xref: /freebsd/lib/msun/src/e_hypot.c (revision 6bfca4dcab07dad45a805879d954876b353c0810)
1 
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunSoft, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 #include <sys/cdefs.h>
14 /* hypot(x,y)
15  *
16  * Method :
17  *	If (assume round-to-nearest) z=x*x+y*y
18  *	has error less than sqrt(2)/2 ulp, than
19  *	sqrt(z) has error less than 1 ulp (exercise).
20  *
21  *	So, compute sqrt(x*x+y*y) with some care as
22  *	follows to get the error below 1 ulp:
23  *
24  *	Assume x>y>0;
25  *	(if possible, set rounding to round-to-nearest)
26  *	1. if x > 2y  use
27  *		x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
28  *	where x1 = x with lower 32 bits cleared, x2 = x-x1; else
29  *	2. if x <= 2y use
30  *		t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
31  *	where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
32  *	y1= y with lower 32 bits chopped, y2 = y-y1.
33  *
34  *	NOTE: scaling may be necessary if some argument is too
35  *	      large or too tiny
36  *
37  * Special cases:
38  *	hypot(x,y) is INF if x or y is +INF or -INF; else
39  *	hypot(x,y) is NAN if x or y is NAN.
40  *
41  * Accuracy:
42  * 	hypot(x,y) returns sqrt(x^2+y^2) with error less
43  * 	than 1 ulps (units in the last place)
44  */
45 
46 #include <float.h>
47 
48 #include "math.h"
49 #include "math_private.h"
50 
51 double
52 hypot(double x, double y)
53 {
54 	double a,b,t1,t2,y1,y2,w;
55 	int32_t j,k,ha,hb;
56 
57 	GET_HIGH_WORD(ha,x);
58 	ha &= 0x7fffffff;
59 	GET_HIGH_WORD(hb,y);
60 	hb &= 0x7fffffff;
61 	if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
62 	a = fabs(a);
63 	b = fabs(b);
64 	if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
65 	k=0;
66 	if(ha > 0x5f300000) {	/* a>2**500 */
67 	   if(ha >= 0x7ff00000) {	/* Inf or NaN */
68 	       u_int32_t low;
69 	       /* Use original arg order iff result is NaN; quieten sNaNs. */
70 	       w = fabsl(x+0.0L)-fabs(y+0);
71 	       GET_LOW_WORD(low,a);
72 	       if(((ha&0xfffff)|low)==0) w = a;
73 	       GET_LOW_WORD(low,b);
74 	       if(((hb^0x7ff00000)|low)==0) w = b;
75 	       return w;
76 	   }
77 	   /* scale a and b by 2**-600 */
78 	   ha -= 0x25800000; hb -= 0x25800000;	k += 600;
79 	   SET_HIGH_WORD(a,ha);
80 	   SET_HIGH_WORD(b,hb);
81 	}
82 	if(hb < 0x20b00000) {	/* b < 2**-500 */
83 	    if(hb <= 0x000fffff) {	/* subnormal b or 0 */
84 	        u_int32_t low;
85 		GET_LOW_WORD(low,b);
86 		if((hb|low)==0) return a;
87 		t1=0;
88 		SET_HIGH_WORD(t1,0x7fd00000);	/* t1=2^1022 */
89 		b *= t1;
90 		a *= t1;
91 		k -= 1022;
92 	    } else {		/* scale a and b by 2^600 */
93 	        ha += 0x25800000; 	/* a *= 2^600 */
94 		hb += 0x25800000;	/* b *= 2^600 */
95 		k -= 600;
96 		SET_HIGH_WORD(a,ha);
97 		SET_HIGH_WORD(b,hb);
98 	    }
99 	}
100     /* medium size a and b */
101 	w = a-b;
102 	if (w>b) {
103 	    t1 = 0;
104 	    SET_HIGH_WORD(t1,ha);
105 	    t2 = a-t1;
106 	    w  = sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
107 	} else {
108 	    a  = a+a;
109 	    y1 = 0;
110 	    SET_HIGH_WORD(y1,hb);
111 	    y2 = b - y1;
112 	    t1 = 0;
113 	    SET_HIGH_WORD(t1,ha+0x00100000);
114 	    t2 = a - t1;
115 	    w  = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
116 	}
117 	if(k!=0) {
118 	    t1 = 0.0;
119 	    SET_HIGH_WORD(t1,(1023+k)<<20);
120 	    return t1*w;
121 	} else return w;
122 }
123 
124 #if LDBL_MANT_DIG == 53
125 __weak_reference(hypot, hypotl);
126 #endif
127