1 /*- 2 * Copyright (c) 1998 Michael Smith <msmith@freebsd.org> 3 * Copyright (c) 1998 Peter Wemm <peter@freebsd.org> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/param.h> 29 #include <sys/endian.h> 30 #include <sys/exec.h> 31 #include <sys/linker.h> 32 #include <sys/module.h> 33 #include <sys/stdint.h> 34 #include <string.h> 35 #include <machine/elf.h> 36 #include <stand.h> 37 #define FREEBSD_ELF 38 #include <sys/link_elf.h> 39 40 #include "bootstrap.h" 41 42 #define COPYOUT(s,d,l) archsw.arch_copyout((vm_offset_t)(s), d, l) 43 44 #if defined(__i386__) && __ELF_WORD_SIZE == 64 45 #undef ELF_TARG_CLASS 46 #undef ELF_TARG_MACH 47 #define ELF_TARG_CLASS ELFCLASS64 48 #define ELF_TARG_MACH EM_X86_64 49 #endif 50 51 typedef struct elf_file { 52 Elf_Phdr *ph; 53 Elf_Ehdr *ehdr; 54 Elf_Sym *symtab; 55 Elf_Hashelt *hashtab; 56 Elf_Hashelt nbuckets; 57 Elf_Hashelt nchains; 58 Elf_Hashelt *buckets; 59 Elf_Hashelt *chains; 60 Elf_Rel *rel; 61 size_t relsz; 62 Elf_Rela *rela; 63 size_t relasz; 64 char *strtab; 65 size_t strsz; 66 int fd; 67 caddr_t firstpage; 68 size_t firstlen; 69 int kernel; 70 uint64_t off; 71 #ifdef LOADER_VERIEXEC_VECTX 72 struct vectx *vctx; 73 #endif 74 } *elf_file_t; 75 76 #ifdef LOADER_VERIEXEC_VECTX 77 #define VECTX_HANDLE(ef) (ef)->vctx 78 #else 79 #define VECTX_HANDLE(ef) (ef)->fd 80 #endif 81 82 static int __elfN(loadimage)(struct preloaded_file *mp, elf_file_t ef, 83 uint64_t loadaddr); 84 static int __elfN(lookup_symbol)(elf_file_t ef, const char* name, 85 Elf_Sym *sym, unsigned char type); 86 static int __elfN(reloc_ptr)(struct preloaded_file *mp, elf_file_t ef, 87 Elf_Addr p, void *val, size_t len); 88 static int __elfN(parse_modmetadata)(struct preloaded_file *mp, elf_file_t ef, 89 Elf_Addr p_start, Elf_Addr p_end); 90 static symaddr_fn __elfN(symaddr); 91 static char *fake_modname(const char *name); 92 93 const char *__elfN(kerneltype) = "elf kernel"; 94 const char *__elfN(moduletype) = "elf module"; 95 96 uint64_t __elfN(relocation_offset) = 0; 97 98 #ifdef __powerpc__ 99 extern void elf_wrong_field_size(void); 100 #define CONVERT_FIELD(b, f, e) \ 101 switch (sizeof((b)->f)) { \ 102 case 2: \ 103 (b)->f = e ## 16toh((b)->f); \ 104 break; \ 105 case 4: \ 106 (b)->f = e ## 32toh((b)->f); \ 107 break; \ 108 case 8: \ 109 (b)->f = e ## 64toh((b)->f); \ 110 break; \ 111 default: \ 112 /* Force a link time error. */ \ 113 elf_wrong_field_size(); \ 114 break; \ 115 } 116 117 #define CONVERT_SWITCH(h, d, f) \ 118 switch ((h)->e_ident[EI_DATA]) { \ 119 case ELFDATA2MSB: \ 120 f(d, be); \ 121 break; \ 122 case ELFDATA2LSB: \ 123 f(d, le); \ 124 break; \ 125 default: \ 126 return (EINVAL); \ 127 } 128 129 130 static int elf_header_convert(Elf_Ehdr *ehdr) 131 { 132 /* 133 * Fixup ELF header endianness. 134 * 135 * The Xhdr structure was loaded using block read call to optimize file 136 * accesses. It might happen, that the endianness of the system memory 137 * is different that endianness of the ELF header. Swap fields here to 138 * guarantee that Xhdr always contain valid data regardless of 139 * architecture. 140 */ 141 #define HEADER_FIELDS(b, e) \ 142 CONVERT_FIELD(b, e_type, e); \ 143 CONVERT_FIELD(b, e_machine, e); \ 144 CONVERT_FIELD(b, e_version, e); \ 145 CONVERT_FIELD(b, e_entry, e); \ 146 CONVERT_FIELD(b, e_phoff, e); \ 147 CONVERT_FIELD(b, e_shoff, e); \ 148 CONVERT_FIELD(b, e_flags, e); \ 149 CONVERT_FIELD(b, e_ehsize, e); \ 150 CONVERT_FIELD(b, e_phentsize, e); \ 151 CONVERT_FIELD(b, e_phnum, e); \ 152 CONVERT_FIELD(b, e_shentsize, e); \ 153 CONVERT_FIELD(b, e_shnum, e); \ 154 CONVERT_FIELD(b, e_shstrndx, e) 155 156 CONVERT_SWITCH(ehdr, ehdr, HEADER_FIELDS); 157 158 #undef HEADER_FIELDS 159 160 return (0); 161 } 162 163 static int elf_program_header_convert(const Elf_Ehdr *ehdr, Elf_Phdr *phdr) 164 { 165 #define PROGRAM_HEADER_FIELDS(b, e) \ 166 CONVERT_FIELD(b, p_type, e); \ 167 CONVERT_FIELD(b, p_flags, e); \ 168 CONVERT_FIELD(b, p_offset, e); \ 169 CONVERT_FIELD(b, p_vaddr, e); \ 170 CONVERT_FIELD(b, p_paddr, e); \ 171 CONVERT_FIELD(b, p_filesz, e); \ 172 CONVERT_FIELD(b, p_memsz, e); \ 173 CONVERT_FIELD(b, p_align, e) 174 175 CONVERT_SWITCH(ehdr, phdr, PROGRAM_HEADER_FIELDS); 176 177 #undef PROGRAM_HEADER_FIELDS 178 179 return (0); 180 } 181 182 static int elf_section_header_convert(const Elf_Ehdr *ehdr, Elf_Shdr *shdr) 183 { 184 #define SECTION_HEADER_FIELDS(b, e) \ 185 CONVERT_FIELD(b, sh_name, e); \ 186 CONVERT_FIELD(b, sh_type, e); \ 187 CONVERT_FIELD(b, sh_link, e); \ 188 CONVERT_FIELD(b, sh_info, e); \ 189 CONVERT_FIELD(b, sh_flags, e); \ 190 CONVERT_FIELD(b, sh_addr, e); \ 191 CONVERT_FIELD(b, sh_offset, e); \ 192 CONVERT_FIELD(b, sh_size, e); \ 193 CONVERT_FIELD(b, sh_addralign, e); \ 194 CONVERT_FIELD(b, sh_entsize, e) 195 196 CONVERT_SWITCH(ehdr, shdr, SECTION_HEADER_FIELDS); 197 198 #undef SECTION_HEADER_FIELDS 199 200 return (0); 201 } 202 #undef CONVERT_SWITCH 203 #undef CONVERT_FIELD 204 #else 205 static int elf_header_convert(Elf_Ehdr *ehdr) 206 { 207 return (0); 208 } 209 210 static int elf_program_header_convert(const Elf_Ehdr *ehdr, Elf_Phdr *phdr) 211 { 212 return (0); 213 } 214 215 static int elf_section_header_convert(const Elf_Ehdr *ehdr, Elf_Shdr *shdr) 216 { 217 return (0); 218 } 219 #endif 220 221 #ifdef __amd64__ 222 static bool 223 is_kernphys_relocatable(elf_file_t ef) 224 { 225 Elf_Sym sym; 226 227 return (__elfN(lookup_symbol)(ef, "kernphys", &sym, STT_OBJECT) == 0); 228 } 229 #endif 230 231 #ifdef __i386__ 232 static bool 233 is_tg_kernel_support(struct preloaded_file *fp, elf_file_t ef) 234 { 235 Elf_Sym sym; 236 Elf_Addr p_start, p_end, v, p; 237 char vd_name[16]; 238 int error; 239 240 if (__elfN(lookup_symbol)(ef, "__start_set_vt_drv_set", &sym, STT_NOTYPE) != 0) 241 return (false); 242 p_start = sym.st_value + ef->off; 243 if (__elfN(lookup_symbol)(ef, "__stop_set_vt_drv_set", &sym, STT_NOTYPE) != 0) 244 return (false); 245 p_end = sym.st_value + ef->off; 246 247 /* 248 * Walk through vt_drv_set, each vt driver structure starts with 249 * static 16 chars for driver name. If we have "vbefb", return true. 250 */ 251 for (p = p_start; p < p_end; p += sizeof(Elf_Addr)) { 252 COPYOUT(p, &v, sizeof(v)); 253 254 error = __elfN(reloc_ptr)(fp, ef, p, &v, sizeof(v)); 255 if (error == EOPNOTSUPP) 256 v += ef->off; 257 else if (error != 0) 258 return (false); 259 COPYOUT(v, &vd_name, sizeof(vd_name)); 260 if (strncmp(vd_name, "vbefb", sizeof(vd_name)) == 0) 261 return (true); 262 } 263 264 return (false); 265 } 266 #endif 267 268 static int 269 __elfN(load_elf_header)(char *filename, elf_file_t ef) 270 { 271 ssize_t bytes_read; 272 Elf_Ehdr *ehdr; 273 int err; 274 275 /* 276 * Open the image, read and validate the ELF header 277 */ 278 if (filename == NULL) /* can't handle nameless */ 279 return (EFTYPE); 280 if ((ef->fd = open(filename, O_RDONLY)) == -1) 281 return (errno); 282 ef->firstpage = malloc(PAGE_SIZE); 283 if (ef->firstpage == NULL) { 284 close(ef->fd); 285 return (ENOMEM); 286 } 287 preload(ef->fd); 288 #ifdef LOADER_VERIEXEC_VECTX 289 { 290 int verror; 291 292 ef->vctx = vectx_open(ef->fd, filename, 0L, NULL, &verror, __func__); 293 if (verror) { 294 printf("Unverified %s: %s\n", filename, ve_error_get()); 295 close(ef->fd); 296 free(ef->vctx); 297 return (EAUTH); 298 } 299 } 300 #endif 301 bytes_read = VECTX_READ(VECTX_HANDLE(ef), ef->firstpage, PAGE_SIZE); 302 ef->firstlen = (size_t)bytes_read; 303 if (bytes_read < 0 || ef->firstlen <= sizeof(Elf_Ehdr)) { 304 err = EFTYPE; /* could be EIO, but may be small file */ 305 goto error; 306 } 307 ehdr = ef->ehdr = (Elf_Ehdr *)ef->firstpage; 308 309 /* Is it ELF? */ 310 if (!IS_ELF(*ehdr)) { 311 err = EFTYPE; 312 goto error; 313 } 314 315 if (ehdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || /* Layout ? */ 316 ehdr->e_ident[EI_DATA] != ELF_TARG_DATA || 317 ehdr->e_ident[EI_VERSION] != EV_CURRENT) /* Version ? */ { 318 err = EFTYPE; 319 goto error; 320 } 321 322 err = elf_header_convert(ehdr); 323 if (err) 324 goto error; 325 326 if (ehdr->e_version != EV_CURRENT || ehdr->e_machine != ELF_TARG_MACH) { 327 /* Machine ? */ 328 err = EFTYPE; 329 goto error; 330 } 331 332 #if defined(LOADER_VERIEXEC) && !defined(LOADER_VERIEXEC_VECTX) 333 if (verify_file(ef->fd, filename, bytes_read, VE_MUST, __func__) < 0) { 334 err = EAUTH; 335 goto error; 336 } 337 #endif 338 return (0); 339 340 error: 341 if (ef->firstpage != NULL) { 342 free(ef->firstpage); 343 ef->firstpage = NULL; 344 } 345 if (ef->fd != -1) { 346 #ifdef LOADER_VERIEXEC_VECTX 347 free(ef->vctx); 348 #endif 349 close(ef->fd); 350 ef->fd = -1; 351 } 352 return (err); 353 } 354 355 /* 356 * Attempt to load the file (file) as an ELF module. It will be stored at 357 * (dest), and a pointer to a module structure describing the loaded object 358 * will be saved in (result). 359 */ 360 int 361 __elfN(loadfile)(char *filename, uint64_t dest, struct preloaded_file **result) 362 { 363 return (__elfN(loadfile_raw)(filename, dest, result, 0)); 364 } 365 366 int 367 __elfN(loadfile_raw)(char *filename, uint64_t dest, 368 struct preloaded_file **result, int multiboot) 369 { 370 struct preloaded_file *fp, *kfp; 371 struct elf_file ef; 372 Elf_Ehdr *ehdr; 373 int err; 374 375 fp = NULL; 376 bzero(&ef, sizeof(struct elf_file)); 377 ef.fd = -1; 378 379 err = __elfN(load_elf_header)(filename, &ef); 380 if (err != 0) 381 return (err); 382 383 ehdr = ef.ehdr; 384 385 /* 386 * Check to see what sort of module we are. 387 */ 388 kfp = file_findfile(NULL, __elfN(kerneltype)); 389 #ifdef __powerpc__ 390 /* 391 * Kernels can be ET_DYN, so just assume the first loaded object is the 392 * kernel. This assumption will be checked later. 393 */ 394 if (kfp == NULL) 395 ef.kernel = 1; 396 #endif 397 if (ef.kernel || ehdr->e_type == ET_EXEC) { 398 /* Looks like a kernel */ 399 if (kfp != NULL) { 400 printf("elf" __XSTRING(__ELF_WORD_SIZE) 401 "_loadfile: kernel already loaded\n"); 402 err = EPERM; 403 goto oerr; 404 } 405 /* 406 * Calculate destination address based on kernel entrypoint. 407 * 408 * For ARM, the destination address is independent of any values 409 * in the elf header (an ARM kernel can be loaded at any 2MB 410 * boundary), so we leave dest set to the value calculated by 411 * archsw.arch_loadaddr() and passed in to this function. 412 */ 413 #ifndef __arm__ 414 if (ehdr->e_type == ET_EXEC) 415 dest = (ehdr->e_entry & ~PAGE_MASK); 416 #endif 417 if ((ehdr->e_entry & ~PAGE_MASK) == 0) { 418 printf("elf" __XSTRING(__ELF_WORD_SIZE) 419 "_loadfile: not a kernel (maybe static binary?)\n"); 420 err = EPERM; 421 goto oerr; 422 } 423 ef.kernel = 1; 424 425 } else if (ehdr->e_type == ET_DYN) { 426 /* Looks like a kld module */ 427 if (multiboot != 0) { 428 printf("elf" __XSTRING(__ELF_WORD_SIZE) 429 "_loadfile: can't load module as multiboot\n"); 430 err = EPERM; 431 goto oerr; 432 } 433 if (kfp == NULL) { 434 printf("elf" __XSTRING(__ELF_WORD_SIZE) 435 "_loadfile: can't load module before kernel\n"); 436 err = EPERM; 437 goto oerr; 438 } 439 if (strcmp(__elfN(kerneltype), kfp->f_type)) { 440 printf("elf" __XSTRING(__ELF_WORD_SIZE) 441 "_loadfile: can't load module with kernel type '%s'\n", 442 kfp->f_type); 443 err = EPERM; 444 goto oerr; 445 } 446 /* Looks OK, got ahead */ 447 ef.kernel = 0; 448 449 } else { 450 err = EFTYPE; 451 goto oerr; 452 } 453 454 if (archsw.arch_loadaddr != NULL) 455 dest = archsw.arch_loadaddr(LOAD_ELF, ehdr, dest); 456 else 457 dest = roundup(dest, PAGE_SIZE); 458 459 /* 460 * Ok, we think we should handle this. 461 */ 462 fp = file_alloc(); 463 if (fp == NULL) { 464 printf("elf" __XSTRING(__ELF_WORD_SIZE) 465 "_loadfile: cannot allocate module info\n"); 466 err = EPERM; 467 goto out; 468 } 469 if (ef.kernel == 1 && multiboot == 0) 470 setenv("kernelname", filename, 1); 471 fp->f_name = strdup(filename); 472 if (multiboot == 0) 473 fp->f_type = strdup(ef.kernel ? 474 __elfN(kerneltype) : __elfN(moduletype)); 475 else 476 fp->f_type = strdup("elf multiboot kernel"); 477 478 if (module_verbose >= MODULE_VERBOSE_FULL) { 479 if (ef.kernel) 480 printf("%s entry at 0x%jx\n", filename, 481 (uintmax_t)ehdr->e_entry); 482 } else if (module_verbose > MODULE_VERBOSE_SILENT) 483 printf("%s ", filename); 484 485 fp->f_size = __elfN(loadimage)(fp, &ef, dest); 486 if (fp->f_size == 0 || fp->f_addr == 0) 487 goto ioerr; 488 489 /* save exec header as metadata */ 490 file_addmetadata(fp, MODINFOMD_ELFHDR, sizeof(*ehdr), ehdr); 491 492 /* Load OK, return module pointer */ 493 *result = (struct preloaded_file *)fp; 494 err = 0; 495 #ifdef __amd64__ 496 fp->f_kernphys_relocatable = multiboot || is_kernphys_relocatable(&ef); 497 #endif 498 #ifdef __i386__ 499 fp->f_tg_kernel_support = is_tg_kernel_support(fp, &ef); 500 #endif 501 goto out; 502 503 ioerr: 504 err = EIO; 505 oerr: 506 file_discard(fp); 507 out: 508 if (ef.firstpage) 509 free(ef.firstpage); 510 if (ef.fd != -1) { 511 #ifdef LOADER_VERIEXEC_VECTX 512 if (!err && ef.vctx) { 513 int verror; 514 515 verror = vectx_close(ef.vctx, VE_MUST, __func__); 516 if (verror) { 517 err = EAUTH; 518 file_discard(fp); 519 } 520 } 521 #endif 522 close(ef.fd); 523 } 524 return (err); 525 } 526 527 /* 528 * With the file (fd) open on the image, and (ehdr) containing 529 * the Elf header, load the image at (off) 530 */ 531 static int 532 __elfN(loadimage)(struct preloaded_file *fp, elf_file_t ef, uint64_t off) 533 { 534 int i; 535 u_int j; 536 Elf_Ehdr *ehdr; 537 Elf_Phdr *phdr, *php; 538 Elf_Shdr *shdr; 539 char *shstr; 540 int ret; 541 vm_offset_t firstaddr; 542 vm_offset_t lastaddr; 543 size_t chunk; 544 ssize_t result; 545 Elf_Addr ssym, esym; 546 Elf_Dyn *dp; 547 Elf_Addr adp; 548 Elf_Addr ctors; 549 int ndp; 550 int symstrindex; 551 int symtabindex; 552 Elf_Size size; 553 u_int fpcopy; 554 Elf_Sym sym; 555 Elf_Addr p_start, p_end; 556 557 dp = NULL; 558 shdr = NULL; 559 ret = 0; 560 firstaddr = lastaddr = 0; 561 ehdr = ef->ehdr; 562 #ifdef __powerpc__ 563 if (ef->kernel) { 564 #else 565 if (ehdr->e_type == ET_EXEC) { 566 #endif 567 #if defined(__i386__) || defined(__amd64__) 568 #if __ELF_WORD_SIZE == 64 569 /* x86_64 relocates after locore */ 570 off = - (off & 0xffffffffff000000ull); 571 #else 572 /* i386 relocates after locore */ 573 off = - (off & 0xff000000u); 574 #endif 575 #elif defined(__powerpc__) 576 /* 577 * On the purely virtual memory machines like e500, the kernel 578 * is linked against its final VA range, which is most often 579 * not available at the loader stage, but only after kernel 580 * initializes and completes its VM settings. In such cases we 581 * cannot use p_vaddr field directly to load ELF segments, but 582 * put them at some 'load-time' locations. 583 */ 584 if (off & 0xf0000000u) { 585 off = -(off & 0xf0000000u); 586 /* 587 * XXX the physical load address should not be 588 * hardcoded. Note that the Book-E kernel assumes that 589 * it's loaded at a 16MB boundary for now... 590 */ 591 off += 0x01000000; 592 } 593 ehdr->e_entry += off; 594 if (module_verbose >= MODULE_VERBOSE_FULL) 595 printf("Converted entry 0x%jx\n", 596 (uintmax_t)ehdr->e_entry); 597 598 #elif defined(__arm__) && !defined(EFI) 599 /* 600 * The elf headers in arm kernels specify virtual addresses in 601 * all header fields, even the ones that should be physical 602 * addresses. We assume the entry point is in the first page, 603 * and masking the page offset will leave us with the virtual 604 * address the kernel was linked at. We subtract that from the 605 * load offset, making 'off' into the value which, when added 606 * to a virtual address in an elf header, translates it to a 607 * physical address. We do the va->pa conversion on the entry 608 * point address in the header now, so that later we can launch 609 * the kernel by just jumping to that address. 610 * 611 * When booting from UEFI the copyin and copyout functions 612 * handle adjusting the location relative to the first virtual 613 * address. Because of this there is no need to adjust the 614 * offset or entry point address as these will both be handled 615 * by the efi code. 616 */ 617 off -= ehdr->e_entry & ~PAGE_MASK; 618 ehdr->e_entry += off; 619 if (module_verbose >= MODULE_VERBOSE_FULL) 620 printf("ehdr->e_entry 0x%jx, va<->pa off %llx\n", 621 (uintmax_t)ehdr->e_entry, off); 622 #else 623 off = 0; /* other archs use direct mapped kernels */ 624 #endif 625 } 626 ef->off = off; 627 628 if (ef->kernel) 629 __elfN(relocation_offset) = off; 630 631 if ((ehdr->e_phoff + ehdr->e_phnum * sizeof(*phdr)) > ef->firstlen) { 632 printf("elf" __XSTRING(__ELF_WORD_SIZE) 633 "_loadimage: program header not within first page\n"); 634 goto out; 635 } 636 phdr = (Elf_Phdr *)(ef->firstpage + ehdr->e_phoff); 637 638 for (i = 0; i < ehdr->e_phnum; i++) { 639 if (elf_program_header_convert(ehdr, phdr)) 640 continue; 641 642 /* We want to load PT_LOAD segments only.. */ 643 if (phdr[i].p_type != PT_LOAD) 644 continue; 645 646 if (module_verbose >= MODULE_VERBOSE_FULL) { 647 printf("Segment: 0x%lx@0x%lx -> 0x%lx-0x%lx", 648 (long)phdr[i].p_filesz, (long)phdr[i].p_offset, 649 (long)(phdr[i].p_vaddr + off), 650 (long)(phdr[i].p_vaddr + off + phdr[i].p_memsz - 1)); 651 } else if (module_verbose > MODULE_VERBOSE_SILENT) { 652 if ((phdr[i].p_flags & PF_W) == 0) { 653 printf("text=0x%lx ", (long)phdr[i].p_filesz); 654 } else { 655 printf("data=0x%lx", (long)phdr[i].p_filesz); 656 if (phdr[i].p_filesz < phdr[i].p_memsz) 657 printf("+0x%lx", (long)(phdr[i].p_memsz - 658 phdr[i].p_filesz)); 659 printf(" "); 660 } 661 } 662 fpcopy = 0; 663 if (ef->firstlen > phdr[i].p_offset) { 664 fpcopy = ef->firstlen - phdr[i].p_offset; 665 archsw.arch_copyin(ef->firstpage + phdr[i].p_offset, 666 phdr[i].p_vaddr + off, fpcopy); 667 } 668 if (phdr[i].p_filesz > fpcopy) { 669 if (kern_pread(VECTX_HANDLE(ef), 670 phdr[i].p_vaddr + off + fpcopy, 671 phdr[i].p_filesz - fpcopy, 672 phdr[i].p_offset + fpcopy) != 0) { 673 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 674 "_loadimage: read failed\n"); 675 goto out; 676 } 677 } 678 /* clear space from oversized segments; eg: bss */ 679 if (phdr[i].p_filesz < phdr[i].p_memsz) { 680 if (module_verbose >= MODULE_VERBOSE_FULL) { 681 printf(" (bss: 0x%lx-0x%lx)", 682 (long)(phdr[i].p_vaddr + off + phdr[i].p_filesz), 683 (long)(phdr[i].p_vaddr + off + phdr[i].p_memsz -1)); 684 } 685 kern_bzero(phdr[i].p_vaddr + off + phdr[i].p_filesz, 686 phdr[i].p_memsz - phdr[i].p_filesz); 687 } 688 if (module_verbose >= MODULE_VERBOSE_FULL) 689 printf("\n"); 690 691 if (archsw.arch_loadseg != NULL) 692 archsw.arch_loadseg(ehdr, phdr + i, off); 693 694 if (firstaddr == 0 || firstaddr > (phdr[i].p_vaddr + off)) 695 firstaddr = phdr[i].p_vaddr + off; 696 if (lastaddr == 0 || lastaddr < 697 (phdr[i].p_vaddr + off + phdr[i].p_memsz)) 698 lastaddr = phdr[i].p_vaddr + off + phdr[i].p_memsz; 699 } 700 lastaddr = roundup(lastaddr, sizeof(long)); 701 702 /* 703 * Get the section headers. We need this for finding the .ctors 704 * section as well as for loading any symbols. Both may be hard 705 * to do if reading from a .gz file as it involves seeking. I 706 * think the rule is going to have to be that you must strip a 707 * file to remove symbols before gzipping it. 708 */ 709 chunk = (size_t)ehdr->e_shnum * (size_t)ehdr->e_shentsize; 710 if (chunk == 0 || ehdr->e_shoff == 0) 711 goto nosyms; 712 shdr = alloc_pread(VECTX_HANDLE(ef), ehdr->e_shoff, chunk); 713 if (shdr == NULL) { 714 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 715 "_loadimage: failed to read section headers"); 716 goto nosyms; 717 } 718 719 for (i = 0; i < ehdr->e_shnum; i++) 720 elf_section_header_convert(ehdr, &shdr[i]); 721 722 file_addmetadata(fp, MODINFOMD_SHDR, chunk, shdr); 723 724 /* 725 * Read the section string table and look for the .ctors section. 726 * We need to tell the kernel where it is so that it can call the 727 * ctors. 728 */ 729 chunk = shdr[ehdr->e_shstrndx].sh_size; 730 if (chunk) { 731 shstr = alloc_pread(VECTX_HANDLE(ef), 732 shdr[ehdr->e_shstrndx].sh_offset, chunk); 733 if (shstr) { 734 for (i = 0; i < ehdr->e_shnum; i++) { 735 if (strcmp(shstr + shdr[i].sh_name, 736 ".ctors") != 0) 737 continue; 738 ctors = shdr[i].sh_addr; 739 file_addmetadata(fp, MODINFOMD_CTORS_ADDR, 740 sizeof(ctors), &ctors); 741 size = shdr[i].sh_size; 742 file_addmetadata(fp, MODINFOMD_CTORS_SIZE, 743 sizeof(size), &size); 744 break; 745 } 746 free(shstr); 747 } 748 } 749 750 /* 751 * Now load any symbols. 752 */ 753 symtabindex = -1; 754 symstrindex = -1; 755 for (i = 0; i < ehdr->e_shnum; i++) { 756 if (shdr[i].sh_type != SHT_SYMTAB) 757 continue; 758 for (j = 0; j < ehdr->e_phnum; j++) { 759 if (phdr[j].p_type != PT_LOAD) 760 continue; 761 if (shdr[i].sh_offset >= phdr[j].p_offset && 762 (shdr[i].sh_offset + shdr[i].sh_size <= 763 phdr[j].p_offset + phdr[j].p_filesz)) { 764 shdr[i].sh_offset = 0; 765 shdr[i].sh_size = 0; 766 break; 767 } 768 } 769 if (shdr[i].sh_offset == 0 || shdr[i].sh_size == 0) 770 continue; /* alread loaded in a PT_LOAD above */ 771 /* Save it for loading below */ 772 symtabindex = i; 773 symstrindex = shdr[i].sh_link; 774 } 775 if (symtabindex < 0 || symstrindex < 0) 776 goto nosyms; 777 778 /* Ok, committed to a load. */ 779 if (module_verbose >= MODULE_VERBOSE_FULL) 780 printf("syms=["); 781 ssym = lastaddr; 782 for (i = symtabindex; i >= 0; i = symstrindex) { 783 char *secname; 784 785 switch(shdr[i].sh_type) { 786 case SHT_SYMTAB: /* Symbol table */ 787 secname = "symtab"; 788 break; 789 case SHT_STRTAB: /* String table */ 790 secname = "strtab"; 791 break; 792 default: 793 secname = "WHOA!!"; 794 break; 795 } 796 size = shdr[i].sh_size; 797 798 archsw.arch_copyin(&size, lastaddr, sizeof(size)); 799 lastaddr += sizeof(size); 800 801 if (module_verbose >= MODULE_VERBOSE_FULL) { 802 printf("\n%s: 0x%jx@0x%jx -> 0x%jx-0x%jx", secname, 803 (uintmax_t)shdr[i].sh_size, (uintmax_t)shdr[i].sh_offset, 804 (uintmax_t)lastaddr, 805 (uintmax_t)(lastaddr + shdr[i].sh_size)); 806 } else if (module_verbose > MODULE_VERBOSE_SILENT) { 807 if (i == symstrindex) 808 printf("+"); 809 printf("0x%lx+0x%lx", (long)sizeof(size), (long)size); 810 } 811 if (VECTX_LSEEK(VECTX_HANDLE(ef), (off_t)shdr[i].sh_offset, SEEK_SET) == -1) { 812 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 813 "_loadimage: could not seek for symbols - skipped!"); 814 lastaddr = ssym; 815 ssym = 0; 816 goto nosyms; 817 } 818 result = archsw.arch_readin(VECTX_HANDLE(ef), lastaddr, shdr[i].sh_size); 819 if (result < 0 || (size_t)result != shdr[i].sh_size) { 820 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 821 "_loadimage: could not read symbols - skipped! " 822 "(%ju != %ju)", (uintmax_t)result, 823 (uintmax_t)shdr[i].sh_size); 824 lastaddr = ssym; 825 ssym = 0; 826 goto nosyms; 827 } 828 /* Reset offsets relative to ssym */ 829 lastaddr += shdr[i].sh_size; 830 lastaddr = roundup(lastaddr, sizeof(size)); 831 if (i == symtabindex) 832 symtabindex = -1; 833 else if (i == symstrindex) 834 symstrindex = -1; 835 } 836 esym = lastaddr; 837 if (module_verbose >= MODULE_VERBOSE_FULL) 838 printf("]"); 839 840 file_addmetadata(fp, MODINFOMD_SSYM, sizeof(ssym), &ssym); 841 file_addmetadata(fp, MODINFOMD_ESYM, sizeof(esym), &esym); 842 843 nosyms: 844 if (module_verbose > MODULE_VERBOSE_SILENT) 845 printf("\n"); 846 847 ret = lastaddr - firstaddr; 848 fp->f_addr = firstaddr; 849 850 php = NULL; 851 for (i = 0; i < ehdr->e_phnum; i++) { 852 if (phdr[i].p_type == PT_DYNAMIC) { 853 php = phdr + i; 854 adp = php->p_vaddr; 855 file_addmetadata(fp, MODINFOMD_DYNAMIC, sizeof(adp), 856 &adp); 857 break; 858 } 859 } 860 861 if (php == NULL) /* this is bad, we cannot get to symbols or _DYNAMIC */ 862 goto out; 863 864 ndp = php->p_filesz / sizeof(Elf_Dyn); 865 if (ndp == 0) 866 goto out; 867 dp = malloc(php->p_filesz); 868 if (dp == NULL) 869 goto out; 870 archsw.arch_copyout(php->p_vaddr + off, dp, php->p_filesz); 871 872 ef->strsz = 0; 873 for (i = 0; i < ndp; i++) { 874 if (dp[i].d_tag == 0) 875 break; 876 switch (dp[i].d_tag) { 877 case DT_HASH: 878 ef->hashtab = 879 (Elf_Hashelt*)(uintptr_t)(dp[i].d_un.d_ptr + off); 880 break; 881 case DT_STRTAB: 882 ef->strtab = 883 (char *)(uintptr_t)(dp[i].d_un.d_ptr + off); 884 break; 885 case DT_STRSZ: 886 ef->strsz = dp[i].d_un.d_val; 887 break; 888 case DT_SYMTAB: 889 ef->symtab = 890 (Elf_Sym *)(uintptr_t)(dp[i].d_un.d_ptr + off); 891 break; 892 case DT_REL: 893 ef->rel = 894 (Elf_Rel *)(uintptr_t)(dp[i].d_un.d_ptr + off); 895 break; 896 case DT_RELSZ: 897 ef->relsz = dp[i].d_un.d_val; 898 break; 899 case DT_RELA: 900 ef->rela = 901 (Elf_Rela *)(uintptr_t)(dp[i].d_un.d_ptr + off); 902 break; 903 case DT_RELASZ: 904 ef->relasz = dp[i].d_un.d_val; 905 break; 906 default: 907 break; 908 } 909 } 910 if (ef->hashtab == NULL || ef->symtab == NULL || 911 ef->strtab == NULL || ef->strsz == 0) 912 goto out; 913 COPYOUT(ef->hashtab, &ef->nbuckets, sizeof(ef->nbuckets)); 914 COPYOUT(ef->hashtab + 1, &ef->nchains, sizeof(ef->nchains)); 915 ef->buckets = ef->hashtab + 2; 916 ef->chains = ef->buckets + ef->nbuckets; 917 918 if (__elfN(lookup_symbol)(ef, "__start_set_modmetadata_set", &sym, 919 STT_NOTYPE) != 0) 920 return 0; 921 p_start = sym.st_value + ef->off; 922 if (__elfN(lookup_symbol)(ef, "__stop_set_modmetadata_set", &sym, 923 STT_NOTYPE) != 0) 924 return 0; 925 p_end = sym.st_value + ef->off; 926 927 if (__elfN(parse_modmetadata)(fp, ef, p_start, p_end) == 0) 928 goto out; 929 930 if (ef->kernel) /* kernel must not depend on anything */ 931 goto out; 932 933 out: 934 if (dp) 935 free(dp); 936 if (shdr) 937 free(shdr); 938 return ret; 939 } 940 941 static char invalid_name[] = "bad"; 942 943 char * 944 fake_modname(const char *name) 945 { 946 const char *sp, *ep; 947 char *fp; 948 size_t len; 949 950 sp = strrchr(name, '/'); 951 if (sp) 952 sp++; 953 else 954 sp = name; 955 956 ep = strrchr(sp, '.'); 957 if (ep == NULL) { 958 ep = sp + strlen(sp); 959 } 960 if (ep == sp) { 961 sp = invalid_name; 962 ep = invalid_name + sizeof(invalid_name) - 1; 963 } 964 965 len = ep - sp; 966 fp = malloc(len + 1); 967 if (fp == NULL) 968 return NULL; 969 memcpy(fp, sp, len); 970 fp[len] = '\0'; 971 return fp; 972 } 973 974 #if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64 975 struct mod_metadata64 { 976 int md_version; /* structure version MDTV_* */ 977 int md_type; /* type of entry MDT_* */ 978 uint64_t md_data; /* specific data */ 979 uint64_t md_cval; /* common string label */ 980 }; 981 #endif 982 #if defined(__amd64__) && __ELF_WORD_SIZE == 32 983 struct mod_metadata32 { 984 int md_version; /* structure version MDTV_* */ 985 int md_type; /* type of entry MDT_* */ 986 uint32_t md_data; /* specific data */ 987 uint32_t md_cval; /* common string label */ 988 }; 989 #endif 990 991 int 992 __elfN(load_modmetadata)(struct preloaded_file *fp, uint64_t dest) 993 { 994 struct elf_file ef; 995 int err, i, j; 996 Elf_Shdr *sh_meta, *shdr = NULL; 997 Elf_Shdr *sh_data[2]; 998 char *shstrtab = NULL; 999 size_t size; 1000 Elf_Addr p_start, p_end; 1001 1002 bzero(&ef, sizeof(struct elf_file)); 1003 ef.fd = -1; 1004 1005 err = __elfN(load_elf_header)(fp->f_name, &ef); 1006 if (err != 0) 1007 goto out; 1008 1009 if (ef.kernel == 1 || ef.ehdr->e_type == ET_EXEC) { 1010 ef.kernel = 1; 1011 } else if (ef.ehdr->e_type != ET_DYN) { 1012 err = EFTYPE; 1013 goto out; 1014 } 1015 1016 size = (size_t)ef.ehdr->e_shnum * (size_t)ef.ehdr->e_shentsize; 1017 shdr = alloc_pread(VECTX_HANDLE(&ef), ef.ehdr->e_shoff, size); 1018 if (shdr == NULL) { 1019 err = ENOMEM; 1020 goto out; 1021 } 1022 1023 /* Load shstrtab. */ 1024 shstrtab = alloc_pread(VECTX_HANDLE(&ef), shdr[ef.ehdr->e_shstrndx].sh_offset, 1025 shdr[ef.ehdr->e_shstrndx].sh_size); 1026 if (shstrtab == NULL) { 1027 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 1028 "load_modmetadata: unable to load shstrtab\n"); 1029 err = EFTYPE; 1030 goto out; 1031 } 1032 1033 /* Find set_modmetadata_set and data sections. */ 1034 sh_data[0] = sh_data[1] = sh_meta = NULL; 1035 for (i = 0, j = 0; i < ef.ehdr->e_shnum; i++) { 1036 if (strcmp(&shstrtab[shdr[i].sh_name], 1037 "set_modmetadata_set") == 0) { 1038 sh_meta = &shdr[i]; 1039 } 1040 if ((strcmp(&shstrtab[shdr[i].sh_name], ".data") == 0) || 1041 (strcmp(&shstrtab[shdr[i].sh_name], ".rodata") == 0)) { 1042 sh_data[j++] = &shdr[i]; 1043 } 1044 } 1045 if (sh_meta == NULL || sh_data[0] == NULL || sh_data[1] == NULL) { 1046 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 1047 "load_modmetadata: unable to find set_modmetadata_set or data sections\n"); 1048 err = EFTYPE; 1049 goto out; 1050 } 1051 1052 /* Load set_modmetadata_set into memory */ 1053 err = kern_pread(VECTX_HANDLE(&ef), dest, sh_meta->sh_size, sh_meta->sh_offset); 1054 if (err != 0) { 1055 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 1056 "load_modmetadata: unable to load set_modmetadata_set: %d\n", err); 1057 goto out; 1058 } 1059 p_start = dest; 1060 p_end = dest + sh_meta->sh_size; 1061 dest += sh_meta->sh_size; 1062 1063 /* Load data sections into memory. */ 1064 err = kern_pread(VECTX_HANDLE(&ef), dest, sh_data[0]->sh_size, 1065 sh_data[0]->sh_offset); 1066 if (err != 0) { 1067 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 1068 "load_modmetadata: unable to load data: %d\n", err); 1069 goto out; 1070 } 1071 1072 /* 1073 * We have to increment the dest, so that the offset is the same into 1074 * both the .rodata and .data sections. 1075 */ 1076 ef.off = -(sh_data[0]->sh_addr - dest); 1077 dest += (sh_data[1]->sh_addr - sh_data[0]->sh_addr); 1078 1079 err = kern_pread(VECTX_HANDLE(&ef), dest, sh_data[1]->sh_size, 1080 sh_data[1]->sh_offset); 1081 if (err != 0) { 1082 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 1083 "load_modmetadata: unable to load data: %d\n", err); 1084 goto out; 1085 } 1086 1087 err = __elfN(parse_modmetadata)(fp, &ef, p_start, p_end); 1088 if (err != 0) { 1089 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 1090 "load_modmetadata: unable to parse metadata: %d\n", err); 1091 goto out; 1092 } 1093 1094 out: 1095 if (shstrtab != NULL) 1096 free(shstrtab); 1097 if (shdr != NULL) 1098 free(shdr); 1099 if (ef.firstpage != NULL) 1100 free(ef.firstpage); 1101 if (ef.fd != -1) { 1102 #ifdef LOADER_VERIEXEC_VECTX 1103 if (!err && ef.vctx) { 1104 int verror; 1105 1106 verror = vectx_close(ef.vctx, VE_MUST, __func__); 1107 if (verror) { 1108 err = EAUTH; 1109 file_discard(fp); 1110 } 1111 } 1112 #endif 1113 close(ef.fd); 1114 } 1115 return (err); 1116 } 1117 1118 int 1119 __elfN(parse_modmetadata)(struct preloaded_file *fp, elf_file_t ef, 1120 Elf_Addr p_start, Elf_Addr p_end) 1121 { 1122 struct mod_metadata md; 1123 #if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64 1124 struct mod_metadata64 md64; 1125 #elif defined(__amd64__) && __ELF_WORD_SIZE == 32 1126 struct mod_metadata32 md32; 1127 #endif 1128 struct mod_depend *mdepend; 1129 struct mod_version mver; 1130 char *s; 1131 int error, modcnt, minfolen; 1132 Elf_Addr v, p; 1133 1134 modcnt = 0; 1135 p = p_start; 1136 while (p < p_end) { 1137 COPYOUT(p, &v, sizeof(v)); 1138 error = __elfN(reloc_ptr)(fp, ef, p, &v, sizeof(v)); 1139 if (error == EOPNOTSUPP) 1140 v += ef->off; 1141 else if (error != 0) 1142 return (error); 1143 #if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64 1144 COPYOUT(v, &md64, sizeof(md64)); 1145 error = __elfN(reloc_ptr)(fp, ef, v, &md64, sizeof(md64)); 1146 if (error == EOPNOTSUPP) { 1147 md64.md_cval += ef->off; 1148 md64.md_data += ef->off; 1149 } else if (error != 0) 1150 return (error); 1151 md.md_version = md64.md_version; 1152 md.md_type = md64.md_type; 1153 md.md_cval = (const char *)(uintptr_t)md64.md_cval; 1154 md.md_data = (void *)(uintptr_t)md64.md_data; 1155 #elif defined(__amd64__) && __ELF_WORD_SIZE == 32 1156 COPYOUT(v, &md32, sizeof(md32)); 1157 error = __elfN(reloc_ptr)(fp, ef, v, &md32, sizeof(md32)); 1158 if (error == EOPNOTSUPP) { 1159 md32.md_cval += ef->off; 1160 md32.md_data += ef->off; 1161 } else if (error != 0) 1162 return (error); 1163 md.md_version = md32.md_version; 1164 md.md_type = md32.md_type; 1165 md.md_cval = (const char *)(uintptr_t)md32.md_cval; 1166 md.md_data = (void *)(uintptr_t)md32.md_data; 1167 #else 1168 COPYOUT(v, &md, sizeof(md)); 1169 error = __elfN(reloc_ptr)(fp, ef, v, &md, sizeof(md)); 1170 if (error == EOPNOTSUPP) { 1171 md.md_cval += ef->off; 1172 md.md_data = (void *)((uintptr_t)md.md_data + 1173 (uintptr_t)ef->off); 1174 } else if (error != 0) 1175 return (error); 1176 #endif 1177 p += sizeof(Elf_Addr); 1178 switch(md.md_type) { 1179 case MDT_DEPEND: 1180 if (ef->kernel) /* kernel must not depend on anything */ 1181 break; 1182 s = strdupout((vm_offset_t)md.md_cval); 1183 minfolen = sizeof(*mdepend) + strlen(s) + 1; 1184 mdepend = malloc(minfolen); 1185 if (mdepend == NULL) 1186 return ENOMEM; 1187 COPYOUT((vm_offset_t)md.md_data, mdepend, 1188 sizeof(*mdepend)); 1189 strcpy((char*)(mdepend + 1), s); 1190 free(s); 1191 file_addmetadata(fp, MODINFOMD_DEPLIST, minfolen, 1192 mdepend); 1193 free(mdepend); 1194 break; 1195 case MDT_VERSION: 1196 s = strdupout((vm_offset_t)md.md_cval); 1197 COPYOUT((vm_offset_t)md.md_data, &mver, sizeof(mver)); 1198 file_addmodule(fp, s, mver.mv_version, NULL); 1199 free(s); 1200 modcnt++; 1201 break; 1202 } 1203 } 1204 if (modcnt == 0) { 1205 s = fake_modname(fp->f_name); 1206 file_addmodule(fp, s, 1, NULL); 1207 free(s); 1208 } 1209 return 0; 1210 } 1211 1212 static unsigned long 1213 elf_hash(const char *name) 1214 { 1215 const unsigned char *p = (const unsigned char *) name; 1216 unsigned long h = 0; 1217 unsigned long g; 1218 1219 while (*p != '\0') { 1220 h = (h << 4) + *p++; 1221 if ((g = h & 0xf0000000) != 0) 1222 h ^= g >> 24; 1223 h &= ~g; 1224 } 1225 return h; 1226 } 1227 1228 static const char __elfN(bad_symtable)[] = "elf" __XSTRING(__ELF_WORD_SIZE) 1229 "_lookup_symbol: corrupt symbol table\n"; 1230 int 1231 __elfN(lookup_symbol)(elf_file_t ef, const char* name, Elf_Sym *symp, 1232 unsigned char type) 1233 { 1234 Elf_Hashelt symnum; 1235 Elf_Sym sym; 1236 char *strp; 1237 unsigned long hash; 1238 1239 if (ef->nbuckets == 0) { 1240 printf(__elfN(bad_symtable)); 1241 return ENOENT; 1242 } 1243 1244 hash = elf_hash(name); 1245 COPYOUT(&ef->buckets[hash % ef->nbuckets], &symnum, sizeof(symnum)); 1246 1247 while (symnum != STN_UNDEF) { 1248 if (symnum >= ef->nchains) { 1249 printf(__elfN(bad_symtable)); 1250 return ENOENT; 1251 } 1252 1253 COPYOUT(ef->symtab + symnum, &sym, sizeof(sym)); 1254 if (sym.st_name == 0) { 1255 printf(__elfN(bad_symtable)); 1256 return ENOENT; 1257 } 1258 1259 strp = strdupout((vm_offset_t)(ef->strtab + sym.st_name)); 1260 if (strcmp(name, strp) == 0) { 1261 free(strp); 1262 if (sym.st_shndx != SHN_UNDEF && sym.st_value != 0 && 1263 ELF_ST_TYPE(sym.st_info) == type) { 1264 *symp = sym; 1265 return 0; 1266 } 1267 return ENOENT; 1268 } 1269 free(strp); 1270 COPYOUT(&ef->chains[symnum], &symnum, sizeof(symnum)); 1271 } 1272 return ENOENT; 1273 } 1274 1275 /* 1276 * Apply any intra-module relocations to the value. p is the load address 1277 * of the value and val/len is the value to be modified. This does NOT modify 1278 * the image in-place, because this is done by kern_linker later on. 1279 * 1280 * Returns EOPNOTSUPP if no relocation method is supplied. 1281 */ 1282 static int 1283 __elfN(reloc_ptr)(struct preloaded_file *mp, elf_file_t ef, 1284 Elf_Addr p, void *val, size_t len) 1285 { 1286 size_t n; 1287 Elf_Rela a; 1288 Elf_Rel r; 1289 int error; 1290 1291 /* 1292 * The kernel is already relocated, but we still want to apply 1293 * offset adjustments. 1294 */ 1295 if (ef->kernel) 1296 return (EOPNOTSUPP); 1297 1298 for (n = 0; n < ef->relsz / sizeof(r); n++) { 1299 COPYOUT(ef->rel + n, &r, sizeof(r)); 1300 1301 error = __elfN(reloc)(ef, __elfN(symaddr), &r, ELF_RELOC_REL, 1302 ef->off, p, val, len); 1303 if (error != 0) 1304 return (error); 1305 } 1306 for (n = 0; n < ef->relasz / sizeof(a); n++) { 1307 COPYOUT(ef->rela + n, &a, sizeof(a)); 1308 1309 error = __elfN(reloc)(ef, __elfN(symaddr), &a, ELF_RELOC_RELA, 1310 ef->off, p, val, len); 1311 if (error != 0) 1312 return (error); 1313 } 1314 1315 return (0); 1316 } 1317 1318 static Elf_Addr 1319 __elfN(symaddr)(struct elf_file *ef, Elf_Size symidx) 1320 { 1321 1322 /* Symbol lookup by index not required here. */ 1323 return (0); 1324 } 1325