xref: /freebsd/lib/msun/bsdsrc/b_tgamma.c (revision a530b610636be65c4948ba01a65da56627d7ffe2)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 /* @(#)gamma.c	8.1 (Berkeley) 6/4/93 */
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 /*
41  * This code by P. McIlroy, Oct 1992;
42  *
43  * The financial support of UUNET Communications Services is greatfully
44  * acknowledged.
45  */
46 
47 #include <math.h>
48 #include "mathimpl.h"
49 
50 /* METHOD:
51  * x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x))
52  * 	At negative integers, return NaN and raise invalid.
53  *
54  * x < 6.5:
55  *	Use argument reduction G(x+1) = xG(x) to reach the
56  *	range [1.066124,2.066124].  Use a rational
57  *	approximation centered at the minimum (x0+1) to
58  *	ensure monotonicity.
59  *
60  * x >= 6.5: Use the asymptotic approximation (Stirling's formula)
61  *	adjusted for equal-ripples:
62  *
63  *	log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x))
64  *
65  *	Keep extra precision in multiplying (x-.5)(log(x)-1), to
66  *	avoid premature round-off.
67  *
68  * Special values:
69  *	-Inf:			return NaN and raise invalid;
70  *	negative integer:	return NaN and raise invalid;
71  *	other x ~< 177.79:	return +-0 and raise underflow;
72  *	+-0:			return +-Inf and raise divide-by-zero;
73  *	finite x ~> 171.63:	return +Inf and raise overflow;
74  *	+Inf:			return +Inf;
75  *	NaN: 			return NaN.
76  *
77  * Accuracy: tgamma(x) is accurate to within
78  *	x > 0:  error provably < 0.9ulp.
79  *	Maximum observed in 1,000,000 trials was .87ulp.
80  *	x < 0:
81  *	Maximum observed error < 4ulp in 1,000,000 trials.
82  */
83 
84 static double neg_gam(double);
85 static double small_gam(double);
86 static double smaller_gam(double);
87 static struct Double large_gam(double);
88 static struct Double ratfun_gam(double, double);
89 
90 /*
91  * Rational approximation, A0 + x*x*P(x)/Q(x), on the interval
92  * [1.066.., 2.066..] accurate to 4.25e-19.
93  */
94 #define LEFT -.3955078125	/* left boundary for rat. approx */
95 #define x0 .461632144968362356785	/* xmin - 1 */
96 
97 #define a0_hi 0.88560319441088874992
98 #define a0_lo -.00000000000000004996427036469019695
99 #define P0	 6.21389571821820863029017800727e-01
100 #define P1	 2.65757198651533466104979197553e-01
101 #define P2	 5.53859446429917461063308081748e-03
102 #define P3	 1.38456698304096573887145282811e-03
103 #define P4	 2.40659950032711365819348969808e-03
104 #define Q0	 1.45019531250000000000000000000e+00
105 #define Q1	 1.06258521948016171343454061571e+00
106 #define Q2	-2.07474561943859936441469926649e-01
107 #define Q3	-1.46734131782005422506287573015e-01
108 #define Q4	 3.07878176156175520361557573779e-02
109 #define Q5	 5.12449347980666221336054633184e-03
110 #define Q6	-1.76012741431666995019222898833e-03
111 #define Q7	 9.35021023573788935372153030556e-05
112 #define Q8	 6.13275507472443958924745652239e-06
113 /*
114  * Constants for large x approximation (x in [6, Inf])
115  * (Accurate to 2.8*10^-19 absolute)
116  */
117 #define lns2pi_hi 0.418945312500000
118 #define lns2pi_lo -.000006779295327258219670263595
119 #define Pa0	 8.33333333333333148296162562474e-02
120 #define Pa1	-2.77777777774548123579378966497e-03
121 #define Pa2	 7.93650778754435631476282786423e-04
122 #define Pa3	-5.95235082566672847950717262222e-04
123 #define Pa4	 8.41428560346653702135821806252e-04
124 #define Pa5	-1.89773526463879200348872089421e-03
125 #define Pa6	 5.69394463439411649408050664078e-03
126 #define Pa7	-1.44705562421428915453880392761e-02
127 
128 static const double zero = 0., one = 1.0, tiny = 1e-300;
129 
130 double
131 tgamma(x)
132 	double x;
133 {
134 	struct Double u;
135 
136 	if (x >= 6) {
137 		if(x > 171.63)
138 			return (x / zero);
139 		u = large_gam(x);
140 		return(__exp__D(u.a, u.b));
141 	} else if (x >= 1.0 + LEFT + x0)
142 		return (small_gam(x));
143 	else if (x > 1.e-17)
144 		return (smaller_gam(x));
145 	else if (x > -1.e-17) {
146 		if (x != 0.0)
147 			u.a = one - tiny;	/* raise inexact */
148 		return (one/x);
149 	} else if (!finite(x))
150 		return (x - x);		/* x is NaN or -Inf */
151 	else
152 		return (neg_gam(x));
153 }
154 /*
155  * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
156  */
157 static struct Double
158 large_gam(x)
159 	double x;
160 {
161 	double z, p;
162 	struct Double t, u, v;
163 
164 	z = one/(x*x);
165 	p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7))))));
166 	p = p/x;
167 
168 	u = __log__D(x);
169 	u.a -= one;
170 	v.a = (x -= .5);
171 	TRUNC(v.a);
172 	v.b = x - v.a;
173 	t.a = v.a*u.a;			/* t = (x-.5)*(log(x)-1) */
174 	t.b = v.b*u.a + x*u.b;
175 	/* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */
176 	t.b += lns2pi_lo; t.b += p;
177 	u.a = lns2pi_hi + t.b; u.a += t.a;
178 	u.b = t.a - u.a;
179 	u.b += lns2pi_hi; u.b += t.b;
180 	return (u);
181 }
182 /*
183  * Good to < 1 ulp.  (provably .90 ulp; .87 ulp on 1,000,000 runs.)
184  * It also has correct monotonicity.
185  */
186 static double
187 small_gam(x)
188 	double x;
189 {
190 	double y, ym1, t;
191 	struct Double yy, r;
192 	y = x - one;
193 	ym1 = y - one;
194 	if (y <= 1.0 + (LEFT + x0)) {
195 		yy = ratfun_gam(y - x0, 0);
196 		return (yy.a + yy.b);
197 	}
198 	r.a = y;
199 	TRUNC(r.a);
200 	yy.a = r.a - one;
201 	y = ym1;
202 	yy.b = r.b = y - yy.a;
203 	/* Argument reduction: G(x+1) = x*G(x) */
204 	for (ym1 = y-one; ym1 > LEFT + x0; y = ym1--, yy.a--) {
205 		t = r.a*yy.a;
206 		r.b = r.a*yy.b + y*r.b;
207 		r.a = t;
208 		TRUNC(r.a);
209 		r.b += (t - r.a);
210 	}
211 	/* Return r*tgamma(y). */
212 	yy = ratfun_gam(y - x0, 0);
213 	y = r.b*(yy.a + yy.b) + r.a*yy.b;
214 	y += yy.a*r.a;
215 	return (y);
216 }
217 /*
218  * Good on (0, 1+x0+LEFT].  Accurate to 1ulp.
219  */
220 static double
221 smaller_gam(x)
222 	double x;
223 {
224 	double t, d;
225 	struct Double r, xx;
226 	if (x < x0 + LEFT) {
227 		t = x, TRUNC(t);
228 		d = (t+x)*(x-t);
229 		t *= t;
230 		xx.a = (t + x), TRUNC(xx.a);
231 		xx.b = x - xx.a; xx.b += t; xx.b += d;
232 		t = (one-x0); t += x;
233 		d = (one-x0); d -= t; d += x;
234 		x = xx.a + xx.b;
235 	} else {
236 		xx.a =  x, TRUNC(xx.a);
237 		xx.b = x - xx.a;
238 		t = x - x0;
239 		d = (-x0 -t); d += x;
240 	}
241 	r = ratfun_gam(t, d);
242 	d = r.a/x, TRUNC(d);
243 	r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b;
244 	return (d + r.a/x);
245 }
246 /*
247  * returns (z+c)^2 * P(z)/Q(z) + a0
248  */
249 static struct Double
250 ratfun_gam(z, c)
251 	double z, c;
252 {
253 	double p, q;
254 	struct Double r, t;
255 
256 	q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8)))))));
257 	p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4)));
258 
259 	/* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */
260 	p = p/q;
261 	t.a = z, TRUNC(t.a);		/* t ~= z + c */
262 	t.b = (z - t.a) + c;
263 	t.b *= (t.a + z);
264 	q = (t.a *= t.a);		/* t = (z+c)^2 */
265 	TRUNC(t.a);
266 	t.b += (q - t.a);
267 	r.a = p, TRUNC(r.a);		/* r = P/Q */
268 	r.b = p - r.a;
269 	t.b = t.b*p + t.a*r.b + a0_lo;
270 	t.a *= r.a;			/* t = (z+c)^2*(P/Q) */
271 	r.a = t.a + a0_hi, TRUNC(r.a);
272 	r.b = ((a0_hi-r.a) + t.a) + t.b;
273 	return (r);			/* r = a0 + t */
274 }
275 
276 static double
277 neg_gam(x)
278 	double x;
279 {
280 	int sgn = 1;
281 	struct Double lg, lsine;
282 	double y, z;
283 
284 	y = ceil(x);
285 	if (y == x)		/* Negative integer. */
286 		return ((x - x) / zero);
287 	z = y - x;
288 	if (z > 0.5)
289 		z = one - z;
290 	y = 0.5 * y;
291 	if (y == ceil(y))
292 		sgn = -1;
293 	if (z < .25)
294 		z = sin(M_PI*z);
295 	else
296 		z = cos(M_PI*(0.5-z));
297 	/* Special case: G(1-x) = Inf; G(x) may be nonzero. */
298 	if (x < -170) {
299 		if (x < -190)
300 			return ((double)sgn*tiny*tiny);
301 		y = one - x;		/* exact: 128 < |x| < 255 */
302 		lg = large_gam(y);
303 		lsine = __log__D(M_PI/z);	/* = TRUNC(log(u)) + small */
304 		lg.a -= lsine.a;		/* exact (opposite signs) */
305 		lg.b -= lsine.b;
306 		y = -(lg.a + lg.b);
307 		z = (y + lg.a) + lg.b;
308 		y = __exp__D(y, z);
309 		if (sgn < 0) y = -y;
310 		return (y);
311 	}
312 	y = one-x;
313 	if (one-y == x)
314 		y = tgamma(y);
315 	else		/* 1-x is inexact */
316 		y = -x*tgamma(-x);
317 	if (sgn < 0) y = -y;
318 	return (M_PI / (y*z));
319 }
320