/* * Copyright (C) 2022 - This file is part of libecc project * * Authors: * Ryad BENADJILA * Arnaud EBALARD * * This software is licensed under a dual BSD and GPL v2 license. * See LICENSE file at the root folder of the project. */ #include #ifdef WITH_HASH_BELT_HASH #include /* * This is an implementation of the BELT-HASH hash function as * defined int STB 34.101.31. */ /* * The BELT-HASH function uses an underlying BELT block cipher * defined in STB 34.101.31. This is a simple and straitforward * implementation. */ #define ROTL_BELT(x, n) ((((u32)(x)) << (n)) | (((u32)(x)) >> (32-(n)))) #define SWAP_BELT(x, y) do { \ u32 z; \ z = (x); \ (x) = (y); \ (y) = z; \ } while(0) /* The S-Box */ static u8 S[256] = { 0xB1, 0x94, 0xBA, 0xC8, 0x0A, 0x08, 0xF5, 0x3B, 0x36, 0x6D, 0x00, 0x8E, 0x58, 0x4A, 0x5D, 0xE4, 0x85, 0x04, 0xFA, 0x9D, 0x1B, 0xB6, 0xC7, 0xAC, 0x25, 0x2E, 0x72, 0xC2, 0x02, 0xFD, 0xCE, 0x0D, 0x5B, 0xE3, 0xD6, 0x12, 0x17, 0xB9, 0x61, 0x81, 0xFE, 0x67, 0x86, 0xAD, 0x71, 0x6B, 0x89, 0x0B, 0x5C, 0xB0, 0xC0, 0xFF, 0x33, 0xC3, 0x56, 0xB8, 0x35, 0xC4, 0x05, 0xAE, 0xD8, 0xE0, 0x7F, 0x99, 0xE1, 0x2B, 0xDC, 0x1A, 0xE2, 0x82, 0x57, 0xEC, 0x70, 0x3F, 0xCC, 0xF0, 0x95, 0xEE, 0x8D, 0xF1, 0xC1, 0xAB, 0x76, 0x38, 0x9F, 0xE6, 0x78, 0xCA, 0xF7, 0xC6, 0xF8, 0x60, 0xD5, 0xBB, 0x9C, 0x4F, 0xF3, 0x3C, 0x65, 0x7B, 0x63, 0x7C, 0x30, 0x6A, 0xDD, 0x4E, 0xA7, 0x79, 0x9E, 0xB2, 0x3D, 0x31, 0x3E, 0x98, 0xB5, 0x6E, 0x27, 0xD3, 0xBC, 0xCF, 0x59, 0x1E, 0x18, 0x1F, 0x4C, 0x5A, 0xB7, 0x93, 0xE9, 0xDE, 0xE7, 0x2C, 0x8F, 0x0C, 0x0F, 0xA6, 0x2D, 0xDB, 0x49, 0xF4, 0x6F, 0x73, 0x96, 0x47, 0x06, 0x07, 0x53, 0x16, 0xED, 0x24, 0x7A, 0x37, 0x39, 0xCB, 0xA3, 0x83, 0x03, 0xA9, 0x8B, 0xF6, 0x92, 0xBD, 0x9B, 0x1C, 0xE5, 0xD1, 0x41, 0x01, 0x54, 0x45, 0xFB, 0xC9, 0x5E, 0x4D, 0x0E, 0xF2, 0x68, 0x20, 0x80, 0xAA, 0x22, 0x7D, 0x64, 0x2F, 0x26, 0x87, 0xF9, 0x34, 0x90, 0x40, 0x55, 0x11, 0xBE, 0x32, 0x97, 0x13, 0x43, 0xFC, 0x9A, 0x48, 0xA0, 0x2A, 0x88, 0x5F, 0x19, 0x4B, 0x09, 0xA1, 0x7E, 0xCD, 0xA4, 0xD0, 0x15, 0x44, 0xAF, 0x8C, 0xA5, 0x84, 0x50, 0xBF, 0x66, 0xD2, 0xE8, 0x8A, 0xA2, 0xD7, 0x46, 0x52, 0x42, 0xA8, 0xDF, 0xB3, 0x69, 0x74, 0xC5, 0x51, 0xEB, 0x23, 0x29, 0x21, 0xD4, 0xEF, 0xD9, 0xB4, 0x3A, 0x62, 0x28, 0x75, 0x91, 0x14, 0x10, 0xEA, 0x77, 0x6C, 0xDA, 0x1D, }; /* */ #define GET_BYTE(x, a) ( ((x) >> (a)) & 0xff ) #define PUT_BYTE(x, a) ( (u32)(x) << (a) ) #define SB(x, a) PUT_BYTE( S[GET_BYTE((x), (a))], (a) ) #define G(x, r) ROTL_BELT( SB((x), 24) | SB((x), 16) | SB((x), 8) | SB((x), 0), (r) ) static u32 KIdx[8][7] = { { 0, 1, 2, 3, 4, 5, 6 }, { 7, 0, 1, 2, 3, 4, 5 }, { 6, 7, 0, 1, 2, 3, 4 }, { 5, 6, 7, 0, 1, 2, 3 }, { 4, 5, 6, 7, 0, 1, 2 }, { 3, 4, 5, 6, 7, 0, 1 }, { 2, 3, 4, 5, 6, 7, 0 }, { 1, 2, 3, 4, 5, 6, 7 }, }; int belt_init(const u8 *k, u32 k_len, u8 ks[BELT_KEY_SCHED_LEN]) { int ret = -1; unsigned int i; switch(k_len){ case 16:{ for(i = 0; i < 16; i++){ ks[i] = k[i]; ks[i + 16] = k[i]; } break; } case 24:{ for(i = 0; i < 24; i++){ ks[i] = k[i]; } for(i = 24; i < 32; i++){ ks[i] = k[i - 24] ^ k[i - 20] ^ k[i - 16]; } break; } case 32:{ for(i = 0; i < 32; i++){ ks[i] = k[i]; } break; } default:{ ret = -1; goto err; } } ret = 0; err: return ret; } void belt_encrypt(const u8 in[BELT_BLOCK_LEN], u8 out[BELT_BLOCK_LEN], const u8 ks[BELT_KEY_SCHED_LEN]) { u32 a, b, c, d, e; u32 i; GET_UINT32_LE(a, in, 0); GET_UINT32_LE(b, in, 4); GET_UINT32_LE(c, in, 8); GET_UINT32_LE(d, in, 12); for(i = 0; i < 8; i++){ u32 key; GET_UINT32_LE(key, ks, 4*KIdx[i][0]); b ^= G(a + key, 5); GET_UINT32_LE(key, ks, 4*KIdx[i][1]); c ^= G(d + key, 21); GET_UINT32_LE(key, ks, 4*KIdx[i][2]); a = (u32)(a - G(b + key, 13)); GET_UINT32_LE(key, ks, 4*KIdx[i][3]); e = G(b + c + key, 21) ^ (i + 1); b += e; c = (u32)(c - e); GET_UINT32_LE(key, ks, 4*KIdx[i][4]); d += G(c + key, 13); GET_UINT32_LE(key, ks, 4*KIdx[i][5]); b ^= G(a + key, 21); GET_UINT32_LE(key, ks, 4*KIdx[i][6]); c ^= G(d + key, 5); SWAP_BELT(a, b); SWAP_BELT(c, d); SWAP_BELT(b, c); } PUT_UINT32_LE(b, out, 0); PUT_UINT32_LE(d, out, 4); PUT_UINT32_LE(a, out, 8); PUT_UINT32_LE(c, out, 12); return; } void belt_decrypt(const u8 in[BELT_BLOCK_LEN], u8 out[BELT_BLOCK_LEN], const u8 ks[BELT_KEY_SCHED_LEN]) { u32 a, b, c, d, e; u32 i; GET_UINT32_LE(a, in, 0); GET_UINT32_LE(b, in, 4); GET_UINT32_LE(c, in, 8); GET_UINT32_LE(d, in, 12); for(i = 0; i < 8; i++){ u32 key; u32 j = (7 - i); GET_UINT32_LE(key, ks, 4*KIdx[i][6]); b ^= G(a + key, 5); GET_UINT32_LE(key, ks, 4*KIdx[i][5]); c ^= G(d + key, 21); GET_UINT32_LE(key, ks, 4*KIdx[i][4]); a = (u32)(a - G(b + key, 13)); GET_UINT32_LE(key, ks, 4*KIdx[i][3]); e = G(b + c + key, 21) ^ (j + 1); b += e; c = (u32)(c - e); GET_UINT32_LE(key, ks, 4*KIdx[i][2]); d += G(c + key, 13); GET_UINT32_LE(key, ks, 4*KIdx[i][1]); b ^= G(a + key, 21); GET_UINT32_LE(key, ks, 4*KIdx[i][0]); c ^= G(d + key, 5); SWAP_BELT(a, b); SWAP_BELT(c, d); SWAP_BELT(a, d); } PUT_UINT32_LE(c, out, 0); PUT_UINT32_LE(a, out, 4); PUT_UINT32_LE(d, out, 8); PUT_UINT32_LE(b, out, 12); return; } /* BELT-HASH primitives */ static void sigma1_xor(const u8 x[2 * BELT_BLOCK_LEN], const u8 h[2 * BELT_BLOCK_LEN], u8 s[BELT_BLOCK_LEN], u8 use_xor){ u8 tmp1[BELT_BLOCK_LEN]; unsigned int i; for(i = 0; i < (BELT_BLOCK_LEN / 2); i++){ tmp1[i] = (h[i] ^ h[i + BELT_BLOCK_LEN]); tmp1[i + (BELT_BLOCK_LEN / 2)] = (h[i + (BELT_BLOCK_LEN / 2)] ^ h[i + BELT_BLOCK_LEN + (BELT_BLOCK_LEN / 2)]); } if(use_xor){ u8 tmp2[BELT_BLOCK_LEN]; belt_encrypt(tmp1, tmp2, x); for(i = 0; i < (BELT_BLOCK_LEN / 2); i++){ s[i] ^= (tmp1[i] ^ tmp2[i]); s[i + (BELT_BLOCK_LEN / 2)] ^= (tmp1[i + (BELT_BLOCK_LEN / 2)] ^ tmp2[i + (BELT_BLOCK_LEN / 2)]); } } else{ belt_encrypt(tmp1, s, x); for(i = 0; i < (BELT_BLOCK_LEN / 2); i++){ s[i] ^= tmp1[i]; s[i + (BELT_BLOCK_LEN / 2)] ^= tmp1[i + (BELT_BLOCK_LEN / 2)]; } } return; } static void sigma2(const u8 x[2 * BELT_BLOCK_LEN], u8 const h[2 * BELT_BLOCK_LEN], u8 result[2 * BELT_BLOCK_LEN]) { u8 teta[BELT_KEY_SCHED_LEN]; u8 tmp[BELT_BLOCK_LEN]; unsigned int i; /* Copy the beginning of h for later in case it is lost */ IGNORE_RET_VAL(local_memcpy(&tmp[0], &h[0], BELT_BLOCK_LEN)); sigma1_xor(x, h, teta, 0); IGNORE_RET_VAL(local_memcpy(&teta[BELT_BLOCK_LEN], &h[BELT_BLOCK_LEN], BELT_BLOCK_LEN)); belt_encrypt(x, result, teta); for(i = 0; i < BELT_BLOCK_LEN; i++){ result[i] ^= x[i]; teta[i] ^= 0xff; teta[i + BELT_BLOCK_LEN] = tmp[i]; } belt_encrypt(&x[BELT_BLOCK_LEN], &result[BELT_BLOCK_LEN], teta); for(i = 0; i < (BELT_BLOCK_LEN / 2); i++){ result[i + BELT_BLOCK_LEN] ^= x[i + BELT_BLOCK_LEN]; result[i + BELT_BLOCK_LEN + (BELT_BLOCK_LEN / 2)] ^= x[i + BELT_BLOCK_LEN + (BELT_BLOCK_LEN / 2)]; } return; } static void _belt_hash_process(const u8 x[2 * BELT_BLOCK_LEN], u8 h[2 * BELT_BLOCK_LEN], u8 s[BELT_BLOCK_LEN]) { sigma1_xor(x, h, s, 1); sigma2(x, h, h); return; } ATTRIBUTE_WARN_UNUSED_RET static int belt_hash_process(belt_hash_context *ctx, const u8 data[BELT_HASH_BLOCK_SIZE]) { _belt_hash_process(data, ctx->belt_hash_h, &(ctx->belt_hash_state[BELT_BLOCK_LEN])); return 0; } ATTRIBUTE_WARN_UNUSED_RET static int belt_hash_finalize(const u8 s[2 * BELT_BLOCK_LEN], const u8 h[2 * BELT_BLOCK_LEN], u8 res[2 * BELT_BLOCK_LEN]) { sigma2(s, h, res); return 0; } static void belt_update_ctr(belt_hash_context *ctx, u8 len_bytes) { /* Perform a simple addition on 128 bits on the first part of the state */ u64 a0, a1, b, c; GET_UINT64_LE(a0, (const u8*)(ctx->belt_hash_state), 0); GET_UINT64_LE(a1, (const u8*)(ctx->belt_hash_state), 8); b = (u64)(len_bytes << 3); c = (a0 + b); if(c < b){ /* Handle carry */ a1 += 1; } /* Store the result */ PUT_UINT64_LE(c, (u8*)(ctx->belt_hash_state), 0); PUT_UINT64_LE(a1, (u8*)(ctx->belt_hash_state), 8); return; } /* Init hash function. Returns 0 on success, -1 on error. */ int belt_hash_init(belt_hash_context *ctx) { int ret; MUST_HAVE((ctx != NULL), ret, err); ctx->belt_hash_total = 0; ret = local_memset(ctx->belt_hash_state, 0, sizeof(ctx->belt_hash_state)); EG(ret, err); PUT_UINT64_LE(0x3bf5080ac8ba94b1ULL, ctx->belt_hash_h, 0); PUT_UINT64_LE(0xe45d4a588e006d36ULL, ctx->belt_hash_h, 8); PUT_UINT64_LE(0xacc7b61b9dfa0485ULL, ctx->belt_hash_h, 16); PUT_UINT64_LE(0x0dcefd02c2722e25ULL, ctx->belt_hash_h, 24); /* Tell that we are initialized */ ctx->magic = BELT_HASH_HASH_MAGIC; ret = 0; err: return ret; } /* Update hash function. Returns 0 on success, -1 on error. */ int belt_hash_update(belt_hash_context *ctx, const u8 *input, u32 ilen) { const u8 *data_ptr = input; u32 remain_ilen = ilen; u16 fill; u8 left; int ret; MUST_HAVE((input != NULL) || (ilen == 0), ret, err); BELT_HASH_HASH_CHECK_INITIALIZED(ctx, ret, err); /* Nothing to process, return */ if (ilen == 0) { ret = 0; goto err; } /* Get what's left in our local buffer */ left = (ctx->belt_hash_total & (BELT_HASH_BLOCK_SIZE - 1)); fill = (u16)(BELT_HASH_BLOCK_SIZE - left); ctx->belt_hash_total += ilen; if ((left > 0) && (remain_ilen >= fill)) { /* Copy data at the end of the buffer */ ret = local_memcpy(ctx->belt_hash_buffer + left, data_ptr, fill); EG(ret, err); /* Update the counter with one full block */ belt_update_ctr(ctx, BELT_HASH_BLOCK_SIZE); /* Process */ ret = belt_hash_process(ctx, ctx->belt_hash_buffer); EG(ret, err); data_ptr += fill; remain_ilen -= fill; left = 0; } while (remain_ilen >= BELT_HASH_BLOCK_SIZE) { /* Update the counter with one full block */ belt_update_ctr(ctx, BELT_HASH_BLOCK_SIZE); /* Process */ ret = belt_hash_process(ctx, data_ptr); EG(ret, err); data_ptr += BELT_HASH_BLOCK_SIZE; remain_ilen -= BELT_HASH_BLOCK_SIZE; } if (remain_ilen > 0) { ret = local_memcpy(ctx->belt_hash_buffer + left, data_ptr, remain_ilen); EG(ret, err); } ret = 0; err: return ret; } /* Finalize. Returns 0 on success, -1 on error.*/ int belt_hash_final(belt_hash_context *ctx, u8 output[BELT_HASH_DIGEST_SIZE]) { int ret; unsigned int i; MUST_HAVE((output != NULL), ret, err); BELT_HASH_HASH_CHECK_INITIALIZED(ctx, ret, err); if((ctx->belt_hash_total % BELT_HASH_BLOCK_SIZE) != 0){ /* Pad our last block with zeroes */ for(i = (ctx->belt_hash_total % BELT_HASH_BLOCK_SIZE); i < BELT_HASH_BLOCK_SIZE; i++){ ctx->belt_hash_buffer[i] = 0; } /* Update the counter with the remaining data */ belt_update_ctr(ctx, (u8)(ctx->belt_hash_total % BELT_HASH_BLOCK_SIZE)); /* Process the last block */ ret = belt_hash_process(ctx, ctx->belt_hash_buffer); EG(ret, err); } /* Finalize and output the result */ ret = belt_hash_finalize(ctx->belt_hash_state, ctx->belt_hash_h, output); EG(ret, err); /* Tell that we are uninitialized */ ctx->magic = WORD(0); ret = 0; err: return ret; } /* * Scattered version performing init/update/finalize on a vector of buffers * 'inputs' with the length of each buffer passed via 'ilens'. The function * loops on pointers in 'inputs' until it finds a NULL pointer. The function * returns 0 on success, -1 on error. */ int belt_hash_scattered(const u8 **inputs, const u32 *ilens, u8 output[BELT_HASH_DIGEST_SIZE]) { belt_hash_context ctx; int ret, pos = 0; MUST_HAVE((inputs != NULL) && (ilens != NULL) && (output != NULL), ret, err); ret = belt_hash_init(&ctx); EG(ret, err); while (inputs[pos] != NULL) { ret = belt_hash_update(&ctx, inputs[pos], ilens[pos]); EG(ret, err); pos += 1; } ret = belt_hash_final(&ctx, output); err: return ret; } /* * Single call version performing init/update/final on given input. * Returns 0 on success, -1 on error. */ int belt_hash(const u8 *input, u32 ilen, u8 output[BELT_HASH_DIGEST_SIZE]) { belt_hash_context ctx; int ret; ret = belt_hash_init(&ctx); EG(ret, err); ret = belt_hash_update(&ctx, input, ilen); EG(ret, err); ret = belt_hash_final(&ctx, output); err: return ret; } #else /* WITH_HASH_BELT_HASH */ /* * Dummy definition to avoid the empty translation unit ISO C warning */ typedef int dummy; #endif /* WITH_HASH_BELT_HASH */