xref: /freebsd/lib/msun/src/e_hypot.c (revision 0dd5a5603e7a33d976f8e6015620bbc79839c609)
1  
2  /*
3   * ====================================================
4   * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5   *
6   * Developed at SunSoft, a Sun Microsystems, Inc. business.
7   * Permission to use, copy, modify, and distribute this
8   * software is freely granted, provided that this notice
9   * is preserved.
10   * ====================================================
11   */
12  
13  /* hypot(x,y)
14   *
15   * Method :
16   *	If (assume round-to-nearest) z=x*x+y*y
17   *	has error less than sqrt(2)/2 ulp, than
18   *	sqrt(z) has error less than 1 ulp (exercise).
19   *
20   *	So, compute sqrt(x*x+y*y) with some care as
21   *	follows to get the error below 1 ulp:
22   *
23   *	Assume x>y>0;
24   *	(if possible, set rounding to round-to-nearest)
25   *	1. if x > 2y  use
26   *		x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
27   *	where x1 = x with lower 32 bits cleared, x2 = x-x1; else
28   *	2. if x <= 2y use
29   *		t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
30   *	where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
31   *	y1= y with lower 32 bits chopped, y2 = y-y1.
32   *
33   *	NOTE: scaling may be necessary if some argument is too
34   *	      large or too tiny
35   *
36   * Special cases:
37   *	hypot(x,y) is INF if x or y is +INF or -INF; else
38   *	hypot(x,y) is NAN if x or y is NAN.
39   *
40   * Accuracy:
41   * 	hypot(x,y) returns sqrt(x^2+y^2) with error less
42   * 	than 1 ulps (units in the last place)
43   */
44  
45  #include <float.h>
46  
47  #include "math.h"
48  #include "math_private.h"
49  
50  double
hypot(double x,double y)51  hypot(double x, double y)
52  {
53  	double a,b,t1,t2,y1,y2,w;
54  	int32_t j,k,ha,hb;
55  
56  	GET_HIGH_WORD(ha,x);
57  	ha &= 0x7fffffff;
58  	GET_HIGH_WORD(hb,y);
59  	hb &= 0x7fffffff;
60  	if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
61  	a = fabs(a);
62  	b = fabs(b);
63  	if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
64  	k=0;
65  	if(ha > 0x5f300000) {	/* a>2**500 */
66  	   if(ha >= 0x7ff00000) {	/* Inf or NaN */
67  	       u_int32_t low;
68  	       /* Use original arg order iff result is NaN; quieten sNaNs. */
69  	       w = fabsl(x+0.0L)-fabs(y+0);
70  	       GET_LOW_WORD(low,a);
71  	       if(((ha&0xfffff)|low)==0) w = a;
72  	       GET_LOW_WORD(low,b);
73  	       if(((hb^0x7ff00000)|low)==0) w = b;
74  	       return w;
75  	   }
76  	   /* scale a and b by 2**-600 */
77  	   ha -= 0x25800000; hb -= 0x25800000;	k += 600;
78  	   SET_HIGH_WORD(a,ha);
79  	   SET_HIGH_WORD(b,hb);
80  	}
81  	if(hb < 0x20b00000) {	/* b < 2**-500 */
82  	    if(hb <= 0x000fffff) {	/* subnormal b or 0 */
83  	        u_int32_t low;
84  		GET_LOW_WORD(low,b);
85  		if((hb|low)==0) return a;
86  		t1=0;
87  		SET_HIGH_WORD(t1,0x7fd00000);	/* t1=2^1022 */
88  		b *= t1;
89  		a *= t1;
90  		k -= 1022;
91  	    } else {		/* scale a and b by 2^600 */
92  	        ha += 0x25800000; 	/* a *= 2^600 */
93  		hb += 0x25800000;	/* b *= 2^600 */
94  		k -= 600;
95  		SET_HIGH_WORD(a,ha);
96  		SET_HIGH_WORD(b,hb);
97  	    }
98  	}
99      /* medium size a and b */
100  	w = a-b;
101  	if (w>b) {
102  	    t1 = 0;
103  	    SET_HIGH_WORD(t1,ha);
104  	    t2 = a-t1;
105  	    w  = sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
106  	} else {
107  	    a  = a+a;
108  	    y1 = 0;
109  	    SET_HIGH_WORD(y1,hb);
110  	    y2 = b - y1;
111  	    t1 = 0;
112  	    SET_HIGH_WORD(t1,ha+0x00100000);
113  	    t2 = a - t1;
114  	    w  = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
115  	}
116  	if(k!=0) {
117  	    t1 = 0.0;
118  	    SET_HIGH_WORD(t1,(1023+k)<<20);
119  	    return t1*w;
120  	} else return w;
121  }
122  
123  #if LDBL_MANT_DIG == 53
124  __weak_reference(hypot, hypotl);
125  #endif
126