1 /* -*- mode: c; c-basic-offset: 4; indent-tabs-mode: nil -*- */ 2 /* 3 * prof_tree.c --- these routines maintain the parse tree of the 4 * config file. 5 * 6 * All of the details of how the tree is stored is abstracted away in 7 * this file; all of the other profile routines build, access, and 8 * modify the tree via the accessor functions found in this file. 9 * 10 * Each node may represent either a relation or a section header. 11 * 12 * A section header must have its value field be null, and may have one 13 * or more child nodes, pointed to by first_child. 14 * 15 * A relation has as its value a pointer to allocated memory 16 * containing a string. Its first_child pointer must be null. 17 * 18 */ 19 20 21 #include "prof_int.h" 22 23 #include <stdio.h> 24 #include <string.h> 25 #ifdef HAVE_STDLIB_H 26 #include <stdlib.h> 27 #endif 28 #include <errno.h> 29 #include <ctype.h> 30 31 struct profile_node { 32 errcode_t magic; 33 char *name; 34 char *value; 35 int group_level; 36 unsigned int final:1; /* Indicate don't search next file */ 37 unsigned int deleted:1; 38 struct profile_node *first_child; 39 struct profile_node *parent; 40 struct profile_node *next, *prev; 41 }; 42 43 #define CHECK_MAGIC(node) \ 44 if ((node)->magic != PROF_MAGIC_NODE) \ 45 return PROF_MAGIC_NODE; 46 47 /* 48 * Free a node, and any children 49 */ 50 void profile_free_node(struct profile_node *node) 51 { 52 struct profile_node *child, *next; 53 54 if (node->magic != PROF_MAGIC_NODE) 55 return; 56 57 if (node->name) 58 free(node->name); 59 if (node->value) 60 free(node->value); 61 62 for (child=node->first_child; child; child = next) { 63 next = child->next; 64 profile_free_node(child); 65 } 66 node->magic = 0; 67 68 free(node); 69 } 70 71 #ifndef HAVE_STRDUP 72 #undef strdup 73 #define strdup MYstrdup 74 static char *MYstrdup (const char *s) 75 { 76 size_t sz = strlen(s) + 1; 77 char *p = malloc(sz); 78 if (p != 0) 79 memcpy(p, s, sz); 80 return p; 81 } 82 #endif 83 84 /* 85 * Create a node 86 */ 87 errcode_t profile_create_node(const char *name, const char *value, 88 struct profile_node **ret_node) 89 { 90 struct profile_node *new; 91 92 new = malloc(sizeof(struct profile_node)); 93 if (!new) 94 return ENOMEM; 95 memset(new, 0, sizeof(struct profile_node)); 96 /* Set magic here so profile_free_node will free memory */ 97 new->magic = PROF_MAGIC_NODE; 98 new->name = strdup(name); 99 if (new->name == 0) { 100 profile_free_node(new); 101 return ENOMEM; 102 } 103 if (value) { 104 new->value = strdup(value); 105 if (new->value == 0) { 106 profile_free_node(new); 107 return ENOMEM; 108 } 109 } 110 111 *ret_node = new; 112 return 0; 113 } 114 115 /* Return a copy of oldnode. Recursively copy oldnode's children, but leave 116 * the parent, next, and prev pointers as null. */ 117 struct profile_node *profile_copy_node(struct profile_node *oldnode) 118 { 119 struct profile_node *node = NULL, *p, *q, **nextp, *last; 120 121 if (oldnode->magic != PROF_MAGIC_NODE) 122 return NULL; 123 124 node = calloc(1, sizeof(*node)); 125 node->magic = PROF_MAGIC_NODE; 126 node->name = strdup(oldnode->name); 127 if (node->name == NULL) 128 goto errout; 129 if (oldnode->value != NULL) { 130 node->value = strdup(oldnode->value); 131 if (oldnode->value == NULL) 132 goto errout; 133 } 134 node->group_level = oldnode->group_level; 135 node->final = oldnode->final; 136 node->deleted = oldnode->deleted; 137 138 nextp = &node->first_child; 139 last = NULL; 140 for (p = oldnode->first_child; p != NULL; p = p->next) { 141 q = profile_copy_node(p); 142 if (q == NULL) 143 goto errout; 144 145 /* Link in the new child and prepare for the next. */ 146 q->parent = node; 147 q->prev = last; 148 last = q; 149 *nextp = q; 150 nextp = &q->next; 151 } 152 153 return node; 154 155 errout: 156 profile_free_node(node); 157 return NULL; 158 } 159 160 /* 161 * This function verifies that all of the representation invariants of 162 * the profile are true. If not, we have a programming bug somewhere, 163 * probably in this file. 164 */ 165 errcode_t profile_verify_node(struct profile_node *node) 166 { 167 struct profile_node *p, *last; 168 errcode_t retval; 169 170 CHECK_MAGIC(node); 171 172 if (node->value && node->first_child) 173 return PROF_SECTION_WITH_VALUE; 174 175 last = 0; 176 for (p = node->first_child; p; last = p, p = p->next) { 177 if (p->prev != last) 178 return PROF_BAD_LINK_LIST; 179 if (last && (last->next != p)) 180 return PROF_BAD_LINK_LIST; 181 if (node->group_level+1 != p->group_level) 182 return PROF_BAD_GROUP_LVL; 183 if (p->parent != node) 184 return PROF_BAD_PARENT_PTR; 185 retval = profile_verify_node(p); 186 if (retval) 187 return retval; 188 } 189 return 0; 190 } 191 192 /* 193 * Add a node to a particular section. If check_final is true, don't add the 194 * node if we find a final node for the same name. 195 */ 196 errcode_t profile_add_node(struct profile_node *section, const char *name, 197 const char *value, int check_final, 198 struct profile_node **ret_node) 199 { 200 errcode_t retval; 201 struct profile_node *p, *last, *new; 202 203 CHECK_MAGIC(section); 204 205 if (section->value) 206 return PROF_ADD_NOT_SECTION; 207 208 /* 209 * Find the place to insert the new node. If we are adding a subsection 210 * and already have a subsection with that name, merge them. Otherwise, 211 * we look for the place *after* the last match of the node name, since 212 * order matters. 213 */ 214 for (p=section->first_child, last = 0; p; last = p, p = p->next) { 215 int cmp; 216 cmp = strcmp(p->name, name); 217 if (cmp > 0) { 218 break; 219 } else if (value == NULL && cmp == 0 && 220 p->value == NULL && p->deleted != 1) { 221 /* Found duplicate subsection, so don't make a new one. */ 222 if (ret_node) 223 *ret_node = p; 224 return 0; 225 } else if (check_final && cmp == 0 && p->final) { 226 /* This key already exists with the final flag and we were asked 227 * to check it, so don't add this node. */ 228 if (ret_node) 229 *ret_node = NULL; 230 return 0; 231 } 232 } 233 retval = profile_create_node(name, value, &new); 234 if (retval) 235 return retval; 236 new->group_level = section->group_level+1; 237 new->deleted = 0; 238 new->parent = section; 239 new->prev = last; 240 new->next = p; 241 if (p) 242 p->prev = new; 243 if (last) 244 last->next = new; 245 else 246 section->first_child = new; 247 if (ret_node) 248 *ret_node = new; 249 return 0; 250 } 251 252 /* 253 * Set the final flag on a particular node. 254 */ 255 errcode_t profile_make_node_final(struct profile_node *node) 256 { 257 CHECK_MAGIC(node); 258 259 node->final = 1; 260 return 0; 261 } 262 263 /* 264 * Check the final flag on a node 265 */ 266 int profile_is_node_final(struct profile_node *node) 267 { 268 return (node->final != 0); 269 } 270 271 /* 272 * Return the name of a node. (Note: this is for internal functions 273 * only; if the name needs to be returned from an exported function, 274 * strdup it first!) 275 */ 276 const char *profile_get_node_name(struct profile_node *node) 277 { 278 return node->name; 279 } 280 281 /* 282 * Return the value of a node. (Note: this is for internal functions 283 * only; if the name needs to be returned from an exported function, 284 * strdup it first!) 285 */ 286 const char *profile_get_node_value(struct profile_node *node) 287 { 288 return node->value; 289 } 290 291 /* 292 * Iterate through the section, returning the nodes which match 293 * the given name. If name is NULL, then iterate through all the 294 * nodes in the section. If section_flag is non-zero, only return the 295 * section which matches the name; don't return relations. If value 296 * is non-NULL, then only return relations which match the requested 297 * value. (The value argument is ignored if section_flag is non-zero.) 298 * 299 * The first time this routine is called, the state pointer must be 300 * null. When this profile_find_node_relation() returns, if the state 301 * pointer is non-NULL, then this routine should be called again. 302 * (This won't happen if section_flag is non-zero, obviously.) 303 * 304 */ 305 errcode_t profile_find_node(struct profile_node *section, const char *name, 306 const char *value, int section_flag, void **state, 307 struct profile_node **node) 308 { 309 struct profile_node *p; 310 311 CHECK_MAGIC(section); 312 p = *state; 313 if (p) { 314 CHECK_MAGIC(p); 315 } else 316 p = section->first_child; 317 318 for (; p; p = p->next) { 319 if (name && (strcmp(p->name, name))) 320 continue; 321 if (section_flag) { 322 if (p->value) 323 continue; 324 } else { 325 if (!p->value) 326 continue; 327 if (value && (strcmp(p->value, value))) 328 continue; 329 } 330 if (p->deleted) 331 continue; 332 /* A match! */ 333 if (node) 334 *node = p; 335 break; 336 } 337 if (p == 0) { 338 *state = 0; 339 return section_flag ? PROF_NO_SECTION : PROF_NO_RELATION; 340 } 341 /* 342 * OK, we've found one match; now let's try to find another 343 * one. This way, if we return a non-zero state pointer, 344 * there's guaranteed to be another match that's returned. 345 */ 346 for (p = p->next; p; p = p->next) { 347 if (name && (strcmp(p->name, name))) 348 continue; 349 if (section_flag) { 350 if (p->value) 351 continue; 352 } else { 353 if (!p->value) 354 continue; 355 if (value && (strcmp(p->value, value))) 356 continue; 357 } 358 if (p->deleted) 359 continue; 360 /* A match! */ 361 break; 362 } 363 *state = p; 364 return 0; 365 } 366 367 368 /* 369 * Iterate through the section, returning the relations which match 370 * the given name. If name is NULL, then iterate through all the 371 * relations in the section. The first time this routine is called, 372 * the state pointer must be null. When this profile_find_node_relation() 373 * returns, if the state pointer is non-NULL, then this routine should 374 * be called again. 375 * 376 * The returned character string in value points to the stored 377 * character string in the parse string. Before this string value is 378 * returned to a calling application (profile_find_node_relation is not an 379 * exported interface), it should be strdup()'ed. 380 */ 381 errcode_t profile_find_node_relation(struct profile_node *section, 382 const char *name, void **state, 383 char **ret_name, char **value, 384 int *ret_final) 385 { 386 struct profile_node *p; 387 errcode_t retval; 388 389 retval = profile_find_node(section, name, 0, 0, state, &p); 390 if (retval) 391 return retval; 392 393 if (p) { 394 if (value) 395 *value = p->value; 396 if (ret_name) 397 *ret_name = p->name; 398 if (ret_final) 399 *ret_final = p->final; 400 } 401 return 0; 402 } 403 404 /* 405 * Iterate through the section, returning the subsections which match 406 * the given name. If name is NULL, then iterate through all the 407 * subsections in the section. The first time this routine is called, 408 * the state pointer must be null. When this profile_find_node_subsection() 409 * returns, if the state pointer is non-NULL, then this routine should 410 * be called again. 411 * 412 * This is (plus accessor functions for the name and value given a 413 * profile node) makes this function mostly syntactic sugar for 414 * profile_find_node. 415 */ 416 errcode_t profile_find_node_subsection(struct profile_node *section, 417 const char *name, void **state, 418 char **ret_name, 419 struct profile_node **subsection) 420 { 421 struct profile_node *p; 422 errcode_t retval; 423 424 retval = profile_find_node(section, name, 0, 1, state, &p); 425 if (retval) 426 return retval; 427 428 if (p) { 429 if (subsection) 430 *subsection = p; 431 if (ret_name) 432 *ret_name = p->name; 433 } 434 return 0; 435 } 436 437 /* 438 * This function returns the parent of a particular node. 439 */ 440 errcode_t profile_get_node_parent(struct profile_node *section, 441 struct profile_node **parent) 442 { 443 *parent = section->parent; 444 return 0; 445 } 446 447 /* 448 * This is a general-purpose iterator for returning all nodes that 449 * match the specified name array. 450 */ 451 struct profile_node_iterator { 452 prf_magic_t magic; 453 int flags; 454 const char *const *names; 455 const char *name; 456 prf_file_t file; 457 int file_serial; 458 int done_idx; 459 struct profile_node *node; 460 int num; 461 }; 462 463 errcode_t profile_node_iterator_create(profile_t profile, 464 const char *const *names, int flags, 465 void **ret_iter) 466 { 467 struct profile_node_iterator *iter; 468 int done_idx = 0; 469 470 if (profile == 0) 471 return PROF_NO_PROFILE; 472 if (profile->magic != PROF_MAGIC_PROFILE) 473 return PROF_MAGIC_PROFILE; 474 if (!names) 475 return PROF_BAD_NAMESET; 476 if (!(flags & PROFILE_ITER_LIST_SECTION)) { 477 if (!names[0]) 478 return PROF_BAD_NAMESET; 479 done_idx = 1; 480 } 481 482 iter = malloc(sizeof(*iter)); 483 if (iter == NULL) 484 return ENOMEM; 485 486 iter->magic = PROF_MAGIC_NODE_ITERATOR; 487 iter->names = names; 488 iter->flags = flags; 489 iter->file = profile->first_file; 490 iter->done_idx = done_idx; 491 iter->node = 0; 492 iter->num = 0; 493 *ret_iter = iter; 494 return 0; 495 } 496 497 void profile_node_iterator_free(void **iter_p) 498 { 499 struct profile_node_iterator *iter; 500 501 if (!iter_p) 502 return; 503 iter = *iter_p; 504 if (!iter || iter->magic != PROF_MAGIC_NODE_ITERATOR) 505 return; 506 free(iter); 507 *iter_p = 0; 508 } 509 510 /* 511 * Note: the returned character strings in ret_name and ret_value 512 * points to the stored character string in the parse string. Before 513 * this string value is returned to a calling application 514 * (profile_node_iterator is not an exported interface), it should be 515 * strdup()'ed. 516 */ 517 errcode_t profile_node_iterator(void **iter_p, 518 struct profile_node **ret_node, 519 char **ret_name, char **ret_value) 520 { 521 struct profile_node_iterator *iter = *iter_p; 522 struct profile_node *section, *p; 523 const char *const *cpp; 524 errcode_t retval; 525 int skip_num = 0; 526 527 if (!iter || iter->magic != PROF_MAGIC_NODE_ITERATOR) 528 return PROF_MAGIC_NODE_ITERATOR; 529 if (iter->file && iter->file->magic != PROF_MAGIC_FILE) 530 return PROF_MAGIC_FILE; 531 if (iter->file && iter->file->data->magic != PROF_MAGIC_FILE_DATA) 532 return PROF_MAGIC_FILE_DATA; 533 /* 534 * If the file has changed, then the node pointer is invalid, 535 * so we'll have search the file again looking for it. 536 */ 537 if (iter->file) 538 k5_mutex_lock(&iter->file->data->lock); 539 if (iter->node && (iter->file->data->upd_serial != iter->file_serial)) { 540 iter->flags &= ~PROFILE_ITER_FINAL_SEEN; 541 skip_num = iter->num; 542 iter->node = 0; 543 } 544 if (iter->node && iter->node->magic != PROF_MAGIC_NODE) { 545 if (iter->file) 546 k5_mutex_unlock(&iter->file->data->lock); 547 return PROF_MAGIC_NODE; 548 } 549 get_new_file: 550 if (iter->node == 0) { 551 if (iter->file == 0 || 552 (iter->flags & PROFILE_ITER_FINAL_SEEN)) { 553 if (iter->file) 554 k5_mutex_unlock(&iter->file->data->lock); 555 profile_node_iterator_free(iter_p); 556 if (ret_node) 557 *ret_node = 0; 558 if (ret_name) 559 *ret_name = 0; 560 if (ret_value) 561 *ret_value =0; 562 return 0; 563 } 564 if ((retval = profile_update_file_locked(iter->file, NULL))) { 565 k5_mutex_unlock(&iter->file->data->lock); 566 if (retval == ENOENT || retval == EACCES) { 567 /* XXX memory leak? */ 568 iter->file = iter->file->next; 569 if (iter->file) 570 k5_mutex_lock(&iter->file->data->lock); 571 skip_num = 0; 572 retval = 0; 573 goto get_new_file; 574 } else { 575 profile_node_iterator_free(iter_p); 576 return retval; 577 } 578 } 579 iter->file_serial = iter->file->data->upd_serial; 580 /* 581 * Find the section to list if we are a LIST_SECTION, 582 * or find the containing section if not. 583 */ 584 section = iter->file->data->root; 585 assert(section != NULL); 586 for (cpp = iter->names; cpp[iter->done_idx]; cpp++) { 587 for (p=section->first_child; p; p = p->next) { 588 if (!strcmp(p->name, *cpp) && !p->value && !p->deleted) 589 break; 590 } 591 if (!p) { 592 section = 0; 593 break; 594 } 595 section = p; 596 if (p->final) 597 iter->flags |= PROFILE_ITER_FINAL_SEEN; 598 } 599 if (!section) { 600 k5_mutex_unlock(&iter->file->data->lock); 601 iter->file = iter->file->next; 602 if (iter->file) 603 k5_mutex_lock(&iter->file->data->lock); 604 skip_num = 0; 605 goto get_new_file; 606 } 607 iter->name = *cpp; 608 iter->node = section->first_child; 609 } 610 /* 611 * OK, now we know iter->node is set up correctly. Let's do 612 * the search. 613 */ 614 for (p = iter->node; p; p = p->next) { 615 if (iter->name && strcmp(p->name, iter->name)) 616 continue; 617 if ((iter->flags & PROFILE_ITER_SECTIONS_ONLY) && 618 p->value) 619 continue; 620 if ((iter->flags & PROFILE_ITER_RELATIONS_ONLY) && 621 !p->value) 622 continue; 623 if (skip_num > 0) { 624 skip_num--; 625 continue; 626 } 627 if (p->deleted) 628 continue; 629 if (p->final) 630 iter->flags |= PROFILE_ITER_FINAL_SEEN; 631 break; 632 } 633 iter->num++; 634 if (!p) { 635 k5_mutex_unlock(&iter->file->data->lock); 636 iter->file = iter->file->next; 637 if (iter->file) 638 k5_mutex_lock(&iter->file->data->lock); 639 iter->node = 0; 640 skip_num = 0; 641 goto get_new_file; 642 } 643 k5_mutex_unlock(&iter->file->data->lock); 644 if ((iter->node = p->next) == NULL) 645 iter->file = iter->file->next; 646 if (ret_node) 647 *ret_node = p; 648 if (ret_name) 649 *ret_name = p->name; 650 if (ret_value) 651 *ret_value = p->value; 652 return 0; 653 } 654 655 /* 656 * Remove a particular node. 657 * 658 * TYT, 2/25/99 659 */ 660 errcode_t profile_remove_node(struct profile_node *node) 661 { 662 CHECK_MAGIC(node); 663 664 if (node->parent == 0) 665 return PROF_EINVAL; /* Can't remove the root! */ 666 667 node->deleted = 1; 668 669 return 0; 670 } 671 672 /* 673 * Set the value of a specific node containing a relation. 674 * 675 * TYT, 2/25/99 676 */ 677 errcode_t profile_set_relation_value(struct profile_node *node, 678 const char *new_value) 679 { 680 char *cp; 681 682 CHECK_MAGIC(node); 683 684 if (!node->value) 685 return PROF_SET_SECTION_VALUE; 686 687 cp = strdup(new_value); 688 if (!cp) 689 return ENOMEM; 690 691 free(node->value); 692 node->value = cp; 693 694 return 0; 695 } 696 697 /* 698 * Rename a specific node 699 * 700 * TYT 2/25/99 701 */ 702 errcode_t profile_rename_node(struct profile_node *node, const char *new_name) 703 { 704 char *new_string; 705 struct profile_node *p, *last; 706 707 CHECK_MAGIC(node); 708 709 if (strcmp(new_name, node->name) == 0) 710 return 0; /* It's the same name, return */ 711 712 /* 713 * Make sure we can allocate memory for the new name, first! 714 */ 715 new_string = strdup(new_name); 716 if (!new_string) 717 return ENOMEM; 718 719 /* 720 * Find the place to where the new node should go. We look 721 * for the place *after* the last match of the node name, 722 * since order matters. 723 */ 724 for (p=node->parent->first_child, last = 0; p; last = p, p = p->next) { 725 if (strcmp(p->name, new_name) > 0) 726 break; 727 } 728 729 /* 730 * If we need to move the node, do it now. 731 */ 732 if ((p != node) && (last != node)) { 733 /* 734 * OK, let's detach the node 735 */ 736 if (node->prev) 737 node->prev->next = node->next; 738 else 739 node->parent->first_child = node->next; 740 if (node->next) 741 node->next->prev = node->prev; 742 743 /* 744 * Now let's reattach it in the right place. 745 */ 746 if (p) 747 p->prev = node; 748 if (last) 749 last->next = node; 750 else 751 node->parent->first_child = node; 752 node->next = p; 753 node->prev = last; 754 } 755 756 free(node->name); 757 node->name = new_string; 758 return 0; 759 } 760