1 /*- 2 * Copyright (c) 1998 Michael Smith <msmith@freebsd.org> 3 * Copyright (c) 1998 Peter Wemm <peter@freebsd.org> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include <sys/param.h> 32 #include <sys/endian.h> 33 #include <sys/exec.h> 34 #include <sys/linker.h> 35 #include <sys/module.h> 36 #include <sys/stdint.h> 37 #include <string.h> 38 #include <machine/elf.h> 39 #include <stand.h> 40 #define FREEBSD_ELF 41 #include <sys/link_elf.h> 42 #include <gfx_fb.h> 43 44 #include "bootstrap.h" 45 46 #define COPYOUT(s,d,l) archsw.arch_copyout((vm_offset_t)(s), d, l) 47 48 #if defined(__i386__) && __ELF_WORD_SIZE == 64 49 #undef ELF_TARG_CLASS 50 #undef ELF_TARG_MACH 51 #define ELF_TARG_CLASS ELFCLASS64 52 #define ELF_TARG_MACH EM_X86_64 53 #endif 54 55 typedef struct elf_file { 56 Elf_Phdr *ph; 57 Elf_Ehdr *ehdr; 58 Elf_Sym *symtab; 59 Elf_Hashelt *hashtab; 60 Elf_Hashelt nbuckets; 61 Elf_Hashelt nchains; 62 Elf_Hashelt *buckets; 63 Elf_Hashelt *chains; 64 Elf_Rel *rel; 65 size_t relsz; 66 Elf_Rela *rela; 67 size_t relasz; 68 char *strtab; 69 size_t strsz; 70 int fd; 71 caddr_t firstpage; 72 size_t firstlen; 73 int kernel; 74 uint64_t off; 75 #ifdef LOADER_VERIEXEC_VECTX 76 struct vectx *vctx; 77 #endif 78 } *elf_file_t; 79 80 #ifdef LOADER_VERIEXEC_VECTX 81 #define VECTX_HANDLE(ef) (ef)->vctx 82 #else 83 #define VECTX_HANDLE(ef) (ef)->fd 84 #endif 85 86 static int __elfN(loadimage)(struct preloaded_file *mp, elf_file_t ef, 87 uint64_t loadaddr); 88 static int __elfN(lookup_symbol)(elf_file_t ef, const char* name, 89 Elf_Sym *sym, unsigned char type); 90 static int __elfN(reloc_ptr)(struct preloaded_file *mp, elf_file_t ef, 91 Elf_Addr p, void *val, size_t len); 92 static int __elfN(parse_modmetadata)(struct preloaded_file *mp, elf_file_t ef, 93 Elf_Addr p_start, Elf_Addr p_end); 94 static bool __elfN(parse_vt_drv_set)(struct preloaded_file *mp, elf_file_t ef, 95 Elf_Addr p_start, Elf_Addr p_end); 96 static symaddr_fn __elfN(symaddr); 97 static char *fake_modname(const char *name); 98 99 const char *__elfN(kerneltype) = "elf kernel"; 100 const char *__elfN(moduletype) = "elf module"; 101 102 uint64_t __elfN(relocation_offset) = 0; 103 104 extern void elf_wrong_field_size(void); 105 #define CONVERT_FIELD(b, f, e) \ 106 switch (sizeof((b)->f)) { \ 107 case 2: \ 108 (b)->f = e ## 16toh((b)->f); \ 109 break; \ 110 case 4: \ 111 (b)->f = e ## 32toh((b)->f); \ 112 break; \ 113 case 8: \ 114 (b)->f = e ## 64toh((b)->f); \ 115 break; \ 116 default: \ 117 /* Force a link time error. */ \ 118 elf_wrong_field_size(); \ 119 break; \ 120 } 121 122 #define CONVERT_SWITCH(h, d, f) \ 123 switch ((h)->e_ident[EI_DATA]) { \ 124 case ELFDATA2MSB: \ 125 f(d, be); \ 126 break; \ 127 case ELFDATA2LSB: \ 128 f(d, le); \ 129 break; \ 130 default: \ 131 return (EINVAL); \ 132 } 133 134 135 static int elf_header_convert(Elf_Ehdr *ehdr) 136 { 137 /* 138 * Fixup ELF header endianness. 139 * 140 * The Xhdr structure was loaded using block read call to optimize file 141 * accesses. It might happen, that the endianness of the system memory 142 * is different that endianness of the ELF header. Swap fields here to 143 * guarantee that Xhdr always contain valid data regardless of 144 * architecture. 145 */ 146 #define HEADER_FIELDS(b, e) \ 147 CONVERT_FIELD(b, e_type, e); \ 148 CONVERT_FIELD(b, e_machine, e); \ 149 CONVERT_FIELD(b, e_version, e); \ 150 CONVERT_FIELD(b, e_entry, e); \ 151 CONVERT_FIELD(b, e_phoff, e); \ 152 CONVERT_FIELD(b, e_shoff, e); \ 153 CONVERT_FIELD(b, e_flags, e); \ 154 CONVERT_FIELD(b, e_ehsize, e); \ 155 CONVERT_FIELD(b, e_phentsize, e); \ 156 CONVERT_FIELD(b, e_phnum, e); \ 157 CONVERT_FIELD(b, e_shentsize, e); \ 158 CONVERT_FIELD(b, e_shnum, e); \ 159 CONVERT_FIELD(b, e_shstrndx, e) 160 161 CONVERT_SWITCH(ehdr, ehdr, HEADER_FIELDS); 162 163 #undef HEADER_FIELDS 164 165 return (0); 166 } 167 168 static int elf_program_header_convert(const Elf_Ehdr *ehdr, Elf_Phdr *phdr) 169 { 170 #define PROGRAM_HEADER_FIELDS(b, e) \ 171 CONVERT_FIELD(b, p_type, e); \ 172 CONVERT_FIELD(b, p_flags, e); \ 173 CONVERT_FIELD(b, p_offset, e); \ 174 CONVERT_FIELD(b, p_vaddr, e); \ 175 CONVERT_FIELD(b, p_paddr, e); \ 176 CONVERT_FIELD(b, p_filesz, e); \ 177 CONVERT_FIELD(b, p_memsz, e); \ 178 CONVERT_FIELD(b, p_align, e) 179 180 CONVERT_SWITCH(ehdr, phdr, PROGRAM_HEADER_FIELDS); 181 182 #undef PROGRAM_HEADER_FIELDS 183 184 return (0); 185 } 186 187 static int elf_section_header_convert(const Elf_Ehdr *ehdr, Elf_Shdr *shdr) 188 { 189 #define SECTION_HEADER_FIELDS(b, e) \ 190 CONVERT_FIELD(b, sh_name, e); \ 191 CONVERT_FIELD(b, sh_type, e); \ 192 CONVERT_FIELD(b, sh_link, e); \ 193 CONVERT_FIELD(b, sh_info, e); \ 194 CONVERT_FIELD(b, sh_flags, e); \ 195 CONVERT_FIELD(b, sh_addr, e); \ 196 CONVERT_FIELD(b, sh_offset, e); \ 197 CONVERT_FIELD(b, sh_size, e); \ 198 CONVERT_FIELD(b, sh_addralign, e); \ 199 CONVERT_FIELD(b, sh_entsize, e) 200 201 CONVERT_SWITCH(ehdr, shdr, SECTION_HEADER_FIELDS); 202 203 #undef SECTION_HEADER_FIELDS 204 205 return (0); 206 } 207 #undef CONVERT_SWITCH 208 #undef CONVERT_FIELD 209 210 211 #ifdef __amd64__ 212 static bool 213 is_kernphys_relocatable(elf_file_t ef) 214 { 215 Elf_Sym sym; 216 217 return (__elfN(lookup_symbol)(ef, "kernphys", &sym, STT_OBJECT) == 0 && 218 sym.st_size == 8); 219 } 220 #endif 221 222 static int 223 __elfN(load_elf_header)(char *filename, elf_file_t ef) 224 { 225 ssize_t bytes_read; 226 Elf_Ehdr *ehdr; 227 int err; 228 229 /* 230 * Open the image, read and validate the ELF header 231 */ 232 if (filename == NULL) /* can't handle nameless */ 233 return (EFTYPE); 234 if ((ef->fd = open(filename, O_RDONLY)) == -1) 235 return (errno); 236 ef->firstpage = malloc(PAGE_SIZE); 237 if (ef->firstpage == NULL) { 238 close(ef->fd); 239 return (ENOMEM); 240 } 241 #ifdef LOADER_VERIEXEC_VECTX 242 { 243 int verror; 244 245 ef->vctx = vectx_open(ef->fd, filename, 0L, NULL, &verror, __func__); 246 if (verror) { 247 printf("Unverified %s: %s\n", filename, ve_error_get()); 248 close(ef->fd); 249 free(ef->vctx); 250 return (EAUTH); 251 } 252 } 253 #endif 254 bytes_read = VECTX_READ(VECTX_HANDLE(ef), ef->firstpage, PAGE_SIZE); 255 ef->firstlen = (size_t)bytes_read; 256 if (bytes_read < 0 || ef->firstlen <= sizeof(Elf_Ehdr)) { 257 err = EFTYPE; /* could be EIO, but may be small file */ 258 goto error; 259 } 260 ehdr = ef->ehdr = (Elf_Ehdr *)ef->firstpage; 261 262 /* Is it ELF? */ 263 if (!IS_ELF(*ehdr)) { 264 err = EFTYPE; 265 goto error; 266 } 267 268 if (ehdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || /* Layout ? */ 269 ehdr->e_ident[EI_DATA] != ELF_TARG_DATA || 270 ehdr->e_ident[EI_VERSION] != EV_CURRENT) /* Version ? */ { 271 err = EFTYPE; 272 goto error; 273 } 274 275 err = elf_header_convert(ehdr); 276 if (err) 277 goto error; 278 279 if (ehdr->e_version != EV_CURRENT || ehdr->e_machine != ELF_TARG_MACH) { 280 /* Machine ? */ 281 err = EFTYPE; 282 goto error; 283 } 284 285 #if defined(LOADER_VERIEXEC) && !defined(LOADER_VERIEXEC_VECTX) 286 if (verify_file(ef->fd, filename, bytes_read, VE_MUST, __func__) < 0) { 287 err = EAUTH; 288 goto error; 289 } 290 #endif 291 return (0); 292 293 error: 294 if (ef->firstpage != NULL) { 295 free(ef->firstpage); 296 ef->firstpage = NULL; 297 } 298 if (ef->fd != -1) { 299 #ifdef LOADER_VERIEXEC_VECTX 300 free(ef->vctx); 301 #endif 302 close(ef->fd); 303 ef->fd = -1; 304 } 305 return (err); 306 } 307 308 /* 309 * Attempt to load the file (file) as an ELF module. It will be stored at 310 * (dest), and a pointer to a module structure describing the loaded object 311 * will be saved in (result). 312 */ 313 int 314 __elfN(loadfile)(char *filename, uint64_t dest, struct preloaded_file **result) 315 { 316 return (__elfN(loadfile_raw)(filename, dest, result, 0)); 317 } 318 319 int 320 __elfN(loadfile_raw)(char *filename, uint64_t dest, 321 struct preloaded_file **result, int multiboot) 322 { 323 struct preloaded_file *fp, *kfp; 324 struct elf_file ef; 325 Elf_Ehdr *ehdr; 326 int err; 327 328 fp = NULL; 329 bzero(&ef, sizeof(struct elf_file)); 330 ef.fd = -1; 331 332 err = __elfN(load_elf_header)(filename, &ef); 333 if (err != 0) 334 return (err); 335 336 ehdr = ef.ehdr; 337 338 /* 339 * Check to see what sort of module we are. 340 */ 341 kfp = file_findfile(NULL, __elfN(kerneltype)); 342 #ifdef __powerpc__ 343 /* 344 * Kernels can be ET_DYN, so just assume the first loaded object is the 345 * kernel. This assumption will be checked later. 346 */ 347 if (kfp == NULL) 348 ef.kernel = 1; 349 #endif 350 if (ef.kernel || ehdr->e_type == ET_EXEC) { 351 /* Looks like a kernel */ 352 if (kfp != NULL) { 353 printf("elf" __XSTRING(__ELF_WORD_SIZE) 354 "_loadfile: kernel already loaded\n"); 355 err = EPERM; 356 goto oerr; 357 } 358 /* 359 * Calculate destination address based on kernel entrypoint. 360 * 361 * For ARM, the destination address is independent of any values 362 * in the elf header (an ARM kernel can be loaded at any 2MB 363 * boundary), so we leave dest set to the value calculated by 364 * archsw.arch_loadaddr() and passed in to this function. 365 */ 366 #ifndef __arm__ 367 if (ehdr->e_type == ET_EXEC) 368 dest = (ehdr->e_entry & ~PAGE_MASK); 369 #endif 370 if ((ehdr->e_entry & ~PAGE_MASK) == 0) { 371 printf("elf" __XSTRING(__ELF_WORD_SIZE) 372 "_loadfile: not a kernel (maybe static binary?)\n"); 373 err = EPERM; 374 goto oerr; 375 } 376 ef.kernel = 1; 377 378 } else if (ehdr->e_type == ET_DYN) { 379 /* Looks like a kld module */ 380 if (multiboot != 0) { 381 printf("elf" __XSTRING(__ELF_WORD_SIZE) 382 "_loadfile: can't load module as multiboot\n"); 383 err = EPERM; 384 goto oerr; 385 } 386 if (kfp == NULL) { 387 printf("elf" __XSTRING(__ELF_WORD_SIZE) 388 "_loadfile: can't load module before kernel\n"); 389 err = EPERM; 390 goto oerr; 391 } 392 if (strcmp(__elfN(kerneltype), kfp->f_type)) { 393 printf("elf" __XSTRING(__ELF_WORD_SIZE) 394 "_loadfile: can't load module with kernel type '%s'\n", 395 kfp->f_type); 396 err = EPERM; 397 goto oerr; 398 } 399 /* Looks OK, got ahead */ 400 ef.kernel = 0; 401 402 } else { 403 err = EFTYPE; 404 goto oerr; 405 } 406 407 if (archsw.arch_loadaddr != NULL) 408 dest = archsw.arch_loadaddr(LOAD_ELF, ehdr, dest); 409 else 410 dest = roundup(dest, PAGE_SIZE); 411 412 /* 413 * Ok, we think we should handle this. 414 */ 415 fp = file_alloc(); 416 if (fp == NULL) { 417 printf("elf" __XSTRING(__ELF_WORD_SIZE) 418 "_loadfile: cannot allocate module info\n"); 419 err = EPERM; 420 goto out; 421 } 422 if (ef.kernel == 1 && multiboot == 0) 423 setenv("kernelname", filename, 1); 424 fp->f_name = strdup(filename); 425 if (multiboot == 0) 426 fp->f_type = strdup(ef.kernel ? 427 __elfN(kerneltype) : __elfN(moduletype)); 428 else 429 fp->f_type = strdup("elf multiboot kernel"); 430 431 #ifdef ELF_VERBOSE 432 if (ef.kernel) 433 printf("%s entry at 0x%jx\n", filename, 434 (uintmax_t)ehdr->e_entry); 435 #else 436 printf("%s ", filename); 437 #endif 438 439 fp->f_size = __elfN(loadimage)(fp, &ef, dest); 440 if (fp->f_size == 0 || fp->f_addr == 0) 441 goto ioerr; 442 443 /* save exec header as metadata */ 444 file_addmetadata(fp, MODINFOMD_ELFHDR, sizeof(*ehdr), ehdr); 445 446 /* Load OK, return module pointer */ 447 *result = (struct preloaded_file *)fp; 448 err = 0; 449 #ifdef __amd64__ 450 fp->f_kernphys_relocatable = multiboot || is_kernphys_relocatable(&ef); 451 #endif 452 goto out; 453 454 ioerr: 455 err = EIO; 456 oerr: 457 file_discard(fp); 458 out: 459 if (ef.firstpage) 460 free(ef.firstpage); 461 if (ef.fd != -1) { 462 #ifdef LOADER_VERIEXEC_VECTX 463 if (!err && ef.vctx) { 464 int verror; 465 466 verror = vectx_close(ef.vctx, VE_MUST, __func__); 467 if (verror) { 468 err = EAUTH; 469 file_discard(fp); 470 } 471 } 472 #endif 473 close(ef.fd); 474 } 475 return (err); 476 } 477 478 /* 479 * With the file (fd) open on the image, and (ehdr) containing 480 * the Elf header, load the image at (off) 481 */ 482 static int 483 __elfN(loadimage)(struct preloaded_file *fp, elf_file_t ef, uint64_t off) 484 { 485 int i; 486 u_int j; 487 Elf_Ehdr *ehdr; 488 Elf_Phdr *phdr, *php; 489 Elf_Shdr *shdr; 490 char *shstr; 491 int ret; 492 vm_offset_t firstaddr; 493 vm_offset_t lastaddr; 494 size_t chunk; 495 ssize_t result; 496 Elf_Addr ssym, esym; 497 Elf_Dyn *dp; 498 Elf_Addr adp; 499 Elf_Addr ctors; 500 int ndp; 501 int symstrindex; 502 int symtabindex; 503 Elf_Size size; 504 u_int fpcopy; 505 Elf_Sym sym; 506 Elf_Addr p_start, p_end; 507 508 dp = NULL; 509 shdr = NULL; 510 ret = 0; 511 firstaddr = lastaddr = 0; 512 ehdr = ef->ehdr; 513 #ifdef __powerpc__ 514 if (ef->kernel) { 515 #else 516 if (ehdr->e_type == ET_EXEC) { 517 #endif 518 #if defined(__i386__) || defined(__amd64__) 519 #if __ELF_WORD_SIZE == 64 520 /* x86_64 relocates after locore */ 521 off = - (off & 0xffffffffff000000ull); 522 #else 523 /* i386 relocates after locore */ 524 off = - (off & 0xff000000u); 525 #endif 526 #elif defined(__powerpc__) 527 /* 528 * On the purely virtual memory machines like e500, the kernel 529 * is linked against its final VA range, which is most often 530 * not available at the loader stage, but only after kernel 531 * initializes and completes its VM settings. In such cases we 532 * cannot use p_vaddr field directly to load ELF segments, but 533 * put them at some 'load-time' locations. 534 */ 535 if (off & 0xf0000000u) { 536 off = -(off & 0xf0000000u); 537 /* 538 * XXX the physical load address should not be 539 * hardcoded. Note that the Book-E kernel assumes that 540 * it's loaded at a 16MB boundary for now... 541 */ 542 off += 0x01000000; 543 } 544 ehdr->e_entry += off; 545 #ifdef ELF_VERBOSE 546 printf("Converted entry 0x%jx\n", (uintmax_t)ehdr->e_entry); 547 #endif 548 #elif defined(__arm__) && !defined(EFI) 549 /* 550 * The elf headers in arm kernels specify virtual addresses in 551 * all header fields, even the ones that should be physical 552 * addresses. We assume the entry point is in the first page, 553 * and masking the page offset will leave us with the virtual 554 * address the kernel was linked at. We subtract that from the 555 * load offset, making 'off' into the value which, when added 556 * to a virtual address in an elf header, translates it to a 557 * physical address. We do the va->pa conversion on the entry 558 * point address in the header now, so that later we can launch 559 * the kernel by just jumping to that address. 560 * 561 * When booting from UEFI the copyin and copyout functions 562 * handle adjusting the location relative to the first virtual 563 * address. Because of this there is no need to adjust the 564 * offset or entry point address as these will both be handled 565 * by the efi code. 566 */ 567 off -= ehdr->e_entry & ~PAGE_MASK; 568 ehdr->e_entry += off; 569 #ifdef ELF_VERBOSE 570 printf("ehdr->e_entry 0x%jx, va<->pa off %llx\n", 571 (uintmax_t)ehdr->e_entry, off); 572 #endif 573 #else 574 off = 0; /* other archs use direct mapped kernels */ 575 #endif 576 } 577 ef->off = off; 578 579 if (ef->kernel) 580 __elfN(relocation_offset) = off; 581 582 if ((ehdr->e_phoff + ehdr->e_phnum * sizeof(*phdr)) > ef->firstlen) { 583 printf("elf" __XSTRING(__ELF_WORD_SIZE) 584 "_loadimage: program header not within first page\n"); 585 goto out; 586 } 587 phdr = (Elf_Phdr *)(ef->firstpage + ehdr->e_phoff); 588 589 for (i = 0; i < ehdr->e_phnum; i++) { 590 if (elf_program_header_convert(ehdr, phdr)) 591 continue; 592 593 /* We want to load PT_LOAD segments only.. */ 594 if (phdr[i].p_type != PT_LOAD) 595 continue; 596 597 #ifdef ELF_VERBOSE 598 printf("Segment: 0x%lx@0x%lx -> 0x%lx-0x%lx", 599 (long)phdr[i].p_filesz, (long)phdr[i].p_offset, 600 (long)(phdr[i].p_vaddr + off), 601 (long)(phdr[i].p_vaddr + off + phdr[i].p_memsz - 1)); 602 #else 603 if ((phdr[i].p_flags & PF_W) == 0) { 604 printf("text=0x%lx ", (long)phdr[i].p_filesz); 605 } else { 606 printf("data=0x%lx", (long)phdr[i].p_filesz); 607 if (phdr[i].p_filesz < phdr[i].p_memsz) 608 printf("+0x%lx", (long)(phdr[i].p_memsz - 609 phdr[i].p_filesz)); 610 printf(" "); 611 } 612 #endif 613 fpcopy = 0; 614 if (ef->firstlen > phdr[i].p_offset) { 615 fpcopy = ef->firstlen - phdr[i].p_offset; 616 archsw.arch_copyin(ef->firstpage + phdr[i].p_offset, 617 phdr[i].p_vaddr + off, fpcopy); 618 } 619 if (phdr[i].p_filesz > fpcopy) { 620 if (kern_pread(VECTX_HANDLE(ef), 621 phdr[i].p_vaddr + off + fpcopy, 622 phdr[i].p_filesz - fpcopy, 623 phdr[i].p_offset + fpcopy) != 0) { 624 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 625 "_loadimage: read failed\n"); 626 goto out; 627 } 628 } 629 /* clear space from oversized segments; eg: bss */ 630 if (phdr[i].p_filesz < phdr[i].p_memsz) { 631 #ifdef ELF_VERBOSE 632 printf(" (bss: 0x%lx-0x%lx)", 633 (long)(phdr[i].p_vaddr + off + phdr[i].p_filesz), 634 (long)(phdr[i].p_vaddr + off + phdr[i].p_memsz -1)); 635 #endif 636 637 kern_bzero(phdr[i].p_vaddr + off + phdr[i].p_filesz, 638 phdr[i].p_memsz - phdr[i].p_filesz); 639 } 640 #ifdef ELF_VERBOSE 641 printf("\n"); 642 #endif 643 644 if (archsw.arch_loadseg != NULL) 645 archsw.arch_loadseg(ehdr, phdr + i, off); 646 647 if (firstaddr == 0 || firstaddr > (phdr[i].p_vaddr + off)) 648 firstaddr = phdr[i].p_vaddr + off; 649 if (lastaddr == 0 || lastaddr < 650 (phdr[i].p_vaddr + off + phdr[i].p_memsz)) 651 lastaddr = phdr[i].p_vaddr + off + phdr[i].p_memsz; 652 } 653 lastaddr = roundup(lastaddr, sizeof(long)); 654 655 /* 656 * Get the section headers. We need this for finding the .ctors 657 * section as well as for loading any symbols. Both may be hard 658 * to do if reading from a .gz file as it involves seeking. I 659 * think the rule is going to have to be that you must strip a 660 * file to remove symbols before gzipping it. 661 */ 662 chunk = (size_t)ehdr->e_shnum * (size_t)ehdr->e_shentsize; 663 if (chunk == 0 || ehdr->e_shoff == 0) 664 goto nosyms; 665 shdr = alloc_pread(VECTX_HANDLE(ef), ehdr->e_shoff, chunk); 666 if (shdr == NULL) { 667 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 668 "_loadimage: failed to read section headers"); 669 goto nosyms; 670 } 671 672 for (i = 0; i < ehdr->e_shnum; i++) 673 elf_section_header_convert(ehdr, &shdr[i]); 674 675 file_addmetadata(fp, MODINFOMD_SHDR, chunk, shdr); 676 677 /* 678 * Read the section string table and look for the .ctors section. 679 * We need to tell the kernel where it is so that it can call the 680 * ctors. 681 */ 682 chunk = shdr[ehdr->e_shstrndx].sh_size; 683 if (chunk) { 684 shstr = alloc_pread(VECTX_HANDLE(ef), 685 shdr[ehdr->e_shstrndx].sh_offset, chunk); 686 if (shstr) { 687 for (i = 0; i < ehdr->e_shnum; i++) { 688 if (strcmp(shstr + shdr[i].sh_name, 689 ".ctors") != 0) 690 continue; 691 ctors = shdr[i].sh_addr; 692 file_addmetadata(fp, MODINFOMD_CTORS_ADDR, 693 sizeof(ctors), &ctors); 694 size = shdr[i].sh_size; 695 file_addmetadata(fp, MODINFOMD_CTORS_SIZE, 696 sizeof(size), &size); 697 break; 698 } 699 free(shstr); 700 } 701 } 702 703 /* 704 * Now load any symbols. 705 */ 706 symtabindex = -1; 707 symstrindex = -1; 708 for (i = 0; i < ehdr->e_shnum; i++) { 709 if (shdr[i].sh_type != SHT_SYMTAB) 710 continue; 711 for (j = 0; j < ehdr->e_phnum; j++) { 712 if (phdr[j].p_type != PT_LOAD) 713 continue; 714 if (shdr[i].sh_offset >= phdr[j].p_offset && 715 (shdr[i].sh_offset + shdr[i].sh_size <= 716 phdr[j].p_offset + phdr[j].p_filesz)) { 717 shdr[i].sh_offset = 0; 718 shdr[i].sh_size = 0; 719 break; 720 } 721 } 722 if (shdr[i].sh_offset == 0 || shdr[i].sh_size == 0) 723 continue; /* alread loaded in a PT_LOAD above */ 724 /* Save it for loading below */ 725 symtabindex = i; 726 symstrindex = shdr[i].sh_link; 727 } 728 if (symtabindex < 0 || symstrindex < 0) 729 goto nosyms; 730 731 /* Ok, committed to a load. */ 732 #ifndef ELF_VERBOSE 733 printf("syms=["); 734 #endif 735 ssym = lastaddr; 736 for (i = symtabindex; i >= 0; i = symstrindex) { 737 #ifdef ELF_VERBOSE 738 char *secname; 739 740 switch(shdr[i].sh_type) { 741 case SHT_SYMTAB: /* Symbol table */ 742 secname = "symtab"; 743 break; 744 case SHT_STRTAB: /* String table */ 745 secname = "strtab"; 746 break; 747 default: 748 secname = "WHOA!!"; 749 break; 750 } 751 #endif 752 size = shdr[i].sh_size; 753 #if defined(__powerpc__) 754 #if __ELF_WORD_SIZE == 64 755 size = htobe64(size); 756 #else 757 size = htobe32(size); 758 #endif 759 #endif 760 761 archsw.arch_copyin(&size, lastaddr, sizeof(size)); 762 lastaddr += sizeof(size); 763 764 #ifdef ELF_VERBOSE 765 printf("\n%s: 0x%jx@0x%jx -> 0x%jx-0x%jx", secname, 766 (uintmax_t)shdr[i].sh_size, (uintmax_t)shdr[i].sh_offset, 767 (uintmax_t)lastaddr, 768 (uintmax_t)(lastaddr + shdr[i].sh_size)); 769 #else 770 if (i == symstrindex) 771 printf("+"); 772 printf("0x%lx+0x%lx", (long)sizeof(size), (long)size); 773 #endif 774 775 if (VECTX_LSEEK(VECTX_HANDLE(ef), (off_t)shdr[i].sh_offset, SEEK_SET) == -1) { 776 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 777 "_loadimage: could not seek for symbols - skipped!"); 778 lastaddr = ssym; 779 ssym = 0; 780 goto nosyms; 781 } 782 result = archsw.arch_readin(VECTX_HANDLE(ef), lastaddr, shdr[i].sh_size); 783 if (result < 0 || (size_t)result != shdr[i].sh_size) { 784 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 785 "_loadimage: could not read symbols - skipped! " 786 "(%ju != %ju)", (uintmax_t)result, 787 (uintmax_t)shdr[i].sh_size); 788 lastaddr = ssym; 789 ssym = 0; 790 goto nosyms; 791 } 792 /* Reset offsets relative to ssym */ 793 lastaddr += shdr[i].sh_size; 794 lastaddr = roundup(lastaddr, sizeof(size)); 795 if (i == symtabindex) 796 symtabindex = -1; 797 else if (i == symstrindex) 798 symstrindex = -1; 799 } 800 esym = lastaddr; 801 #ifndef ELF_VERBOSE 802 printf("]"); 803 #endif 804 805 #if defined(__powerpc__) 806 /* On PowerPC we always need to provide BE data to the kernel */ 807 #if __ELF_WORD_SIZE == 64 808 ssym = htobe64((uint64_t)ssym); 809 esym = htobe64((uint64_t)esym); 810 #else 811 ssym = htobe32((uint32_t)ssym); 812 esym = htobe32((uint32_t)esym); 813 #endif 814 #endif 815 816 file_addmetadata(fp, MODINFOMD_SSYM, sizeof(ssym), &ssym); 817 file_addmetadata(fp, MODINFOMD_ESYM, sizeof(esym), &esym); 818 819 nosyms: 820 printf("\n"); 821 822 ret = lastaddr - firstaddr; 823 fp->f_addr = firstaddr; 824 825 php = NULL; 826 for (i = 0; i < ehdr->e_phnum; i++) { 827 if (phdr[i].p_type == PT_DYNAMIC) { 828 php = phdr + i; 829 adp = php->p_vaddr; 830 file_addmetadata(fp, MODINFOMD_DYNAMIC, sizeof(adp), 831 &adp); 832 break; 833 } 834 } 835 836 if (php == NULL) /* this is bad, we cannot get to symbols or _DYNAMIC */ 837 goto out; 838 839 ndp = php->p_filesz / sizeof(Elf_Dyn); 840 if (ndp == 0) 841 goto out; 842 dp = malloc(php->p_filesz); 843 if (dp == NULL) 844 goto out; 845 archsw.arch_copyout(php->p_vaddr + off, dp, php->p_filesz); 846 847 ef->strsz = 0; 848 for (i = 0; i < ndp; i++) { 849 if (dp[i].d_tag == 0) 850 break; 851 switch (dp[i].d_tag) { 852 case DT_HASH: 853 ef->hashtab = 854 (Elf_Hashelt*)(uintptr_t)(dp[i].d_un.d_ptr + off); 855 break; 856 case DT_STRTAB: 857 ef->strtab = 858 (char *)(uintptr_t)(dp[i].d_un.d_ptr + off); 859 break; 860 case DT_STRSZ: 861 ef->strsz = dp[i].d_un.d_val; 862 break; 863 case DT_SYMTAB: 864 ef->symtab = 865 (Elf_Sym *)(uintptr_t)(dp[i].d_un.d_ptr + off); 866 break; 867 case DT_REL: 868 ef->rel = 869 (Elf_Rel *)(uintptr_t)(dp[i].d_un.d_ptr + off); 870 break; 871 case DT_RELSZ: 872 ef->relsz = dp[i].d_un.d_val; 873 break; 874 case DT_RELA: 875 ef->rela = 876 (Elf_Rela *)(uintptr_t)(dp[i].d_un.d_ptr + off); 877 break; 878 case DT_RELASZ: 879 ef->relasz = dp[i].d_un.d_val; 880 break; 881 default: 882 break; 883 } 884 } 885 if (ef->hashtab == NULL || ef->symtab == NULL || 886 ef->strtab == NULL || ef->strsz == 0) 887 goto out; 888 COPYOUT(ef->hashtab, &ef->nbuckets, sizeof(ef->nbuckets)); 889 COPYOUT(ef->hashtab + 1, &ef->nchains, sizeof(ef->nchains)); 890 ef->buckets = ef->hashtab + 2; 891 ef->chains = ef->buckets + ef->nbuckets; 892 893 if (!gfx_state.tg_kernel_supported && 894 __elfN(lookup_symbol)(ef, "__start_set_vt_drv_set", &sym, 895 STT_NOTYPE) == 0) { 896 p_start = sym.st_value + ef->off; 897 if (__elfN(lookup_symbol)(ef, "__stop_set_vt_drv_set", &sym, 898 STT_NOTYPE) == 0) { 899 p_end = sym.st_value + ef->off; 900 gfx_state.tg_kernel_supported = 901 __elfN(parse_vt_drv_set)(fp, ef, p_start, p_end); 902 } 903 } 904 905 if (__elfN(lookup_symbol)(ef, "__start_set_modmetadata_set", &sym, 906 STT_NOTYPE) != 0) 907 return 0; 908 p_start = sym.st_value + ef->off; 909 if (__elfN(lookup_symbol)(ef, "__stop_set_modmetadata_set", &sym, 910 STT_NOTYPE) != 0) 911 return 0; 912 p_end = sym.st_value + ef->off; 913 914 if (__elfN(parse_modmetadata)(fp, ef, p_start, p_end) == 0) 915 goto out; 916 917 if (ef->kernel) /* kernel must not depend on anything */ 918 goto out; 919 920 out: 921 if (dp) 922 free(dp); 923 if (shdr) 924 free(shdr); 925 return ret; 926 } 927 928 static char invalid_name[] = "bad"; 929 930 char * 931 fake_modname(const char *name) 932 { 933 const char *sp, *ep; 934 char *fp; 935 size_t len; 936 937 sp = strrchr(name, '/'); 938 if (sp) 939 sp++; 940 else 941 sp = name; 942 943 ep = strrchr(sp, '.'); 944 if (ep == NULL) { 945 ep = sp + strlen(sp); 946 } 947 if (ep == sp) { 948 sp = invalid_name; 949 ep = invalid_name + sizeof(invalid_name) - 1; 950 } 951 952 len = ep - sp; 953 fp = malloc(len + 1); 954 if (fp == NULL) 955 return NULL; 956 memcpy(fp, sp, len); 957 fp[len] = '\0'; 958 return fp; 959 } 960 961 #if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64 962 struct mod_metadata64 { 963 int md_version; /* structure version MDTV_* */ 964 int md_type; /* type of entry MDT_* */ 965 uint64_t md_data; /* specific data */ 966 uint64_t md_cval; /* common string label */ 967 }; 968 #endif 969 #if defined(__amd64__) && __ELF_WORD_SIZE == 32 970 struct mod_metadata32 { 971 int md_version; /* structure version MDTV_* */ 972 int md_type; /* type of entry MDT_* */ 973 uint32_t md_data; /* specific data */ 974 uint32_t md_cval; /* common string label */ 975 }; 976 #endif 977 978 int 979 __elfN(load_modmetadata)(struct preloaded_file *fp, uint64_t dest) 980 { 981 struct elf_file ef; 982 int err, i, j; 983 Elf_Shdr *sh_meta, *shdr = NULL; 984 Elf_Shdr *sh_data[2]; 985 char *shstrtab = NULL; 986 size_t size; 987 Elf_Addr p_start, p_end; 988 989 bzero(&ef, sizeof(struct elf_file)); 990 ef.fd = -1; 991 992 err = __elfN(load_elf_header)(fp->f_name, &ef); 993 if (err != 0) 994 goto out; 995 996 if (ef.kernel == 1 || ef.ehdr->e_type == ET_EXEC) { 997 ef.kernel = 1; 998 } else if (ef.ehdr->e_type != ET_DYN) { 999 err = EFTYPE; 1000 goto out; 1001 } 1002 1003 size = (size_t)ef.ehdr->e_shnum * (size_t)ef.ehdr->e_shentsize; 1004 shdr = alloc_pread(VECTX_HANDLE(&ef), ef.ehdr->e_shoff, size); 1005 if (shdr == NULL) { 1006 err = ENOMEM; 1007 goto out; 1008 } 1009 1010 /* Load shstrtab. */ 1011 shstrtab = alloc_pread(VECTX_HANDLE(&ef), shdr[ef.ehdr->e_shstrndx].sh_offset, 1012 shdr[ef.ehdr->e_shstrndx].sh_size); 1013 if (shstrtab == NULL) { 1014 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 1015 "load_modmetadata: unable to load shstrtab\n"); 1016 err = EFTYPE; 1017 goto out; 1018 } 1019 1020 /* Find set_modmetadata_set and data sections. */ 1021 sh_data[0] = sh_data[1] = sh_meta = NULL; 1022 for (i = 0, j = 0; i < ef.ehdr->e_shnum; i++) { 1023 if (strcmp(&shstrtab[shdr[i].sh_name], 1024 "set_modmetadata_set") == 0) { 1025 sh_meta = &shdr[i]; 1026 } 1027 if ((strcmp(&shstrtab[shdr[i].sh_name], ".data") == 0) || 1028 (strcmp(&shstrtab[shdr[i].sh_name], ".rodata") == 0)) { 1029 sh_data[j++] = &shdr[i]; 1030 } 1031 } 1032 if (sh_meta == NULL || sh_data[0] == NULL || sh_data[1] == NULL) { 1033 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 1034 "load_modmetadata: unable to find set_modmetadata_set or data sections\n"); 1035 err = EFTYPE; 1036 goto out; 1037 } 1038 1039 /* Load set_modmetadata_set into memory */ 1040 err = kern_pread(VECTX_HANDLE(&ef), dest, sh_meta->sh_size, sh_meta->sh_offset); 1041 if (err != 0) { 1042 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 1043 "load_modmetadata: unable to load set_modmetadata_set: %d\n", err); 1044 goto out; 1045 } 1046 p_start = dest; 1047 p_end = dest + sh_meta->sh_size; 1048 dest += sh_meta->sh_size; 1049 1050 /* Load data sections into memory. */ 1051 err = kern_pread(VECTX_HANDLE(&ef), dest, sh_data[0]->sh_size, 1052 sh_data[0]->sh_offset); 1053 if (err != 0) { 1054 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 1055 "load_modmetadata: unable to load data: %d\n", err); 1056 goto out; 1057 } 1058 1059 /* 1060 * We have to increment the dest, so that the offset is the same into 1061 * both the .rodata and .data sections. 1062 */ 1063 ef.off = -(sh_data[0]->sh_addr - dest); 1064 dest += (sh_data[1]->sh_addr - sh_data[0]->sh_addr); 1065 1066 err = kern_pread(VECTX_HANDLE(&ef), dest, sh_data[1]->sh_size, 1067 sh_data[1]->sh_offset); 1068 if (err != 0) { 1069 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 1070 "load_modmetadata: unable to load data: %d\n", err); 1071 goto out; 1072 } 1073 1074 err = __elfN(parse_modmetadata)(fp, &ef, p_start, p_end); 1075 if (err != 0) { 1076 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 1077 "load_modmetadata: unable to parse metadata: %d\n", err); 1078 goto out; 1079 } 1080 1081 out: 1082 if (shstrtab != NULL) 1083 free(shstrtab); 1084 if (shdr != NULL) 1085 free(shdr); 1086 if (ef.firstpage != NULL) 1087 free(ef.firstpage); 1088 if (ef.fd != -1) { 1089 #ifdef LOADER_VERIEXEC_VECTX 1090 if (!err && ef.vctx) { 1091 int verror; 1092 1093 verror = vectx_close(ef.vctx, VE_MUST, __func__); 1094 if (verror) { 1095 err = EAUTH; 1096 file_discard(fp); 1097 } 1098 } 1099 #endif 1100 close(ef.fd); 1101 } 1102 return (err); 1103 } 1104 1105 /* 1106 * Walk through vt_drv_set, each vt driver structure starts with 1107 * static 16 chars for driver name. If we have "vbefb", return true. 1108 */ 1109 static bool 1110 __elfN(parse_vt_drv_set)(struct preloaded_file *fp, elf_file_t ef, 1111 Elf_Addr p_start, Elf_Addr p_end) 1112 { 1113 Elf_Addr v, p; 1114 char vd_name[16]; 1115 int error; 1116 1117 p = p_start; 1118 while (p < p_end) { 1119 COPYOUT(p, &v, sizeof(v)); 1120 1121 error = __elfN(reloc_ptr)(fp, ef, p, &v, sizeof(v)); 1122 if (error == EOPNOTSUPP) 1123 v += ef->off; 1124 else if (error != 0) 1125 return (false); 1126 COPYOUT(v, &vd_name, sizeof(vd_name)); 1127 if (strncmp(vd_name, "vbefb", sizeof(vd_name)) == 0) 1128 return (true); 1129 p += sizeof(Elf_Addr); 1130 } 1131 1132 return (false); 1133 } 1134 1135 int 1136 __elfN(parse_modmetadata)(struct preloaded_file *fp, elf_file_t ef, 1137 Elf_Addr p_start, Elf_Addr p_end) 1138 { 1139 struct mod_metadata md; 1140 #if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64 1141 struct mod_metadata64 md64; 1142 #elif defined(__amd64__) && __ELF_WORD_SIZE == 32 1143 struct mod_metadata32 md32; 1144 #endif 1145 struct mod_depend *mdepend; 1146 struct mod_version mver; 1147 char *s; 1148 int error, modcnt, minfolen; 1149 Elf_Addr v, p; 1150 1151 modcnt = 0; 1152 p = p_start; 1153 while (p < p_end) { 1154 COPYOUT(p, &v, sizeof(v)); 1155 error = __elfN(reloc_ptr)(fp, ef, p, &v, sizeof(v)); 1156 if (error == EOPNOTSUPP) 1157 v += ef->off; 1158 else if (error != 0) 1159 return (error); 1160 #if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64 1161 COPYOUT(v, &md64, sizeof(md64)); 1162 error = __elfN(reloc_ptr)(fp, ef, v, &md64, sizeof(md64)); 1163 if (error == EOPNOTSUPP) { 1164 md64.md_cval += ef->off; 1165 md64.md_data += ef->off; 1166 } else if (error != 0) 1167 return (error); 1168 md.md_version = md64.md_version; 1169 md.md_type = md64.md_type; 1170 md.md_cval = (const char *)(uintptr_t)md64.md_cval; 1171 md.md_data = (void *)(uintptr_t)md64.md_data; 1172 #elif defined(__amd64__) && __ELF_WORD_SIZE == 32 1173 COPYOUT(v, &md32, sizeof(md32)); 1174 error = __elfN(reloc_ptr)(fp, ef, v, &md32, sizeof(md32)); 1175 if (error == EOPNOTSUPP) { 1176 md32.md_cval += ef->off; 1177 md32.md_data += ef->off; 1178 } else if (error != 0) 1179 return (error); 1180 md.md_version = md32.md_version; 1181 md.md_type = md32.md_type; 1182 md.md_cval = (const char *)(uintptr_t)md32.md_cval; 1183 md.md_data = (void *)(uintptr_t)md32.md_data; 1184 #else 1185 COPYOUT(v, &md, sizeof(md)); 1186 error = __elfN(reloc_ptr)(fp, ef, v, &md, sizeof(md)); 1187 if (error == EOPNOTSUPP) { 1188 md.md_cval += ef->off; 1189 md.md_data = (void *)((uintptr_t)md.md_data + 1190 (uintptr_t)ef->off); 1191 } else if (error != 0) 1192 return (error); 1193 #endif 1194 p += sizeof(Elf_Addr); 1195 switch(md.md_type) { 1196 case MDT_DEPEND: 1197 if (ef->kernel) /* kernel must not depend on anything */ 1198 break; 1199 s = strdupout((vm_offset_t)md.md_cval); 1200 minfolen = sizeof(*mdepend) + strlen(s) + 1; 1201 mdepend = malloc(minfolen); 1202 if (mdepend == NULL) 1203 return ENOMEM; 1204 COPYOUT((vm_offset_t)md.md_data, mdepend, 1205 sizeof(*mdepend)); 1206 strcpy((char*)(mdepend + 1), s); 1207 free(s); 1208 file_addmetadata(fp, MODINFOMD_DEPLIST, minfolen, 1209 mdepend); 1210 free(mdepend); 1211 break; 1212 case MDT_VERSION: 1213 s = strdupout((vm_offset_t)md.md_cval); 1214 COPYOUT((vm_offset_t)md.md_data, &mver, sizeof(mver)); 1215 file_addmodule(fp, s, mver.mv_version, NULL); 1216 free(s); 1217 modcnt++; 1218 break; 1219 } 1220 } 1221 if (modcnt == 0) { 1222 s = fake_modname(fp->f_name); 1223 file_addmodule(fp, s, 1, NULL); 1224 free(s); 1225 } 1226 return 0; 1227 } 1228 1229 static unsigned long 1230 elf_hash(const char *name) 1231 { 1232 const unsigned char *p = (const unsigned char *) name; 1233 unsigned long h = 0; 1234 unsigned long g; 1235 1236 while (*p != '\0') { 1237 h = (h << 4) + *p++; 1238 if ((g = h & 0xf0000000) != 0) 1239 h ^= g >> 24; 1240 h &= ~g; 1241 } 1242 return h; 1243 } 1244 1245 static const char __elfN(bad_symtable)[] = "elf" __XSTRING(__ELF_WORD_SIZE) 1246 "_lookup_symbol: corrupt symbol table\n"; 1247 int 1248 __elfN(lookup_symbol)(elf_file_t ef, const char* name, Elf_Sym *symp, 1249 unsigned char type) 1250 { 1251 Elf_Hashelt symnum; 1252 Elf_Sym sym; 1253 char *strp; 1254 unsigned long hash; 1255 1256 if (ef->nbuckets == 0) { 1257 printf(__elfN(bad_symtable)); 1258 return ENOENT; 1259 } 1260 1261 hash = elf_hash(name); 1262 COPYOUT(&ef->buckets[hash % ef->nbuckets], &symnum, sizeof(symnum)); 1263 1264 while (symnum != STN_UNDEF) { 1265 if (symnum >= ef->nchains) { 1266 printf(__elfN(bad_symtable)); 1267 return ENOENT; 1268 } 1269 1270 COPYOUT(ef->symtab + symnum, &sym, sizeof(sym)); 1271 if (sym.st_name == 0) { 1272 printf(__elfN(bad_symtable)); 1273 return ENOENT; 1274 } 1275 1276 strp = strdupout((vm_offset_t)(ef->strtab + sym.st_name)); 1277 if (strcmp(name, strp) == 0) { 1278 free(strp); 1279 if (sym.st_shndx != SHN_UNDEF || 1280 (sym.st_value != 0 && 1281 ELF_ST_TYPE(sym.st_info) == type)) { 1282 *symp = sym; 1283 return 0; 1284 } 1285 return ENOENT; 1286 } 1287 free(strp); 1288 COPYOUT(&ef->chains[symnum], &symnum, sizeof(symnum)); 1289 } 1290 return ENOENT; 1291 } 1292 1293 /* 1294 * Apply any intra-module relocations to the value. p is the load address 1295 * of the value and val/len is the value to be modified. This does NOT modify 1296 * the image in-place, because this is done by kern_linker later on. 1297 * 1298 * Returns EOPNOTSUPP if no relocation method is supplied. 1299 */ 1300 static int 1301 __elfN(reloc_ptr)(struct preloaded_file *mp, elf_file_t ef, 1302 Elf_Addr p, void *val, size_t len) 1303 { 1304 size_t n; 1305 Elf_Rela a; 1306 Elf_Rel r; 1307 int error; 1308 1309 /* 1310 * The kernel is already relocated, but we still want to apply 1311 * offset adjustments. 1312 */ 1313 if (ef->kernel) 1314 return (EOPNOTSUPP); 1315 1316 for (n = 0; n < ef->relsz / sizeof(r); n++) { 1317 COPYOUT(ef->rel + n, &r, sizeof(r)); 1318 1319 error = __elfN(reloc)(ef, __elfN(symaddr), &r, ELF_RELOC_REL, 1320 ef->off, p, val, len); 1321 if (error != 0) 1322 return (error); 1323 } 1324 for (n = 0; n < ef->relasz / sizeof(a); n++) { 1325 COPYOUT(ef->rela + n, &a, sizeof(a)); 1326 1327 error = __elfN(reloc)(ef, __elfN(symaddr), &a, ELF_RELOC_RELA, 1328 ef->off, p, val, len); 1329 if (error != 0) 1330 return (error); 1331 } 1332 1333 return (0); 1334 } 1335 1336 static Elf_Addr 1337 __elfN(symaddr)(struct elf_file *ef, Elf_Size symidx) 1338 { 1339 1340 /* Symbol lookup by index not required here. */ 1341 return (0); 1342 } 1343