xref: /freebsd/lib/msun/src/e_hypot.c (revision 5ebc7e6281887681c3a348a5a4c902e262ccd656)
1 /* @(#)e_hypot.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 #ifndef lint
14 static char rcsid[] = "$Id: e_hypot.c,v 1.1.1.1 1994/08/19 09:39:44 jkh Exp $";
15 #endif
16 
17 /* __ieee754_hypot(x,y)
18  *
19  * Method :
20  *	If (assume round-to-nearest) z=x*x+y*y
21  *	has error less than sqrt(2)/2 ulp, than
22  *	sqrt(z) has error less than 1 ulp (exercise).
23  *
24  *	So, compute sqrt(x*x+y*y) with some care as
25  *	follows to get the error below 1 ulp:
26  *
27  *	Assume x>y>0;
28  *	(if possible, set rounding to round-to-nearest)
29  *	1. if x > 2y  use
30  *		x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
31  *	where x1 = x with lower 32 bits cleared, x2 = x-x1; else
32  *	2. if x <= 2y use
33  *		t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
34  *	where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
35  *	y1= y with lower 32 bits chopped, y2 = y-y1.
36  *
37  *	NOTE: scaling may be necessary if some argument is too
38  *	      large or too tiny
39  *
40  * Special cases:
41  *	hypot(x,y) is INF if x or y is +INF or -INF; else
42  *	hypot(x,y) is NAN if x or y is NAN.
43  *
44  * Accuracy:
45  * 	hypot(x,y) returns sqrt(x^2+y^2) with error less
46  * 	than 1 ulps (units in the last place)
47  */
48 
49 #include "math.h"
50 #include "math_private.h"
51 
52 #ifdef __STDC__
53 	double __ieee754_hypot(double x, double y)
54 #else
55 	double __ieee754_hypot(x,y)
56 	double x, y;
57 #endif
58 {
59 	double a=x,b=y,t1,t2,y1,y2,w;
60 	int32_t j,k,ha,hb;
61 
62 	GET_HIGH_WORD(ha,x);
63 	ha &= 0x7fffffff;
64 	GET_HIGH_WORD(hb,y);
65 	hb &= 0x7fffffff;
66 	if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
67 	SET_HIGH_WORD(a,ha);	/* a <- |a| */
68 	SET_HIGH_WORD(b,hb);	/* b <- |b| */
69 	if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
70 	k=0;
71 	if(ha > 0x5f300000) {	/* a>2**500 */
72 	   if(ha >= 0x7ff00000) {	/* Inf or NaN */
73 	       u_int32_t low;
74 	       w = a+b;			/* for sNaN */
75 	       GET_LOW_WORD(low,a);
76 	       if(((ha&0xfffff)|low)==0) w = a;
77 	       GET_LOW_WORD(low,b);
78 	       if(((hb^0x7ff00000)|low)==0) w = b;
79 	       return w;
80 	   }
81 	   /* scale a and b by 2**-600 */
82 	   ha -= 0x25800000; hb -= 0x25800000;	k += 600;
83 	   SET_HIGH_WORD(a,ha);
84 	   SET_HIGH_WORD(b,hb);
85 	}
86 	if(hb < 0x20b00000) {	/* b < 2**-500 */
87 	    if(hb <= 0x000fffff) {	/* subnormal b or 0 */
88 	        u_int32_t low;
89 		GET_LOW_WORD(low,b);
90 		if((hb|low)==0) return a;
91 		t1=0;
92 		SET_HIGH_WORD(t1,0x7fd00000);	/* t1=2^1022 */
93 		b *= t1;
94 		a *= t1;
95 		k -= 1022;
96 	    } else {		/* scale a and b by 2^600 */
97 	        ha += 0x25800000; 	/* a *= 2^600 */
98 		hb += 0x25800000;	/* b *= 2^600 */
99 		k -= 600;
100 		SET_HIGH_WORD(a,ha);
101 		SET_HIGH_WORD(b,hb);
102 	    }
103 	}
104     /* medium size a and b */
105 	w = a-b;
106 	if (w>b) {
107 	    t1 = 0;
108 	    SET_HIGH_WORD(t1,ha);
109 	    t2 = a-t1;
110 	    w  = sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
111 	} else {
112 	    a  = a+a;
113 	    y1 = 0;
114 	    SET_HIGH_WORD(y1,hb);
115 	    y2 = b - y1;
116 	    t1 = 0;
117 	    SET_HIGH_WORD(t1,ha+0x00100000);
118 	    t2 = a - t1;
119 	    w  = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
120 	}
121 	if(k!=0) {
122 	    u_int32_t high;
123 	    t1 = 1.0;
124 	    GET_HIGH_WORD(high,t1);
125 	    SET_HIGH_WORD(t1,high+(k<<20));
126 	    return t1*w;
127 	} else return w;
128 }
129