xref: /freebsd/stand/common/load_elf.c (revision f8ca5d45c3c1829759ecd87cb95d53e5ab7d0811)
1 /*-
2  * Copyright (c) 1998 Michael Smith <msmith@freebsd.org>
3  * Copyright (c) 1998 Peter Wemm <peter@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/param.h>
29 #include <sys/endian.h>
30 #include <sys/exec.h>
31 #include <sys/linker.h>
32 #include <sys/module.h>
33 #include <sys/stdint.h>
34 #include <string.h>
35 #include <machine/elf.h>
36 #include <stand.h>
37 #include <sys/link_elf.h>
38 
39 #include "bootstrap.h"
40 
41 #define COPYOUT(s,d,l)	archsw.arch_copyout((vm_offset_t)(s), d, l)
42 
43 #if defined(__i386__) && __ELF_WORD_SIZE == 64
44 #undef ELF_TARG_CLASS
45 #undef ELF_TARG_MACH
46 #define ELF_TARG_CLASS  ELFCLASS64
47 #define ELF_TARG_MACH   EM_X86_64
48 #endif
49 
50 typedef struct elf_file {
51 	Elf_Phdr	*ph;
52 	Elf_Ehdr	*ehdr;
53 	Elf_Sym		*symtab;
54 	Elf_Hashelt	*hashtab;
55 	Elf_Hashelt	nbuckets;
56 	Elf_Hashelt	nchains;
57 	Elf_Hashelt	*buckets;
58 	Elf_Hashelt	*chains;
59 	Elf_Rel	*rel;
60 	size_t	relsz;
61 	Elf_Rela	*rela;
62 	size_t	relasz;
63 	char	*strtab;
64 	size_t	strsz;
65 	int		fd;
66 	caddr_t	firstpage;
67 	size_t	firstlen;
68 	int		kernel;
69 	uint64_t	off;
70 #ifdef LOADER_VERIEXEC_VECTX
71 	struct vectx	*vctx;
72 #endif
73 } *elf_file_t;
74 
75 #ifdef LOADER_VERIEXEC_VECTX
76 #define VECTX_HANDLE(ef) (ef)->vctx
77 #else
78 #define VECTX_HANDLE(ef) (ef)->fd
79 #endif
80 
81 static int __elfN(loadimage)(struct preloaded_file *mp, elf_file_t ef,
82     uint64_t loadaddr);
83 static int __elfN(lookup_symbol)(elf_file_t ef, const char* name,
84     Elf_Sym *sym, unsigned char type);
85 static int __elfN(reloc_ptr)(struct preloaded_file *mp, elf_file_t ef,
86     Elf_Addr p, void *val, size_t len);
87 static int __elfN(parse_modmetadata)(struct preloaded_file *mp, elf_file_t ef,
88     Elf_Addr p_start, Elf_Addr p_end);
89 static symaddr_fn __elfN(symaddr);
90 static char	*fake_modname(const char *name);
91 
92 const char	*__elfN(kerneltype) = "elf kernel";
93 const char	*__elfN(moduletype) = "elf module";
94 
95 uint64_t	__elfN(relocation_offset) = 0;
96 
97 #ifdef __powerpc__
98 extern void elf_wrong_field_size(void);
99 #define CONVERT_FIELD(b, f, e)			\
100 	switch (sizeof((b)->f)) {		\
101 	case 2:					\
102 		(b)->f = e ## 16toh((b)->f);	\
103 		break;				\
104 	case 4:					\
105 		(b)->f = e ## 32toh((b)->f);	\
106 		break;				\
107 	case 8:					\
108 		(b)->f = e ## 64toh((b)->f);	\
109 		break;				\
110 	default:				\
111 		/* Force a link time error. */	\
112 		elf_wrong_field_size();		\
113 		break;				\
114 	}
115 
116 #define CONVERT_SWITCH(h, d, f)			\
117 	switch ((h)->e_ident[EI_DATA]) {	\
118 	case ELFDATA2MSB:			\
119 		f(d, be);			\
120 		break;				\
121 	case ELFDATA2LSB:			\
122 		f(d, le);			\
123 		break;				\
124 	default:				\
125 		return (EINVAL);		\
126 	}
127 
128 
elf_header_convert(Elf_Ehdr * ehdr)129 static int elf_header_convert(Elf_Ehdr *ehdr)
130 {
131 	/*
132 	 * Fixup ELF header endianness.
133 	 *
134 	 * The Xhdr structure was loaded using block read call to optimize file
135 	 * accesses. It might happen, that the endianness of the system memory
136 	 * is different that endianness of the ELF header.  Swap fields here to
137 	 * guarantee that Xhdr always contain valid data regardless of
138 	 * architecture.
139 	 */
140 #define HEADER_FIELDS(b, e)			\
141 	CONVERT_FIELD(b, e_type, e);		\
142 	CONVERT_FIELD(b, e_machine, e);		\
143 	CONVERT_FIELD(b, e_version, e);		\
144 	CONVERT_FIELD(b, e_entry, e);		\
145 	CONVERT_FIELD(b, e_phoff, e);		\
146 	CONVERT_FIELD(b, e_shoff, e);		\
147 	CONVERT_FIELD(b, e_flags, e);		\
148 	CONVERT_FIELD(b, e_ehsize, e);		\
149 	CONVERT_FIELD(b, e_phentsize, e);	\
150 	CONVERT_FIELD(b, e_phnum, e);		\
151 	CONVERT_FIELD(b, e_shentsize, e);	\
152 	CONVERT_FIELD(b, e_shnum, e);		\
153 	CONVERT_FIELD(b, e_shstrndx, e)
154 
155 	CONVERT_SWITCH(ehdr, ehdr, HEADER_FIELDS);
156 
157 #undef HEADER_FIELDS
158 
159 	return (0);
160 }
161 
elf_program_header_convert(const Elf_Ehdr * ehdr,Elf_Phdr * phdr)162 static int elf_program_header_convert(const Elf_Ehdr *ehdr, Elf_Phdr *phdr)
163 {
164 #define PROGRAM_HEADER_FIELDS(b, e)		\
165 	CONVERT_FIELD(b, p_type, e);		\
166 	CONVERT_FIELD(b, p_flags, e);		\
167 	CONVERT_FIELD(b, p_offset, e);		\
168 	CONVERT_FIELD(b, p_vaddr, e);		\
169 	CONVERT_FIELD(b, p_paddr, e);		\
170 	CONVERT_FIELD(b, p_filesz, e);		\
171 	CONVERT_FIELD(b, p_memsz, e);		\
172 	CONVERT_FIELD(b, p_align, e)
173 
174 	CONVERT_SWITCH(ehdr, phdr, PROGRAM_HEADER_FIELDS);
175 
176 #undef PROGRAM_HEADER_FIELDS
177 
178 	return (0);
179 }
180 
elf_section_header_convert(const Elf_Ehdr * ehdr,Elf_Shdr * shdr)181 static int elf_section_header_convert(const Elf_Ehdr *ehdr, Elf_Shdr *shdr)
182 {
183 #define SECTION_HEADER_FIELDS(b, e)		\
184 	CONVERT_FIELD(b, sh_name, e);		\
185 	CONVERT_FIELD(b, sh_type, e);		\
186 	CONVERT_FIELD(b, sh_link, e);		\
187 	CONVERT_FIELD(b, sh_info, e);		\
188 	CONVERT_FIELD(b, sh_flags, e);		\
189 	CONVERT_FIELD(b, sh_addr, e);		\
190 	CONVERT_FIELD(b, sh_offset, e);		\
191 	CONVERT_FIELD(b, sh_size, e);		\
192 	CONVERT_FIELD(b, sh_addralign, e);	\
193 	CONVERT_FIELD(b, sh_entsize, e)
194 
195 	CONVERT_SWITCH(ehdr, shdr, SECTION_HEADER_FIELDS);
196 
197 #undef SECTION_HEADER_FIELDS
198 
199 	return (0);
200 }
201 #undef CONVERT_SWITCH
202 #undef CONVERT_FIELD
203 #else
elf_header_convert(Elf_Ehdr * ehdr)204 static int elf_header_convert(Elf_Ehdr *ehdr)
205 {
206 	return (0);
207 }
208 
elf_program_header_convert(const Elf_Ehdr * ehdr,Elf_Phdr * phdr)209 static int elf_program_header_convert(const Elf_Ehdr *ehdr, Elf_Phdr *phdr)
210 {
211 	return (0);
212 }
213 
elf_section_header_convert(const Elf_Ehdr * ehdr,Elf_Shdr * shdr)214 static int elf_section_header_convert(const Elf_Ehdr *ehdr, Elf_Shdr *shdr)
215 {
216 	return (0);
217 }
218 #endif
219 
220 #if defined(__amd64__) || defined(__i386__)
221 static bool
is_kernphys_relocatable(elf_file_t ef)222 is_kernphys_relocatable(elf_file_t ef)
223 {
224 	Elf_Sym sym;
225 
226 	return (__elfN(lookup_symbol)(ef, "kernphys", &sym, STT_OBJECT) == 0);
227 }
228 #endif
229 
230 #ifdef __i386__
231 static bool
is_tg_kernel_support(struct preloaded_file * fp,elf_file_t ef)232 is_tg_kernel_support(struct preloaded_file *fp, elf_file_t ef)
233 {
234 	Elf_Sym		sym;
235 	Elf_Addr	p_start, p_end, v, p;
236 	char		vd_name[16];
237 	int		error;
238 
239 	if (__elfN(lookup_symbol)(ef, "__start_set_vt_drv_set", &sym, STT_NOTYPE) != 0)
240 		return (false);
241 	p_start = sym.st_value + ef->off;
242 	if (__elfN(lookup_symbol)(ef, "__stop_set_vt_drv_set", &sym, STT_NOTYPE) != 0)
243 		return (false);
244 	p_end = sym.st_value + ef->off;
245 
246 	/*
247 	 * Walk through vt_drv_set, each vt driver structure starts with
248 	 * static 16 chars for driver name. If we have "vbefb", return true.
249 	 */
250 	for (p = p_start; p < p_end; p += sizeof(Elf_Addr)) {
251 		COPYOUT(p, &v, sizeof(v));
252 
253 		error = __elfN(reloc_ptr)(fp, ef, p, &v, sizeof(v));
254 		if (error == EOPNOTSUPP)
255 			v += ef->off;
256 		else if (error != 0)
257 			return (false);
258 		COPYOUT(v, &vd_name, sizeof(vd_name));
259 		if (strncmp(vd_name, "vbefb", sizeof(vd_name)) == 0)
260 			return (true);
261 	}
262 
263 	return (false);
264 }
265 #endif
266 
267 static int
__elfN(load_elf_header)268 __elfN(load_elf_header)(char *filename, elf_file_t ef)
269 {
270 	ssize_t			 bytes_read;
271 	Elf_Ehdr		*ehdr;
272 	int			 err;
273 
274 	/*
275 	 * Open the image, read and validate the ELF header
276 	 */
277 	if (filename == NULL)	/* can't handle nameless */
278 		return (EFTYPE);
279 	if ((ef->fd = open(filename, O_RDONLY)) == -1)
280 		return (errno);
281 	ef->firstpage = malloc(PAGE_SIZE);
282 	if (ef->firstpage == NULL) {
283 		close(ef->fd);
284 		return (ENOMEM);
285 	}
286 	preload(ef->fd);
287 #ifdef LOADER_VERIEXEC_VECTX
288 	{
289 		int verror;
290 
291 		ef->vctx = vectx_open(ef->fd, filename, 0L, NULL, &verror, __func__);
292 		if (verror) {
293 			printf("Unverified %s: %s\n", filename, ve_error_get());
294 			close(ef->fd);
295 			free(ef->vctx);
296 			return (EAUTH);
297 		}
298 	}
299 #endif
300 	bytes_read = VECTX_READ(VECTX_HANDLE(ef), ef->firstpage, PAGE_SIZE);
301 	ef->firstlen = (size_t)bytes_read;
302 	if (bytes_read < 0 || ef->firstlen <= sizeof(Elf_Ehdr)) {
303 		err = EFTYPE; /* could be EIO, but may be small file */
304 		goto error;
305 	}
306 	ehdr = ef->ehdr = (Elf_Ehdr *)ef->firstpage;
307 
308 	/* Is it ELF? */
309 	if (!IS_ELF(*ehdr)) {
310 		err = EFTYPE;
311 		goto error;
312 	}
313 
314 	if (ehdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || /* Layout ? */
315 	    ehdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
316 	    ehdr->e_ident[EI_VERSION] != EV_CURRENT) /* Version ? */ {
317 		err = EFTYPE;
318 		goto error;
319 	}
320 
321 	err = elf_header_convert(ehdr);
322 	if (err)
323 		goto error;
324 
325 	if (ehdr->e_version != EV_CURRENT || ehdr->e_machine != ELF_TARG_MACH) {
326 		/* Machine ? */
327 		err = EFTYPE;
328 		goto error;
329 	}
330 
331 #if defined(LOADER_VERIEXEC) && !defined(LOADER_VERIEXEC_VECTX)
332 	if (verify_file(ef->fd, filename, bytes_read, VE_MUST, __func__) < 0) {
333 		err = EAUTH;
334 		goto error;
335 	}
336 #endif
337 	return (0);
338 
339 error:
340 	if (ef->firstpage != NULL) {
341 		free(ef->firstpage);
342 		ef->firstpage = NULL;
343 	}
344 	if (ef->fd != -1) {
345 #ifdef LOADER_VERIEXEC_VECTX
346 		free(ef->vctx);
347 #endif
348 		close(ef->fd);
349 		ef->fd = -1;
350 	}
351 	return (err);
352 }
353 
354 /*
355  * Attempt to load the file (file) as an ELF module.  It will be stored at
356  * (dest), and a pointer to a module structure describing the loaded object
357  * will be saved in (result).
358  */
359 int
__elfN(loadfile)360 __elfN(loadfile)(char *filename, uint64_t dest, struct preloaded_file **result)
361 {
362 	return (__elfN(loadfile_raw)(filename, dest, result, 0));
363 }
364 
365 int
__elfN(loadfile_raw)366 __elfN(loadfile_raw)(char *filename, uint64_t dest,
367     struct preloaded_file **result, int multiboot)
368 {
369 	struct preloaded_file	*fp, *kfp;
370 	struct elf_file		ef;
371 	Elf_Ehdr		*ehdr;
372 	int			err;
373 
374 	fp = NULL;
375 	bzero(&ef, sizeof(struct elf_file));
376 	ef.fd = -1;
377 
378 	err = __elfN(load_elf_header)(filename, &ef);
379 	if (err != 0)
380 		return (err);
381 
382 	ehdr = ef.ehdr;
383 
384 	/*
385 	 * Check to see what sort of module we are.
386 	 */
387 	kfp = file_findfile(NULL, __elfN(kerneltype));
388 #ifdef __powerpc__
389 	/*
390 	 * Kernels can be ET_DYN, so just assume the first loaded object is the
391 	 * kernel. This assumption will be checked later.
392 	 */
393 	if (kfp == NULL)
394 		ef.kernel = 1;
395 #endif
396 	if (ef.kernel || ehdr->e_type == ET_EXEC) {
397 		/* Looks like a kernel */
398 		if (kfp != NULL) {
399 			printf("elf" __XSTRING(__ELF_WORD_SIZE)
400 			    "_loadfile: kernel already loaded\n");
401 			err = EPERM;
402 			goto oerr;
403 		}
404 		/*
405 		 * Calculate destination address based on kernel entrypoint.
406 		 *
407 		 * For ARM, the destination address is independent of any values
408 		 * in the elf header (an ARM kernel can be loaded at any 2MB
409 		 * boundary), so we leave dest set to the value calculated by
410 		 * archsw.arch_loadaddr() and passed in to this function.
411 		 */
412 #ifndef __arm__
413 		if (ehdr->e_type == ET_EXEC)
414 			dest = (ehdr->e_entry & ~PAGE_MASK);
415 #endif
416 		if ((ehdr->e_entry & ~PAGE_MASK) == 0) {
417 			printf("elf" __XSTRING(__ELF_WORD_SIZE)
418 			    "_loadfile: not a kernel (maybe static binary?)\n");
419 			err = EPERM;
420 			goto oerr;
421 		}
422 		ef.kernel = 1;
423 
424 	} else if (ehdr->e_type == ET_DYN) {
425 		/* Looks like a kld module */
426 		if (multiboot != 0) {
427 			printf("elf" __XSTRING(__ELF_WORD_SIZE)
428 			    "_loadfile: can't load module as multiboot\n");
429 			err = EPERM;
430 			goto oerr;
431 		}
432 		if (kfp == NULL) {
433 			printf("elf" __XSTRING(__ELF_WORD_SIZE)
434 			    "_loadfile: can't load module before kernel\n");
435 			err = EPERM;
436 			goto oerr;
437 		}
438 		if (strcmp(__elfN(kerneltype), kfp->f_type)) {
439 			printf("elf" __XSTRING(__ELF_WORD_SIZE)
440 			 "_loadfile: can't load module with kernel type '%s'\n",
441 			    kfp->f_type);
442 			err = EPERM;
443 			goto oerr;
444 		}
445 		/* Looks OK, got ahead */
446 		ef.kernel = 0;
447 
448 	} else {
449 		err = EFTYPE;
450 		goto oerr;
451 	}
452 
453 	if (archsw.arch_loadaddr != NULL)
454 		dest = archsw.arch_loadaddr(LOAD_ELF, ehdr, dest);
455 	else
456 		dest = roundup(dest, PAGE_SIZE);
457 
458 	/*
459 	 * Ok, we think we should handle this.
460 	 */
461 	fp = file_alloc();
462 	if (fp == NULL) {
463 		printf("elf" __XSTRING(__ELF_WORD_SIZE)
464 		    "_loadfile: cannot allocate module info\n");
465 		err = EPERM;
466 		goto out;
467 	}
468 	if (ef.kernel == 1 && multiboot == 0)
469 		setenv("kernelname", filename, 1);
470 	fp->f_name = strdup(filename);
471 	if (multiboot == 0)
472 		fp->f_type = strdup(ef.kernel ?
473 		    __elfN(kerneltype) : __elfN(moduletype));
474 	else
475 		fp->f_type = strdup("elf multiboot kernel");
476 
477 	if (module_verbose >= MODULE_VERBOSE_FULL) {
478 		if (ef.kernel)
479 			printf("%s entry at 0x%jx\n", filename,
480 			    (uintmax_t)ehdr->e_entry);
481 	} else if (module_verbose > MODULE_VERBOSE_SILENT)
482 		printf("%s ", filename);
483 
484 	fp->f_size = __elfN(loadimage)(fp, &ef, dest);
485 	if (fp->f_size == 0 || fp->f_addr == 0)
486 		goto ioerr;
487 
488 	/* save exec header as metadata */
489 	file_addmetadata(fp, MODINFOMD_ELFHDR, sizeof(*ehdr), ehdr);
490 
491 	/* Load OK, return module pointer */
492 	*result = (struct preloaded_file *)fp;
493 	err = 0;
494 #if defined(__amd64__) || defined(__i386__)
495 	fp->f_kernphys_relocatable = multiboot || is_kernphys_relocatable(&ef);
496 #endif
497 #ifdef __i386__
498 	fp->f_tg_kernel_support = is_tg_kernel_support(fp, &ef);
499 #endif
500 	goto out;
501 
502 ioerr:
503 	err = EIO;
504 oerr:
505 	file_discard(fp);
506 out:
507 	if (ef.firstpage)
508 		free(ef.firstpage);
509 	if (ef.fd != -1) {
510 #ifdef LOADER_VERIEXEC_VECTX
511 		if (!err && ef.vctx) {
512 			int verror;
513 
514 			verror = vectx_close(ef.vctx, VE_MUST, __func__);
515 			if (verror) {
516 				err = EAUTH;
517 				file_discard(fp);
518 			}
519 		}
520 #endif
521 		close(ef.fd);
522 	}
523 	return (err);
524 }
525 
526 /*
527  * With the file (fd) open on the image, and (ehdr) containing
528  * the Elf header, load the image at (off)
529  */
530 static int
__elfN(loadimage)531 __elfN(loadimage)(struct preloaded_file *fp, elf_file_t ef, uint64_t off)
532 {
533 	int		i;
534 	u_int		j;
535 	Elf_Ehdr	*ehdr;
536 	Elf_Phdr	*phdr, *php;
537 	Elf_Shdr	*shdr;
538 	char		*shstr;
539 	int		ret;
540 	vm_offset_t	firstaddr;
541 	vm_offset_t	lastaddr;
542 	size_t		chunk;
543 	ssize_t		result;
544 	Elf_Addr	ssym, esym;
545 	Elf_Dyn		*dp;
546 	Elf_Addr	adp;
547 	Elf_Addr	ctors;
548 	int		ndp;
549 	int		symstrindex;
550 	int		symtabindex;
551 	Elf_Size	size;
552 	u_int		fpcopy;
553 	Elf_Sym		sym;
554 	Elf_Addr	p_start, p_end;
555 
556 	dp = NULL;
557 	shdr = NULL;
558 	ret = 0;
559 	firstaddr = lastaddr = 0;
560 	ehdr = ef->ehdr;
561 #ifdef __powerpc__
562 	if (ef->kernel) {
563 #else
564 	if (ehdr->e_type == ET_EXEC) {
565 #endif
566 #if defined(__i386__) || defined(__amd64__)
567 #if __ELF_WORD_SIZE == 64
568 		/* x86_64 relocates after locore */
569 		off = - (off & 0xffffffffff000000ull);
570 #else
571 		/* i386 relocates after locore */
572 		off = - (off & 0xff000000u);
573 #endif
574 #elif defined(__powerpc__)
575 		/*
576 		 * On the purely virtual memory machines like e500, the kernel
577 		 * is linked against its final VA range, which is most often
578 		 * not available at the loader stage, but only after kernel
579 		 * initializes and completes its VM settings. In such cases we
580 		 * cannot use p_vaddr field directly to load ELF segments, but
581 		 * put them at some 'load-time' locations.
582 		 */
583 		if (off & 0xf0000000u) {
584 			off = -(off & 0xf0000000u);
585 			/*
586 			 * XXX the physical load address should not be
587 			 * hardcoded. Note that the Book-E kernel assumes that
588 			 * it's loaded at a 16MB boundary for now...
589 			 */
590 			off += 0x01000000;
591 		}
592 		ehdr->e_entry += off;
593 		if (module_verbose >= MODULE_VERBOSE_FULL)
594 			printf("Converted entry 0x%jx\n",
595 			    (uintmax_t)ehdr->e_entry);
596 
597 #elif defined(__arm__) && !defined(EFI)
598 		/*
599 		 * The elf headers in arm kernels specify virtual addresses in
600 		 * all header fields, even the ones that should be physical
601 		 * addresses.  We assume the entry point is in the first page,
602 		 * and masking the page offset will leave us with the virtual
603 		 * address the kernel was linked at.  We subtract that from the
604 		 * load offset, making 'off' into the value which, when added
605 		 * to a virtual address in an elf header, translates it to a
606 		 * physical address.  We do the va->pa conversion on the entry
607 		 * point address in the header now, so that later we can launch
608 		 * the kernel by just jumping to that address.
609 		 *
610 		 * When booting from UEFI the copyin and copyout functions
611 		 * handle adjusting the location relative to the first virtual
612 		 * address.  Because of this there is no need to adjust the
613 		 * offset or entry point address as these will both be handled
614 		 * by the efi code.
615 		 */
616 		off -= ehdr->e_entry & ~PAGE_MASK;
617 		ehdr->e_entry += off;
618 		if (module_verbose >= MODULE_VERBOSE_FULL)
619 			printf("ehdr->e_entry 0x%jx, va<->pa off %llx\n",
620 			    (uintmax_t)ehdr->e_entry, off);
621 #else
622 		off = 0;	/* other archs use direct mapped kernels */
623 #endif
624 	}
625 	ef->off = off;
626 
627 	if (ef->kernel)
628 		__elfN(relocation_offset) = off;
629 
630 	if ((ehdr->e_phoff + ehdr->e_phnum * sizeof(*phdr)) > ef->firstlen) {
631 		printf("elf" __XSTRING(__ELF_WORD_SIZE)
632 		    "_loadimage: program header not within first page\n");
633 		goto out;
634 	}
635 	phdr = (Elf_Phdr *)(ef->firstpage + ehdr->e_phoff);
636 
637 	for (i = 0; i < ehdr->e_phnum; i++) {
638 		if (elf_program_header_convert(ehdr, phdr))
639 			continue;
640 
641 		/* We want to load PT_LOAD segments only.. */
642 		if (phdr[i].p_type != PT_LOAD)
643 			continue;
644 
645 		if (module_verbose >= MODULE_VERBOSE_FULL) {
646 			printf("Segment: 0x%lx@0x%lx -> 0x%lx-0x%lx",
647 			    (long)phdr[i].p_filesz, (long)phdr[i].p_offset,
648 			    (long)(phdr[i].p_vaddr + off),
649 			    (long)(phdr[i].p_vaddr + off + phdr[i].p_memsz - 1));
650 		} else if (module_verbose > MODULE_VERBOSE_SILENT) {
651 			if ((phdr[i].p_flags & PF_W) == 0) {
652 				printf("text=0x%lx ", (long)phdr[i].p_filesz);
653 			} else {
654 				printf("data=0x%lx", (long)phdr[i].p_filesz);
655 				if (phdr[i].p_filesz < phdr[i].p_memsz)
656 					printf("+0x%lx", (long)(phdr[i].p_memsz -
657 						phdr[i].p_filesz));
658 				printf(" ");
659 			}
660 		}
661 		fpcopy = 0;
662 		if (ef->firstlen > phdr[i].p_offset) {
663 			fpcopy = ef->firstlen - phdr[i].p_offset;
664 			archsw.arch_copyin(ef->firstpage + phdr[i].p_offset,
665 			    phdr[i].p_vaddr + off, fpcopy);
666 		}
667 		if (phdr[i].p_filesz > fpcopy) {
668 			if (kern_pread(VECTX_HANDLE(ef),
669 			    phdr[i].p_vaddr + off + fpcopy,
670 			    phdr[i].p_filesz - fpcopy,
671 			    phdr[i].p_offset + fpcopy) != 0) {
672 				printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
673 				    "_loadimage: read failed\n");
674 				goto out;
675 			}
676 		}
677 		/* clear space from oversized segments; eg: bss */
678 		if (phdr[i].p_filesz < phdr[i].p_memsz) {
679 			if (module_verbose >= MODULE_VERBOSE_FULL) {
680 				printf(" (bss: 0x%lx-0x%lx)",
681 				    (long)(phdr[i].p_vaddr + off + phdr[i].p_filesz),
682 				    (long)(phdr[i].p_vaddr + off + phdr[i].p_memsz -1));
683 			}
684 			kern_bzero(phdr[i].p_vaddr + off + phdr[i].p_filesz,
685 			    phdr[i].p_memsz - phdr[i].p_filesz);
686 		}
687 		if (module_verbose >= MODULE_VERBOSE_FULL)
688 			printf("\n");
689 
690 		if (archsw.arch_loadseg != NULL)
691 			archsw.arch_loadseg(ehdr, phdr + i, off);
692 
693 		if (firstaddr == 0 || firstaddr > (phdr[i].p_vaddr + off))
694 			firstaddr = phdr[i].p_vaddr + off;
695 		if (lastaddr == 0 || lastaddr <
696 		    (phdr[i].p_vaddr + off + phdr[i].p_memsz))
697 			lastaddr = phdr[i].p_vaddr + off + phdr[i].p_memsz;
698 	}
699 	lastaddr = roundup(lastaddr, sizeof(long));
700 
701 	/*
702 	 * Get the section headers.  We need this for finding the .ctors
703 	 * section as well as for loading any symbols.  Both may be hard
704 	 * to do if reading from a .gz file as it involves seeking.  I
705 	 * think the rule is going to have to be that you must strip a
706 	 * file to remove symbols before gzipping it.
707 	 */
708 	chunk = (size_t)ehdr->e_shnum * (size_t)ehdr->e_shentsize;
709 	if (chunk == 0 || ehdr->e_shoff == 0)
710 		goto nosyms;
711 	shdr = alloc_pread(VECTX_HANDLE(ef), ehdr->e_shoff, chunk);
712 	if (shdr == NULL) {
713 		printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
714 		    "_loadimage: failed to read section headers");
715 		goto nosyms;
716 	}
717 
718 	for (i = 0; i < ehdr->e_shnum; i++)
719 		elf_section_header_convert(ehdr, &shdr[i]);
720 
721 	file_addmetadata(fp, MODINFOMD_SHDR, chunk, shdr);
722 
723 	/*
724 	 * Read the section string table and look for the .ctors section.
725 	 * We need to tell the kernel where it is so that it can call the
726 	 * ctors.
727 	 */
728 	chunk = shdr[ehdr->e_shstrndx].sh_size;
729 	if (chunk) {
730 		shstr = alloc_pread(VECTX_HANDLE(ef),
731 		    shdr[ehdr->e_shstrndx].sh_offset, chunk);
732 		if (shstr) {
733 			for (i = 0; i < ehdr->e_shnum; i++) {
734 				if (strcmp(shstr + shdr[i].sh_name,
735 				    ".ctors") != 0)
736 					continue;
737 				ctors = shdr[i].sh_addr;
738 				file_addmetadata(fp, MODINFOMD_CTORS_ADDR,
739 				    sizeof(ctors), &ctors);
740 				size = shdr[i].sh_size;
741 				file_addmetadata(fp, MODINFOMD_CTORS_SIZE,
742 				    sizeof(size), &size);
743 				break;
744 			}
745 			free(shstr);
746 		}
747 	}
748 
749 	/*
750 	 * Now load any symbols.
751 	 */
752 	symtabindex = -1;
753 	symstrindex = -1;
754 	for (i = 0; i < ehdr->e_shnum; i++) {
755 		if (shdr[i].sh_type != SHT_SYMTAB)
756 			continue;
757 		for (j = 0; j < ehdr->e_phnum; j++) {
758 			if (phdr[j].p_type != PT_LOAD)
759 				continue;
760 			if (shdr[i].sh_offset >= phdr[j].p_offset &&
761 			    (shdr[i].sh_offset + shdr[i].sh_size <=
762 			    phdr[j].p_offset + phdr[j].p_filesz)) {
763 				shdr[i].sh_offset = 0;
764 				shdr[i].sh_size = 0;
765 				break;
766 			}
767 		}
768 		if (shdr[i].sh_offset == 0 || shdr[i].sh_size == 0)
769 			continue;	/* alread loaded in a PT_LOAD above */
770 		/* Save it for loading below */
771 		symtabindex = i;
772 		symstrindex = shdr[i].sh_link;
773 	}
774 	if (symtabindex < 0 || symstrindex < 0)
775 		goto nosyms;
776 
777 	/* Ok, committed to a load. */
778 	if (module_verbose >= MODULE_VERBOSE_FULL)
779 		printf("syms=[");
780 	ssym = lastaddr;
781 	for (i = symtabindex; i >= 0; i = symstrindex) {
782 		char	*secname;
783 
784 		switch(shdr[i].sh_type) {
785 		case SHT_SYMTAB:		/* Symbol table */
786 			secname = "symtab";
787 			break;
788 		case SHT_STRTAB:		/* String table */
789 			secname = "strtab";
790 			break;
791 		default:
792 			secname = "WHOA!!";
793 			break;
794 		}
795 		size = shdr[i].sh_size;
796 
797 		archsw.arch_copyin(&size, lastaddr, sizeof(size));
798 		lastaddr += sizeof(size);
799 
800 		if (module_verbose >= MODULE_VERBOSE_FULL) {
801 			printf("\n%s: 0x%jx@0x%jx -> 0x%jx-0x%jx", secname,
802 			    (uintmax_t)shdr[i].sh_size, (uintmax_t)shdr[i].sh_offset,
803 			    (uintmax_t)lastaddr,
804 			    (uintmax_t)(lastaddr + shdr[i].sh_size));
805 		} else if (module_verbose > MODULE_VERBOSE_SILENT) {
806 			if (i == symstrindex)
807 				printf("+");
808 			printf("0x%lx+0x%lx", (long)sizeof(size), (long)size);
809 		}
810 		if (VECTX_LSEEK(VECTX_HANDLE(ef), (off_t)shdr[i].sh_offset, SEEK_SET) == -1) {
811 			printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
812 			   "_loadimage: could not seek for symbols - skipped!");
813 			lastaddr = ssym;
814 			ssym = 0;
815 			goto nosyms;
816 		}
817 		result = archsw.arch_readin(VECTX_HANDLE(ef), lastaddr, shdr[i].sh_size);
818 		if (result < 0 || (size_t)result != shdr[i].sh_size) {
819 			printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
820 			    "_loadimage: could not read symbols - skipped! "
821 			    "(%ju != %ju)", (uintmax_t)result,
822 			    (uintmax_t)shdr[i].sh_size);
823 			lastaddr = ssym;
824 			ssym = 0;
825 			goto nosyms;
826 		}
827 		/* Reset offsets relative to ssym */
828 		lastaddr += shdr[i].sh_size;
829 		lastaddr = roundup(lastaddr, sizeof(size));
830 		if (i == symtabindex)
831 			symtabindex = -1;
832 		else if (i == symstrindex)
833 			symstrindex = -1;
834 	}
835 	esym = lastaddr;
836 	if (module_verbose >= MODULE_VERBOSE_FULL)
837 		printf("]");
838 
839 	file_addmetadata(fp, MODINFOMD_SSYM, sizeof(ssym), &ssym);
840 	file_addmetadata(fp, MODINFOMD_ESYM, sizeof(esym), &esym);
841 
842 nosyms:
843 	if (module_verbose > MODULE_VERBOSE_SILENT)
844 		printf("\n");
845 
846 	ret = lastaddr - firstaddr;
847 	fp->f_addr = firstaddr;
848 
849 	php = NULL;
850 	for (i = 0; i < ehdr->e_phnum; i++) {
851 		if (phdr[i].p_type == PT_DYNAMIC) {
852 			php = phdr + i;
853 			adp = php->p_vaddr;
854 			file_addmetadata(fp, MODINFOMD_DYNAMIC, sizeof(adp),
855 			    &adp);
856 			break;
857 		}
858 	}
859 
860 	if (php == NULL) /* this is bad, we cannot get to symbols or _DYNAMIC */
861 		goto out;
862 
863 	ndp = php->p_filesz / sizeof(Elf_Dyn);
864 	if (ndp == 0)
865 		goto out;
866 	dp = malloc(php->p_filesz);
867 	if (dp == NULL)
868 		goto out;
869 	archsw.arch_copyout(php->p_vaddr + off, dp, php->p_filesz);
870 
871 	ef->strsz = 0;
872 	for (i = 0; i < ndp; i++) {
873 		if (dp[i].d_tag == 0)
874 			break;
875 		switch (dp[i].d_tag) {
876 		case DT_HASH:
877 			ef->hashtab =
878 			    (Elf_Hashelt*)(uintptr_t)(dp[i].d_un.d_ptr + off);
879 			break;
880 		case DT_STRTAB:
881 			ef->strtab =
882 			    (char *)(uintptr_t)(dp[i].d_un.d_ptr + off);
883 			break;
884 		case DT_STRSZ:
885 			ef->strsz = dp[i].d_un.d_val;
886 			break;
887 		case DT_SYMTAB:
888 			ef->symtab =
889 			    (Elf_Sym *)(uintptr_t)(dp[i].d_un.d_ptr + off);
890 			break;
891 		case DT_REL:
892 			ef->rel =
893 			    (Elf_Rel *)(uintptr_t)(dp[i].d_un.d_ptr + off);
894 			break;
895 		case DT_RELSZ:
896 			ef->relsz = dp[i].d_un.d_val;
897 			break;
898 		case DT_RELA:
899 			ef->rela =
900 			    (Elf_Rela *)(uintptr_t)(dp[i].d_un.d_ptr + off);
901 			break;
902 		case DT_RELASZ:
903 			ef->relasz = dp[i].d_un.d_val;
904 			break;
905 		default:
906 			break;
907 		}
908 	}
909 	if (ef->hashtab == NULL || ef->symtab == NULL ||
910 	    ef->strtab == NULL || ef->strsz == 0)
911 		goto out;
912 	COPYOUT(ef->hashtab, &ef->nbuckets, sizeof(ef->nbuckets));
913 	COPYOUT(ef->hashtab + 1, &ef->nchains, sizeof(ef->nchains));
914 	ef->buckets = ef->hashtab + 2;
915 	ef->chains = ef->buckets + ef->nbuckets;
916 
917 	if (__elfN(lookup_symbol)(ef, "__start_set_modmetadata_set", &sym,
918 	    STT_NOTYPE) != 0)
919 		return 0;
920 	p_start = sym.st_value + ef->off;
921 	if (__elfN(lookup_symbol)(ef, "__stop_set_modmetadata_set", &sym,
922 	    STT_NOTYPE) != 0)
923 		return 0;
924 	p_end = sym.st_value + ef->off;
925 
926 	if (__elfN(parse_modmetadata)(fp, ef, p_start, p_end) == 0)
927 		goto out;
928 
929 	if (ef->kernel)		/* kernel must not depend on anything */
930 		goto out;
931 
932 out:
933 	if (dp)
934 		free(dp);
935 	if (shdr)
936 		free(shdr);
937 	return ret;
938 }
939 
940 static char invalid_name[] = "bad";
941 
942 char *
943 fake_modname(const char *name)
944 {
945 	const char *sp, *ep;
946 	char *fp;
947 	size_t len;
948 
949 	sp = strrchr(name, '/');
950 	if (sp)
951 		sp++;
952 	else
953 		sp = name;
954 
955 	ep = strrchr(sp, '.');
956 	if (ep == NULL) {
957 		ep = sp + strlen(sp);
958 	}
959 	if (ep == sp) {
960 		sp = invalid_name;
961 		ep = invalid_name + sizeof(invalid_name) - 1;
962 	}
963 
964 	len = ep - sp;
965 	fp = malloc(len + 1);
966 	if (fp == NULL)
967 		return NULL;
968 	memcpy(fp, sp, len);
969 	fp[len] = '\0';
970 	return fp;
971 }
972 
973 #if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64
974 struct mod_metadata64 {
975 	int		md_version;	/* structure version MDTV_* */
976 	int		md_type;	/* type of entry MDT_* */
977 	uint64_t	md_data;	/* specific data */
978 	uint64_t	md_cval;	/* common string label */
979 };
980 #endif
981 #if defined(__amd64__) && __ELF_WORD_SIZE == 32
982 struct mod_metadata32 {
983 	int		md_version;	/* structure version MDTV_* */
984 	int		md_type;	/* type of entry MDT_* */
985 	uint32_t	md_data;	/* specific data */
986 	uint32_t	md_cval;	/* common string label */
987 };
988 #endif
989 
990 int
991 __elfN(load_modmetadata)(struct preloaded_file *fp, uint64_t dest)
992 {
993 	struct elf_file		 ef;
994 	int			 err, i, j;
995 	Elf_Shdr		*sh_meta, *shdr = NULL;
996 	Elf_Shdr		*sh_data[2];
997 	char			*shstrtab = NULL;
998 	size_t			 size;
999 	Elf_Addr		 p_start, p_end;
1000 
1001 	bzero(&ef, sizeof(struct elf_file));
1002 	ef.fd = -1;
1003 
1004 	err = __elfN(load_elf_header)(fp->f_name, &ef);
1005 	if (err != 0)
1006 		goto out;
1007 
1008 	if (ef.kernel == 1 || ef.ehdr->e_type == ET_EXEC) {
1009 		ef.kernel = 1;
1010 	} else if (ef.ehdr->e_type != ET_DYN) {
1011 		err = EFTYPE;
1012 		goto out;
1013 	}
1014 
1015 	size = (size_t)ef.ehdr->e_shnum * (size_t)ef.ehdr->e_shentsize;
1016 	shdr = alloc_pread(VECTX_HANDLE(&ef), ef.ehdr->e_shoff, size);
1017 	if (shdr == NULL) {
1018 		err = ENOMEM;
1019 		goto out;
1020 	}
1021 
1022 	/* Load shstrtab. */
1023 	shstrtab = alloc_pread(VECTX_HANDLE(&ef), shdr[ef.ehdr->e_shstrndx].sh_offset,
1024 	    shdr[ef.ehdr->e_shstrndx].sh_size);
1025 	if (shstrtab == NULL) {
1026 		printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
1027 		    "load_modmetadata: unable to load shstrtab\n");
1028 		err = EFTYPE;
1029 		goto out;
1030 	}
1031 
1032 	/* Find set_modmetadata_set and data sections. */
1033 	sh_data[0] = sh_data[1] = sh_meta = NULL;
1034 	for (i = 0, j = 0; i < ef.ehdr->e_shnum; i++) {
1035 		if (strcmp(&shstrtab[shdr[i].sh_name],
1036 		    "set_modmetadata_set") == 0) {
1037 			sh_meta = &shdr[i];
1038 		}
1039 		if ((strcmp(&shstrtab[shdr[i].sh_name], ".data") == 0) ||
1040 		    (strcmp(&shstrtab[shdr[i].sh_name], ".rodata") == 0)) {
1041 			sh_data[j++] = &shdr[i];
1042 		}
1043 	}
1044 	if (sh_meta == NULL || sh_data[0] == NULL || sh_data[1] == NULL) {
1045 		printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
1046     "load_modmetadata: unable to find set_modmetadata_set or data sections\n");
1047 		err = EFTYPE;
1048 		goto out;
1049 	}
1050 
1051 	/* Load set_modmetadata_set into memory */
1052 	err = kern_pread(VECTX_HANDLE(&ef), dest, sh_meta->sh_size, sh_meta->sh_offset);
1053 	if (err != 0) {
1054 		printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
1055     "load_modmetadata: unable to load set_modmetadata_set: %d\n", err);
1056 		goto out;
1057 	}
1058 	p_start = dest;
1059 	p_end = dest + sh_meta->sh_size;
1060 	dest += sh_meta->sh_size;
1061 
1062 	/* Load data sections into memory. */
1063 	err = kern_pread(VECTX_HANDLE(&ef), dest, sh_data[0]->sh_size,
1064 	    sh_data[0]->sh_offset);
1065 	if (err != 0) {
1066 		printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
1067 		    "load_modmetadata: unable to load data: %d\n", err);
1068 		goto out;
1069 	}
1070 
1071 	/*
1072 	 * We have to increment the dest, so that the offset is the same into
1073 	 * both the .rodata and .data sections.
1074 	 */
1075 	ef.off = -(sh_data[0]->sh_addr - dest);
1076 	dest +=	(sh_data[1]->sh_addr - sh_data[0]->sh_addr);
1077 
1078 	err = kern_pread(VECTX_HANDLE(&ef), dest, sh_data[1]->sh_size,
1079 	    sh_data[1]->sh_offset);
1080 	if (err != 0) {
1081 		printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
1082 		    "load_modmetadata: unable to load data: %d\n", err);
1083 		goto out;
1084 	}
1085 
1086 	err = __elfN(parse_modmetadata)(fp, &ef, p_start, p_end);
1087 	if (err != 0) {
1088 		printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
1089 		    "load_modmetadata: unable to parse metadata: %d\n", err);
1090 		goto out;
1091 	}
1092 
1093 out:
1094 	if (shstrtab != NULL)
1095 		free(shstrtab);
1096 	if (shdr != NULL)
1097 		free(shdr);
1098 	if (ef.firstpage != NULL)
1099 		free(ef.firstpage);
1100 	if (ef.fd != -1) {
1101 #ifdef LOADER_VERIEXEC_VECTX
1102 		if (!err && ef.vctx) {
1103 			int verror;
1104 
1105 			verror = vectx_close(ef.vctx, VE_MUST, __func__);
1106 			if (verror) {
1107 				err = EAUTH;
1108 				file_discard(fp);
1109 			}
1110 		}
1111 #endif
1112 		close(ef.fd);
1113 	}
1114 	return (err);
1115 }
1116 
1117 int
1118 __elfN(parse_modmetadata)(struct preloaded_file *fp, elf_file_t ef,
1119     Elf_Addr p_start, Elf_Addr p_end)
1120 {
1121 	struct mod_metadata md;
1122 #if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64
1123 	struct mod_metadata64 md64;
1124 #elif defined(__amd64__) && __ELF_WORD_SIZE == 32
1125 	struct mod_metadata32 md32;
1126 #endif
1127 	struct mod_depend *mdepend;
1128 	struct mod_version mver;
1129 	char *s;
1130 	int error, modcnt, minfolen;
1131 	Elf_Addr v, p;
1132 
1133 	modcnt = 0;
1134 	p = p_start;
1135 	while (p < p_end) {
1136 		COPYOUT(p, &v, sizeof(v));
1137 		error = __elfN(reloc_ptr)(fp, ef, p, &v, sizeof(v));
1138 		if (error == EOPNOTSUPP)
1139 			v += ef->off;
1140 		else if (error != 0)
1141 			return (error);
1142 #if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64
1143 		COPYOUT(v, &md64, sizeof(md64));
1144 		error = __elfN(reloc_ptr)(fp, ef, v, &md64, sizeof(md64));
1145 		if (error == EOPNOTSUPP) {
1146 			md64.md_cval += ef->off;
1147 			md64.md_data += ef->off;
1148 		} else if (error != 0)
1149 			return (error);
1150 		md.md_version = md64.md_version;
1151 		md.md_type = md64.md_type;
1152 		md.md_cval = (const char *)(uintptr_t)md64.md_cval;
1153 		md.md_data = (void *)(uintptr_t)md64.md_data;
1154 #elif defined(__amd64__) && __ELF_WORD_SIZE == 32
1155 		COPYOUT(v, &md32, sizeof(md32));
1156 		error = __elfN(reloc_ptr)(fp, ef, v, &md32, sizeof(md32));
1157 		if (error == EOPNOTSUPP) {
1158 			md32.md_cval += ef->off;
1159 			md32.md_data += ef->off;
1160 		} else if (error != 0)
1161 			return (error);
1162 		md.md_version = md32.md_version;
1163 		md.md_type = md32.md_type;
1164 		md.md_cval = (const char *)(uintptr_t)md32.md_cval;
1165 		md.md_data = (void *)(uintptr_t)md32.md_data;
1166 #else
1167 		COPYOUT(v, &md, sizeof(md));
1168 		error = __elfN(reloc_ptr)(fp, ef, v, &md, sizeof(md));
1169 		if (error == EOPNOTSUPP) {
1170 			md.md_cval += ef->off;
1171 			md.md_data = (void *)((uintptr_t)md.md_data +
1172 			    (uintptr_t)ef->off);
1173 		} else if (error != 0)
1174 			return (error);
1175 #endif
1176 		p += sizeof(Elf_Addr);
1177 		switch(md.md_type) {
1178 		case MDT_DEPEND:
1179 			if (ef->kernel) /* kernel must not depend on anything */
1180 				break;
1181 			s = strdupout((vm_offset_t)md.md_cval);
1182 			minfolen = sizeof(*mdepend) + strlen(s) + 1;
1183 			mdepend = malloc(minfolen);
1184 			if (mdepend == NULL)
1185 				return ENOMEM;
1186 			COPYOUT((vm_offset_t)md.md_data, mdepend,
1187 			    sizeof(*mdepend));
1188 			strcpy((char*)(mdepend + 1), s);
1189 			free(s);
1190 			file_addmetadata(fp, MODINFOMD_DEPLIST, minfolen,
1191 			    mdepend);
1192 			free(mdepend);
1193 			break;
1194 		case MDT_VERSION:
1195 			s = strdupout((vm_offset_t)md.md_cval);
1196 			COPYOUT((vm_offset_t)md.md_data, &mver, sizeof(mver));
1197 			file_addmodule(fp, s, mver.mv_version, NULL);
1198 			free(s);
1199 			modcnt++;
1200 			break;
1201 		}
1202 	}
1203 	if (modcnt == 0) {
1204 		s = fake_modname(fp->f_name);
1205 		file_addmodule(fp, s, 1, NULL);
1206 		free(s);
1207 	}
1208 	return 0;
1209 }
1210 
1211 static unsigned long
1212 elf_hash(const char *name)
1213 {
1214 	const unsigned char *p = (const unsigned char *) name;
1215 	unsigned long h = 0;
1216 	unsigned long g;
1217 
1218 	while (*p != '\0') {
1219 		h = (h << 4) + *p++;
1220 		if ((g = h & 0xf0000000) != 0)
1221 			h ^= g >> 24;
1222 		h &= ~g;
1223 	}
1224 	return h;
1225 }
1226 
1227 static const char __elfN(bad_symtable)[] = "elf" __XSTRING(__ELF_WORD_SIZE)
1228     "_lookup_symbol: corrupt symbol table\n";
1229 int
1230 __elfN(lookup_symbol)(elf_file_t ef, const char* name, Elf_Sym *symp,
1231     unsigned char type)
1232 {
1233 	Elf_Hashelt symnum;
1234 	Elf_Sym sym;
1235 	char *strp;
1236 	unsigned long hash;
1237 
1238 	if (ef->nbuckets == 0) {
1239 		printf(__elfN(bad_symtable));
1240 		return ENOENT;
1241 	}
1242 
1243 	hash = elf_hash(name);
1244 	COPYOUT(&ef->buckets[hash % ef->nbuckets], &symnum, sizeof(symnum));
1245 
1246 	while (symnum != STN_UNDEF) {
1247 		if (symnum >= ef->nchains) {
1248 			printf(__elfN(bad_symtable));
1249 			return ENOENT;
1250 		}
1251 
1252 		COPYOUT(ef->symtab + symnum, &sym, sizeof(sym));
1253 		if (sym.st_name == 0) {
1254 			printf(__elfN(bad_symtable));
1255 			return ENOENT;
1256 		}
1257 
1258 		strp = strdupout((vm_offset_t)(ef->strtab + sym.st_name));
1259 		if (strcmp(name, strp) == 0) {
1260 			free(strp);
1261 			if (sym.st_shndx != SHN_UNDEF && sym.st_value != 0 &&
1262 			    ELF_ST_TYPE(sym.st_info) == type) {
1263 				*symp = sym;
1264 				return 0;
1265 			}
1266 			return ENOENT;
1267 		}
1268 		free(strp);
1269 		COPYOUT(&ef->chains[symnum], &symnum, sizeof(symnum));
1270 	}
1271 	return ENOENT;
1272 }
1273 
1274 /*
1275  * Apply any intra-module relocations to the value. p is the load address
1276  * of the value and val/len is the value to be modified. This does NOT modify
1277  * the image in-place, because this is done by kern_linker later on.
1278  *
1279  * Returns EOPNOTSUPP if no relocation method is supplied.
1280  */
1281 static int
1282 __elfN(reloc_ptr)(struct preloaded_file *mp, elf_file_t ef,
1283     Elf_Addr p, void *val, size_t len)
1284 {
1285 	size_t n;
1286 	Elf_Rela a;
1287 	Elf_Rel r;
1288 	int error;
1289 
1290 	/*
1291 	 * The kernel is already relocated, but we still want to apply
1292 	 * offset adjustments.
1293 	 */
1294 	if (ef->kernel)
1295 		return (EOPNOTSUPP);
1296 
1297 	for (n = 0; n < ef->relsz / sizeof(r); n++) {
1298 		COPYOUT(ef->rel + n, &r, sizeof(r));
1299 
1300 		error = __elfN(reloc)(ef, __elfN(symaddr), &r, ELF_RELOC_REL,
1301 		    ef->off, p, val, len);
1302 		if (error != 0)
1303 			return (error);
1304 	}
1305 	for (n = 0; n < ef->relasz / sizeof(a); n++) {
1306 		COPYOUT(ef->rela + n, &a, sizeof(a));
1307 
1308 		error = __elfN(reloc)(ef, __elfN(symaddr), &a, ELF_RELOC_RELA,
1309 		    ef->off, p, val, len);
1310 		if (error != 0)
1311 			return (error);
1312 	}
1313 
1314 	return (0);
1315 }
1316 
1317 static Elf_Addr
1318 __elfN(symaddr)(struct elf_file *ef, Elf_Size symidx)
1319 {
1320 
1321 	/* Symbol lookup by index not required here. */
1322 	return (0);
1323 }
1324