xref: /freebsd/crypto/libecc/src/hash/belt-hash.c (revision dd21556857e8d40f66bf5ad54754d9d52669ebf7)
1 /*
2  *  Copyright (C) 2022 - This file is part of libecc project
3  *
4  *  Authors:
5  *      Ryad BENADJILA <ryadbenadjila@gmail.com>
6  *      Arnaud EBALARD <arnaud.ebalard@ssi.gouv.fr>
7  *
8  *  This software is licensed under a dual BSD and GPL v2 license.
9  *  See LICENSE file at the root folder of the project.
10  */
11 #include <libecc/lib_ecc_config.h>
12 #ifdef WITH_HASH_BELT_HASH
13 
14 #include <libecc/hash/belt-hash.h>
15 
16 /*
17  * This is an implementation of the BELT-HASH hash function as
18  * defined int STB 34.101.31.
19  */
20 
21 
22 /*
23  * The BELT-HASH function uses an underlying BELT block cipher
24  * defined in STB 34.101.31. This is a simple and straitforward
25  * implementation.
26  */
27 #define ROTL_BELT(x, n)      ((((u32)(x)) << (n)) | (((u32)(x)) >> (32-(n))))
28 
29 #define SWAP_BELT(x, y) do {		\
30 	u32 z;				\
31 	z = (x);			\
32 	(x) = (y);			\
33 	(y) = z;			\
34 } while(0)
35 
36 /* The S-Box */
37 static u8 S[256] =
38 {
39 	0xB1, 0x94, 0xBA, 0xC8, 0x0A, 0x08, 0xF5, 0x3B, 0x36, 0x6D, 0x00, 0x8E, 0x58, 0x4A, 0x5D, 0xE4,
40 	0x85, 0x04, 0xFA, 0x9D, 0x1B, 0xB6, 0xC7, 0xAC, 0x25, 0x2E, 0x72, 0xC2, 0x02, 0xFD, 0xCE, 0x0D,
41 	0x5B, 0xE3, 0xD6, 0x12, 0x17, 0xB9, 0x61, 0x81, 0xFE, 0x67, 0x86, 0xAD, 0x71, 0x6B, 0x89, 0x0B,
42 	0x5C, 0xB0, 0xC0, 0xFF, 0x33, 0xC3, 0x56, 0xB8, 0x35, 0xC4, 0x05, 0xAE, 0xD8, 0xE0, 0x7F, 0x99,
43 	0xE1, 0x2B, 0xDC, 0x1A, 0xE2, 0x82, 0x57, 0xEC, 0x70, 0x3F, 0xCC, 0xF0, 0x95, 0xEE, 0x8D, 0xF1,
44 	0xC1, 0xAB, 0x76, 0x38, 0x9F, 0xE6, 0x78, 0xCA, 0xF7, 0xC6, 0xF8, 0x60, 0xD5, 0xBB, 0x9C, 0x4F,
45 	0xF3, 0x3C, 0x65, 0x7B, 0x63, 0x7C, 0x30, 0x6A, 0xDD, 0x4E, 0xA7, 0x79, 0x9E, 0xB2, 0x3D, 0x31,
46 	0x3E, 0x98, 0xB5, 0x6E, 0x27, 0xD3, 0xBC, 0xCF, 0x59, 0x1E, 0x18, 0x1F, 0x4C, 0x5A, 0xB7, 0x93,
47 	0xE9, 0xDE, 0xE7, 0x2C, 0x8F, 0x0C, 0x0F, 0xA6, 0x2D, 0xDB, 0x49, 0xF4, 0x6F, 0x73, 0x96, 0x47,
48 	0x06, 0x07, 0x53, 0x16, 0xED, 0x24, 0x7A, 0x37, 0x39, 0xCB, 0xA3, 0x83, 0x03, 0xA9, 0x8B, 0xF6,
49 	0x92, 0xBD, 0x9B, 0x1C, 0xE5, 0xD1, 0x41, 0x01, 0x54, 0x45, 0xFB, 0xC9, 0x5E, 0x4D, 0x0E, 0xF2,
50 	0x68, 0x20, 0x80, 0xAA, 0x22, 0x7D, 0x64, 0x2F, 0x26, 0x87, 0xF9, 0x34, 0x90, 0x40, 0x55, 0x11,
51 	0xBE, 0x32, 0x97, 0x13, 0x43, 0xFC, 0x9A, 0x48, 0xA0, 0x2A, 0x88, 0x5F, 0x19, 0x4B, 0x09, 0xA1,
52 	0x7E, 0xCD, 0xA4, 0xD0, 0x15, 0x44, 0xAF, 0x8C, 0xA5, 0x84, 0x50, 0xBF, 0x66, 0xD2, 0xE8, 0x8A,
53 	0xA2, 0xD7, 0x46, 0x52, 0x42, 0xA8, 0xDF, 0xB3, 0x69, 0x74, 0xC5, 0x51, 0xEB, 0x23, 0x29, 0x21,
54 	0xD4, 0xEF, 0xD9, 0xB4, 0x3A, 0x62, 0x28, 0x75, 0x91, 0x14, 0x10, 0xEA, 0x77, 0x6C, 0xDA, 0x1D,
55 };
56 
57 /* */
58 #define GET_BYTE(x, a) ( ((x) >> (a)) & 0xff )
59 #define PUT_BYTE(x, a) ( (u32)(x) << (a) )
60 #define SB(x, a) PUT_BYTE( S[GET_BYTE((x), (a))], (a) )
61 
62 #define G(x, r) ROTL_BELT( SB((x), 24) | SB((x), 16) | SB((x), 8) | SB((x), 0), (r) )
63 
64 static u32 KIdx[8][7] =
65 {
66 	{ 0, 1, 2, 3, 4, 5, 6 },
67 	{ 7, 0, 1, 2, 3, 4, 5 },
68 	{ 6, 7, 0, 1, 2, 3, 4 },
69 	{ 5, 6, 7, 0, 1, 2, 3 },
70 	{ 4, 5, 6, 7, 0, 1, 2 },
71 	{ 3, 4, 5, 6, 7, 0, 1 },
72 	{ 2, 3, 4, 5, 6, 7, 0 },
73 	{ 1, 2, 3, 4, 5, 6, 7 },
74 };
75 
76 int belt_init(const u8 *k, u32 k_len, u8 ks[BELT_KEY_SCHED_LEN])
77 {
78 	int ret = -1;
79 	unsigned int i;
80 
81 	switch(k_len){
82 		case 16:{
83 			for(i = 0; i < 16; i++){
84 				ks[i]      = k[i];
85 				ks[i + 16] = k[i];
86 			}
87 			break;
88 		}
89 		case 24:{
90 			for(i = 0; i < 24; i++){
91 				ks[i] = k[i];
92 			}
93 			for(i = 24; i < 32; i++){
94 				ks[i] = k[i - 24] ^ k[i - 20] ^ k[i - 16];
95 			}
96 			break;
97 		}
98 		case 32:{
99 			for(i = 0; i < 32; i++){
100 				ks[i] = k[i];
101 			}
102 			break;
103 		}
104 		default:{
105 			ret = -1;
106 			goto err;
107 		}
108 
109 
110 	}
111 
112 	ret = 0;
113 err:
114 	return ret;
115 }
116 
117 void belt_encrypt(const u8 in[BELT_BLOCK_LEN], u8 out[BELT_BLOCK_LEN], const u8 ks[BELT_KEY_SCHED_LEN])
118 {
119 	u32 a, b, c, d, e;
120 	u32 i;
121 
122 	GET_UINT32_LE(a, in, 0);
123 	GET_UINT32_LE(b, in, 4);
124 	GET_UINT32_LE(c, in, 8);
125 	GET_UINT32_LE(d, in, 12);
126 
127 	for(i = 0; i < 8; i++){
128 		u32 key;
129 		GET_UINT32_LE(key, ks, 4*KIdx[i][0]);
130 		b ^= G(a + key, 5);
131 		GET_UINT32_LE(key, ks, 4*KIdx[i][1]);
132 		c ^= G(d + key, 21);
133 		GET_UINT32_LE(key, ks, 4*KIdx[i][2]);
134 		a = (u32)(a - G(b + key, 13));
135 		GET_UINT32_LE(key, ks, 4*KIdx[i][3]);
136 		e = G(b + c + key, 21) ^ (i + 1);
137 		b += e;
138 		c = (u32)(c - e);
139 		GET_UINT32_LE(key, ks, 4*KIdx[i][4]);
140 		d += G(c + key, 13);
141 		GET_UINT32_LE(key, ks, 4*KIdx[i][5]);
142 		b ^= G(a + key, 21);
143 		GET_UINT32_LE(key, ks, 4*KIdx[i][6]);
144 		c ^= G(d + key, 5);
145 		SWAP_BELT(a, b);
146 		SWAP_BELT(c, d);
147 		SWAP_BELT(b, c);
148 	}
149 
150 	PUT_UINT32_LE(b, out, 0);
151 	PUT_UINT32_LE(d, out, 4);
152 	PUT_UINT32_LE(a, out, 8);
153 	PUT_UINT32_LE(c, out, 12);
154 
155 	return;
156 }
157 
158 void belt_decrypt(const u8 in[BELT_BLOCK_LEN], u8 out[BELT_BLOCK_LEN], const u8 ks[BELT_KEY_SCHED_LEN])
159 {
160 	u32 a, b, c, d, e;
161 	u32 i;
162 
163 	GET_UINT32_LE(a, in, 0);
164 	GET_UINT32_LE(b, in, 4);
165 	GET_UINT32_LE(c, in, 8);
166 	GET_UINT32_LE(d, in, 12);
167 
168 	for(i = 0; i < 8; i++){
169 		u32 key;
170 		u32 j = (7 - i);
171 		GET_UINT32_LE(key, ks, 4*KIdx[i][6]);
172 		b ^= G(a + key, 5);
173 		GET_UINT32_LE(key, ks, 4*KIdx[i][5]);
174 		c ^= G(d + key, 21);
175 		GET_UINT32_LE(key, ks, 4*KIdx[i][4]);
176 		a = (u32)(a - G(b + key, 13));
177 		GET_UINT32_LE(key, ks, 4*KIdx[i][3]);
178 		e = G(b + c + key, 21) ^ (j + 1);
179 		b += e;
180 		c = (u32)(c - e);
181 		GET_UINT32_LE(key, ks, 4*KIdx[i][2]);
182 		d += G(c + key, 13);
183 		GET_UINT32_LE(key, ks, 4*KIdx[i][1]);
184 		b ^= G(a + key, 21);
185 		GET_UINT32_LE(key, ks, 4*KIdx[i][0]);
186 		c ^= G(d + key, 5);
187 		SWAP_BELT(a, b);
188 		SWAP_BELT(c, d);
189 		SWAP_BELT(a, d);
190 	}
191 
192 	PUT_UINT32_LE(c, out, 0);
193 	PUT_UINT32_LE(a, out, 4);
194 	PUT_UINT32_LE(d, out, 8);
195 	PUT_UINT32_LE(b, out, 12);
196 
197 	return;
198 }
199 
200 /* BELT-HASH primitives */
201 static void sigma1_xor(const u8 x[2 * BELT_BLOCK_LEN], const u8 h[2 * BELT_BLOCK_LEN], u8 s[BELT_BLOCK_LEN], u8 use_xor){
202 	u8 tmp1[BELT_BLOCK_LEN];
203 	unsigned int i;
204 
205 	for(i = 0; i < (BELT_BLOCK_LEN / 2); i++){
206 		tmp1[i] = (h[i] ^ h[i + BELT_BLOCK_LEN]);
207 		tmp1[i + (BELT_BLOCK_LEN / 2)] = (h[i + (BELT_BLOCK_LEN / 2)] ^ h[i + BELT_BLOCK_LEN + (BELT_BLOCK_LEN / 2)]);
208 	}
209 
210 	if(use_xor){
211 		u8 tmp2[BELT_BLOCK_LEN];
212 
213 		belt_encrypt(tmp1, tmp2, x);
214 
215 		for(i = 0; i < (BELT_BLOCK_LEN / 2); i++){
216 			s[i] ^= (tmp1[i] ^ tmp2[i]);
217 			s[i + (BELT_BLOCK_LEN / 2)] ^= (tmp1[i + (BELT_BLOCK_LEN / 2)] ^ tmp2[i + (BELT_BLOCK_LEN / 2)]);
218 		}
219 	}
220 	else{
221 		belt_encrypt(tmp1, s, x);
222 		for(i = 0; i < (BELT_BLOCK_LEN / 2); i++){
223 			s[i] ^= tmp1[i];
224 			s[i + (BELT_BLOCK_LEN / 2)] ^= tmp1[i + (BELT_BLOCK_LEN / 2)];
225 		}
226 	}
227 
228 	return;
229 }
230 
231 static void sigma2(const u8 x[2 * BELT_BLOCK_LEN], u8 const h[2 * BELT_BLOCK_LEN], u8 result[2 * BELT_BLOCK_LEN])
232 {
233 	u8 teta[BELT_KEY_SCHED_LEN];
234 	u8 tmp[BELT_BLOCK_LEN];
235 	unsigned int i;
236 
237 	/* Copy the beginning of h for later in case it is lost */
238 	IGNORE_RET_VAL(local_memcpy(&tmp[0], &h[0], BELT_BLOCK_LEN));
239 
240 	sigma1_xor(x, h, teta, 0);
241 	IGNORE_RET_VAL(local_memcpy(&teta[BELT_BLOCK_LEN], &h[BELT_BLOCK_LEN], BELT_BLOCK_LEN));
242 
243 	belt_encrypt(x, result, teta);
244 	for(i = 0; i < BELT_BLOCK_LEN; i++){
245 		result[i]  ^= x[i];
246 		teta[i]    ^= 0xff;
247 		teta[i + BELT_BLOCK_LEN] = tmp[i];
248 	}
249 
250 	belt_encrypt(&x[BELT_BLOCK_LEN], &result[BELT_BLOCK_LEN], teta);
251 
252 	for(i = 0; i < (BELT_BLOCK_LEN / 2); i++){
253 		result[i + BELT_BLOCK_LEN] ^= x[i + BELT_BLOCK_LEN];
254 		result[i + BELT_BLOCK_LEN + (BELT_BLOCK_LEN / 2)] ^= x[i + BELT_BLOCK_LEN + (BELT_BLOCK_LEN / 2)];
255 	}
256 
257 	return;
258 }
259 
260 static void _belt_hash_process(const u8 x[2 * BELT_BLOCK_LEN], u8 h[2 * BELT_BLOCK_LEN], u8 s[BELT_BLOCK_LEN])
261 {
262 	sigma1_xor(x, h, s, 1);
263 
264 	sigma2(x, h, h);
265 
266 	return;
267 }
268 
269 ATTRIBUTE_WARN_UNUSED_RET static int belt_hash_process(belt_hash_context *ctx, const u8 data[BELT_HASH_BLOCK_SIZE])
270 {
271 	_belt_hash_process(data, ctx->belt_hash_h, &(ctx->belt_hash_state[BELT_BLOCK_LEN]));
272 
273 	return 0;
274 }
275 
276 ATTRIBUTE_WARN_UNUSED_RET static int belt_hash_finalize(const u8 s[2 * BELT_BLOCK_LEN], const u8 h[2 * BELT_BLOCK_LEN], u8 res[2 * BELT_BLOCK_LEN])
277 {
278 	sigma2(s, h, res);
279 
280 	return 0;
281 }
282 
283 static void belt_update_ctr(belt_hash_context *ctx, u8 len_bytes)
284 {
285 	/* Perform a simple addition on 128 bits on the first part of the state */
286 	u64 a0, a1, b, c;
287 
288 	GET_UINT64_LE(a0, (const u8*)(ctx->belt_hash_state), 0);
289 	GET_UINT64_LE(a1, (const u8*)(ctx->belt_hash_state), 8);
290 
291 	b = (u64)(len_bytes << 3);
292 
293 	c = (a0 + b);
294 	if(c < b){
295 		/* Handle carry */
296 		a1 += 1;
297 	}
298 
299 	/* Store the result */
300 	PUT_UINT64_LE(c,  (u8*)(ctx->belt_hash_state), 0);
301 	PUT_UINT64_LE(a1, (u8*)(ctx->belt_hash_state), 8);
302 
303 	return;
304 }
305 
306 /* Init hash function. Returns 0 on success, -1 on error. */
307 int belt_hash_init(belt_hash_context *ctx)
308 {
309 	int ret;
310 
311 	MUST_HAVE((ctx != NULL), ret, err);
312 
313 	ctx->belt_hash_total = 0;
314 
315 	ret = local_memset(ctx->belt_hash_state, 0, sizeof(ctx->belt_hash_state)); EG(ret, err);
316 
317 	PUT_UINT64_LE(0x3bf5080ac8ba94b1ULL, ctx->belt_hash_h,  0);
318 	PUT_UINT64_LE(0xe45d4a588e006d36ULL, ctx->belt_hash_h,  8);
319 	PUT_UINT64_LE(0xacc7b61b9dfa0485ULL, ctx->belt_hash_h, 16);
320 	PUT_UINT64_LE(0x0dcefd02c2722e25ULL, ctx->belt_hash_h, 24);
321 
322 	/* Tell that we are initialized */
323 	ctx->magic = BELT_HASH_HASH_MAGIC;
324 
325 	ret = 0;
326 
327 err:
328 	return ret;
329 }
330 
331 /* Update hash function. Returns 0 on success, -1 on error. */
332 int belt_hash_update(belt_hash_context *ctx, const u8 *input, u32 ilen)
333 {
334 	const u8 *data_ptr = input;
335 	u32 remain_ilen = ilen;
336 	u16 fill;
337 	u8 left;
338 	int ret;
339 
340 	MUST_HAVE((input != NULL) || (ilen == 0), ret, err);
341 	BELT_HASH_HASH_CHECK_INITIALIZED(ctx, ret, err);
342 
343 	/* Nothing to process, return */
344 	if (ilen == 0) {
345 		ret = 0;
346 		goto err;
347 	}
348 
349 	/* Get what's left in our local buffer */
350 	left = (ctx->belt_hash_total & (BELT_HASH_BLOCK_SIZE - 1));
351 	fill = (u16)(BELT_HASH_BLOCK_SIZE - left);
352 
353 	ctx->belt_hash_total += ilen;
354 
355 	if ((left > 0) && (remain_ilen >= fill)) {
356 		/* Copy data at the end of the buffer */
357 		ret = local_memcpy(ctx->belt_hash_buffer + left, data_ptr, fill); EG(ret, err);
358 		/* Update the counter with one full block */
359 		belt_update_ctr(ctx, BELT_HASH_BLOCK_SIZE);
360 		/* Process */
361 		ret = belt_hash_process(ctx, ctx->belt_hash_buffer); EG(ret, err);
362 		data_ptr += fill;
363 		remain_ilen -= fill;
364 		left = 0;
365 	}
366 
367 	while (remain_ilen >= BELT_HASH_BLOCK_SIZE) {
368 		/* Update the counter with one full block */
369 		belt_update_ctr(ctx, BELT_HASH_BLOCK_SIZE);
370 		/* Process */
371 		ret = belt_hash_process(ctx, data_ptr); EG(ret, err);
372 		data_ptr += BELT_HASH_BLOCK_SIZE;
373 		remain_ilen -= BELT_HASH_BLOCK_SIZE;
374 	}
375 
376 	if (remain_ilen > 0) {
377 		ret = local_memcpy(ctx->belt_hash_buffer + left, data_ptr, remain_ilen); EG(ret, err);
378 	}
379 
380 	ret = 0;
381 
382 err:
383 	return ret;
384 }
385 
386 /* Finalize. Returns 0 on success, -1 on error.*/
387 int belt_hash_final(belt_hash_context *ctx, u8 output[BELT_HASH_DIGEST_SIZE])
388 {
389 	int ret;
390 	unsigned int i;
391 
392 	MUST_HAVE((output != NULL), ret, err);
393 	BELT_HASH_HASH_CHECK_INITIALIZED(ctx, ret, err);
394 
395 	if((ctx->belt_hash_total % BELT_HASH_BLOCK_SIZE) != 0){
396 		/* Pad our last block with zeroes */
397 		for(i = (ctx->belt_hash_total % BELT_HASH_BLOCK_SIZE); i < BELT_HASH_BLOCK_SIZE; i++){
398 			ctx->belt_hash_buffer[i] = 0;
399 		}
400 
401 		/* Update the counter with the remaining data */
402 		belt_update_ctr(ctx, (u8)(ctx->belt_hash_total % BELT_HASH_BLOCK_SIZE));
403 
404 		/* Process the last block */
405 		ret = belt_hash_process(ctx, ctx->belt_hash_buffer); EG(ret, err);
406 	}
407 
408 	/* Finalize and output the result */
409 	ret = belt_hash_finalize(ctx->belt_hash_state, ctx->belt_hash_h, output); EG(ret, err);
410 
411 	/* Tell that we are uninitialized */
412 	ctx->magic = WORD(0);
413 
414 	ret = 0;
415 
416 err:
417 	return ret;
418 }
419 
420 /*
421  * Scattered version performing init/update/finalize on a vector of buffers
422  * 'inputs' with the length of each buffer passed via 'ilens'. The function
423  * loops on pointers in 'inputs' until it finds a NULL pointer. The function
424  * returns 0 on success, -1 on error.
425  */
426 int belt_hash_scattered(const u8 **inputs, const u32 *ilens,
427 		      u8 output[BELT_HASH_DIGEST_SIZE])
428 {
429 	belt_hash_context ctx;
430 	int ret, pos = 0;
431 
432 	MUST_HAVE((inputs != NULL) && (ilens != NULL) && (output != NULL), ret, err);
433 
434 	ret = belt_hash_init(&ctx); EG(ret, err);
435 
436 	while (inputs[pos] != NULL) {
437 		ret = belt_hash_update(&ctx, inputs[pos], ilens[pos]); EG(ret, err);
438 		pos += 1;
439 	}
440 
441 	ret = belt_hash_final(&ctx, output);
442 
443 err:
444 	return ret;
445 }
446 
447 /*
448  * Single call version performing init/update/final on given input.
449  * Returns 0 on success, -1 on error.
450  */
451 int belt_hash(const u8 *input, u32 ilen, u8 output[BELT_HASH_DIGEST_SIZE])
452 {
453 	belt_hash_context ctx;
454 	int ret;
455 
456 	ret = belt_hash_init(&ctx); EG(ret, err);
457 	ret = belt_hash_update(&ctx, input, ilen); EG(ret, err);
458 	ret = belt_hash_final(&ctx, output);
459 
460 err:
461 	return ret;
462 }
463 
464 #else /* WITH_HASH_BELT_HASH */
465 
466 /*
467  * Dummy definition to avoid the empty translation unit ISO C warning
468  */
469 typedef int dummy;
470 
471 #endif /* WITH_HASH_BELT_HASH */
472