13f708241SDavid Schultz 23f708241SDavid Schultz /* @(#)e_hypot.c 1.3 95/01/18 */ 33a8617a8SJordan K. Hubbard /* 43a8617a8SJordan K. Hubbard * ==================================================== 53a8617a8SJordan K. Hubbard * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 63a8617a8SJordan K. Hubbard * 73f708241SDavid Schultz * Developed at SunSoft, a Sun Microsystems, Inc. business. 83a8617a8SJordan K. Hubbard * Permission to use, copy, modify, and distribute this 93a8617a8SJordan K. Hubbard * software is freely granted, provided that this notice 103a8617a8SJordan K. Hubbard * is preserved. 113a8617a8SJordan K. Hubbard * ==================================================== 123a8617a8SJordan K. Hubbard */ 133a8617a8SJordan K. Hubbard 143365b45eSBruce Evans #include <sys/cdefs.h> 153365b45eSBruce Evans __FBSDID("$FreeBSD$"); 163a8617a8SJordan K. Hubbard 173a8617a8SJordan K. Hubbard /* __ieee754_hypot(x,y) 183a8617a8SJordan K. Hubbard * 193a8617a8SJordan K. Hubbard * Method : 203a8617a8SJordan K. Hubbard * If (assume round-to-nearest) z=x*x+y*y 213a8617a8SJordan K. Hubbard * has error less than sqrt(2)/2 ulp, than 223a8617a8SJordan K. Hubbard * sqrt(z) has error less than 1 ulp (exercise). 233a8617a8SJordan K. Hubbard * 243a8617a8SJordan K. Hubbard * So, compute sqrt(x*x+y*y) with some care as 253a8617a8SJordan K. Hubbard * follows to get the error below 1 ulp: 263a8617a8SJordan K. Hubbard * 273a8617a8SJordan K. Hubbard * Assume x>y>0; 283a8617a8SJordan K. Hubbard * (if possible, set rounding to round-to-nearest) 293a8617a8SJordan K. Hubbard * 1. if x > 2y use 303a8617a8SJordan K. Hubbard * x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y 313a8617a8SJordan K. Hubbard * where x1 = x with lower 32 bits cleared, x2 = x-x1; else 323a8617a8SJordan K. Hubbard * 2. if x <= 2y use 333a8617a8SJordan K. Hubbard * t1*y1+((x-y)*(x-y)+(t1*y2+t2*y)) 343a8617a8SJordan K. Hubbard * where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1, 353a8617a8SJordan K. Hubbard * y1= y with lower 32 bits chopped, y2 = y-y1. 363a8617a8SJordan K. Hubbard * 373a8617a8SJordan K. Hubbard * NOTE: scaling may be necessary if some argument is too 383a8617a8SJordan K. Hubbard * large or too tiny 393a8617a8SJordan K. Hubbard * 403a8617a8SJordan K. Hubbard * Special cases: 413a8617a8SJordan K. Hubbard * hypot(x,y) is INF if x or y is +INF or -INF; else 423a8617a8SJordan K. Hubbard * hypot(x,y) is NAN if x or y is NAN. 433a8617a8SJordan K. Hubbard * 443a8617a8SJordan K. Hubbard * Accuracy: 453a8617a8SJordan K. Hubbard * hypot(x,y) returns sqrt(x^2+y^2) with error less 463a8617a8SJordan K. Hubbard * than 1 ulps (units in the last place) 473a8617a8SJordan K. Hubbard */ 483a8617a8SJordan K. Hubbard 49a641fc76SDavid Schultz #include <float.h> 50a641fc76SDavid Schultz 513a8617a8SJordan K. Hubbard #include "math.h" 523a8617a8SJordan K. Hubbard #include "math_private.h" 533a8617a8SJordan K. Hubbard 5459b19ff1SAlfred Perlstein double 5559b19ff1SAlfred Perlstein __ieee754_hypot(double x, double y) 563a8617a8SJordan K. Hubbard { 573a8617a8SJordan K. Hubbard double a=x,b=y,t1,t2,y1,y2,w; 583a8617a8SJordan K. Hubbard int32_t j,k,ha,hb; 593a8617a8SJordan K. Hubbard 603a8617a8SJordan K. Hubbard GET_HIGH_WORD(ha,x); 613a8617a8SJordan K. Hubbard ha &= 0x7fffffff; 623a8617a8SJordan K. Hubbard GET_HIGH_WORD(hb,y); 633a8617a8SJordan K. Hubbard hb &= 0x7fffffff; 643a8617a8SJordan K. Hubbard if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;} 6542ee187cSBruce Evans a = fabs(a); 6642ee187cSBruce Evans b = fabs(b); 673a8617a8SJordan K. Hubbard if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */ 683a8617a8SJordan K. Hubbard k=0; 693a8617a8SJordan K. Hubbard if(ha > 0x5f300000) { /* a>2**500 */ 703a8617a8SJordan K. Hubbard if(ha >= 0x7ff00000) { /* Inf or NaN */ 713a8617a8SJordan K. Hubbard u_int32_t low; 723365b45eSBruce Evans /* Use original arg order iff result is NaN; quieten sNaNs. */ 73c0c7ddd3SBruce Evans w = fabs(x+0.0)-fabs(y+0.0); 743a8617a8SJordan K. Hubbard GET_LOW_WORD(low,a); 753a8617a8SJordan K. Hubbard if(((ha&0xfffff)|low)==0) w = a; 763a8617a8SJordan K. Hubbard GET_LOW_WORD(low,b); 773a8617a8SJordan K. Hubbard if(((hb^0x7ff00000)|low)==0) w = b; 783a8617a8SJordan K. Hubbard return w; 793a8617a8SJordan K. Hubbard } 803a8617a8SJordan K. Hubbard /* scale a and b by 2**-600 */ 813a8617a8SJordan K. Hubbard ha -= 0x25800000; hb -= 0x25800000; k += 600; 823a8617a8SJordan K. Hubbard SET_HIGH_WORD(a,ha); 833a8617a8SJordan K. Hubbard SET_HIGH_WORD(b,hb); 843a8617a8SJordan K. Hubbard } 853a8617a8SJordan K. Hubbard if(hb < 0x20b00000) { /* b < 2**-500 */ 863a8617a8SJordan K. Hubbard if(hb <= 0x000fffff) { /* subnormal b or 0 */ 873a8617a8SJordan K. Hubbard u_int32_t low; 883a8617a8SJordan K. Hubbard GET_LOW_WORD(low,b); 893a8617a8SJordan K. Hubbard if((hb|low)==0) return a; 903a8617a8SJordan K. Hubbard t1=0; 913a8617a8SJordan K. Hubbard SET_HIGH_WORD(t1,0x7fd00000); /* t1=2^1022 */ 923a8617a8SJordan K. Hubbard b *= t1; 933a8617a8SJordan K. Hubbard a *= t1; 943a8617a8SJordan K. Hubbard k -= 1022; 953a8617a8SJordan K. Hubbard } else { /* scale a and b by 2^600 */ 963a8617a8SJordan K. Hubbard ha += 0x25800000; /* a *= 2^600 */ 973a8617a8SJordan K. Hubbard hb += 0x25800000; /* b *= 2^600 */ 983a8617a8SJordan K. Hubbard k -= 600; 993a8617a8SJordan K. Hubbard SET_HIGH_WORD(a,ha); 1003a8617a8SJordan K. Hubbard SET_HIGH_WORD(b,hb); 1013a8617a8SJordan K. Hubbard } 1023a8617a8SJordan K. Hubbard } 1033a8617a8SJordan K. Hubbard /* medium size a and b */ 1043a8617a8SJordan K. Hubbard w = a-b; 1053a8617a8SJordan K. Hubbard if (w>b) { 1063a8617a8SJordan K. Hubbard t1 = 0; 1073a8617a8SJordan K. Hubbard SET_HIGH_WORD(t1,ha); 1083a8617a8SJordan K. Hubbard t2 = a-t1; 1093f708241SDavid Schultz w = sqrt(t1*t1-(b*(-b)-t2*(a+t1))); 1103a8617a8SJordan K. Hubbard } else { 1113a8617a8SJordan K. Hubbard a = a+a; 1123a8617a8SJordan K. Hubbard y1 = 0; 1133a8617a8SJordan K. Hubbard SET_HIGH_WORD(y1,hb); 1143a8617a8SJordan K. Hubbard y2 = b - y1; 1153a8617a8SJordan K. Hubbard t1 = 0; 1163a8617a8SJordan K. Hubbard SET_HIGH_WORD(t1,ha+0x00100000); 1173a8617a8SJordan K. Hubbard t2 = a - t1; 1183f708241SDavid Schultz w = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b))); 1193a8617a8SJordan K. Hubbard } 1203a8617a8SJordan K. Hubbard if(k!=0) { 1213a8617a8SJordan K. Hubbard u_int32_t high; 1223a8617a8SJordan K. Hubbard t1 = 1.0; 1233a8617a8SJordan K. Hubbard GET_HIGH_WORD(high,t1); 1243a8617a8SJordan K. Hubbard SET_HIGH_WORD(t1,high+(k<<20)); 1253a8617a8SJordan K. Hubbard return t1*w; 1263a8617a8SJordan K. Hubbard } else return w; 1273a8617a8SJordan K. Hubbard } 128a641fc76SDavid Schultz 129a641fc76SDavid Schultz #if LDBL_MANT_DIG == 53 130a641fc76SDavid Schultz __weak_reference(hypot, hypotl); 131a641fc76SDavid Schultz #endif 132