1 /*- 2 * Copyright (c) 1998 Michael Smith <msmith@freebsd.org> 3 * Copyright (c) 1998 Peter Wemm <peter@freebsd.org> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include <sys/param.h> 32 #include <sys/endian.h> 33 #include <sys/exec.h> 34 #include <sys/linker.h> 35 #include <sys/module.h> 36 #include <sys/stdint.h> 37 #include <string.h> 38 #include <machine/elf.h> 39 #include <stand.h> 40 #define FREEBSD_ELF 41 #include <sys/link_elf.h> 42 43 #include "bootstrap.h" 44 45 #define COPYOUT(s,d,l) archsw.arch_copyout((vm_offset_t)(s), d, l) 46 47 #if defined(__i386__) && __ELF_WORD_SIZE == 64 48 #undef ELF_TARG_CLASS 49 #undef ELF_TARG_MACH 50 #define ELF_TARG_CLASS ELFCLASS64 51 #define ELF_TARG_MACH EM_X86_64 52 #endif 53 54 typedef struct elf_file { 55 Elf_Phdr *ph; 56 Elf_Ehdr *ehdr; 57 Elf_Sym *symtab; 58 Elf_Hashelt *hashtab; 59 Elf_Hashelt nbuckets; 60 Elf_Hashelt nchains; 61 Elf_Hashelt *buckets; 62 Elf_Hashelt *chains; 63 Elf_Rel *rel; 64 size_t relsz; 65 Elf_Rela *rela; 66 size_t relasz; 67 char *strtab; 68 size_t strsz; 69 int fd; 70 caddr_t firstpage; 71 size_t firstlen; 72 int kernel; 73 uint64_t off; 74 #ifdef LOADER_VERIEXEC_VECTX 75 struct vectx *vctx; 76 #endif 77 } *elf_file_t; 78 79 #ifdef LOADER_VERIEXEC_VECTX 80 #define VECTX_HANDLE(ef) (ef)->vctx 81 #else 82 #define VECTX_HANDLE(ef) (ef)->fd 83 #endif 84 85 static int __elfN(loadimage)(struct preloaded_file *mp, elf_file_t ef, 86 uint64_t loadaddr); 87 static int __elfN(lookup_symbol)(elf_file_t ef, const char* name, 88 Elf_Sym *sym, unsigned char type); 89 static int __elfN(reloc_ptr)(struct preloaded_file *mp, elf_file_t ef, 90 Elf_Addr p, void *val, size_t len); 91 static int __elfN(parse_modmetadata)(struct preloaded_file *mp, elf_file_t ef, 92 Elf_Addr p_start, Elf_Addr p_end); 93 static symaddr_fn __elfN(symaddr); 94 static char *fake_modname(const char *name); 95 96 const char *__elfN(kerneltype) = "elf kernel"; 97 const char *__elfN(moduletype) = "elf module"; 98 99 uint64_t __elfN(relocation_offset) = 0; 100 101 extern void elf_wrong_field_size(void); 102 #define CONVERT_FIELD(b, f, e) \ 103 switch (sizeof((b)->f)) { \ 104 case 2: \ 105 (b)->f = e ## 16toh((b)->f); \ 106 break; \ 107 case 4: \ 108 (b)->f = e ## 32toh((b)->f); \ 109 break; \ 110 case 8: \ 111 (b)->f = e ## 64toh((b)->f); \ 112 break; \ 113 default: \ 114 /* Force a link time error. */ \ 115 elf_wrong_field_size(); \ 116 break; \ 117 } 118 119 #define CONVERT_SWITCH(h, d, f) \ 120 switch ((h)->e_ident[EI_DATA]) { \ 121 case ELFDATA2MSB: \ 122 f(d, be); \ 123 break; \ 124 case ELFDATA2LSB: \ 125 f(d, le); \ 126 break; \ 127 default: \ 128 return (EINVAL); \ 129 } 130 131 132 static int elf_header_convert(Elf_Ehdr *ehdr) 133 { 134 /* 135 * Fixup ELF header endianness. 136 * 137 * The Xhdr structure was loaded using block read call to optimize file 138 * accesses. It might happen, that the endianness of the system memory 139 * is different that endianness of the ELF header. Swap fields here to 140 * guarantee that Xhdr always contain valid data regardless of 141 * architecture. 142 */ 143 #define HEADER_FIELDS(b, e) \ 144 CONVERT_FIELD(b, e_type, e); \ 145 CONVERT_FIELD(b, e_machine, e); \ 146 CONVERT_FIELD(b, e_version, e); \ 147 CONVERT_FIELD(b, e_entry, e); \ 148 CONVERT_FIELD(b, e_phoff, e); \ 149 CONVERT_FIELD(b, e_shoff, e); \ 150 CONVERT_FIELD(b, e_flags, e); \ 151 CONVERT_FIELD(b, e_ehsize, e); \ 152 CONVERT_FIELD(b, e_phentsize, e); \ 153 CONVERT_FIELD(b, e_phnum, e); \ 154 CONVERT_FIELD(b, e_shentsize, e); \ 155 CONVERT_FIELD(b, e_shnum, e); \ 156 CONVERT_FIELD(b, e_shstrndx, e) 157 158 CONVERT_SWITCH(ehdr, ehdr, HEADER_FIELDS); 159 160 #undef HEADER_FIELDS 161 162 return (0); 163 } 164 165 static int elf_program_header_convert(const Elf_Ehdr *ehdr, Elf_Phdr *phdr) 166 { 167 #define PROGRAM_HEADER_FIELDS(b, e) \ 168 CONVERT_FIELD(b, p_type, e); \ 169 CONVERT_FIELD(b, p_flags, e); \ 170 CONVERT_FIELD(b, p_offset, e); \ 171 CONVERT_FIELD(b, p_vaddr, e); \ 172 CONVERT_FIELD(b, p_paddr, e); \ 173 CONVERT_FIELD(b, p_filesz, e); \ 174 CONVERT_FIELD(b, p_memsz, e); \ 175 CONVERT_FIELD(b, p_align, e) 176 177 CONVERT_SWITCH(ehdr, phdr, PROGRAM_HEADER_FIELDS); 178 179 #undef PROGRAM_HEADER_FIELDS 180 181 return (0); 182 } 183 184 static int elf_section_header_convert(const Elf_Ehdr *ehdr, Elf_Shdr *shdr) 185 { 186 #define SECTION_HEADER_FIELDS(b, e) \ 187 CONVERT_FIELD(b, sh_name, e); \ 188 CONVERT_FIELD(b, sh_type, e); \ 189 CONVERT_FIELD(b, sh_link, e); \ 190 CONVERT_FIELD(b, sh_info, e); \ 191 CONVERT_FIELD(b, sh_flags, e); \ 192 CONVERT_FIELD(b, sh_addr, e); \ 193 CONVERT_FIELD(b, sh_offset, e); \ 194 CONVERT_FIELD(b, sh_size, e); \ 195 CONVERT_FIELD(b, sh_addralign, e); \ 196 CONVERT_FIELD(b, sh_entsize, e) 197 198 CONVERT_SWITCH(ehdr, shdr, SECTION_HEADER_FIELDS); 199 200 #undef SECTION_HEADER_FIELDS 201 202 return (0); 203 } 204 #undef CONVERT_SWITCH 205 #undef CONVERT_FIELD 206 207 208 #ifdef __amd64__ 209 static bool 210 is_kernphys_relocatable(elf_file_t ef) 211 { 212 Elf_Sym sym; 213 214 return (__elfN(lookup_symbol)(ef, "kernphys", &sym, STT_OBJECT) == 0 && 215 sym.st_size == 8); 216 } 217 #endif 218 219 #ifdef __i386__ 220 static bool 221 is_tg_kernel_support(struct preloaded_file *fp, elf_file_t ef) 222 { 223 Elf_Sym sym; 224 Elf_Addr p_start, p_end, v, p; 225 char vd_name[16]; 226 int error; 227 228 if (__elfN(lookup_symbol)(ef, "__start_set_vt_drv_set", &sym, STT_NOTYPE) != 0) 229 return (false); 230 p_start = sym.st_value + ef->off; 231 if (__elfN(lookup_symbol)(ef, "__stop_set_vt_drv_set", &sym, STT_NOTYPE) != 0) 232 return (false); 233 p_end = sym.st_value + ef->off; 234 235 /* 236 * Walk through vt_drv_set, each vt driver structure starts with 237 * static 16 chars for driver name. If we have "vbefb", return true. 238 */ 239 for (p = p_start; p < p_end; p += sizeof(Elf_Addr)) { 240 COPYOUT(p, &v, sizeof(v)); 241 242 error = __elfN(reloc_ptr)(fp, ef, p, &v, sizeof(v)); 243 if (error == EOPNOTSUPP) 244 v += ef->off; 245 else if (error != 0) 246 return (false); 247 COPYOUT(v, &vd_name, sizeof(vd_name)); 248 if (strncmp(vd_name, "vbefb", sizeof(vd_name)) == 0) 249 return (true); 250 } 251 252 return (false); 253 } 254 #endif 255 256 static int 257 __elfN(load_elf_header)(char *filename, elf_file_t ef) 258 { 259 ssize_t bytes_read; 260 Elf_Ehdr *ehdr; 261 int err; 262 263 /* 264 * Open the image, read and validate the ELF header 265 */ 266 if (filename == NULL) /* can't handle nameless */ 267 return (EFTYPE); 268 if ((ef->fd = open(filename, O_RDONLY)) == -1) 269 return (errno); 270 ef->firstpage = malloc(PAGE_SIZE); 271 if (ef->firstpage == NULL) { 272 close(ef->fd); 273 return (ENOMEM); 274 } 275 #ifdef LOADER_VERIEXEC_VECTX 276 { 277 int verror; 278 279 ef->vctx = vectx_open(ef->fd, filename, 0L, NULL, &verror, __func__); 280 if (verror) { 281 printf("Unverified %s: %s\n", filename, ve_error_get()); 282 close(ef->fd); 283 free(ef->vctx); 284 return (EAUTH); 285 } 286 } 287 #endif 288 bytes_read = VECTX_READ(VECTX_HANDLE(ef), ef->firstpage, PAGE_SIZE); 289 ef->firstlen = (size_t)bytes_read; 290 if (bytes_read < 0 || ef->firstlen <= sizeof(Elf_Ehdr)) { 291 err = EFTYPE; /* could be EIO, but may be small file */ 292 goto error; 293 } 294 ehdr = ef->ehdr = (Elf_Ehdr *)ef->firstpage; 295 296 /* Is it ELF? */ 297 if (!IS_ELF(*ehdr)) { 298 err = EFTYPE; 299 goto error; 300 } 301 302 if (ehdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || /* Layout ? */ 303 ehdr->e_ident[EI_DATA] != ELF_TARG_DATA || 304 ehdr->e_ident[EI_VERSION] != EV_CURRENT) /* Version ? */ { 305 err = EFTYPE; 306 goto error; 307 } 308 309 err = elf_header_convert(ehdr); 310 if (err) 311 goto error; 312 313 if (ehdr->e_version != EV_CURRENT || ehdr->e_machine != ELF_TARG_MACH) { 314 /* Machine ? */ 315 err = EFTYPE; 316 goto error; 317 } 318 319 #if defined(LOADER_VERIEXEC) && !defined(LOADER_VERIEXEC_VECTX) 320 if (verify_file(ef->fd, filename, bytes_read, VE_MUST, __func__) < 0) { 321 err = EAUTH; 322 goto error; 323 } 324 #endif 325 return (0); 326 327 error: 328 if (ef->firstpage != NULL) { 329 free(ef->firstpage); 330 ef->firstpage = NULL; 331 } 332 if (ef->fd != -1) { 333 #ifdef LOADER_VERIEXEC_VECTX 334 free(ef->vctx); 335 #endif 336 close(ef->fd); 337 ef->fd = -1; 338 } 339 return (err); 340 } 341 342 /* 343 * Attempt to load the file (file) as an ELF module. It will be stored at 344 * (dest), and a pointer to a module structure describing the loaded object 345 * will be saved in (result). 346 */ 347 int 348 __elfN(loadfile)(char *filename, uint64_t dest, struct preloaded_file **result) 349 { 350 return (__elfN(loadfile_raw)(filename, dest, result, 0)); 351 } 352 353 int 354 __elfN(loadfile_raw)(char *filename, uint64_t dest, 355 struct preloaded_file **result, int multiboot) 356 { 357 struct preloaded_file *fp, *kfp; 358 struct elf_file ef; 359 Elf_Ehdr *ehdr; 360 int err; 361 362 fp = NULL; 363 bzero(&ef, sizeof(struct elf_file)); 364 ef.fd = -1; 365 366 err = __elfN(load_elf_header)(filename, &ef); 367 if (err != 0) 368 return (err); 369 370 ehdr = ef.ehdr; 371 372 /* 373 * Check to see what sort of module we are. 374 */ 375 kfp = file_findfile(NULL, __elfN(kerneltype)); 376 #ifdef __powerpc__ 377 /* 378 * Kernels can be ET_DYN, so just assume the first loaded object is the 379 * kernel. This assumption will be checked later. 380 */ 381 if (kfp == NULL) 382 ef.kernel = 1; 383 #endif 384 if (ef.kernel || ehdr->e_type == ET_EXEC) { 385 /* Looks like a kernel */ 386 if (kfp != NULL) { 387 printf("elf" __XSTRING(__ELF_WORD_SIZE) 388 "_loadfile: kernel already loaded\n"); 389 err = EPERM; 390 goto oerr; 391 } 392 /* 393 * Calculate destination address based on kernel entrypoint. 394 * 395 * For ARM, the destination address is independent of any values 396 * in the elf header (an ARM kernel can be loaded at any 2MB 397 * boundary), so we leave dest set to the value calculated by 398 * archsw.arch_loadaddr() and passed in to this function. 399 */ 400 #ifndef __arm__ 401 if (ehdr->e_type == ET_EXEC) 402 dest = (ehdr->e_entry & ~PAGE_MASK); 403 #endif 404 if ((ehdr->e_entry & ~PAGE_MASK) == 0) { 405 printf("elf" __XSTRING(__ELF_WORD_SIZE) 406 "_loadfile: not a kernel (maybe static binary?)\n"); 407 err = EPERM; 408 goto oerr; 409 } 410 ef.kernel = 1; 411 412 } else if (ehdr->e_type == ET_DYN) { 413 /* Looks like a kld module */ 414 if (multiboot != 0) { 415 printf("elf" __XSTRING(__ELF_WORD_SIZE) 416 "_loadfile: can't load module as multiboot\n"); 417 err = EPERM; 418 goto oerr; 419 } 420 if (kfp == NULL) { 421 printf("elf" __XSTRING(__ELF_WORD_SIZE) 422 "_loadfile: can't load module before kernel\n"); 423 err = EPERM; 424 goto oerr; 425 } 426 if (strcmp(__elfN(kerneltype), kfp->f_type)) { 427 printf("elf" __XSTRING(__ELF_WORD_SIZE) 428 "_loadfile: can't load module with kernel type '%s'\n", 429 kfp->f_type); 430 err = EPERM; 431 goto oerr; 432 } 433 /* Looks OK, got ahead */ 434 ef.kernel = 0; 435 436 } else { 437 err = EFTYPE; 438 goto oerr; 439 } 440 441 if (archsw.arch_loadaddr != NULL) 442 dest = archsw.arch_loadaddr(LOAD_ELF, ehdr, dest); 443 else 444 dest = roundup(dest, PAGE_SIZE); 445 446 /* 447 * Ok, we think we should handle this. 448 */ 449 fp = file_alloc(); 450 if (fp == NULL) { 451 printf("elf" __XSTRING(__ELF_WORD_SIZE) 452 "_loadfile: cannot allocate module info\n"); 453 err = EPERM; 454 goto out; 455 } 456 if (ef.kernel == 1 && multiboot == 0) 457 setenv("kernelname", filename, 1); 458 fp->f_name = strdup(filename); 459 if (multiboot == 0) 460 fp->f_type = strdup(ef.kernel ? 461 __elfN(kerneltype) : __elfN(moduletype)); 462 else 463 fp->f_type = strdup("elf multiboot kernel"); 464 465 #ifdef ELF_VERBOSE 466 if (ef.kernel) 467 printf("%s entry at 0x%jx\n", filename, 468 (uintmax_t)ehdr->e_entry); 469 #else 470 printf("%s ", filename); 471 #endif 472 473 fp->f_size = __elfN(loadimage)(fp, &ef, dest); 474 if (fp->f_size == 0 || fp->f_addr == 0) 475 goto ioerr; 476 477 /* save exec header as metadata */ 478 file_addmetadata(fp, MODINFOMD_ELFHDR, sizeof(*ehdr), ehdr); 479 480 /* Load OK, return module pointer */ 481 *result = (struct preloaded_file *)fp; 482 err = 0; 483 #ifdef __amd64__ 484 fp->f_kernphys_relocatable = multiboot || is_kernphys_relocatable(&ef); 485 #endif 486 #ifdef __i386__ 487 fp->f_tg_kernel_support = is_tg_kernel_support(fp, &ef); 488 #endif 489 goto out; 490 491 ioerr: 492 err = EIO; 493 oerr: 494 file_discard(fp); 495 out: 496 if (ef.firstpage) 497 free(ef.firstpage); 498 if (ef.fd != -1) { 499 #ifdef LOADER_VERIEXEC_VECTX 500 if (!err && ef.vctx) { 501 int verror; 502 503 verror = vectx_close(ef.vctx, VE_MUST, __func__); 504 if (verror) { 505 err = EAUTH; 506 file_discard(fp); 507 } 508 } 509 #endif 510 close(ef.fd); 511 } 512 return (err); 513 } 514 515 /* 516 * With the file (fd) open on the image, and (ehdr) containing 517 * the Elf header, load the image at (off) 518 */ 519 static int 520 __elfN(loadimage)(struct preloaded_file *fp, elf_file_t ef, uint64_t off) 521 { 522 int i; 523 u_int j; 524 Elf_Ehdr *ehdr; 525 Elf_Phdr *phdr, *php; 526 Elf_Shdr *shdr; 527 char *shstr; 528 int ret; 529 vm_offset_t firstaddr; 530 vm_offset_t lastaddr; 531 size_t chunk; 532 ssize_t result; 533 Elf_Addr ssym, esym; 534 Elf_Dyn *dp; 535 Elf_Addr adp; 536 Elf_Addr ctors; 537 int ndp; 538 int symstrindex; 539 int symtabindex; 540 Elf_Size size; 541 u_int fpcopy; 542 Elf_Sym sym; 543 Elf_Addr p_start, p_end; 544 545 dp = NULL; 546 shdr = NULL; 547 ret = 0; 548 firstaddr = lastaddr = 0; 549 ehdr = ef->ehdr; 550 #ifdef __powerpc__ 551 if (ef->kernel) { 552 #else 553 if (ehdr->e_type == ET_EXEC) { 554 #endif 555 #if defined(__i386__) || defined(__amd64__) 556 #if __ELF_WORD_SIZE == 64 557 /* x86_64 relocates after locore */ 558 off = - (off & 0xffffffffff000000ull); 559 #else 560 /* i386 relocates after locore */ 561 off = - (off & 0xff000000u); 562 #endif 563 #elif defined(__powerpc__) 564 /* 565 * On the purely virtual memory machines like e500, the kernel 566 * is linked against its final VA range, which is most often 567 * not available at the loader stage, but only after kernel 568 * initializes and completes its VM settings. In such cases we 569 * cannot use p_vaddr field directly to load ELF segments, but 570 * put them at some 'load-time' locations. 571 */ 572 if (off & 0xf0000000u) { 573 off = -(off & 0xf0000000u); 574 /* 575 * XXX the physical load address should not be 576 * hardcoded. Note that the Book-E kernel assumes that 577 * it's loaded at a 16MB boundary for now... 578 */ 579 off += 0x01000000; 580 } 581 ehdr->e_entry += off; 582 #ifdef ELF_VERBOSE 583 printf("Converted entry 0x%jx\n", (uintmax_t)ehdr->e_entry); 584 #endif 585 #elif defined(__arm__) && !defined(EFI) 586 /* 587 * The elf headers in arm kernels specify virtual addresses in 588 * all header fields, even the ones that should be physical 589 * addresses. We assume the entry point is in the first page, 590 * and masking the page offset will leave us with the virtual 591 * address the kernel was linked at. We subtract that from the 592 * load offset, making 'off' into the value which, when added 593 * to a virtual address in an elf header, translates it to a 594 * physical address. We do the va->pa conversion on the entry 595 * point address in the header now, so that later we can launch 596 * the kernel by just jumping to that address. 597 * 598 * When booting from UEFI the copyin and copyout functions 599 * handle adjusting the location relative to the first virtual 600 * address. Because of this there is no need to adjust the 601 * offset or entry point address as these will both be handled 602 * by the efi code. 603 */ 604 off -= ehdr->e_entry & ~PAGE_MASK; 605 ehdr->e_entry += off; 606 #ifdef ELF_VERBOSE 607 printf("ehdr->e_entry 0x%jx, va<->pa off %llx\n", 608 (uintmax_t)ehdr->e_entry, off); 609 #endif 610 #else 611 off = 0; /* other archs use direct mapped kernels */ 612 #endif 613 } 614 ef->off = off; 615 616 if (ef->kernel) 617 __elfN(relocation_offset) = off; 618 619 if ((ehdr->e_phoff + ehdr->e_phnum * sizeof(*phdr)) > ef->firstlen) { 620 printf("elf" __XSTRING(__ELF_WORD_SIZE) 621 "_loadimage: program header not within first page\n"); 622 goto out; 623 } 624 phdr = (Elf_Phdr *)(ef->firstpage + ehdr->e_phoff); 625 626 for (i = 0; i < ehdr->e_phnum; i++) { 627 if (elf_program_header_convert(ehdr, phdr)) 628 continue; 629 630 /* We want to load PT_LOAD segments only.. */ 631 if (phdr[i].p_type != PT_LOAD) 632 continue; 633 634 #ifdef ELF_VERBOSE 635 printf("Segment: 0x%lx@0x%lx -> 0x%lx-0x%lx", 636 (long)phdr[i].p_filesz, (long)phdr[i].p_offset, 637 (long)(phdr[i].p_vaddr + off), 638 (long)(phdr[i].p_vaddr + off + phdr[i].p_memsz - 1)); 639 #else 640 if ((phdr[i].p_flags & PF_W) == 0) { 641 printf("text=0x%lx ", (long)phdr[i].p_filesz); 642 } else { 643 printf("data=0x%lx", (long)phdr[i].p_filesz); 644 if (phdr[i].p_filesz < phdr[i].p_memsz) 645 printf("+0x%lx", (long)(phdr[i].p_memsz - 646 phdr[i].p_filesz)); 647 printf(" "); 648 } 649 #endif 650 fpcopy = 0; 651 if (ef->firstlen > phdr[i].p_offset) { 652 fpcopy = ef->firstlen - phdr[i].p_offset; 653 archsw.arch_copyin(ef->firstpage + phdr[i].p_offset, 654 phdr[i].p_vaddr + off, fpcopy); 655 } 656 if (phdr[i].p_filesz > fpcopy) { 657 if (kern_pread(VECTX_HANDLE(ef), 658 phdr[i].p_vaddr + off + fpcopy, 659 phdr[i].p_filesz - fpcopy, 660 phdr[i].p_offset + fpcopy) != 0) { 661 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 662 "_loadimage: read failed\n"); 663 goto out; 664 } 665 } 666 /* clear space from oversized segments; eg: bss */ 667 if (phdr[i].p_filesz < phdr[i].p_memsz) { 668 #ifdef ELF_VERBOSE 669 printf(" (bss: 0x%lx-0x%lx)", 670 (long)(phdr[i].p_vaddr + off + phdr[i].p_filesz), 671 (long)(phdr[i].p_vaddr + off + phdr[i].p_memsz -1)); 672 #endif 673 674 kern_bzero(phdr[i].p_vaddr + off + phdr[i].p_filesz, 675 phdr[i].p_memsz - phdr[i].p_filesz); 676 } 677 #ifdef ELF_VERBOSE 678 printf("\n"); 679 #endif 680 681 if (archsw.arch_loadseg != NULL) 682 archsw.arch_loadseg(ehdr, phdr + i, off); 683 684 if (firstaddr == 0 || firstaddr > (phdr[i].p_vaddr + off)) 685 firstaddr = phdr[i].p_vaddr + off; 686 if (lastaddr == 0 || lastaddr < 687 (phdr[i].p_vaddr + off + phdr[i].p_memsz)) 688 lastaddr = phdr[i].p_vaddr + off + phdr[i].p_memsz; 689 } 690 lastaddr = roundup(lastaddr, sizeof(long)); 691 692 /* 693 * Get the section headers. We need this for finding the .ctors 694 * section as well as for loading any symbols. Both may be hard 695 * to do if reading from a .gz file as it involves seeking. I 696 * think the rule is going to have to be that you must strip a 697 * file to remove symbols before gzipping it. 698 */ 699 chunk = (size_t)ehdr->e_shnum * (size_t)ehdr->e_shentsize; 700 if (chunk == 0 || ehdr->e_shoff == 0) 701 goto nosyms; 702 shdr = alloc_pread(VECTX_HANDLE(ef), ehdr->e_shoff, chunk); 703 if (shdr == NULL) { 704 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 705 "_loadimage: failed to read section headers"); 706 goto nosyms; 707 } 708 709 for (i = 0; i < ehdr->e_shnum; i++) 710 elf_section_header_convert(ehdr, &shdr[i]); 711 712 file_addmetadata(fp, MODINFOMD_SHDR, chunk, shdr); 713 714 /* 715 * Read the section string table and look for the .ctors section. 716 * We need to tell the kernel where it is so that it can call the 717 * ctors. 718 */ 719 chunk = shdr[ehdr->e_shstrndx].sh_size; 720 if (chunk) { 721 shstr = alloc_pread(VECTX_HANDLE(ef), 722 shdr[ehdr->e_shstrndx].sh_offset, chunk); 723 if (shstr) { 724 for (i = 0; i < ehdr->e_shnum; i++) { 725 if (strcmp(shstr + shdr[i].sh_name, 726 ".ctors") != 0) 727 continue; 728 ctors = shdr[i].sh_addr; 729 file_addmetadata(fp, MODINFOMD_CTORS_ADDR, 730 sizeof(ctors), &ctors); 731 size = shdr[i].sh_size; 732 file_addmetadata(fp, MODINFOMD_CTORS_SIZE, 733 sizeof(size), &size); 734 break; 735 } 736 free(shstr); 737 } 738 } 739 740 /* 741 * Now load any symbols. 742 */ 743 symtabindex = -1; 744 symstrindex = -1; 745 for (i = 0; i < ehdr->e_shnum; i++) { 746 if (shdr[i].sh_type != SHT_SYMTAB) 747 continue; 748 for (j = 0; j < ehdr->e_phnum; j++) { 749 if (phdr[j].p_type != PT_LOAD) 750 continue; 751 if (shdr[i].sh_offset >= phdr[j].p_offset && 752 (shdr[i].sh_offset + shdr[i].sh_size <= 753 phdr[j].p_offset + phdr[j].p_filesz)) { 754 shdr[i].sh_offset = 0; 755 shdr[i].sh_size = 0; 756 break; 757 } 758 } 759 if (shdr[i].sh_offset == 0 || shdr[i].sh_size == 0) 760 continue; /* alread loaded in a PT_LOAD above */ 761 /* Save it for loading below */ 762 symtabindex = i; 763 symstrindex = shdr[i].sh_link; 764 } 765 if (symtabindex < 0 || symstrindex < 0) 766 goto nosyms; 767 768 /* Ok, committed to a load. */ 769 #ifndef ELF_VERBOSE 770 printf("syms=["); 771 #endif 772 ssym = lastaddr; 773 for (i = symtabindex; i >= 0; i = symstrindex) { 774 #ifdef ELF_VERBOSE 775 char *secname; 776 777 switch(shdr[i].sh_type) { 778 case SHT_SYMTAB: /* Symbol table */ 779 secname = "symtab"; 780 break; 781 case SHT_STRTAB: /* String table */ 782 secname = "strtab"; 783 break; 784 default: 785 secname = "WHOA!!"; 786 break; 787 } 788 #endif 789 size = shdr[i].sh_size; 790 791 archsw.arch_copyin(&size, lastaddr, sizeof(size)); 792 lastaddr += sizeof(size); 793 794 #ifdef ELF_VERBOSE 795 printf("\n%s: 0x%jx@0x%jx -> 0x%jx-0x%jx", secname, 796 (uintmax_t)shdr[i].sh_size, (uintmax_t)shdr[i].sh_offset, 797 (uintmax_t)lastaddr, 798 (uintmax_t)(lastaddr + shdr[i].sh_size)); 799 #else 800 if (i == symstrindex) 801 printf("+"); 802 printf("0x%lx+0x%lx", (long)sizeof(size), (long)size); 803 #endif 804 805 if (VECTX_LSEEK(VECTX_HANDLE(ef), (off_t)shdr[i].sh_offset, SEEK_SET) == -1) { 806 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 807 "_loadimage: could not seek for symbols - skipped!"); 808 lastaddr = ssym; 809 ssym = 0; 810 goto nosyms; 811 } 812 result = archsw.arch_readin(VECTX_HANDLE(ef), lastaddr, shdr[i].sh_size); 813 if (result < 0 || (size_t)result != shdr[i].sh_size) { 814 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 815 "_loadimage: could not read symbols - skipped! " 816 "(%ju != %ju)", (uintmax_t)result, 817 (uintmax_t)shdr[i].sh_size); 818 lastaddr = ssym; 819 ssym = 0; 820 goto nosyms; 821 } 822 /* Reset offsets relative to ssym */ 823 lastaddr += shdr[i].sh_size; 824 lastaddr = roundup(lastaddr, sizeof(size)); 825 if (i == symtabindex) 826 symtabindex = -1; 827 else if (i == symstrindex) 828 symstrindex = -1; 829 } 830 esym = lastaddr; 831 #ifndef ELF_VERBOSE 832 printf("]"); 833 #endif 834 835 file_addmetadata(fp, MODINFOMD_SSYM, sizeof(ssym), &ssym); 836 file_addmetadata(fp, MODINFOMD_ESYM, sizeof(esym), &esym); 837 838 nosyms: 839 printf("\n"); 840 841 ret = lastaddr - firstaddr; 842 fp->f_addr = firstaddr; 843 844 php = NULL; 845 for (i = 0; i < ehdr->e_phnum; i++) { 846 if (phdr[i].p_type == PT_DYNAMIC) { 847 php = phdr + i; 848 adp = php->p_vaddr; 849 file_addmetadata(fp, MODINFOMD_DYNAMIC, sizeof(adp), 850 &adp); 851 break; 852 } 853 } 854 855 if (php == NULL) /* this is bad, we cannot get to symbols or _DYNAMIC */ 856 goto out; 857 858 ndp = php->p_filesz / sizeof(Elf_Dyn); 859 if (ndp == 0) 860 goto out; 861 dp = malloc(php->p_filesz); 862 if (dp == NULL) 863 goto out; 864 archsw.arch_copyout(php->p_vaddr + off, dp, php->p_filesz); 865 866 ef->strsz = 0; 867 for (i = 0; i < ndp; i++) { 868 if (dp[i].d_tag == 0) 869 break; 870 switch (dp[i].d_tag) { 871 case DT_HASH: 872 ef->hashtab = 873 (Elf_Hashelt*)(uintptr_t)(dp[i].d_un.d_ptr + off); 874 break; 875 case DT_STRTAB: 876 ef->strtab = 877 (char *)(uintptr_t)(dp[i].d_un.d_ptr + off); 878 break; 879 case DT_STRSZ: 880 ef->strsz = dp[i].d_un.d_val; 881 break; 882 case DT_SYMTAB: 883 ef->symtab = 884 (Elf_Sym *)(uintptr_t)(dp[i].d_un.d_ptr + off); 885 break; 886 case DT_REL: 887 ef->rel = 888 (Elf_Rel *)(uintptr_t)(dp[i].d_un.d_ptr + off); 889 break; 890 case DT_RELSZ: 891 ef->relsz = dp[i].d_un.d_val; 892 break; 893 case DT_RELA: 894 ef->rela = 895 (Elf_Rela *)(uintptr_t)(dp[i].d_un.d_ptr + off); 896 break; 897 case DT_RELASZ: 898 ef->relasz = dp[i].d_un.d_val; 899 break; 900 default: 901 break; 902 } 903 } 904 if (ef->hashtab == NULL || ef->symtab == NULL || 905 ef->strtab == NULL || ef->strsz == 0) 906 goto out; 907 COPYOUT(ef->hashtab, &ef->nbuckets, sizeof(ef->nbuckets)); 908 COPYOUT(ef->hashtab + 1, &ef->nchains, sizeof(ef->nchains)); 909 ef->buckets = ef->hashtab + 2; 910 ef->chains = ef->buckets + ef->nbuckets; 911 912 if (__elfN(lookup_symbol)(ef, "__start_set_modmetadata_set", &sym, 913 STT_NOTYPE) != 0) 914 return 0; 915 p_start = sym.st_value + ef->off; 916 if (__elfN(lookup_symbol)(ef, "__stop_set_modmetadata_set", &sym, 917 STT_NOTYPE) != 0) 918 return 0; 919 p_end = sym.st_value + ef->off; 920 921 if (__elfN(parse_modmetadata)(fp, ef, p_start, p_end) == 0) 922 goto out; 923 924 if (ef->kernel) /* kernel must not depend on anything */ 925 goto out; 926 927 out: 928 if (dp) 929 free(dp); 930 if (shdr) 931 free(shdr); 932 return ret; 933 } 934 935 static char invalid_name[] = "bad"; 936 937 char * 938 fake_modname(const char *name) 939 { 940 const char *sp, *ep; 941 char *fp; 942 size_t len; 943 944 sp = strrchr(name, '/'); 945 if (sp) 946 sp++; 947 else 948 sp = name; 949 950 ep = strrchr(sp, '.'); 951 if (ep == NULL) { 952 ep = sp + strlen(sp); 953 } 954 if (ep == sp) { 955 sp = invalid_name; 956 ep = invalid_name + sizeof(invalid_name) - 1; 957 } 958 959 len = ep - sp; 960 fp = malloc(len + 1); 961 if (fp == NULL) 962 return NULL; 963 memcpy(fp, sp, len); 964 fp[len] = '\0'; 965 return fp; 966 } 967 968 #if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64 969 struct mod_metadata64 { 970 int md_version; /* structure version MDTV_* */ 971 int md_type; /* type of entry MDT_* */ 972 uint64_t md_data; /* specific data */ 973 uint64_t md_cval; /* common string label */ 974 }; 975 #endif 976 #if defined(__amd64__) && __ELF_WORD_SIZE == 32 977 struct mod_metadata32 { 978 int md_version; /* structure version MDTV_* */ 979 int md_type; /* type of entry MDT_* */ 980 uint32_t md_data; /* specific data */ 981 uint32_t md_cval; /* common string label */ 982 }; 983 #endif 984 985 int 986 __elfN(load_modmetadata)(struct preloaded_file *fp, uint64_t dest) 987 { 988 struct elf_file ef; 989 int err, i, j; 990 Elf_Shdr *sh_meta, *shdr = NULL; 991 Elf_Shdr *sh_data[2]; 992 char *shstrtab = NULL; 993 size_t size; 994 Elf_Addr p_start, p_end; 995 996 bzero(&ef, sizeof(struct elf_file)); 997 ef.fd = -1; 998 999 err = __elfN(load_elf_header)(fp->f_name, &ef); 1000 if (err != 0) 1001 goto out; 1002 1003 if (ef.kernel == 1 || ef.ehdr->e_type == ET_EXEC) { 1004 ef.kernel = 1; 1005 } else if (ef.ehdr->e_type != ET_DYN) { 1006 err = EFTYPE; 1007 goto out; 1008 } 1009 1010 size = (size_t)ef.ehdr->e_shnum * (size_t)ef.ehdr->e_shentsize; 1011 shdr = alloc_pread(VECTX_HANDLE(&ef), ef.ehdr->e_shoff, size); 1012 if (shdr == NULL) { 1013 err = ENOMEM; 1014 goto out; 1015 } 1016 1017 /* Load shstrtab. */ 1018 shstrtab = alloc_pread(VECTX_HANDLE(&ef), shdr[ef.ehdr->e_shstrndx].sh_offset, 1019 shdr[ef.ehdr->e_shstrndx].sh_size); 1020 if (shstrtab == NULL) { 1021 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 1022 "load_modmetadata: unable to load shstrtab\n"); 1023 err = EFTYPE; 1024 goto out; 1025 } 1026 1027 /* Find set_modmetadata_set and data sections. */ 1028 sh_data[0] = sh_data[1] = sh_meta = NULL; 1029 for (i = 0, j = 0; i < ef.ehdr->e_shnum; i++) { 1030 if (strcmp(&shstrtab[shdr[i].sh_name], 1031 "set_modmetadata_set") == 0) { 1032 sh_meta = &shdr[i]; 1033 } 1034 if ((strcmp(&shstrtab[shdr[i].sh_name], ".data") == 0) || 1035 (strcmp(&shstrtab[shdr[i].sh_name], ".rodata") == 0)) { 1036 sh_data[j++] = &shdr[i]; 1037 } 1038 } 1039 if (sh_meta == NULL || sh_data[0] == NULL || sh_data[1] == NULL) { 1040 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 1041 "load_modmetadata: unable to find set_modmetadata_set or data sections\n"); 1042 err = EFTYPE; 1043 goto out; 1044 } 1045 1046 /* Load set_modmetadata_set into memory */ 1047 err = kern_pread(VECTX_HANDLE(&ef), dest, sh_meta->sh_size, sh_meta->sh_offset); 1048 if (err != 0) { 1049 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 1050 "load_modmetadata: unable to load set_modmetadata_set: %d\n", err); 1051 goto out; 1052 } 1053 p_start = dest; 1054 p_end = dest + sh_meta->sh_size; 1055 dest += sh_meta->sh_size; 1056 1057 /* Load data sections into memory. */ 1058 err = kern_pread(VECTX_HANDLE(&ef), dest, sh_data[0]->sh_size, 1059 sh_data[0]->sh_offset); 1060 if (err != 0) { 1061 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 1062 "load_modmetadata: unable to load data: %d\n", err); 1063 goto out; 1064 } 1065 1066 /* 1067 * We have to increment the dest, so that the offset is the same into 1068 * both the .rodata and .data sections. 1069 */ 1070 ef.off = -(sh_data[0]->sh_addr - dest); 1071 dest += (sh_data[1]->sh_addr - sh_data[0]->sh_addr); 1072 1073 err = kern_pread(VECTX_HANDLE(&ef), dest, sh_data[1]->sh_size, 1074 sh_data[1]->sh_offset); 1075 if (err != 0) { 1076 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 1077 "load_modmetadata: unable to load data: %d\n", err); 1078 goto out; 1079 } 1080 1081 err = __elfN(parse_modmetadata)(fp, &ef, p_start, p_end); 1082 if (err != 0) { 1083 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 1084 "load_modmetadata: unable to parse metadata: %d\n", err); 1085 goto out; 1086 } 1087 1088 out: 1089 if (shstrtab != NULL) 1090 free(shstrtab); 1091 if (shdr != NULL) 1092 free(shdr); 1093 if (ef.firstpage != NULL) 1094 free(ef.firstpage); 1095 if (ef.fd != -1) { 1096 #ifdef LOADER_VERIEXEC_VECTX 1097 if (!err && ef.vctx) { 1098 int verror; 1099 1100 verror = vectx_close(ef.vctx, VE_MUST, __func__); 1101 if (verror) { 1102 err = EAUTH; 1103 file_discard(fp); 1104 } 1105 } 1106 #endif 1107 close(ef.fd); 1108 } 1109 return (err); 1110 } 1111 1112 int 1113 __elfN(parse_modmetadata)(struct preloaded_file *fp, elf_file_t ef, 1114 Elf_Addr p_start, Elf_Addr p_end) 1115 { 1116 struct mod_metadata md; 1117 #if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64 1118 struct mod_metadata64 md64; 1119 #elif defined(__amd64__) && __ELF_WORD_SIZE == 32 1120 struct mod_metadata32 md32; 1121 #endif 1122 struct mod_depend *mdepend; 1123 struct mod_version mver; 1124 char *s; 1125 int error, modcnt, minfolen; 1126 Elf_Addr v, p; 1127 1128 modcnt = 0; 1129 p = p_start; 1130 while (p < p_end) { 1131 COPYOUT(p, &v, sizeof(v)); 1132 error = __elfN(reloc_ptr)(fp, ef, p, &v, sizeof(v)); 1133 if (error == EOPNOTSUPP) 1134 v += ef->off; 1135 else if (error != 0) 1136 return (error); 1137 #if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64 1138 COPYOUT(v, &md64, sizeof(md64)); 1139 error = __elfN(reloc_ptr)(fp, ef, v, &md64, sizeof(md64)); 1140 if (error == EOPNOTSUPP) { 1141 md64.md_cval += ef->off; 1142 md64.md_data += ef->off; 1143 } else if (error != 0) 1144 return (error); 1145 md.md_version = md64.md_version; 1146 md.md_type = md64.md_type; 1147 md.md_cval = (const char *)(uintptr_t)md64.md_cval; 1148 md.md_data = (void *)(uintptr_t)md64.md_data; 1149 #elif defined(__amd64__) && __ELF_WORD_SIZE == 32 1150 COPYOUT(v, &md32, sizeof(md32)); 1151 error = __elfN(reloc_ptr)(fp, ef, v, &md32, sizeof(md32)); 1152 if (error == EOPNOTSUPP) { 1153 md32.md_cval += ef->off; 1154 md32.md_data += ef->off; 1155 } else if (error != 0) 1156 return (error); 1157 md.md_version = md32.md_version; 1158 md.md_type = md32.md_type; 1159 md.md_cval = (const char *)(uintptr_t)md32.md_cval; 1160 md.md_data = (void *)(uintptr_t)md32.md_data; 1161 #else 1162 COPYOUT(v, &md, sizeof(md)); 1163 error = __elfN(reloc_ptr)(fp, ef, v, &md, sizeof(md)); 1164 if (error == EOPNOTSUPP) { 1165 md.md_cval += ef->off; 1166 md.md_data = (void *)((uintptr_t)md.md_data + 1167 (uintptr_t)ef->off); 1168 } else if (error != 0) 1169 return (error); 1170 #endif 1171 p += sizeof(Elf_Addr); 1172 switch(md.md_type) { 1173 case MDT_DEPEND: 1174 if (ef->kernel) /* kernel must not depend on anything */ 1175 break; 1176 s = strdupout((vm_offset_t)md.md_cval); 1177 minfolen = sizeof(*mdepend) + strlen(s) + 1; 1178 mdepend = malloc(minfolen); 1179 if (mdepend == NULL) 1180 return ENOMEM; 1181 COPYOUT((vm_offset_t)md.md_data, mdepend, 1182 sizeof(*mdepend)); 1183 strcpy((char*)(mdepend + 1), s); 1184 free(s); 1185 file_addmetadata(fp, MODINFOMD_DEPLIST, minfolen, 1186 mdepend); 1187 free(mdepend); 1188 break; 1189 case MDT_VERSION: 1190 s = strdupout((vm_offset_t)md.md_cval); 1191 COPYOUT((vm_offset_t)md.md_data, &mver, sizeof(mver)); 1192 file_addmodule(fp, s, mver.mv_version, NULL); 1193 free(s); 1194 modcnt++; 1195 break; 1196 } 1197 } 1198 if (modcnt == 0) { 1199 s = fake_modname(fp->f_name); 1200 file_addmodule(fp, s, 1, NULL); 1201 free(s); 1202 } 1203 return 0; 1204 } 1205 1206 static unsigned long 1207 elf_hash(const char *name) 1208 { 1209 const unsigned char *p = (const unsigned char *) name; 1210 unsigned long h = 0; 1211 unsigned long g; 1212 1213 while (*p != '\0') { 1214 h = (h << 4) + *p++; 1215 if ((g = h & 0xf0000000) != 0) 1216 h ^= g >> 24; 1217 h &= ~g; 1218 } 1219 return h; 1220 } 1221 1222 static const char __elfN(bad_symtable)[] = "elf" __XSTRING(__ELF_WORD_SIZE) 1223 "_lookup_symbol: corrupt symbol table\n"; 1224 int 1225 __elfN(lookup_symbol)(elf_file_t ef, const char* name, Elf_Sym *symp, 1226 unsigned char type) 1227 { 1228 Elf_Hashelt symnum; 1229 Elf_Sym sym; 1230 char *strp; 1231 unsigned long hash; 1232 1233 if (ef->nbuckets == 0) { 1234 printf(__elfN(bad_symtable)); 1235 return ENOENT; 1236 } 1237 1238 hash = elf_hash(name); 1239 COPYOUT(&ef->buckets[hash % ef->nbuckets], &symnum, sizeof(symnum)); 1240 1241 while (symnum != STN_UNDEF) { 1242 if (symnum >= ef->nchains) { 1243 printf(__elfN(bad_symtable)); 1244 return ENOENT; 1245 } 1246 1247 COPYOUT(ef->symtab + symnum, &sym, sizeof(sym)); 1248 if (sym.st_name == 0) { 1249 printf(__elfN(bad_symtable)); 1250 return ENOENT; 1251 } 1252 1253 strp = strdupout((vm_offset_t)(ef->strtab + sym.st_name)); 1254 if (strcmp(name, strp) == 0) { 1255 free(strp); 1256 if (sym.st_shndx != SHN_UNDEF || 1257 (sym.st_value != 0 && 1258 ELF_ST_TYPE(sym.st_info) == type)) { 1259 *symp = sym; 1260 return 0; 1261 } 1262 return ENOENT; 1263 } 1264 free(strp); 1265 COPYOUT(&ef->chains[symnum], &symnum, sizeof(symnum)); 1266 } 1267 return ENOENT; 1268 } 1269 1270 /* 1271 * Apply any intra-module relocations to the value. p is the load address 1272 * of the value and val/len is the value to be modified. This does NOT modify 1273 * the image in-place, because this is done by kern_linker later on. 1274 * 1275 * Returns EOPNOTSUPP if no relocation method is supplied. 1276 */ 1277 static int 1278 __elfN(reloc_ptr)(struct preloaded_file *mp, elf_file_t ef, 1279 Elf_Addr p, void *val, size_t len) 1280 { 1281 size_t n; 1282 Elf_Rela a; 1283 Elf_Rel r; 1284 int error; 1285 1286 /* 1287 * The kernel is already relocated, but we still want to apply 1288 * offset adjustments. 1289 */ 1290 if (ef->kernel) 1291 return (EOPNOTSUPP); 1292 1293 for (n = 0; n < ef->relsz / sizeof(r); n++) { 1294 COPYOUT(ef->rel + n, &r, sizeof(r)); 1295 1296 error = __elfN(reloc)(ef, __elfN(symaddr), &r, ELF_RELOC_REL, 1297 ef->off, p, val, len); 1298 if (error != 0) 1299 return (error); 1300 } 1301 for (n = 0; n < ef->relasz / sizeof(a); n++) { 1302 COPYOUT(ef->rela + n, &a, sizeof(a)); 1303 1304 error = __elfN(reloc)(ef, __elfN(symaddr), &a, ELF_RELOC_RELA, 1305 ef->off, p, val, len); 1306 if (error != 0) 1307 return (error); 1308 } 1309 1310 return (0); 1311 } 1312 1313 static Elf_Addr 1314 __elfN(symaddr)(struct elf_file *ef, Elf_Size symidx) 1315 { 1316 1317 /* Symbol lookup by index not required here. */ 1318 return (0); 1319 } 1320