xref: /freebsd/lib/msun/src/e_hypot.c (revision e4e9813eb92cd7c4d4b819a8fbed5cbd3d92f5d8)
1 
2 /* @(#)e_hypot.c 1.3 95/01/18 */
3 /*
4  * ====================================================
5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Developed at SunSoft, a Sun Microsystems, Inc. business.
8  * Permission to use, copy, modify, and distribute this
9  * software is freely granted, provided that this notice
10  * is preserved.
11  * ====================================================
12  */
13 
14 #ifndef lint
15 static char rcsid[] = "$FreeBSD$";
16 #endif
17 
18 /* __ieee754_hypot(x,y)
19  *
20  * Method :
21  *	If (assume round-to-nearest) z=x*x+y*y
22  *	has error less than sqrt(2)/2 ulp, than
23  *	sqrt(z) has error less than 1 ulp (exercise).
24  *
25  *	So, compute sqrt(x*x+y*y) with some care as
26  *	follows to get the error below 1 ulp:
27  *
28  *	Assume x>y>0;
29  *	(if possible, set rounding to round-to-nearest)
30  *	1. if x > 2y  use
31  *		x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
32  *	where x1 = x with lower 32 bits cleared, x2 = x-x1; else
33  *	2. if x <= 2y use
34  *		t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
35  *	where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
36  *	y1= y with lower 32 bits chopped, y2 = y-y1.
37  *
38  *	NOTE: scaling may be necessary if some argument is too
39  *	      large or too tiny
40  *
41  * Special cases:
42  *	hypot(x,y) is INF if x or y is +INF or -INF; else
43  *	hypot(x,y) is NAN if x or y is NAN.
44  *
45  * Accuracy:
46  * 	hypot(x,y) returns sqrt(x^2+y^2) with error less
47  * 	than 1 ulps (units in the last place)
48  */
49 
50 #include "math.h"
51 #include "math_private.h"
52 
53 double
54 __ieee754_hypot(double x, double y)
55 {
56 	double a=x,b=y,t1,t2,y1,y2,w;
57 	int32_t j,k,ha,hb;
58 
59 	GET_HIGH_WORD(ha,x);
60 	ha &= 0x7fffffff;
61 	GET_HIGH_WORD(hb,y);
62 	hb &= 0x7fffffff;
63 	if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
64 	SET_HIGH_WORD(a,ha);	/* a <- |a| */
65 	SET_HIGH_WORD(b,hb);	/* b <- |b| */
66 	if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
67 	k=0;
68 	if(ha > 0x5f300000) {	/* a>2**500 */
69 	   if(ha >= 0x7ff00000) {	/* Inf or NaN */
70 	       u_int32_t low;
71 	       w = a+b;			/* for sNaN */
72 	       GET_LOW_WORD(low,a);
73 	       if(((ha&0xfffff)|low)==0) w = a;
74 	       GET_LOW_WORD(low,b);
75 	       if(((hb^0x7ff00000)|low)==0) w = b;
76 	       return w;
77 	   }
78 	   /* scale a and b by 2**-600 */
79 	   ha -= 0x25800000; hb -= 0x25800000;	k += 600;
80 	   SET_HIGH_WORD(a,ha);
81 	   SET_HIGH_WORD(b,hb);
82 	}
83 	if(hb < 0x20b00000) {	/* b < 2**-500 */
84 	    if(hb <= 0x000fffff) {	/* subnormal b or 0 */
85 	        u_int32_t low;
86 		GET_LOW_WORD(low,b);
87 		if((hb|low)==0) return a;
88 		t1=0;
89 		SET_HIGH_WORD(t1,0x7fd00000);	/* t1=2^1022 */
90 		b *= t1;
91 		a *= t1;
92 		k -= 1022;
93 	    } else {		/* scale a and b by 2^600 */
94 	        ha += 0x25800000; 	/* a *= 2^600 */
95 		hb += 0x25800000;	/* b *= 2^600 */
96 		k -= 600;
97 		SET_HIGH_WORD(a,ha);
98 		SET_HIGH_WORD(b,hb);
99 	    }
100 	}
101     /* medium size a and b */
102 	w = a-b;
103 	if (w>b) {
104 	    t1 = 0;
105 	    SET_HIGH_WORD(t1,ha);
106 	    t2 = a-t1;
107 	    w  = sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
108 	} else {
109 	    a  = a+a;
110 	    y1 = 0;
111 	    SET_HIGH_WORD(y1,hb);
112 	    y2 = b - y1;
113 	    t1 = 0;
114 	    SET_HIGH_WORD(t1,ha+0x00100000);
115 	    t2 = a - t1;
116 	    w  = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
117 	}
118 	if(k!=0) {
119 	    u_int32_t high;
120 	    t1 = 1.0;
121 	    GET_HIGH_WORD(high,t1);
122 	    SET_HIGH_WORD(t1,high+(k<<20));
123 	    return t1*w;
124 	} else return w;
125 }
126