint64_t objnum; STAILQ_ENTRY(obj_list) entry; }; /* * Lookup a file and return its dnode. */ static int zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode) { int rc; uint64_t objnum; const spa_t *spa; dnode_phys_t dn; const char *p, *q; char element[256]; char path[1024]; int symlinks_followed = 0; struct stat sb; struct obj_list *entry, *tentry; STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache); spa = mount->spa; if (mount->objset.os_type != DMU_OST_ZFS) { printf("ZFS: unexpected object set type %ju\n", (uintmax_t)mount->objset.os_type); return (EIO); } if ((entry = malloc(sizeof(struct obj_list))) == NULL) return (ENOMEM); /* * Get the root directory dnode. */ rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn); if (rc) { free(entry); return (rc); } rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof (objnum), 1, &objnum); if (rc) { free(entry); return (rc); } entry->objnum = objnum; STAILQ_INSERT_HEAD(&on_cache, entry, entry); rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); if (rc != 0) goto done; p = upath; while (p && *p) { rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); if (rc != 0) goto done; while (*p == '/') p++; if (*p == '\0') break; q = p; while (*q != '\0' && *q != '/') q++; /* skip dot */ if (p + 1 == q && p[0] == '.') { p++; continue; } /* double dot */ if (p + 2 == q && p[0] == '.' && p[1] == '.') { p += 2; if (STAILQ_FIRST(&on_cache) == STAILQ_LAST(&on_cache, obj_list, entry)) { rc = ENOENT; goto done; } entry = STAILQ_FIRST(&on_cache); STAILQ_REMOVE_HEAD(&on_cache, entry); free(entry); objnum = (STAILQ_FIRST(&on_cache))->objnum; continue; } if (q - p + 1 > sizeof(element)) { rc = ENAMETOOLONG; goto done; } memcpy(element, p, q - p); element[q - p] = 0; p = q; if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0) goto done; if (!S_ISDIR(sb.st_mode)) { rc = ENOTDIR; goto done; } rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum); if (rc) goto done; objnum = ZFS_DIRENT_OBJ(objnum); if ((entry = malloc(sizeof(struct obj_list))) == NULL) { rc = ENOMEM; goto done; } entry->objnum = objnum; STAILQ_INSERT_HEAD(&on_cache, entry, entry); rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); if (rc) goto done; /* * Check for symlink. */ rc = zfs_dnode_stat(spa, &dn, &sb); if (rc) goto done; if (S_ISLNK(sb.st_mode)) { if (symlinks_followed > 10) { rc = EMLINK; goto done; } symlinks_followed++; /* * Read the link value and copy the tail of our * current path onto the end. */ if (sb.st_size + strlen(p) + 1 > sizeof(path)) { rc = ENAMETOOLONG; goto done; } strcpy(&path[sb.st_size], p); rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size); if (rc != 0) goto done; /* * Restart with the new path, starting either at * the root or at the parent depending whether or * not the link is relative. */ p = path; if (*p == '/') { while (STAILQ_FIRST(&on_cache) != STAILQ_LAST(&on_cache, obj_list, entry)) { entry = STAILQ_FIRST(&on_cache); STAILQ_REMOVE_HEAD(&on_cache, entry); free(entry); } } else { entry = STAILQ_FIRST(&on_cache); STAILQ_REMOVE_HEAD(&on_cache, entry); free(entry); } objnum = (STAILQ_FIRST(&on_cache))->objnum; } } *dnode = dn; done: STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry) free(entry); return (rc); }