xref: /freebsd/lib/msun/bsdsrc/b_tgamma.c (revision 69160b1eb704d1931b536a65fcf50757ddbfc469)
1 /*-
2  * Copyright (c) 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #ifndef lint
35 static char sccsid[] = "@(#)gamma.c	8.1 (Berkeley) 6/4/93";
36 #endif /* not lint */
37 include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 /*
41  * This code by P. McIlroy, Oct 1992;
42  *
43  * The financial support of UUNET Communications Services is greatfully
44  * acknowledged.
45  */
46 
47 #include <math.h>
48 #include "mathimpl.h"
49 #include <errno.h>
50 
51 /* METHOD:
52  * x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x))
53  * 	At negative integers, return +Inf, and set errno.
54  *
55  * x < 6.5:
56  *	Use argument reduction G(x+1) = xG(x) to reach the
57  *	range [1.066124,2.066124].  Use a rational
58  *	approximation centered at the minimum (x0+1) to
59  *	ensure monotonicity.
60  *
61  * x >= 6.5: Use the asymptotic approximation (Stirling's formula)
62  *	adjusted for equal-ripples:
63  *
64  *	log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x))
65  *
66  *	Keep extra precision in multiplying (x-.5)(log(x)-1), to
67  *	avoid premature round-off.
68  *
69  * Special values:
70  *	non-positive integer:	Set overflow trap; return +Inf;
71  *	x > 171.63:		Set overflow trap; return +Inf;
72  *	NaN: 			Set invalid trap;  return NaN
73  *
74  * Accuracy: Gamma(x) is accurate to within
75  *	x > 0:  error provably < 0.9ulp.
76  *	Maximum observed in 1,000,000 trials was .87ulp.
77  *	x < 0:
78  *	Maximum observed error < 4ulp in 1,000,000 trials.
79  */
80 
81 static double neg_gam(double);
82 static double small_gam(double);
83 static double smaller_gam(double);
84 static struct Double large_gam(double);
85 static struct Double ratfun_gam(double, double);
86 
87 /*
88  * Rational approximation, A0 + x*x*P(x)/Q(x), on the interval
89  * [1.066.., 2.066..] accurate to 4.25e-19.
90  */
91 #define LEFT -.3955078125	/* left boundary for rat. approx */
92 #define x0 .461632144968362356785	/* xmin - 1 */
93 
94 #define a0_hi 0.88560319441088874992
95 #define a0_lo -.00000000000000004996427036469019695
96 #define P0	 6.21389571821820863029017800727e-01
97 #define P1	 2.65757198651533466104979197553e-01
98 #define P2	 5.53859446429917461063308081748e-03
99 #define P3	 1.38456698304096573887145282811e-03
100 #define P4	 2.40659950032711365819348969808e-03
101 #define Q0	 1.45019531250000000000000000000e+00
102 #define Q1	 1.06258521948016171343454061571e+00
103 #define Q2	-2.07474561943859936441469926649e-01
104 #define Q3	-1.46734131782005422506287573015e-01
105 #define Q4	 3.07878176156175520361557573779e-02
106 #define Q5	 5.12449347980666221336054633184e-03
107 #define Q6	-1.76012741431666995019222898833e-03
108 #define Q7	 9.35021023573788935372153030556e-05
109 #define Q8	 6.13275507472443958924745652239e-06
110 /*
111  * Constants for large x approximation (x in [6, Inf])
112  * (Accurate to 2.8*10^-19 absolute)
113  */
114 #define lns2pi_hi 0.418945312500000
115 #define lns2pi_lo -.000006779295327258219670263595
116 #define Pa0	 8.33333333333333148296162562474e-02
117 #define Pa1	-2.77777777774548123579378966497e-03
118 #define Pa2	 7.93650778754435631476282786423e-04
119 #define Pa3	-5.95235082566672847950717262222e-04
120 #define Pa4	 8.41428560346653702135821806252e-04
121 #define Pa5	-1.89773526463879200348872089421e-03
122 #define Pa6	 5.69394463439411649408050664078e-03
123 #define Pa7	-1.44705562421428915453880392761e-02
124 
125 static const double zero = 0., one = 1.0, tiny = 1e-300;
126 static int endian;
127 /*
128  * TRUNC sets trailing bits in a floating-point number to zero.
129  * is a temporary variable.
130  */
131 #if defined(vax) || defined(tahoe)
132 #define _IEEE		0
133 #define TRUNC(x)	x = (double) (float) (x)
134 #else
135 #define _IEEE		1
136 #define TRUNC(x)	*(((int *) &x) + endian) &= 0xf8000000
137 #define infnan(x)	0.0
138 #endif
139 
140 double
141 gamma(x)
142 	double x;
143 {
144 	struct Double u;
145 	endian = (*(int *) &one) ? 1 : 0;
146 
147 	if (x >= 6) {
148 		if(x > 171.63)
149 			return(one/zero);
150 		u = large_gam(x);
151 		return(__exp__D(u.a, u.b));
152 	} else if (x >= 1.0 + LEFT + x0)
153 		return (small_gam(x));
154 	else if (x > 1.e-17)
155 		return (smaller_gam(x));
156 	else if (x > -1.e-17) {
157 		if (x == 0.0)
158 			if (!_IEEE) return (infnan(ERANGE));
159 			else return (one/x);
160 		one+1e-20;		/* Raise inexact flag. */
161 		return (one/x);
162 	} else if (!finite(x)) {
163 		if (_IEEE)		/* x = NaN, -Inf */
164 			return (x*x);
165 		else
166 			return (infnan(EDOM));
167 	 } else
168 		return (neg_gam(x));
169 }
170 /*
171  * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
172  */
173 static struct Double
174 large_gam(x)
175 	double x;
176 {
177 	double z, p;
178 	int i;
179 	struct Double t, u, v;
180 
181 	z = one/(x*x);
182 	p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7))))));
183 	p = p/x;
184 
185 	u = __log__D(x);
186 	u.a -= one;
187 	v.a = (x -= .5);
188 	TRUNC(v.a);
189 	v.b = x - v.a;
190 	t.a = v.a*u.a;			/* t = (x-.5)*(log(x)-1) */
191 	t.b = v.b*u.a + x*u.b;
192 	/* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */
193 	t.b += lns2pi_lo; t.b += p;
194 	u.a = lns2pi_hi + t.b; u.a += t.a;
195 	u.b = t.a - u.a;
196 	u.b += lns2pi_hi; u.b += t.b;
197 	return (u);
198 }
199 /*
200  * Good to < 1 ulp.  (provably .90 ulp; .87 ulp on 1,000,000 runs.)
201  * It also has correct monotonicity.
202  */
203 static double
204 small_gam(x)
205 	double x;
206 {
207 	double y, ym1, t, x1;
208 	struct Double yy, r;
209 	y = x - one;
210 	ym1 = y - one;
211 	if (y <= 1.0 + (LEFT + x0)) {
212 		yy = ratfun_gam(y - x0, 0);
213 		return (yy.a + yy.b);
214 	}
215 	r.a = y;
216 	TRUNC(r.a);
217 	yy.a = r.a - one;
218 	y = ym1;
219 	yy.b = r.b = y - yy.a;
220 	/* Argument reduction: G(x+1) = x*G(x) */
221 	for (ym1 = y-one; ym1 > LEFT + x0; y = ym1--, yy.a--) {
222 		t = r.a*yy.a;
223 		r.b = r.a*yy.b + y*r.b;
224 		r.a = t;
225 		TRUNC(r.a);
226 		r.b += (t - r.a);
227 	}
228 	/* Return r*gamma(y). */
229 	yy = ratfun_gam(y - x0, 0);
230 	y = r.b*(yy.a + yy.b) + r.a*yy.b;
231 	y += yy.a*r.a;
232 	return (y);
233 }
234 /*
235  * Good on (0, 1+x0+LEFT].  Accurate to 1ulp.
236  */
237 static double
238 smaller_gam(x)
239 	double x;
240 {
241 	double t, d;
242 	struct Double r, xx;
243 	if (x < x0 + LEFT) {
244 		t = x, TRUNC(t);
245 		d = (t+x)*(x-t);
246 		t *= t;
247 		xx.a = (t + x), TRUNC(xx.a);
248 		xx.b = x - xx.a; xx.b += t; xx.b += d;
249 		t = (one-x0); t += x;
250 		d = (one-x0); d -= t; d += x;
251 		x = xx.a + xx.b;
252 	} else {
253 		xx.a =  x, TRUNC(xx.a);
254 		xx.b = x - xx.a;
255 		t = x - x0;
256 		d = (-x0 -t); d += x;
257 	}
258 	r = ratfun_gam(t, d);
259 	d = r.a/x, TRUNC(d);
260 	r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b;
261 	return (d + r.a/x);
262 }
263 /*
264  * returns (z+c)^2 * P(z)/Q(z) + a0
265  */
266 static struct Double
267 ratfun_gam(z, c)
268 	double z, c;
269 {
270 	int i;
271 	double p, q;
272 	struct Double r, t;
273 
274 	q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8)))))));
275 	p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4)));
276 
277 	/* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */
278 	p = p/q;
279 	t.a = z, TRUNC(t.a);		/* t ~= z + c */
280 	t.b = (z - t.a) + c;
281 	t.b *= (t.a + z);
282 	q = (t.a *= t.a);		/* t = (z+c)^2 */
283 	TRUNC(t.a);
284 	t.b += (q - t.a);
285 	r.a = p, TRUNC(r.a);		/* r = P/Q */
286 	r.b = p - r.a;
287 	t.b = t.b*p + t.a*r.b + a0_lo;
288 	t.a *= r.a;			/* t = (z+c)^2*(P/Q) */
289 	r.a = t.a + a0_hi, TRUNC(r.a);
290 	r.b = ((a0_hi-r.a) + t.a) + t.b;
291 	return (r);			/* r = a0 + t */
292 }
293 
294 static double
295 neg_gam(x)
296 	double x;
297 {
298 	int sgn = 1;
299 	struct Double lg, lsine;
300 	double y, z;
301 
302 	y = floor(x + .5);
303 	if (y == x)		/* Negative integer. */
304 		if(!_IEEE)
305 			return (infnan(ERANGE));
306 		else
307 			return (one/zero);
308 	z = fabs(x - y);
309 	y = .5*ceil(x);
310 	if (y == ceil(y))
311 		sgn = -1;
312 	if (z < .25)
313 		z = sin(M_PI*z);
314 	else
315 		z = cos(M_PI*(0.5-z));
316 	/* Special case: G(1-x) = Inf; G(x) may be nonzero. */
317 	if (x < -170) {
318 		if (x < -190)
319 			return ((double)sgn*tiny*tiny);
320 		y = one - x;		/* exact: 128 < |x| < 255 */
321 		lg = large_gam(y);
322 		lsine = __log__D(M_PI/z);	/* = TRUNC(log(u)) + small */
323 		lg.a -= lsine.a;		/* exact (opposite signs) */
324 		lg.b -= lsine.b;
325 		y = -(lg.a + lg.b);
326 		z = (y + lg.a) + lg.b;
327 		y = __exp__D(y, z);
328 		if (sgn < 0) y = -y;
329 		return (y);
330 	}
331 	y = one-x;
332 	if (one-y == x)
333 		y = gamma(y);
334 	else		/* 1-x is inexact */
335 		y = -x*gamma(-x);
336 	if (sgn < 0) y = -y;
337 	return (M_PI / (y*z));
338 }
339